JP2007073359A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2007073359A
JP2007073359A JP2005259591A JP2005259591A JP2007073359A JP 2007073359 A JP2007073359 A JP 2007073359A JP 2005259591 A JP2005259591 A JP 2005259591A JP 2005259591 A JP2005259591 A JP 2005259591A JP 2007073359 A JP2007073359 A JP 2007073359A
Authority
JP
Japan
Prior art keywords
separator
fuel cell
arm
flat plate
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005259591A
Other languages
Japanese (ja)
Other versions
JP4892897B2 (en
Inventor
Yasutoshi Takamori
康俊 高森
Hisafumi Kotani
尚史 小谷
Takashi Miyazawa
隆 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Materials Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2005259591A priority Critical patent/JP4892897B2/en
Publication of JP2007073359A publication Critical patent/JP2007073359A/en
Application granted granted Critical
Publication of JP4892897B2 publication Critical patent/JP4892897B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide pressing structure of a flat plate lamination type fuel cell capable of adding stable and optimum pressure at all time even under an atmosphere of high temperature at power generation. <P>SOLUTION: The flat plate lamination type fuel cell 1 is formed by alternately laminating a plurality of separators 8 having power generating cells 5 and reaction gas flow passages with the power generating cells 5 located at central part of the separators 8, and adding pressure on the laminate in lamination direction by a pressing means. A weight 22 is mounted on a part where the power generating cell 5 at upper end of the laminate is located (separator body 8a), and the pressure of the weight 22 is utilized as a laminate pressing means. Further, an edge part of the separator is held by a flexible separator arm 8b, and the other end part of the separator arm 8b is fixed to a position shifted from supporting position of the separator in lamination direction. In the above case, elasticity of the separator arm 8a is utilized as the laminate pressing means. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、発電セルとセパレータを交互に多数積層した平板積層型の燃料電池に関し、特に、積層体への加重構造に関するものである。   The present invention relates to a flat plate type fuel cell in which a large number of power generation cells and separators are alternately stacked, and more particularly to a weighted structure for a stacked body.

従来より、酸化物イオン導電体から成る固体電解質層を両側から空気極層(カソード)と燃料極層(アノード)で挟み込んだ構造の発電セルを間にセパレータを介在して多数積層した平板積層型の燃料電池が知られている。   Conventionally, a large number of power generation cells with a structure in which a solid electrolyte layer made of an oxide ion conductor is sandwiched between the air electrode layer (cathode) and the fuel electrode layer (anode) from both sides are stacked with a separator in between. There are known fuel cells.

この平板積層型の燃料電池は、上述した複数の発電要素を積層して構成される発電セルを、更にセパレータ等の導電部材を介して多数積層した構造であるから、安定した電池性能を確保するために構成要素相互の優れた密着性(電気的接触性)が要求されている。
このため、平板積層型の燃料電池では、発電に必要なセル面圧を確保するため、スタック組立後にその両端より積層方向に荷重を掛けて各構成要素を圧接させる構造が採られており、例えば、特許文献1ではスタック上下端に配した端板をボルト、ナットにて締め付けする(タイロッドによる締め付け)構造が開示されており、また、引用文献2には、スタックと端板の間に介在したスプリングの弾性にて加重する構造が開示されている。
特開2004−288539号公報 特開2004−288618号公報
This flat plate type fuel cell has a structure in which a large number of power generation cells configured by laminating the above-described plurality of power generation elements are further stacked via a conductive member such as a separator, thereby ensuring stable battery performance. Therefore, excellent adhesion (electrical contact) between components is required.
For this reason, in order to ensure the cell surface pressure necessary for power generation in the flat plate type fuel cell, a structure is adopted in which each component is pressed against each other by applying a load in the stacking direction from both ends after stack assembly. Patent Document 1 discloses a structure in which end plates arranged on the upper and lower ends of a stack are tightened with bolts and nuts (tightening with tie rods), and in Patent Document 2, a spring interposed between the stack and the end plates is disclosed. A structure that is elastically loaded is disclosed.
JP 2004-288539 A JP 2004-288618 A

ところが、上述のタイロッドによる締め付け構造は、発電セルに荷重が掛かり過ぎることから、発電セルの破損を招く虞がある。他方、スプリングによる加重構造では、使用温度雰囲気(例えば、固体酸化物形燃料電池では、800〜1000℃)に適用可能なスプリング材料に乏しく、よって、上記のような高温雰囲気下においては高熱によりスプリングの弾性が硬化するため、発電セル、集電体、セパレータ等、スタック構成部材の熱膨張に対応して常に最適な荷重を付与することが困難になるという問題があった。
各発電セルに対して最適荷重が付与されない場合は、各々セル電圧にバラ付きが生じ、安定した電池性能が得られなくなる。
However, the tightening structure using the above-described tie rod may cause the power generation cell to be damaged because the power generation cell is overloaded. On the other hand, in the weighted structure by the spring, the spring material applicable to the operating temperature atmosphere (for example, 800 to 1000 ° C. in the case of a solid oxide fuel cell) is poor, and therefore the spring is heated by high heat in the high temperature atmosphere as described above. Since the elasticity of the resin is cured, there is a problem that it is difficult to always apply an optimum load corresponding to the thermal expansion of the stack constituent members such as the power generation cell, the current collector, and the separator.
When the optimum load is not applied to each power generation cell, the cell voltage varies, and stable battery performance cannot be obtained.

本発明は、このような問題点に鑑みて成されたもので、発電時の高温雰囲気下においても、常に安定した最適荷重を付与することができる平板積層型の燃料電池の加重構造を提供することを目的としている。   The present invention has been made in view of such problems, and provides a weighted structure of a flat plate type fuel cell that can always provide a stable optimum load even in a high-temperature atmosphere during power generation. The purpose is that.

すなわち、請求項1に記載の本発明は、発電セルと反応用ガス通路を備えるセパレータを交互に多数積層すると共に、この積層体に加重手段により積層方向の荷重を付与して成る平板積層型の燃料電池において、前記積層体の上端部の前記発電セルが位置する部分に錘を載置し、当該錘による押圧力を前記積層体への加重手段としたことを特徴としている。   That is, the present invention according to claim 1 is a flat plate laminate type in which a large number of separators having power generation cells and reaction gas passages are alternately stacked, and a load in the stacking direction is applied to the stack by a load means. In the fuel cell, a weight is placed on a portion of the upper end portion of the stacked body where the power generation cell is located, and a pressing force by the weight is used as a weighting unit for the stacked body.

また、請求項2に記載の本発明は、請求項1に記載の平板積層型の燃料電池において、前記セパレータの縁部が他端を固定した可撓性のセパレータアームにより支持されていることを特徴としている。   According to a second aspect of the present invention, in the flat plate type fuel cell according to the first aspect, the edge of the separator is supported by a flexible separator arm having the other end fixed. It is a feature.

また、請求項3に記載の本発明は、請求項1に記載の平板積層型の燃料電池において、前記セパレータの縁部が可撓性のセパレータアームにより支持されると共に、当該セパレータアームの他端を前記セパレータの支持位置より積層方向にズレた位置にて固定し、その際の前記セパレータアームの弾性を前記積層体への加重手段としたことを特徴としている。   According to a third aspect of the present invention, in the flat plate type fuel cell according to the first aspect, the edge of the separator is supported by a flexible separator arm and the other end of the separator arm is provided. Is fixed at a position shifted in the stacking direction from the support position of the separator, and the elasticity of the separator arm at that time is used as a weighting means for the stack.

また、請求項4に記載の本発明は、発電セルと反応用ガス通路を備えるセパレータを交互に多数積層すると共に、この積層体に加重手段により積層方向の荷重を付与して成る平板積層型の燃料電池において、前記セパレータの縁部が可撓性のセパレータアームにより支持されると共に、当該セパレータアームの他端を前記セパレータの支持位置より積層方向にズレた位置にて固定し、その際の前記セパレータアームの弾性を前記積層体への加重手段としたことを特徴としている。   According to a fourth aspect of the present invention, there is provided a flat plate laminate type in which a large number of separators having power generation cells and reaction gas passages are alternately stacked, and a load in the stacking direction is applied to the stack by a load means. In the fuel cell, the edge of the separator is supported by a flexible separator arm, and the other end of the separator arm is fixed at a position shifted in the stacking direction from the support position of the separator. It is characterized in that the elasticity of the separator arm is used as a weighting means for the laminate.

また、請求項5に記載の本発明は、請求項2から請求項4までの何れかに記載の平板積層型の燃料電池において、前記セパレータアームの他端が反応用ガス導入用のマニホールドに固定されると共に、前記セパレータの反応用ガス通路と当該マニホールドとが前記セパレータアームのガス孔を介して連通していることを特徴としている。   According to a fifth aspect of the present invention, in the flat plate type fuel cell according to any one of the second to fourth aspects, the other end of the separator arm is fixed to a reaction gas introducing manifold. In addition, the reaction gas passage of the separator and the manifold communicate with each other through a gas hole of the separator arm.

本発明によれば、錘による荷重を積層体(発電セル)への加重手段としたので、熱サイクルにおけるスタック構成部材(発電セル、集電体、セパレータ)の熱膨張や収縮に左右されず、発電セルに常に一定の面圧を付与することができるため、各セル電圧にバラ付きの生じない安定した電池性能(出力電力)を確保することができる。   According to the present invention, since the load due to the weight is used as a weighting means to the laminate (power generation cell), it is not affected by thermal expansion or contraction of the stack constituent member (power generation cell, current collector, separator) in the thermal cycle, Since a constant surface pressure can always be applied to the power generation cell, stable battery performance (output power) that does not cause variations in the cell voltages can be ensured.

また、本発明によれば、可撓性のセパレータアームの奏する弾性を発電セルへの加重手段としたので、セパレータアームの長さやスタック構成部材の厚みにより荷重の大きさを変えることが可能であり、且つ、集電体の熱膨張をセパレータアームの緩やかな弾性復帰力で押し付けることで発電セルに適切な面圧を付与することができる。これにより、各発電要素間に良好な電気的接触性が得られるようになり、各セル電圧にバラ付きの生じない安定した電池性能(出力電力)を確保することができる。   Further, according to the present invention, since the elasticity exerted by the flexible separator arm is used as a weighting means for the power generation cell, it is possible to change the magnitude of the load depending on the length of the separator arm and the thickness of the stack constituent members. Moreover, an appropriate surface pressure can be applied to the power generation cell by pressing the thermal expansion of the current collector with a gentle elastic restoring force of the separator arm. Thereby, favorable electrical contact property can be obtained between the respective power generating elements, and stable battery performance (output power) that does not cause variations in each cell voltage can be ensured.

以下、図面に基づいて本発明の実施形態を説明する。
図1は本発明の第1実施形態による平板積層型の燃料電池スタックの構成を示し、図2は図1の一部拡大を示し、図3は図1のセパレータの構造を示し、図4は本発明の第2実施形態による平板積層型の燃料電池スタックの構成を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows the structure of a flat plate fuel cell stack according to the first embodiment of the present invention, FIG. 2 shows a partially enlarged view of FIG. 1, FIG. 3 shows the structure of the separator of FIG. 3 shows a configuration of a flat plate fuel cell stack according to a second embodiment of the present invention.

図2に示すように、単セル10は、固体電解質層2の両面に燃料極層3と空気極層4を配した円形の発電セル5と、燃料極層3の外側に配した燃料極集電体6と、空気極層4の外側に配した空気極集電体7と、各集電体6、7の外側に配したセパレータ8とで構成されている。   As shown in FIG. 2, the single cell 10 includes a circular power generation cell 5 in which a fuel electrode layer 3 and an air electrode layer 4 are disposed on both sides of a solid electrolyte layer 2, and a fuel electrode assembly disposed outside the fuel electrode layer 3. The electric current collector 6, an air electrode current collector 7 disposed outside the air electrode layer 4, and a separator 8 disposed outside each current collector 6, 7 are configured.

これら発電要素の内、固体電解質層2はイットリアを添加した安定化ジルコニア(YSZ)等で構成され、燃料極層3はNi等の金属あるいはNi−YSZ等のサーメットで構成され、空気極層4はLaMnO3、LaCoO3等で構成され、燃料極集電体6はNi等のスポンジ状の多孔質焼結金属板で構成され、空気極集電体7はAg等のスポンジ状の多孔質焼結金属板で構成されている。 Among these power generation elements, the solid electrolyte layer 2 is composed of stabilized zirconia (YSZ) or the like to which yttria is added, and the fuel electrode layer 3 is composed of a metal such as Ni or a cermet such as Ni—YSZ. Is composed of LaMnO 3 , LaCoO 3 or the like, the fuel electrode current collector 6 is composed of a sponge-like porous sintered metal plate such as Ni, and the air electrode current collector 7 is composed of a sponge-like porous ceramic such as Ag. It consists of a metal plate.

セパレータ8は、図3に示すように、厚さ数mmの略方形状のステンレス板で構成されており、上述した発電セル5、各集電体6、7が積層される中央のセパレータ本体8aと、このセパレータ本体8aより面方向に延設されて、当セパレータ本体8aの対向縁部を2箇所で支持する一対のセパレータアーム8b、8bとで構成されている。   As shown in FIG. 3, the separator 8 is formed of a substantially rectangular stainless steel plate having a thickness of several millimeters, and a central separator body 8a in which the power generation cell 5 and the current collectors 6 and 7 described above are stacked. And a pair of separator arms 8b and 8b that extend in the surface direction from the separator body 8a and support the opposite edge of the separator body 8a at two locations.

中央部のセパレータ本体8aは、集電体6、7を介して発電セル5間を電気的に接続すると共に、発電セル5に対して反応用ガスを供給する機能を有し、その内部に燃料ガスをセパレータ8の縁部から導入してセパレータ8の燃料極集電体6に対向する面のほぼ中央部11aから吐出する燃料ガス通路11と、酸化剤ガス(空気)をセパレータ8の縁部から導入してセパレータ8の空気極集電体7に対向する面のほぼ中央12aから吐出する酸化剤ガス通路12を有する。   The separator body 8a in the center portion has a function of electrically connecting the power generation cells 5 via the current collectors 6 and 7 and supplying a reaction gas to the power generation cells 5, and has a fuel therein. A fuel gas passage 11 that introduces gas from the edge of the separator 8 and discharges it from a substantially central portion 11 a of the surface of the separator 8 that faces the anode current collector 6, and an oxidant gas (air) at the edge of the separator 8 And an oxidant gas passage 12 that is discharged from substantially the center 12 a of the surface of the separator 8 that faces the air electrode current collector 7.

また、各セパレータアーム8b、8bは、それぞれセパレータ本体8aの外周辺に沿って僅かな隙間を持って対向隅角部に延設される細長帯状として積層方向に可撓性を持たせた構造とされると共に、これらセパレータアーム8bの端部に板厚方向に貫通する一対のガス孔13、14が設けてある。
一方のガス孔13はセパレータ8の燃料ガス通路11に連通し、他方のガス孔14はセパレータ8の酸化剤ガス通路12に連通し、各々のガス孔13、14からこれらのガス通路11、12を通して各発電セル5の各電極面に燃料ガスおよび酸化剤ガスを供給するようになっている。
Each separator arm 8b, 8b has a structure in which it is flexible in the laminating direction as an elongated band extending at the opposite corner with a slight gap along the outer periphery of the separator body 8a. In addition, a pair of gas holes 13 and 14 penetrating in the thickness direction are provided at the end portions of the separator arms 8b.
One gas hole 13 communicates with the fuel gas passage 11 of the separator 8, and the other gas hole 14 communicates with the oxidant gas passage 12 of the separator 8, and the gas passages 11, 12 are connected to the gas holes 13, 14. The fuel gas and the oxidant gas are supplied to each electrode surface of each power generation cell 5 through.

上記構成の単セル10を、間に絶縁性のマニホールドリング15、16を介在して順次積層すると共に、この積層体の上下両端にセパレータ8よりサイズの大きい四角形の上締付板20aと下締付板20bを配設することにより、図1に示す第1実施形態による平板積層型の燃料電池スタック1が構成される。
上締付板20aの中央部には、発電セル5の外径より大きい丸孔23が設けられており、この孔23よりセパレータ本体8a、即ち、発電セル5が位置する部分が露出するようになっている。下締付板20bは積層体の底部を支持している。
The single cells 10 having the above-described configuration are sequentially stacked with insulating manifold rings 15 and 16 interposed therebetween, and a rectangular upper fastening plate 20a and a lower fastening larger than the separator 8 are formed on the upper and lower ends of the laminated body. By providing the attached plate 20b, the flat plate stack type fuel cell stack 1 according to the first embodiment shown in FIG. 1 is configured.
A round hole 23 larger than the outer diameter of the power generation cell 5 is provided in the central portion of the upper fastening plate 20a, and the separator body 8a, that is, the portion where the power generation cell 5 is located is exposed from the hole 23. It has become. The lower fastening plate 20b supports the bottom of the laminate.

また、燃料電池スタック1は、図1に示すように、上締付板20aと下締付板20bとが周縁部の数カ所(例えば、四隅)においてボルト21、ナット26(タイロッド)にて締め付けされ、その締め付け荷重により、セパレータアーム8bのガス孔13、14と各マニホールドリング15、16(この周辺の幅広部分をマニホールド部分8cという)を機械的に密着・接合させている。
このタイロッドによる締め付け荷重で、各々のマニホールドリング15、16がそれぞれセパレータ8の各ガス孔13、14を介して積層方向に連結されることにより、スタック内部に積層方向に延びるガスシール性に優れる燃料ガスマニホールド16と酸化剤ガスマニホールド17が形成される。
In the fuel cell stack 1, as shown in FIG. 1, an upper fastening plate 20a and a lower fastening plate 20b are fastened with bolts 21 and nuts 26 (tie rods) at several places (for example, four corners) of the peripheral portion. Due to the tightening load, the gas holes 13 and 14 of the separator arm 8b and the manifold rings 15 and 16 (the wide portions around this are referred to as manifold portions 8c) are mechanically adhered and joined.
With this tightening load by the tie rods, the manifold rings 15 and 16 are connected in the stacking direction via the gas holes 13 and 14 of the separator 8, respectively. A gas manifold 16 and an oxidant gas manifold 17 are formed.

また、本実施形態では、上締付板20aの中央部(孔23の部分)に絶縁部材24を介して錘22が載置されており、この錘22による荷重でセパレータ本体8aが積層方向に押圧され、単セル10を構成する複数の発電要素が相互に密着させられて一体的に固定される。
尚、セパレータ8間に介在されている燃料極集電体6と空気極集電体7はスポンジ状の多孔質焼結金属であるから、錘22の荷重でこれらスポンジ状部材が弾性変形し、上下セパレータ8の間にある程度の弾力を持って圧接・挟持された状態となっている。
In the present embodiment, the weight 22 is placed through the insulating member 24 at the center portion (portion of the hole 23) of the upper fastening plate 20a, and the separator main body 8a is moved in the stacking direction by the load from the weight 22. The plurality of power generation elements constituting the single cell 10 are pressed against each other and fixed integrally.
Since the fuel electrode current collector 6 and the air electrode current collector 7 interposed between the separators 8 are sponge-like porous sintered metals, these sponge-like members are elastically deformed by the load of the weight 22, The upper and lower separators 8 are pressed and clamped with a certain degree of elasticity.

また、本実施形態の燃料電池スタック1では、セパレータアーム8bに可撓性を持たせることにより、セパレータ8のマニホールド部分8cと発電セル5の位置するセパレータ本体8aのそれぞれに相互に影響することなく最適荷重を掛け得る構造としており、錘22による発電セル5への荷重は、上記したボルト21、ナット26によるマニホールド部分8cの強力な締め付け荷重に比べて極端に少なくしても発電要素間に良好な電気的接触性が得られる。
これにより、発電可能なスタックやモジュール部材の温度下(600〜800℃)においても、発電セル5に対して常に一定の面圧を付与することができるため、各セル電圧にバラ付きの生じない安定した電池性能(出力電力)を確保することができる。
Further, in the fuel cell stack 1 of the present embodiment, the separator arm 8b is made flexible so that the manifold portion 8c of the separator 8 and the separator main body 8a where the power generation cells 5 are located are not affected each other. The structure is such that an optimum load can be applied. Even if the load on the power generation cell 5 by the weight 22 is extremely small compared to the strong tightening load of the manifold portion 8c by the bolt 21 and nut 26 described above, it is good between the power generation elements. Electrical contact can be obtained.
As a result, a constant surface pressure can be always applied to the power generation cell 5 even under the temperature of the stack or module member capable of generating power (600 to 800 ° C.), so that the cell voltage does not vary. Stable battery performance (output power) can be ensured.

尚、燃料電池スタック1に加える積層方向の荷重は、スタック中央部のセパレータ本体8aに対しては、スタック構成部材の破損等を考慮して各発電要素の電気的接触性を確保できる必要最小限に設定することが好ましく、本実施形態では、数kgf程度の荷重に設定されている。
一方、各マニホールドリング15、16とのシール性を確保するため、セパレータ縁部のマニホールド部分8cに対しては数百kgf程度の荷重に設定されている。
Note that the load in the stacking direction applied to the fuel cell stack 1 is the minimum necessary to ensure the electrical contact of each power generating element with respect to the separator main body 8a at the center of the stack in consideration of damage to the stack constituent members. In this embodiment, the load is set to about several kgf.
On the other hand, a load of about several hundred kgf is set for the manifold portion 8c at the separator edge in order to ensure the sealing performance with the manifold rings 15 and 16.

次ぎに、図4に基づいて本発明の第2実施形態を説明する。
第2実施形態の燃料電池スタック1は、図1に示す第1実施形態とほぼ同様のスタック構成であって、セパレータ8は図3に示す構造のセパレータを使用するが、第1実施形態とは発電セル5への加重構造が相違している。
Next, a second embodiment of the present invention will be described with reference to FIG.
The fuel cell stack 1 of the second embodiment has substantially the same stack configuration as that of the first embodiment shown in FIG. 1, and the separator 8 uses the separator having the structure shown in FIG. The weighting structure to the power generation cell 5 is different.

即ち、第2実施形態では、セパレータアーム8bの可撓性を弾性復帰力として利用し、図1の錘22による加重に替えて、セパレータ本体8aを下方に緩やかな荷重で押し付ける構造としている。   That is, in the second embodiment, the flexibility of the separator arm 8b is used as an elastic restoring force, and the separator main body 8a is pressed downward with a gentle load instead of the load by the weight 22 in FIG.

このため、本実施形態では、図4に示すように、最下段に位置するセパレータ8と下締付板20bとの間にセパレータ本体8aとほぼ同じサイズ幅の絶縁部材25を介在して、セパレータ本体8aの支持位置をセパレータアーム8bの端部(マニホールドリング15、16)の固定位置より上述の絶縁部材25の厚さ分だけ上方に持ち上げる構造としている。これにより、セパレータアーム8bは斜め下方に歪曲した状態にて固定され、その際の弾性復帰力により、セパレータアーム8bの固定部分を支点とした下方への押圧力が生じる。   Therefore, in the present embodiment, as shown in FIG. 4, an insulating member 25 having substantially the same width as that of the separator body 8a is interposed between the separator 8 located at the lowermost stage and the lower fastening plate 20b. The support position of the main body 8a is lifted upward by the thickness of the insulating member 25 from the fixing position of the end portions (manifold rings 15 and 16) of the separator arm 8b. As a result, the separator arm 8b is fixed in a state of being obliquely distorted downward, and a downward pressing force with the fixed portion of the separator arm 8b as a fulcrum is generated by the elastic restoring force at that time.

係る加重構造では、セパレータアーム8bの長さ、或いは、発電セル5やその外側の集電体6、7の厚みにより発電セル5への荷重を変えることが可能であり、且つ、発電時の燃料極集電体7や空気極集電体7の熱膨張をセパレータアーム8bの緩やかな弾性復帰力で抑え付けることで、発電セル5に対して常に適切な面圧(図1と同様に数kgf程度)を付与することができる。これにより、各発電要素間に良好な電気的接触性が得られるようになり、各セル電圧にバラ付きの生じない安定した電池性能(出力電力)を確保することができる。   In such a weighted structure, it is possible to change the load on the power generation cell 5 depending on the length of the separator arm 8b or the thickness of the power generation cell 5 and the current collectors 6 and 7 outside thereof, and the fuel during power generation By suppressing the thermal expansion of the electrode current collector 7 and the air electrode current collector 7 with a gentle elastic restoring force of the separator arm 8b, an appropriate surface pressure is always applied to the power generation cell 5 (several kgff as in FIG. 1). Degree). Thereby, favorable electrical contact property can be obtained between the respective power generating elements, and stable battery performance (output power) that does not cause variations in each cell voltage can be ensured.

尚、縁部のマニホールド部分8cへの加重は、図1と同様にスタック上端の上締付板20aと下端の下締付板20bが周縁部の数カ所においてボルト21、ナット26(タイロッド)にて締め付けられることにより、数百kgf程度に設定されている。また、この場合も、セパレータアーム8bの可撓性により、このタイロッドによるマニホールド部分8cの加重が発電セル5の位置するセパレータ本体8aへの加重に影響することはない。   As in FIG. 1, the weight of the edge portion on the manifold portion 8c is determined by bolts 21 and nuts 26 (tie rods) at several places on the periphery of the upper fastening plate 20a and the lower fastening plate 20b at the lower end of the stack. By tightening, it is set to about several hundred kgf. Also in this case, due to the flexibility of the separator arm 8b, the weight of the manifold portion 8c by the tie rod does not affect the weight of the separator body 8a where the power generation cell 5 is located.

以上、本実施形態では、セパレータアーム8bの他端が内部マニホールドに固定される場合を説明したが、本発明は燃料電池スタック1の外部に各マニホールドが配設される外部マニホールド型の燃料電池スタックにも勿論適用可能であり、この場合も、セパレータアーム8bの他端が上記同様に各外部のマニホールドに固定される。
また、本実施形態では、方形状のセパレータ8を用いたが、形状はこれに限定されるものではなく円板状としても良い。さらには、セパレータアーム8bについても、上述した細長帯状でなく、可撓性を有するチューブ状とすることもできる。
As described above, in the present embodiment, the case where the other end of the separator arm 8b is fixed to the internal manifold has been described, but the present invention is an external manifold type fuel cell stack in which each manifold is disposed outside the fuel cell stack 1. Of course, the other end of the separator arm 8b is fixed to each external manifold in the same manner as described above.
In the present embodiment, the rectangular separator 8 is used, but the shape is not limited to this and may be a disk shape. Furthermore, the separator arm 8b can also be formed into a flexible tube shape instead of the above-described elongated strip shape.

また、本発明では、図1に示す錘22による第1実施形態の加重構造と図4に示すセパレータアームの弾性復帰力による第2実施形態の加重構造とを合わせ持つ加重構造とすることも勿論可能である。   Further, in the present invention, it is of course possible to adopt a weighting structure having both the weighting structure of the first embodiment by the weight 22 shown in FIG. 1 and the weighting structure of the second embodiment by the elastic return force of the separator arm shown in FIG. Is possible.

本発明の第1実施形態による平板積層型の燃料電池スタックの構成を示す図。1 is a diagram showing a configuration of a flat plate fuel cell stack according to a first embodiment of the present invention. FIG. 図1の一部拡大図。The partially expanded view of FIG. 図1のセパレータの構造を示す図。The figure which shows the structure of the separator of FIG. 本発明の第2実施形態による平板積層型の燃料電池スタックの構成を示す図。The figure which shows the structure of the flat laminated fuel cell stack by 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 燃料電池(燃料電池スタック)
5 発電セル
8 セパレータ
8b セパレータアーム
11、12 反応用ガス通路(燃料ガス通路、酸化剤ガス通路)
13、14 ガス孔
16、17 マニホールド
22 錘
1 Fuel cell (fuel cell stack)
5 Power generation cell 8 Separator 8b Separator arm 11, 12 Reaction gas passage (fuel gas passage, oxidant gas passage)
13, 14 Gas hole 16, 17 Manifold 22 Weight

Claims (5)

発電セルと反応用ガス通路を備えるセパレータを交互に多数積層すると共に、この積層体に加重手段により積層方向の荷重を付与して成る平板積層型の燃料電池において、
前記積層体の上端部の前記発電セルが位置する部分に錘を載置し、当該錘による押圧力を前記積層体への加重手段としたことを特徴とする平板積層型の燃料電池。
In a flat plate type fuel cell in which a large number of separators having power generation cells and reaction gas passages are alternately stacked, and a load in the stacking direction is applied to the stack by a load means.
A flat plate stack type fuel cell, wherein a weight is placed on a portion of the upper end portion of the laminated body where the power generation cell is located, and a pressing force by the weight is used as a weighting means to the laminated body.
前記セパレータの縁部が他端を固定した可撓性のセパレータアームにより支持されていることを特徴とする請求項1に記載の平板積層型の燃料電池。 2. The flat plate type fuel cell according to claim 1, wherein an edge portion of the separator is supported by a flexible separator arm having the other end fixed. 前記セパレータの縁部が可撓性のセパレータアームにより支持されると共に、当該セパレータアームの他端を前記セパレータの支持位置より積層方向にズレた位置にて固定し、その際の前記セパレータアームの弾性を前記積層体への加重手段としたことを特徴とする請求項1に記載の平板積層型の燃料電池。 The edge of the separator is supported by a flexible separator arm, and the other end of the separator arm is fixed at a position shifted from the support position of the separator in the stacking direction, and the elasticity of the separator arm at that time 2. The flat plate type fuel cell according to claim 1, wherein a weighting means is applied to the laminated body. 発電セルと反応用ガス通路を備えるセパレータを交互に多数積層すると共に、この積層体に加重手段により積層方向の荷重を付与して成る平板積層型の燃料電池において、
前記セパレータの縁部が可撓性のセパレータアームにより支持されると共に、当該セパレータアームの他端を前記セパレータの支持位置より積層方向にズレた位置にて固定し、その際の前記セパレータアームの弾性を前記積層体への加重手段としたことを特徴とする平板積層型の燃料電池。
In a flat plate type fuel cell in which a large number of separators having power generation cells and reaction gas passages are alternately stacked, and a load in the stacking direction is applied to the stack by a load means.
The edge of the separator is supported by a flexible separator arm, and the other end of the separator arm is fixed at a position shifted from the support position of the separator in the stacking direction, and the elasticity of the separator arm at that time A flat plate type fuel cell characterized in that is used as a weighting means for the laminated body.
前記セパレータアームの他端が反応用ガス導入用のマニホールドに固定されると共に、前記セパレータの反応用ガス通路と当該マニホールドとが前記セパレータアームのガス孔を介して連通していることを特徴とする請求項2から請求項4までの何れかに記載の平板積層型の燃料電池。 The other end of the separator arm is fixed to a reaction gas introduction manifold, and the reaction gas passage of the separator and the manifold communicate with each other through a gas hole of the separator arm. The flat plate type fuel cell according to any one of claims 2 to 4.
JP2005259591A 2005-09-07 2005-09-07 Fuel cell Expired - Fee Related JP4892897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005259591A JP4892897B2 (en) 2005-09-07 2005-09-07 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005259591A JP4892897B2 (en) 2005-09-07 2005-09-07 Fuel cell

Publications (2)

Publication Number Publication Date
JP2007073359A true JP2007073359A (en) 2007-03-22
JP4892897B2 JP4892897B2 (en) 2012-03-07

Family

ID=37934644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005259591A Expired - Fee Related JP4892897B2 (en) 2005-09-07 2005-09-07 Fuel cell

Country Status (1)

Country Link
JP (1) JP4892897B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141815A (en) * 2005-11-17 2007-06-07 General Electric Co <Ge> Compliant feed tube for planar solid oxide fuel cell system
JP2008251239A (en) * 2007-03-29 2008-10-16 Mitsubishi Materials Corp Fuel cell
WO2008129761A1 (en) * 2007-03-06 2008-10-30 Mitsubishi Materials Corporation Plate-laminated type fuel cell
WO2010119817A1 (en) 2009-04-13 2010-10-21 本田技研工業株式会社 Fuel cell module
JP2011204601A (en) * 2010-03-26 2011-10-13 Mitsubishi Materials Corp Flat plate lamination type fuel cell
WO2012073640A1 (en) 2010-12-01 2012-06-07 Honda Motor Co., Ltd. Fuel cell stack
WO2013008655A1 (en) 2011-07-13 2013-01-17 Honda Motor Co., Ltd. Sofc stack with temperature adapted compression force means

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09161835A (en) * 1995-12-12 1997-06-20 Sekiyu Sangyo Kasseika Center Platelike solid electrolyte fuel cell
JPH1116581A (en) * 1997-06-20 1999-01-22 Fuji Electric Corp Res & Dev Ltd Solid oxide type fuel cell
JP2005174884A (en) * 2003-11-20 2005-06-30 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell and its interconnector
JP2005183087A (en) * 2003-12-17 2005-07-07 Honda Motor Co Ltd Fuel cell and fuel cell stack
JP2005203283A (en) * 2004-01-16 2005-07-28 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell
JP2006120589A (en) * 2004-08-13 2006-05-11 Mitsubishi Materials Corp Flat plate lamination type fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09161835A (en) * 1995-12-12 1997-06-20 Sekiyu Sangyo Kasseika Center Platelike solid electrolyte fuel cell
JPH1116581A (en) * 1997-06-20 1999-01-22 Fuji Electric Corp Res & Dev Ltd Solid oxide type fuel cell
JP2005174884A (en) * 2003-11-20 2005-06-30 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell and its interconnector
JP2005183087A (en) * 2003-12-17 2005-07-07 Honda Motor Co Ltd Fuel cell and fuel cell stack
JP2005203283A (en) * 2004-01-16 2005-07-28 Ngk Spark Plug Co Ltd Solid electrolyte fuel cell
JP2006120589A (en) * 2004-08-13 2006-05-11 Mitsubishi Materials Corp Flat plate lamination type fuel cell

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141815A (en) * 2005-11-17 2007-06-07 General Electric Co <Ge> Compliant feed tube for planar solid oxide fuel cell system
WO2008129761A1 (en) * 2007-03-06 2008-10-30 Mitsubishi Materials Corporation Plate-laminated type fuel cell
JP2008251239A (en) * 2007-03-29 2008-10-16 Mitsubishi Materials Corp Fuel cell
WO2008126349A1 (en) * 2007-03-29 2008-10-23 Mitsubishi Materials Corporation Fuel cell
WO2010119817A1 (en) 2009-04-13 2010-10-21 本田技研工業株式会社 Fuel cell module
US8507150B2 (en) 2009-04-13 2013-08-13 Honda Motor Co., Ltd. Fuel cell module
JP2011204601A (en) * 2010-03-26 2011-10-13 Mitsubishi Materials Corp Flat plate lamination type fuel cell
WO2012073640A1 (en) 2010-12-01 2012-06-07 Honda Motor Co., Ltd. Fuel cell stack
US9054350B2 (en) 2010-12-01 2015-06-09 Honda Motor Co., Ltd. Fuel cell stack
WO2013008655A1 (en) 2011-07-13 2013-01-17 Honda Motor Co., Ltd. Sofc stack with temperature adapted compression force means
US9318758B2 (en) 2011-07-13 2016-04-19 Honda Motor Co., Ltd. SOFC stack with temperature adapted compression force means

Also Published As

Publication number Publication date
JP4892897B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
JP5023429B2 (en) Flat plate fuel cell
JP6317222B2 (en) Solid oxide fuel cell stack
JP4892897B2 (en) Fuel cell
WO2006077762A1 (en) Flat laminate type fuel cell and fuel cell stack
DK2811564T3 (en) fuel Battery
US20100092837A1 (en) Plate-laminated type fuel cell
CN115152064A (en) Fuel cell system
US20080274388A1 (en) Solid Oxide Type Fuel Cell
WO2008050663A1 (en) Electrochemical device
JP4461949B2 (en) Solid oxide fuel cell
JP6893126B2 (en) Electrochemical reaction cell stack
JPH1116585A (en) Flat solid electrolyte fuel cell and its layering method
JP2007042441A (en) Fuel cell and operation method of the same
JP5125376B2 (en) Fuel cell
US8697307B2 (en) Solid oxide fuel cell stack
JP5846936B2 (en) Fuel cell
JP5200318B2 (en) Fuel cell stack
JP5423526B2 (en) Flat plate fuel cell
JP2002050393A (en) Fuel cell
JPH1079258A (en) Current collecting method for flat type solid electrolyte fuel cell
JP2009054414A (en) Fuel cell stack
JP2000067883A (en) Solid electrolyte fuel cell
JPH09161835A (en) Platelike solid electrolyte fuel cell
JP2006172906A (en) Fuel battery cell and its manufacturing method
JP2004273341A (en) Solid electrolyte fuel cell and single cell for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees