JP2004179057A - Tightening structure of solid polymer fuel cell stack - Google Patents

Tightening structure of solid polymer fuel cell stack Download PDF

Info

Publication number
JP2004179057A
JP2004179057A JP2002345790A JP2002345790A JP2004179057A JP 2004179057 A JP2004179057 A JP 2004179057A JP 2002345790 A JP2002345790 A JP 2002345790A JP 2002345790 A JP2002345790 A JP 2002345790A JP 2004179057 A JP2004179057 A JP 2004179057A
Authority
JP
Japan
Prior art keywords
cell stack
load
tie
fuel cell
tie plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002345790A
Other languages
Japanese (ja)
Other versions
JP4197931B2 (en
Inventor
Takashi Kawanabe
隆 川鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002345790A priority Critical patent/JP4197931B2/en
Publication of JP2004179057A publication Critical patent/JP2004179057A/en
Application granted granted Critical
Publication of JP4197931B2 publication Critical patent/JP4197931B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a tightening structure of a solid polymer fuel cell stack with high reliability and excellent power generating efficiency by applying a uniform compression load within a plane in a simple structure on a stack laminated with cells. <P>SOLUTION: A pair each of collector plates 21, insulators 23, end plates 24, and, at an outermost side, tie plates 25 divided into two at one side are arranged in that order toward outside with a stack part 20 laminating the cells at the center, which are tightened with a tie rod fitted between the pair of the tie plates 25, and are integrated in a state with the compression load applied. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池に関するものであり、詳しくはセルを積層した固体高分子形燃料電池スタックの締付構造に関する。
【0002】
【従来の技術】
従来のセルを積層したスタックを締め付ける燃料電池の締付装置については、図1(特許文献1の第1図を引用)に示すものがある。これは、曲面部38aを設けた加圧板35a、35bを、曲面部38aが溶融塩形のスタック31の反対方向を向くようにスタック31の両側に配置し、さらに、曲面部38aを加圧板35a、35bとで挟むように曲面部38aの上方に加圧ビーム32a、32bを配置し、さらに、加圧ビーム32a、32bの両側を貫通した締付ロッド33で締め付けることにより、曲面部38aを介してスタック31を加圧固定させたものである(例えば、特許文献1参照)。
【0003】
また、図2(特許文献2の第1図を引用)に示すように、単電池1とセパレータ2との間に介在されるスペーサ3とを交互に積層してなる平板型固体電解質燃料電池にその積層方向に圧縮加重を加える装置において、燃料電池を載置する下部架台5と、下部架台5上に燃料電池の最上面のほぼ中央部に載せた球体10と、球体10の上に載置した上部架台6と、下部架台5と上部架台6を接近させることにより両架台間に挟持された燃料電池に積層方向の圧縮加重を加えるものもある(例えば、特許文献2参照)。
【0004】
【特許文献1】
特開平9−259916号公報(第3頁、第1図)
【特許文献2】
特開平9−139223号公報(第3頁、第1図)
【0005】
【発明が解決しようとする課題】
上記特許文献1(特開平9−259916号公報)の燃料電池の締付装置では、スタック31を挟んで設けられた1対の加圧ビーム32a、32bのそれぞれの両端に設けられた締付ロッド33の貫通穴と、1対の加圧ビームのそれぞれで加圧される加圧板35a、35bに設けられた曲面部38aの位置関係を見ると、締付ロッドの貫通穴同士を結ぶ方向と曲面部38a同士を結ぶ方向とが同一に設けられている。この場合、1対の加圧ビーム32a、32bの両端の締付ロッドによる締付圧に差があると、曲面部38aに加わる荷重の均衡が崩れ、締付圧の大きい締付ロッドの方向にある曲面部38aに、荷重の移動が生じることになり、スタック31を構成するセル同士の接触面での面内の接触圧の分布が不均一になってしまう。その結果、セル間で発生する反応ガスや冷却水の漏れ、応力ひずみで生じるセルの機械的破損、セル同士の接触圧が低い部分で生じる接触抵抗の増加に伴うセル間の電力伝達損失による発電効率の低下などの問題が生じる可能性がある。
【0006】
また、上記特許文献2(特開平9−139223号公報)の平板型固体電解質燃料電池では、単電池1とセパレータ2との間に介在されるスペーサ3とを交互に積層した燃料電池に、燃料電池の積層方向の両端に配置された下部架台5と球体10とで圧縮荷重が加えられている。この状態では、球体10による荷重は燃料電池の最も外側のセパレータ2の中心付近に点荷重として加えられており、点荷重を受けたセパレータ2が点荷重を単電池1の積層方向に、均一な分布の面荷重として伝達するためには、点荷重を受けたセパレータ2が自身内で点荷重を均一な分布の面荷重になるように分散することが必要である。そのためには、点荷重を受けても変形しない材料、形状などを考慮した堅牢なセパレータ2が必要となり、その結果、燃料電池の重量化、大型化が避けられない問題となる。また、容量の大きい燃料電池を実現するための手段として積層される単電池1の面積を大きくする方法があるが、単位面積当たり一定荷重を確保するためには、単電池1の面積が大きくなるにしたがって球体10による荷重の増加、及び、さらなる堅牢なセパレータ2が要求さる。従って、燃料電池の大容量化に伴って、重量化、大型化が相乗的に進行することになる。また、さらに大容量化が大きく進んだ場合には、均一分布の面荷重の確保が難しくなることも考えられ、その場合には、上記特許文献1(特開平9−259916号公報)ついて述べた問題点が生じる可能性も否定できない。
本発明は、上記問題に鑑みて創案なされたものであり、小型、軽量、高品質、低コストで、セル間の電力伝達損失を少なくして発電効率を向上させた個体高分子形燃料電池を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明の請求項1に記載された発明は、セルが積層されたセル積層体と、前記セル積層体の積層方向の両側に配置されたエンドプレートと、前記エンドプレートを挟んで前記セル積層体と反対側に配置され、前記エンドプレートを介して前記積層方向に圧縮荷重を加えるタイプレートとを具備し、前記タイプレートは前記セル積層体の積層方向の片側に複数設けられ、且つ、前記セル積層体を挟んで対称な位置に対称な配置で設けられたことを特徴とするものである。
【0008】
また、本発明の請求項2に記載された発明は、請求項1において、前記タイプレートに、前記セル積層体を該セル積層体の積層方向と直交する面で切断した切断面の長手方向の中心線上に荷重点が設けられたことを特徴とするものである。
【0009】
また、本発明の請求項3に記載された発明は、請求項1又は2において、前記タイプレートに、前記荷重点を結ぶ直線方向と直交する方向の中心線上にタイロッドを通す貫通穴が配設されたことを特徴とするものである。
【0010】
また、本発明の請求項4に記載された発明は、請求項1乃至3において、前記タイプレートに、2ヶ所の荷重点が設けられたことを特徴とするものである。
【0011】
さらに、本発明の請求項5に記載された発明は、請求項1乃至4において、片側に配置された前記タイプレートの数は、片側に配置されたタイプレートに設けられた荷重点の総数以下であることを特徴とするものである。
【0012】
【発明の実施の形態】
以下、この発明の好適な実施形態を図3乃至図6を参照しながら、詳細に説明する。尚、以下に述べる実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。
【0013】
図3は、本発明に係る固体高分子形燃料電池スタックの締付構造の実施例を示す分解斜視図、図4は組立斜視図であるが、ここでは図3について説明する。この実施例の固体高分子形燃料電池のスタックモジュール30は、(図示していないが)中心となる高分子電解質膜を両側から触媒電極となる燃料極と空気極とで挟み、その外側に集電材として多孔質の支持層を、さらにその外側に水素や酸素の反応ガスの供給通路を設けたセパレータを配置し、一体化してセルが構成されている。そして、前記構成のセルを積層したスタック部20を中心に、外側に向かって順次それぞれ1対の、スタック部20で発電した電気を外部に取り出すための集電板21、電気的な絶縁を確保するためのインシュレータ23、スタック部20に面内均一な圧縮荷重を加えるためのエンドプレート24が配置され、最も外側にはエンドプレート24に荷重を加えるための片側に2枚のタイプレート25が配置されている。そして、2枚のタイプレート25のそれぞれスタック部20を挟んで対称な位置に対称に配置された1対のタイプレート25の両端部に貫通孔71が設けられ、両端部にネジ部26が設けられたタイロッド27の両端部を1対のタイプレート間を結んで貫通させて外側からナット28で締め付けることのより、スタック部20、集電板21、インシュレータ23、エンドプレート24、タイプレート25に圧縮荷重を加えた状態で一体化したものである。
【0014】
ここで、タイプレート25とエンドプレート24について詳しく説明する。タイプレート25は、スタックモジュール30の最も外側に配置されて、エンドプレート24に与えるための荷重を保持する働きと、保持した荷重をエンドプレート24に伝達し、荷重を受けたエンドプレート24がスタック部20に均一な分布の面荷重として加圧する働きを与えている。後者の働きは、タイプレート25のスタック部20方向に、スタック部20をスタック部20のセル積層方向と直交する面で切断した切断面の長手方向の中心線上に荷重点29を設け、この荷重点29でエンドプレート24に荷重を加えることによりスタック部20に面の圧縮荷重として加えるものである。点荷重を与える構成は、図5に示すように、タイプレート25の荷重点の位置に設けられたネジ孔60にスタック部の反対方向からスタック部に向けてネジ61を螺嵌し、タイプレート25のスタック部20方向に飛び出したネジ部62にカラー63を差込み、その上から皿バネ64を差込んだものである。また、エンドプレート24のタイプレート側の面には、タイプレート25の荷重点29に対応する位置にガイド穴70が設けられていおり、タイプレート25の荷重点29から飛び出したネジ部62をエンドプレート24に設けられたガイド穴70に差込み、荷重を加えることによりネジ部62に取り付けられた皿バネ64を介してエンドプレート24に荷重が伝達されるようになっている。一方前者の働きは、上述したように、片側に配置された2枚のタイプレート25のそれぞれスタック部20を挟んで対称な位置に対称に配置された1対のタイプレート25の両端部に貫通孔71を設け、両端部にネジ部26が設けられたタイロッド27の両端部を両タイプレート25間を結んで貫通させて外側からナット28で締め付けられている。そして、タイプレート25の両端面に設けられた2ヶ所の貫通穴71を結ぶ方向は、図6のようにタイプレートの荷重点29を結ぶ方向と直交する方向の中心線上に設けられている。
【0015】
【発明の効果】
以上説明したように、本発明の固体高分子形燃料電池スタックの締付構造は、セルを積層したスタック部に圧縮荷重を加えるためのタイプレートが片側複数に分割された構成になっておる。これにより、必要な圧縮荷重は、分割されたタイプレートに分散され、1枚のタイプレートに求められる荷重が軽減できるため、タイプレートに要求される堅牢の度合が緩和され、スタックモジュールの小型、軽量化に寄与するものである。
【0016】
また、タイプレートを分割したことによって、一枚のタイプレートの大きさを小さくでき、製造時の公差を少なく設定できる。従って製品の組み立て精度が向上し、品質、性能が一定したものを再現よく製造することができる。
【0017】
また、タイプレートを分割したことによって 一枚のタイプレートの点荷重となるバネやタイプレートなどに取付誤差があったとしても、他のタイプレートで調整し補償して均等な荷重を確保することがでるため、余裕をもった設計、製造が可能となる。
【0018】
また、寸法の異なる複数の製品をシリーズ化して製品のラインアップを図る場合、タイプレート1枚で機能させると、製品ごとにタイプレートの設計、製造を行なわなければならない。それに対し、タイプレートが分割されたことにより小型になったため、設計条件に多少の制限はあるものの、共通部品として使用することが可能となり、設計工数の低減、多量生産によるコスト低減に結びつく。
【0019】
また、圧縮荷重の調整が1枚のタイプレートにつき2ヶ所ででるため調整が簡単になると同時に、1枚のタイプレートで3ヶ所以上の荷重調整が必要な場合に起こる調整不良からくる面のひずみによるセルの破損が防止できる。
【0020】
また、エンドプレートのタイプレート側の面にタイプレートの荷重点に対応する位置にガイド穴を設け、タイプレートの荷重点から飛び出したネジ部をエンドプレートに設けられたガイド穴に差込んでタイプレートの荷重を加えるようにしたことにより、タイプレートの荷重点をエンドプレートの決められた位置に容易に、且つ、正確に合わせることができる。従って組み立て効率が向上し、低価格化に繋がる。
【0021】
また、タイプレートのスタック部方向に、スタック部をスタック部のセル積層方向と直交する面で切断した切断面の長手方向の中心線上に荷重点を設け、この荷重点でエンドプレートに荷重を加えるようにしてあるため、荷重点を結ぶ方向に直行する方向に設けられたタイロッドの締付力の均衡が多少崩れていても、荷重点を結ぶ方向への荷重点の移動はなく、タイロッドの締め付け方向への荷重の移動もタイロッドの締め付け力の差に比較してきわめて小さい。したがって、タイロッドの締め付け調整が簡便で、セル同士の接触面での面内の接触圧の分布が不均一になってしまうことによるセル間で発生する反応ガスや冷却水の漏れ、応力ひずみで生じるセルの機械的破損、セル同士の接触圧が低い部分で生じる接触抵抗の増加に伴うセル間の電力伝達損失による発電効率の低下などの問題がなく、信頼性が高く、発電効率が良く、安定な性能が確保できると同時に、多量の生産にあたっては、簡便な荷重調整による製造コストの低減、性能にバラツキが少ないため、再現性のある製品が製造できるなど、きわめて優れた効果を奏するものである。
【図面の簡単な説明】
【図1】参考文献1(特開平9−259916号公報)に第1図として記載されたものである。
【図2】参考文献2(特開平9−139223号公報)に第1図として記載されたものである。
【図3】本発明に係わる固体高分子形燃料電池スタックの締付構造の実施例を示す分解斜視図である。
【図4】本発明に係わる固体高分子形燃料電池スタックの締付構造の実施例を示す組立斜視図である。
【図5】本発明に係わる固体高分子形燃料電池スタックの締付構造の実施例の一部分を示す部分側面図である。
【図6】本発明に係わる固体高分子形燃料電池スタックの締付構造の実施例における荷重点と貫通穴との位置関係を示す参考図である。
【符号の説明】
20 スタック部
21 集電板
23 インシュレータ
24 エンドプレート
25 タイプレート
26 ネジ部
27 タイロッド
28 ナット
29 荷重点
30 スタックモジュール
70 ガイド穴
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel cell, and more particularly, to a fastening structure of a polymer electrolyte fuel cell stack in which cells are stacked.
[0002]
[Prior art]
FIG. 1 (refer to FIG. 1 of Patent Document 1) shows a conventional fuel cell fastening device for fastening a stack in which cells are stacked. This is because the pressing plates 35a and 35b provided with the curved surface portions 38a are arranged on both sides of the stack 31 such that the curved surface portions 38a face the opposite direction of the molten salt type stack 31, and the curved surface portions 38a are further pressed to the pressing plate 35a. , 35b, the pressurizing beams 32a, 32b are arranged above the curved surface portion 38a, and are further tightened by the tightening rods 33 penetrating both sides of the pressurized beams 32a, 32b. The stack 31 is pressurized and fixed (for example, see Patent Document 1).
[0003]
As shown in FIG. 2 (refer to FIG. 1 of Patent Document 2), a flat solid electrolyte fuel cell in which unit cells 1 and spacers 3 interposed between separators 2 are alternately stacked. In a device for applying a compressive load in the stacking direction, a lower mount 5 on which the fuel cell is mounted, a sphere 10 mounted on the lower mount 5 at substantially the center of the uppermost surface of the fuel cell, and a lower base 5 mounted on the sphere 10 In some cases, a compression load in the stacking direction is applied to the fuel cell sandwiched between the upper pedestal 6 and the lower pedestal 5 and the upper pedestal 6 by bringing the lower pedestal 5 and the upper pedestal 6 closer (for example, see Patent Document 2).
[0004]
[Patent Document 1]
JP-A-9-259916 (page 3, FIG. 1)
[Patent Document 2]
JP-A-9-139223 (Page 3, FIG. 1)
[0005]
[Problems to be solved by the invention]
In the fuel cell tightening device of Patent Document 1 (Japanese Patent Application Laid-Open No. 9-259916), tightening rods provided at both ends of a pair of pressurizing beams 32a and 32b provided with the stack 31 interposed therebetween. Looking at the positional relationship between the through hole 33 and the curved portions 38a provided on the pressing plates 35a and 35b pressurized by the pair of pressure beams, respectively, the direction connecting the through holes of the tightening rod and the curved surface are shown. The directions connecting the portions 38a are provided to be the same. In this case, if there is a difference in the tightening pressure by the tightening rods at both ends of the pair of pressurizing beams 32a and 32b, the load applied to the curved surface portion 38a will be unbalanced, and the direction of the tightening rod with the higher tightening pressure will be lost. The movement of the load occurs on a certain curved surface portion 38a, and the distribution of the in-plane contact pressure on the contact surface between the cells constituting the stack 31 becomes non-uniform. As a result, generation of electricity due to leakage of reaction gas and cooling water generated between cells, mechanical damage of cells caused by stress and strain, and power transmission loss between cells due to increase in contact resistance generated at parts where the contact pressure between cells is low. Problems such as reduced efficiency may occur.
[0006]
Further, in the flat solid electrolyte fuel cell disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 9-139223), a fuel cell in which unit cells 1 and spacers 3 interposed between separators 2 are alternately stacked is provided with a fuel. A compressive load is applied to the lower base 5 and the sphere 10 arranged at both ends of the battery in the stacking direction. In this state, the load by the sphere 10 is applied as a point load near the center of the outermost separator 2 of the fuel cell, and the separator 2 receiving the point load applies the point load uniformly in the stacking direction of the unit cells 1. In order to transmit the surface load as a distributed surface load, it is necessary for the separator 2 that has received the point load to distribute the point load within the separator 2 so as to have a uniform distribution of the surface load. For that purpose, a robust separator 2 that takes into account a material, a shape, and the like that does not deform even when subjected to a point load is required, and as a result, there is an unavoidable problem that the weight and size of the fuel cell must be increased. As a means for realizing a fuel cell having a large capacity, there is a method of increasing the area of the stacked unit cells 1, but in order to secure a constant load per unit area, the area of the unit cell 1 is increased. Accordingly, an increase in load due to the sphere 10 and a further robust separator 2 are required. Therefore, as the capacity of the fuel cell increases, the weight and the size of the fuel cell increase synergistically. Further, if the capacity is further increased, it may be difficult to secure a uniform load of the surface load. In such a case, Patent Document 1 (Japanese Patent Application Laid-Open No. 9-259916) is described. There is no denying that problems may arise.
The present invention has been made in view of the above problems, and has a small, lightweight, high-quality, low-cost, solid polymer fuel cell that has improved power generation efficiency by reducing power transfer loss between cells. To provide.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention described in claim 1 of the present invention is directed to a cell stack in which cells are stacked, end plates arranged on both sides of the cell stack in the stacking direction, A tie plate that is disposed on the opposite side of the cell stack with the plate interposed therebetween and applies a compressive load in the stacking direction via the end plate, wherein the tie plate is provided on one side of the cell stack in the stacking direction. It is characterized in that a plurality are provided and provided symmetrically at positions symmetrical with respect to the cell laminate.
[0008]
The invention described in claim 2 of the present invention is directed to the tie plate according to claim 1, wherein the tie plate has a longitudinal direction of a cut surface obtained by cutting the cell laminate at a plane orthogonal to a laminating direction of the cell laminate. The present invention is characterized in that a load point is provided on the center line.
[0009]
According to a third aspect of the present invention, in the first or second aspect, the tie plate is provided with a through-hole for passing a tie rod on a center line in a direction orthogonal to a linear direction connecting the load points. It is characterized by having been done.
[0010]
According to a fourth aspect of the present invention, in the first to third aspects, the tie plate is provided with two load points.
[0011]
Furthermore, in the invention described in claim 5 of the present invention, in claim 1 to 4, the number of the tie plates arranged on one side is equal to or less than the total number of load points provided on the tie plate arranged on one side. It is characterized by being.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to FIGS. The embodiment described below is a preferred specific example of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention particularly limits the present invention in the following description. The embodiments are not limited to these embodiments unless otherwise described.
[0013]
FIG. 3 is an exploded perspective view showing an embodiment of a fastening structure of a polymer electrolyte fuel cell stack according to the present invention, and FIG. 4 is an assembled perspective view. FIG. 3 will be described here. In the stack module 30 of the polymer electrolyte fuel cell according to this embodiment, the center polymer electrolyte membrane (not shown) is sandwiched between the fuel electrode serving as the catalyst electrode and the air electrode from both sides, and the collection A porous support layer is provided as an electric material, and a separator provided with a supply path for a reaction gas of hydrogen or oxygen is disposed outside the support layer, and a cell is configured integrally. A pair of current collector plates 21 for taking out the electricity generated by the stack unit 20 to the outside sequentially from the stack unit 20 in which the cells having the above-described configuration are centered, and securing electrical insulation. 23, an end plate 24 for applying an in-plane uniform compressive load to the stack portion 20, and two tie plates 25 on one side for applying a load to the end plate 24 on the outermost side. Have been. Then, through holes 71 are provided at both ends of a pair of tie plates 25 symmetrically arranged at symmetric positions with respect to the stack portion 20 of each of the two tie plates 25, and screw portions 26 are provided at both ends. By tying both ends of the tie rods 27 connected between a pair of tie plates and fastening them with nuts 28 from the outside, the stack portion 20, the current collecting plate 21, the insulator 23, the end plate 24, and the tie plate 25 are formed. It is integrated under a state where a compressive load is applied.
[0014]
Here, the tie plate 25 and the end plate 24 will be described in detail. The tie plate 25 is disposed on the outermost side of the stack module 30 and serves to hold a load to be applied to the end plate 24, transmits the held load to the end plate 24, and The part 20 is provided with a function of applying pressure as a surface load having a uniform distribution. The latter function is as follows. A load point 29 is provided in the direction of the stack portion 20 of the tie plate 25 on the center line in the longitudinal direction of a cut surface obtained by cutting the stack portion 20 along a plane perpendicular to the cell stacking direction of the stack portion 20. By applying a load to the end plate 24 at the point 29, the stack portion 20 is applied as a surface compressive load. As shown in FIG. 5, the point load is applied to a screw hole 60 provided at the position of the load point of the tie plate 25 by screwing a screw 61 from the opposite direction of the stack portion toward the stack portion. The collar 63 is inserted into the screw portion 62 protruding in the direction of the stack portion 20 of the 25, and the disc spring 64 is inserted from above. A guide hole 70 is provided on the tie plate side surface of the end plate 24 at a position corresponding to the load point 29 of the tie plate 25. The load is transmitted to the end plate 24 via a disc spring 64 attached to the screw portion 62 by inserting the guide hole 70 into the guide hole 70 provided in the plate 24 and applying a load. On the other hand, the former function, as described above, penetrates through both ends of a pair of tie plates 25 symmetrically arranged at symmetric positions with respect to the stack portion 20 of the two tie plates 25 arranged on one side. A hole 71 is provided, and both ends of a tie rod 27 provided with a thread portion 26 at both ends are connected and penetrated between both tie plates 25 and fastened with nuts 28 from the outside. The direction connecting the two through holes 71 provided on both end surfaces of the tie plate 25 is provided on the center line in the direction orthogonal to the direction connecting the load points 29 of the tie plate as shown in FIG.
[0015]
【The invention's effect】
As described above, the fastening structure of the polymer electrolyte fuel cell stack of the present invention has a configuration in which a tie plate for applying a compressive load to a stack portion in which cells are stacked is divided into a plurality of pieces on one side. As a result, the required compressive load is distributed to the divided tie plates, and the load required for one tie plate can be reduced. Therefore, the degree of stiffness required for the tie plate is reduced, and the size of the stack module can be reduced. This contributes to weight reduction.
[0016]
Further, by dividing the tie plate, the size of one tie plate can be reduced, and the tolerance during manufacturing can be set to be small. Therefore, the assembling accuracy of the product is improved, and a product having constant quality and performance can be manufactured with good reproducibility.
[0017]
In addition, even if there is a mounting error in the spring or tie plate that becomes the point load of one tie plate due to the division of the tie plate, adjust it with another tie plate and compensate to ensure an even load. As a result, it is possible to design and manufacture with a margin.
[0018]
Also, when a plurality of products having different dimensions are to be made into a series and a product lineup is to be achieved, if a single tie plate is used, the tie plate must be designed and manufactured for each product. On the other hand, since the tie plate is divided into smaller parts due to its division, it can be used as a common part although there are some restrictions on design conditions, leading to a reduction in design man-hours and a reduction in cost due to mass production.
[0019]
In addition, the adjustment of the compressive load is performed at two places per one tie plate, so that the adjustment is easy, and at the same time, the surface distortion caused by poor adjustment that occurs when the load adjustment at three or more places is required with one tie plate. Can prevent cell damage.
[0020]
Also, a guide hole is provided at the position corresponding to the load point of the tie plate on the tie plate side surface of the end plate, and the threaded part protruding from the load point of the tie plate is inserted into the guide hole provided on the end plate. By applying the load of the rate, the load point of the tie plate can be easily and accurately adjusted to the determined position of the end plate. Therefore, the assembling efficiency is improved, which leads to a reduction in cost.
[0021]
In addition, a load point is provided on the center line in the longitudinal direction of the cut surface obtained by cutting the stack portion in a direction perpendicular to the cell stacking direction of the stack portion, and a load is applied to the end plate at this load point. Therefore, even if the balance of the tightening force of the tie rods provided in a direction perpendicular to the direction connecting the load points is slightly distorted, the load points do not move in the direction connecting the load points, and the tie rods are tightened. The movement of the load in the direction is also extremely small as compared with the difference in the tightening force of the tie rods. Therefore, the tightening adjustment of the tie rod is easy, and the distribution of the contact pressure in the contact surface between the cells becomes non-uniform. High reliability, good power generation efficiency, and no problems such as mechanical breakage of the cells and a decrease in power generation efficiency due to loss of power transfer between cells due to an increase in contact resistance caused by the low contact pressure between cells In addition to ensuring high performance, in large-scale production, it is extremely effective in reducing manufacturing costs by simple load adjustment and reducing variations in performance, making it possible to manufacture reproducible products. .
[Brief description of the drawings]
FIG. 1 is described as FIG. 1 in Reference Document 1 (Japanese Patent Application Laid-Open No. 9-259916).
FIG. 2 is described as FIG. 1 in Reference 2 (Japanese Patent Laid-Open No. 9-139223).
FIG. 3 is an exploded perspective view showing an embodiment of a fastening structure of a polymer electrolyte fuel cell stack according to the present invention.
FIG. 4 is an assembled perspective view showing an embodiment of a fastening structure of a polymer electrolyte fuel cell stack according to the present invention.
FIG. 5 is a partial side view showing a part of the embodiment of the fastening structure of the polymer electrolyte fuel cell stack according to the present invention.
FIG. 6 is a reference diagram showing a positional relationship between a load point and a through hole in the embodiment of the fastening structure of the polymer electrolyte fuel cell stack according to the present invention.
[Explanation of symbols]
Reference Signs List 20 Stack part 21 Current collector 23 Insulator 24 End plate 25 Tie plate 26 Thread part 27 Tie rod 28 Nut 29 Load point 30 Stack module 70 Guide hole

Claims (5)

セルが積層されたセル積層体と、前記セル積層体の積層方向の両側に配置されたエンドプレートと、前記エンドプレートを挟んで前記セル積層体と反対側に配置され、前記エンドプレートを介して前記積層方向に圧縮荷重を加えるタイプレートとを具備し、前記タイプレートは前記セル積層体の積層方向の片側に複数設けられ、且つ、前記セル積層体を挟んで対称な位置に対称な配置で設けられたことを特徴とする固体高分子形燃料電池スタックの締付構造。A cell stack in which cells are stacked, end plates arranged on both sides of the cell stack in the stacking direction, and arranged on the opposite side of the cell stack with the end plate interposed therebetween, via the end plate A tie plate for applying a compressive load in the stacking direction, wherein the tie plates are provided on one side in the stacking direction of the cell stack, and are symmetrically arranged at positions symmetrical with respect to the cell stack. A fastening structure for a polymer electrolyte fuel cell stack, wherein the fastening structure is provided. 前記タイプレートに、前記セル積層体を該セル積層体の積層方向と直交する面で切断した切断面の長手方向の中心線上に荷重点が設けられたことを特徴とする請求項1に記載の固体高分子形燃料電池スタックの締付構造。2. The tie plate according to claim 1, wherein a load point is provided on a center line in a longitudinal direction of a cut surface obtained by cutting the cell stack with a plane orthogonal to a stacking direction of the cell stack. 3. Tightening structure for polymer electrolyte fuel cell stack. 前記タイプレートに、前記荷重点を結ぶ直線方向と直交する方向の中心線上にタイロッドを通す貫通穴が配設されたことを特徴とする請求項1又は2に記載の固体高分子形燃料電池スタックの締付構造。3. The polymer electrolyte fuel cell stack according to claim 1, wherein the tie plate is provided with a through-hole for passing a tie rod on a center line in a direction orthogonal to a linear direction connecting the load points. Tightening structure. 前記タイプレートに、2ヶ所の荷重点が設けられたことを特徴とする請求項1乃至3に記載の固体高分子形燃料電池スタックの締付構造。4. The fastening structure for a polymer electrolyte fuel cell stack according to claim 1, wherein two load points are provided on the tie plate. 片側に配置された前記タイプレートの数は、片側に配置されたタイプレートに設けられた荷重点の総数以下であることを特徴とする請求項1乃至4に記載の固体高分子形燃料電池スタックの締付構造。5. The polymer electrolyte fuel cell stack according to claim 1, wherein the number of the tie plates disposed on one side is equal to or less than the total number of load points provided on the tie plate disposed on one side. 6. Tightening structure.
JP2002345790A 2002-11-28 2002-11-28 Tightening structure of polymer electrolyte fuel cell stack Expired - Fee Related JP4197931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002345790A JP4197931B2 (en) 2002-11-28 2002-11-28 Tightening structure of polymer electrolyte fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002345790A JP4197931B2 (en) 2002-11-28 2002-11-28 Tightening structure of polymer electrolyte fuel cell stack

Publications (2)

Publication Number Publication Date
JP2004179057A true JP2004179057A (en) 2004-06-24
JP4197931B2 JP4197931B2 (en) 2008-12-17

Family

ID=32706882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002345790A Expired - Fee Related JP4197931B2 (en) 2002-11-28 2002-11-28 Tightening structure of polymer electrolyte fuel cell stack

Country Status (1)

Country Link
JP (1) JP4197931B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156164A (en) * 2004-11-30 2006-06-15 Sanyo Electric Co Ltd Fuel cell
US7700216B2 (en) 2005-04-20 2010-04-20 Samsung Sdi Co., Ltd. Stack for fuel cell system having an element for reducing stress concentration
CN110534786A (en) * 2019-09-27 2019-12-03 北京中氢绿能科技有限公司 Fuel cell mounting structure, fuel cell stack and fuel cell assembly method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156164A (en) * 2004-11-30 2006-06-15 Sanyo Electric Co Ltd Fuel cell
US7700216B2 (en) 2005-04-20 2010-04-20 Samsung Sdi Co., Ltd. Stack for fuel cell system having an element for reducing stress concentration
CN110534786A (en) * 2019-09-27 2019-12-03 北京中氢绿能科技有限公司 Fuel cell mounting structure, fuel cell stack and fuel cell assembly method

Also Published As

Publication number Publication date
JP4197931B2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
JP5196876B2 (en) Assembled battery
JP4031860B2 (en) Fuel cell having a clamping structure
JP3516892B2 (en) Polymer electrolyte fuel cell stack
JP6357439B2 (en) Power storage module
US20050186462A1 (en) PEM fuel cell stack with floating current collector plates
JP2008508688A (en) Fuel cell stack with clamping device
JP2005285625A (en) Frame for battery pack and battery pack
JP5835315B2 (en) Power storage module unit and method for manufacturing power storage module unit
CN208835193U (en) A kind of fastening structure and fuel cell pack for fuel cell pack
CN102171881A (en) Cell stack of fuel cells and method for fastening cell stack of fuel cells
KR101479836B1 (en) Fuel cell with excellent clamping force
JP2018166212A (en) Power storage module
KR101491349B1 (en) Fuel cell stack
JP7095070B2 (en) Fuel cell stack compression system and method
JP3952744B2 (en) Fuel cell
JP4592927B2 (en) Manufacturing method of fuel cell stack
JP2016091840A (en) Fuel cell device
JP4197931B2 (en) Tightening structure of polymer electrolyte fuel cell stack
JP2011014278A (en) Battery module and manufacturing method therefor
JP2004127778A (en) Fuel cell
US11600844B2 (en) Solid-state battery cell and solid-state battery module
JP2018166211A (en) Power storage module
JP2007134202A (en) Fuel cell and its manufacturing method
JP2022049240A (en) Fuel cell
JP2016131088A (en) Fuel battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

S804 Written request for registration of cancellation of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314805

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R314531

S804 Written request for registration of cancellation of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees