JP2004273341A - Solid electrolyte fuel cell and single cell for fuel cell - Google Patents

Solid electrolyte fuel cell and single cell for fuel cell Download PDF

Info

Publication number
JP2004273341A
JP2004273341A JP2003064427A JP2003064427A JP2004273341A JP 2004273341 A JP2004273341 A JP 2004273341A JP 2003064427 A JP2003064427 A JP 2003064427A JP 2003064427 A JP2003064427 A JP 2003064427A JP 2004273341 A JP2004273341 A JP 2004273341A
Authority
JP
Japan
Prior art keywords
metal substrate
electrically conductive
conductive metal
fuel cell
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003064427A
Other languages
Japanese (ja)
Inventor
Itaru Shibata
格 柴田
Hiromi Sugimoto
博美 杉本
Kazufumi Takeuchi
和史 竹内
Naoki Hara
直樹 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003064427A priority Critical patent/JP2004273341A/en
Publication of JP2004273341A publication Critical patent/JP2004273341A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inhibit mechanical damages of an electrode to realize an improvement in mechanical reliability, and enable current collection while suppressing electric loss to a low level. <P>SOLUTION: An electrically conductive metal substrate 2 having a porous part 2a is provided with an single cell 4 obtained by laminating a cell element 3 in which a pair electrode layers 3a, 3b pinch an electrolyte layer 3c, and a connector 5 having an electrically conductive pad part 5a. The cell element 3 is laminated on a portion from the porous part 2a to a portion other than the porous part 2a of the electrically conductive metal substrate 2. The front and back faces of the portion other than the porous part 2a are partly covered with an electrically insulating film 6, a current collecting body 7 is arranged from the electrically insulating film 6 on the side of the electrically conductive metal substrate 2 on which the cell element 3 is laminated to an electrode layer 3b of the cell element 3. A current collecting terminal 7a of the current collecting body 7 of one of the adjacent single cells 4 and an exposed portion 2b of the electrically conductive metal substrate of the other single cell 4 are jointed via the pad part 5a. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、一対の電極で固体電解質を挟持する構成を電池要素として有する固体電解質型燃料電池及び燃料電池用単セルに関するものである。
【0002】
【従来の技術】
従来の固体電解質型燃料電池としては、セルと、プレス加工により形成した突起を有する集電体と、スペーサと、セル支持突起部を有する金属板とを順次積層した構成を成すものがあり、この固体電解質型燃料電池では、集電体の突起を電極面に接触させて集電するようにしている(例えば特許文献1参照。)。
【0003】
【特許文献1】
特開2001−35514号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上記した固体電解質型燃料電池では、集電体の突起を電極に押し付けて集電するようにしているため、電極が損傷してしまう可能性があるという問題を有しているほか、電極に対して集電体の突起を接触させているだけなので、集電ロスが生じてしまうと言う問題があり、これらの問題を解決することが従来の課題となっていた。
【0005】
【発明の目的】
本発明は、上記した従来の課題に着目してなされたもので、電極の機械的損傷を阻止して機械的信頼性の向上を実現すると共に、電気的損失を少なく抑えつつ集電することが可能である固体電解質型燃料電池及び燃料電池用単セルを提供することを目的としている。
【0006】
【課題を解決するための手段】
本発明者らが鋭意検討した結果、機械的に弱い電池要素を避けて、単セルの電池要素以外の個所同士を接合することで、集電時における電極の機械的損傷を阻止し得ると共に、電気的損失を少なく抑え得ることを見出すに至った。
【0007】
すなわち、本発明の固体電解質型燃料電池は、多孔質の部分を有する電気伝導性金属基板に一対の電極層間に電解質層を挟み込んで形成した電池要素を積層して成る単セルを備えると共に、電気伝導性のパッド部を有するコネクタを備え、同一平面内で隣接させた単セルの各電池要素以外の部分同士又は互いに積層させた単セルの各電池要素以外の部分同士を上記コネクタのパッド部を介して接合した構成としたことを特徴としており、この固体電解質型燃料電池の構成を前述した従来の課題を解決するための手段としている。
【0008】
本発明の固体電解質型燃料電池では、脆性材料である電池要素に直接、機械的力が加わらないので、集電時における電極の機械的損傷が回避されることとなり、加えて、複数の単セルを集積する際には、良好な電気的接合状態が得られることとなって、電気的損失が少なく抑えられることとなる。
【0009】
【発明の効果】
本発明の固体電解質型燃料電池によれば、上記した構成としているので、機械的応力及び熱的応力が直接電池要素に印加されることがなく、その結果、電極が損傷するなどといった事態が生じることがなくなって、機械的信頼性の向上を実現することができ、加えて、単セルの集電部分同士を接合させて集電するようになすことで、単セル間の電気的損失を少なく抑えることが可能であるという非常に優れた効果がもたらされる。
【0010】
【発明の実施の形態】
本発明の固体電解質型燃料電池において、機械的に弱い電池要素を避け、単セルの電池要素以外の部分同士をコネクタのパッド部で機械的に接合するが、この際、単セルの電池要素以外の接合部分を正極端子又は負極端子とすることで、これらの端子同士はコネクタのパッド部により電気的に接合される。
【0011】
また、本発明の固体電解質型燃料電池において、単セルにおける電気伝導性金属基板の多孔質の部分から多孔質以外の部分の一部にかけて上記電池要素を積層すると共に、上記電気伝導性金属基板の多孔質以外の部分の表裏を電気絶縁性皮膜でそれぞれ部分的に被覆して、電気伝導性金属基板の電池要素を積層した側の電気絶縁性皮膜から上記電池要素の電気伝導性金属基板とは反対側に位置する電極層にかけて上記集電体を配置することとし、この構成の単セルを同一平面内で複数並べて、互いに隣接する単セルのうちの一方の単セルにおける集電体の電気絶縁性皮膜上に位置する集電端子と、他方の単セルにおける電気伝導性金属基板の電池要素を積層した側の露出部分とをコネクタのパッド部を介して接合すれば、単セル間の電気的直列接合がなされることとなり、高電圧出力が得られることとなる。
【0012】
さらに、本発明の固体電解質型燃料電池において、上記と同じ単セル構造とし、この構成の単セルを積層して、互いに積層する単セルのうちの下方の単セルにおける集電体の電気絶縁性皮膜上に位置する集電端子と、上方の単セルにおける電気伝導性金属基板の電池要素を積層していない側の露出部分とをコネクタのパッド部を介して接合すれば、この場合も上記と同様に単セル間の電気的直列接合がなされることとなって、高電圧出力が得られることとなる。
【0013】
さらにまた、本発明の固体電解質型燃料電池において、コネクタには電気絶縁性を有するシート部又は電気伝導性を有するシート部を具備したものとすることが望ましい。
【0014】
つまり、コネクタがシート部を具備するようになせば、柔軟性に富んだものとなってガスセパレータとしても機能させ得るほか、単セル同士を接続した際に各セルに加わる外力を吸収できることから、接合部分の信頼性が向上すると共に、単セル同士を互いに積層した際に単セルの間隔を狭くできるので、燃料電池の小型化に寄与し得ることとなる。
【0015】
そして、コネクタのシート部が電気絶縁性を有する場合において、電気伝導性のパッド部をシート部の表裏にそれぞれ設けると、同一平面内で複数並べた単セル間の電気的直列接合を行いつつ、互いに積層させた単セル間の絶縁を確保し得ることとなり、一方、コネクタのシート部が電気伝導性を有する場合において、電気伝導性のパッド部をシート部の表裏にそれぞれ一体で設けると、同一平面内で複数並べた単セル間の電気的直列接合を行いつつ、互いに積層させた単セル間の電気的接合及び機械的接合を行い得ることとなる。
【0016】
本発明の燃料電池用単セルは、電気伝導性金属基板の表裏で且つ非多孔質部分の一部に電気絶縁性皮膜を形成し、この電気絶縁皮膜から電池要素の電極にかけて集電体を積層させて成る正極端子及び負極端子付きの単セルであって、金属薄板で薄膜電池要素を支持する構造を成す薄型軽量の単セルである。
【0017】
すなわち、従来のセラミックス焼結体より成る単セルと比較して薄型且つ軽量であり、したがって、本発明の燃料電池用単セルを複数接合して成る燃料電池は小型でしかも軽量なものとなる。加えて、従来のように電極に集電体を接触させる必要がないため、集電体による電極の機械的損傷がなく信頼性が向上する。
【0018】
【実施例】
以下、本発明を図面に基づいて説明する。
【0019】
[実施例1]
図1〜図3は本発明の固体電解質型燃料電池の一実施例を示している。
【0020】
図1に示すように、この固体電解質型燃料電池1は、多孔質部2aを有する電気伝導性金属基板2に一対の電極層3a,3b(燃料極層3a及び空気極層3b)間に電解質層3cを挟み込んで形成した電池要素3を積層して成る単セル4を備えると共に、電気伝導性のパッド部5aを有するコネクタ5を備えている。
【0021】
単セル4は、図2にも示すように、電池要素3を電気伝導性金属基板2の多孔質部2aから多孔質部2a以外の部分の一部にかけて積層していると共に、上記電気伝導性金属基板2の多孔質部2a以外の部分の表裏において電気絶縁性皮膜6でほぼ反面ずつを被覆しており、電気伝導性金属基板2の電池要素3を積層した側の電気絶縁性皮膜6から電池要素3の電気伝導性金属基板2とは反対側に位置する空気極層3bにかけて集電体7を配置している。
【0022】
一方、コネクタ5は、図3にも示すように、電気絶縁性を有するシート部5bを具備しており、電気伝導性のパッド部5aはこのシート部5bの表裏にそれぞれ設けてある。
【0023】
そして、この固体電解質型燃料電池1では、同一平面内に複数の単セル4を配置し、互いに隣接する単セル4,4のうちの一方の単セル4における集電体7の電気絶縁性皮膜6上に位置する集電端子7aと、他方の単セル4における電気伝導性金属基板2の電池要素3を積層した側の露出部分2bとをコネクタ5のパッド部5aを介して接合するようにしている。
【0024】
この実施例において、単セル4の電気伝導性金属基板2を膜厚100um(0.1mmポア)のSUS430、電池要素3を構成する燃料極層3aを膜厚50umのNi+YSZ、電解質層3cを膜厚5umのYSZ、空気極層3bを膜厚1umのSSCとし、コネクタ5のパッド部5aを大きさφ0.2mm×H0.5mmのAu、シート部5bを膜厚0.5mmのアルミナとしている。
【0025】
上記した固体電解質型燃料電池1では、互いに隣接する単セル4,4のうちの一方の単セル4における集電体7の電気絶縁性皮膜6上に位置する集電端子7aと、他方の単セル4における電気伝導性金属基板2の露出部分2bとをコネクタ5のパッド部5aを介して接合するようにしているので、脆性材料である電池要素3には、直接機械的力が加わることがなく、その結果、集電時における電池要素3の機械的損傷が回避されるうえ、複数の単セル4を集積する際において、良好な電気的接合状態が得られることとなって、電気的損失が少なく抑えられることとなる。
【0026】
また、上記した固体電解質型燃料電池1では、単セル4,4間の電気的直列接合がなされるので、高電圧出力が得られることとなり、加えて、コネクタ5がシート部5bを有しているので、コネクタ5が柔軟性に富んだものとなってガスセパレータとしても機能させ得るほか、単セル4,4同士を接続した際に各セル4,4に加わる外力を吸収できることから、接合部分の信頼性が向上する。
【0027】
さらに、上記した固体電解質型燃料電池1の単セル4は、電気伝導性金属基板2で薄膜状の電池要素3を支持する構造を成しているため、従来のセラミックス焼結体より成る単セルと比較して薄型且つ軽量であり、したがって、この燃料電池用単セル4を複数接合して成る固体電解質型燃料電池1は小型でしかも軽量なものとなる。
【0028】
[実施例2]
図4は本発明の固体電解質型燃料電池の他の実施例を示している。
【0029】
図4に示すように、この固体電解質型燃料電池11が先の実施例における固体電解質型燃料電池1と相違するところは、コネクタ15が電気伝導性を有するシート部15bを具備していて、電気伝導性のパッド部15aをこのシート部15bの表裏にそれぞれ一体で設けた点にあり、他の構成は先の実施例における固体電解質型燃料電池1と同じである。
【0030】
この実施例では、単セル4の電気伝導性金属基板2を膜厚100um(0.1mmポア)のインコネル600、電池要素3を構成する燃料極層3aを膜厚30umのNi+SDC、電解質層3cを膜厚5umのYSZ、空気極層3bを膜厚5umのSSCとし、コネクタ15のパッド部15aを大きさφ0.2mm×H0.5mmのPt、シート部15bを膜厚0.3mmのSUS430+Ptメッキとしている。
【0031】
上記した固体電解質型燃料電池11においても、集電時における電池要素3の機械的損傷が回避されるうえ、複数の単セル4を集積する際において、電気的損失が少なく抑えられることとなる。
【0032】
また、上記した固体電解質型燃料電池11においても、高電圧出力が得られることとなり、加えて、コネクタ15がシート部15bを有しているので、コネクタ15が柔軟性に富んだものとなってガスセパレータとしても機能させ得るほか、単セル4,4同士を接続した際に各セル4,4に加わる外力を吸収できることから、接合部分の信頼性が向上する。
【0033】
さらに、上記した固体電解質型燃料電池11の単セル4も、従来のセラミックス焼結体より成る単セルと比較して薄型且つ軽量であるため、この燃料電池用単セル4を複数接合して成る固体電解質型燃料電池11を小型且つ軽量なものとすることが可能となる。
【0034】
[実施例3]
図5は本発明の固体電解質型燃料電池のさらに他の実施例を示している。
【0035】
図5に示すように、この固体電解質型燃料電池21は、同一平面内において隣接させた単セル4,4のうちの一方の単セル4における集電体7の電気絶縁性皮膜6上に位置する集電端子7aと、他方の単セル4における電気伝導性金属基板2の電池要素3を積層した側の露出部分2bとをコネクタ25のパッド部25aを介して接合することでセル板4Aを形成し、このセル板4Aに他のセル板4Aを積層して、図示下方のセル板4Aの単セル4における集電体7の電気絶縁性皮膜6上に位置する集電端子7aと、図示上方のセル板4Aの単セル4における電気伝導性金属基板2の下側露出部分2b’とを上記コネクタ25のパッド部25aを介して接合した構成をなしている。
【0036】
この実施例において、単セル4の電気伝導性金属基板2を膜厚75um(0.1mmポア)のSUS430、電池要素3を構成する燃料極層3aを膜厚30umのNi+YSZ、電解質層3cを膜厚5umのYSZ、空気極層3bを膜厚5umのSSCとし、コネクタ25のパッド部25aを大きさφ0.5mm×H0.5mmのSUS430+Auメッキ、電気絶縁性を有するシート部25bを膜厚0.5mmのアルミナとしている。
【0037】
上記した固体電解質型燃料電池21においても、集電時における電池要素3の機械的損傷が回避されるうえ、複数の単セル4を集積する際において、電気的損失が少なく抑えられることとなる。
【0038】
また、上記した固体電解質型燃料電池21では、コネクタ25が電気絶縁性を有するシート部25bを具備しているので、互いに積層させたセル板4A,4A間の絶縁を確保しつつ、単セル4,4間の電気的直列接合がなされることとなって高電圧出力が得られることとなり、加えて、コネクタ25が柔軟性に富んだものとなってガスセパレータとしても機能させ得るほか、単セル4,4同士を接続した際に各セル4,4に加わる外力を吸収できることから、接合部分の信頼性が向上すると共に、互いに積層させたセル板4A,4Aの間隔を狭くできるので、燃料電池の小型化に寄与し得ることとなる。得ることとなる。
【0039】
さらに、上記した固体電解質型燃料電池21の単セル4も、従来のセラミックス焼結体より成る単セルと比較して薄型且つ軽量であるため、この燃料電池用単セル4を複数接合して成る固体電解質型燃料電池21を小型且つ軽量なものとすることが可能となる。
【0040】
[実施例4]
図6は本発明の固体電解質型燃料電池のさらに他の実施例を示している。
【0041】
図6に示すように、この固体電解質型燃料電池31は、単セル4(あるいは上記実施例におけるセル板4A)を積層して、互いに積層する図示下方の単セル4における集電体7の電気絶縁性皮膜6上に位置する集電端子7aと、図示上方の単セル4における電気伝導性金属基板2の下側露出部分2b’とを電気伝導性を有するシート部35bを具備したコネクタ35のパッド部35aを介して接合した構成をなしている。
【0042】
この実施例では、単セル4の電気伝導性金属基板2を膜厚75um(0.1mmポア)のSUS430、電池要素3を構成する燃料極層3aを膜厚30umのNi+YSZ、電解質層3cを膜厚5umのYSZ、空気極層3bを膜厚5umのSSCとし、コネクタ35のパッド部35aを大きさφ0.5mm×H0.5mmのPt、シート部35bを膜厚0.3mmのSUS430+Ptメッキとしている。
【0043】
上記した固体電解質型燃料電池31においても、集電時における電池要素3の機械的損傷が回避されるうえ、複数の単セル4を集積する際において、電気的損失が少なく抑えられることとなる。
【0044】
また、上記した固体電解質型燃料電池31では、コネクタ35が電気伝導性を有するシート部35bを具備しているので、互いに積層させた単セル4,4間の電気的直列接合がなされるので、すなわち、燃料電池を構成するすべての単セル4の電気的直列接合がなされるので、高電圧出力が得られることとなり、加えて、コネクタ35が柔軟性に富んだものとなってガスセパレータとしても機能させ得るほか、単セル4,4同士を接続した際に各セル4,4に加わる外力を吸収できることから、接合部分の信頼性が向上すると共に、互いに積層させた単セル4,4の間隔を狭くできるので、燃料電池の小型化に寄与し得ることとなる。
【0045】
さらに、上記した固体電解質型燃料電池31の単セル4も、従来のセラミックス焼結体より成る単セルと比較して薄型且つ軽量であるため、この燃料電池用単セル4を複数接合して成る固体電解質型燃料電池31を小型且つ軽量なものとすることが可能となる。
【0046】
本発明の固体電解質型燃料電池及び燃料電池用単セルの詳細な構成は、上記した実施例に限定されるものではなく、例えば、上記した実施例4において、実施例3のセル板4Aを積層するようにしてもよい。
【図面の簡単な説明】
【図1】本発明の固体電解質型燃料電池の一実施例を示す部分断面説明図である。
【図2】図1に示した固体電解質型燃料電池の単セルの平面説明図である。
【図3】図1に示した固体電解質型燃料電池のコネクタの断面説明図である。
【図4】本発明の固体電解質型燃料電池の他の実施例を示す部分断面説明図である。
【図5】本発明の固体電解質型燃料電池のさらに他の実施例を示す部分断面説明図である。
【図6】本発明の固体電解質型燃料電池のさらに他の実施例を示す部分断面説明図である。
【符号の説明】
1,11,21,31 固体電解質型燃料電池
2 電気伝導性金属基板
2a 多孔質部
2b,2b’露出部分
3 電池要素
3a 燃料極層(電極層)
3b 空気極層(電極層)
3c 電解質層
4 単セル
5,15,25,35 コネクタ
5a,15a,25a,35a パッド部
5b,15b,25b,35b シート部
6 電気絶縁性皮膜
7 集電体
7a 集電端子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid oxide fuel cell having a configuration in which a solid electrolyte is sandwiched between a pair of electrodes as a battery element, and a single cell for a fuel cell.
[0002]
[Prior art]
As a conventional solid oxide fuel cell, there is a fuel cell having a configuration in which a cell, a current collector having a projection formed by press working, a spacer, and a metal plate having a cell support projection are sequentially laminated. In a solid oxide fuel cell, current is collected by bringing a projection of a current collector into contact with an electrode surface (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP 2001-35514 A
[Problems to be solved by the invention]
However, the solid oxide fuel cell described above has a problem that the electrode may be damaged because the projection of the current collector is pressed against the electrode to collect the current. However, there is a problem that a current collection loss occurs because only the projection of the current collector is brought into contact with the current collector, and it has been a conventional problem to solve these problems.
[0005]
[Object of the invention]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and it is possible to prevent mechanical damage of an electrode to improve mechanical reliability and to collect electricity while suppressing electrical loss. It is an object of the present invention to provide a solid oxide fuel cell and a single cell for a fuel cell, which are possible.
[0006]
[Means for Solving the Problems]
As a result of intensive studies by the present inventors, avoiding mechanically weak battery elements, by joining parts other than single-cell battery elements, it is possible to prevent mechanical damage to electrodes during current collection, They have found that electrical losses can be kept low.
[0007]
That is, the solid oxide fuel cell of the present invention includes a single cell formed by stacking a battery element formed by sandwiching an electrolyte layer between a pair of electrode layers on an electrically conductive metal substrate having a porous portion, and Provided with a connector having a conductive pad portion, the portions other than the respective battery elements of the unit cells adjacent to each other in the same plane or the portions other than the respective battery elements of the unit cells stacked on each other, the pad portion of the connector The solid electrolyte fuel cell is characterized in that it is configured to solve the above-mentioned conventional problems.
[0008]
In the solid oxide fuel cell of the present invention, since no mechanical force is directly applied to the battery element, which is a brittle material, mechanical damage to the electrodes during current collection is avoided, and in addition, a plurality of single cells In the case of accumulating, a good electrical connection state can be obtained, and the electrical loss can be reduced.
[0009]
【The invention's effect】
According to the solid oxide fuel cell of the present invention, because of the above-described configuration, mechanical stress and thermal stress are not directly applied to the battery element, and as a result, a situation such as damage to the electrode occurs. Is eliminated, and mechanical reliability can be improved.In addition, by connecting the current collecting portions of the single cells to collect current, electric loss between the single cells can be reduced. This has a very good effect that it can be suppressed.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
In the solid oxide fuel cell of the present invention, mechanically weak battery elements are avoided and parts other than the single cell battery elements are mechanically joined to each other at the pad portions of the connector. Are formed as a positive electrode terminal or a negative electrode terminal, these terminals are electrically connected to each other by a pad portion of the connector.
[0011]
Further, in the solid oxide fuel cell of the present invention, the battery element is laminated from the porous portion of the electric conductive metal substrate to a part of the non-porous portion of the electric conductive metal substrate in the single cell, and the electric conductive metal substrate The front and back of the non-porous portion are each partially covered with an electrically insulating film, and the electrically conductive metal substrate of the battery element is separated from the electrically insulating film on the side where the battery element of the electrically conductive metal substrate is laminated. The current collector is arranged over the electrode layer located on the opposite side, a plurality of single cells having this configuration are arranged in the same plane, and the electrical insulation of the current collector in one of the unit cells adjacent to each other is determined. When the current collecting terminal located on the conductive film and the exposed portion of the other unit cell on the side where the battery element of the electrically conductive metal substrate is laminated are connected via the pad portion of the connector, the electric connection between the unit cells is obtained. straight Becomes the bonding is performed, so that the high voltage output is obtained.
[0012]
Furthermore, in the solid oxide fuel cell according to the present invention, the single cell structure is the same as that described above, and the single cells having this configuration are stacked, and the electrical insulation of the current collector in the lower single cell among the single cells stacked together is further reduced. If the current collecting terminal located on the film and the exposed portion of the single unit cell on the side where the battery element of the electrically conductive metal substrate is not laminated are joined via the pad portion of the connector, in this case also, Similarly, an electrical series connection between the single cells is made, and a high voltage output is obtained.
[0013]
Furthermore, in the solid oxide fuel cell of the present invention, it is preferable that the connector is provided with a sheet portion having electrical insulation or a sheet portion having electrical conductivity.
[0014]
In other words, if the connector is provided with a sheet portion, it becomes highly flexible and can function as a gas separator, and can absorb external force applied to each cell when the single cells are connected. The reliability of the junction is improved, and the spacing between the single cells can be reduced when the single cells are stacked on each other, which can contribute to the miniaturization of the fuel cell.
[0015]
And, in the case where the sheet portion of the connector has electrical insulation, providing electrically conductive pad portions on the front and back of the sheet portion respectively, while performing electrical series joining between a plurality of unit cells arranged in the same plane, Insulation between the unit cells stacked on each other can be ensured.On the other hand, when the sheet portion of the connector has electrical conductivity, it is the same as providing the electrically conductive pad portions integrally on the front and back of the sheet portion. It is possible to perform electrical connection and mechanical connection between the stacked unit cells while performing electrical series connection between a plurality of unit cells arranged in a plane.
[0016]
The single cell for a fuel cell of the present invention has an electric insulating film formed on the front and back of the electrically conductive metal substrate and on a part of the non-porous portion, and a current collector is laminated from the electric insulating film to the electrode of the battery element. This is a single cell with a positive electrode terminal and a negative electrode terminal, which is a thin and lightweight single cell having a structure in which a thin-film battery element is supported by a thin metal plate.
[0017]
That is, it is thinner and lighter than a single cell made of a conventional ceramic sintered body, so that a fuel cell formed by joining a plurality of single cells for a fuel cell of the present invention is small and light. In addition, since there is no need to bring the current collector into contact with the electrode as in the related art, there is no mechanical damage to the electrode due to the current collector, and the reliability is improved.
[0018]
【Example】
Hereinafter, the present invention will be described with reference to the drawings.
[0019]
[Example 1]
1 to 3 show one embodiment of the solid oxide fuel cell according to the present invention.
[0020]
As shown in FIG. 1, this solid oxide fuel cell 1 includes an electroconductive metal substrate 2 having a porous portion 2a and an electrolyte between a pair of electrode layers 3a and 3b (a fuel electrode layer 3a and an air electrode layer 3b). A single cell 4 is formed by stacking the battery elements 3 sandwiching the layer 3c, and a connector 5 having an electrically conductive pad portion 5a is provided.
[0021]
As shown in FIG. 2, the single cell 4 has the battery element 3 laminated from the porous portion 2a of the electrically conductive metal substrate 2 to a part of the portion other than the porous portion 2a. The surface of the metal substrate 2 other than the porous portion 2a is almost entirely covered with the electric insulating film 6 on the front and back sides, and the electric insulating film 6 on the side on which the battery element 3 of the electric conductive metal substrate 2 is laminated. The current collector 7 is arranged over the air electrode layer 3 b located on the opposite side of the battery element 3 from the electrically conductive metal substrate 2.
[0022]
On the other hand, as shown in FIG. 3, the connector 5 includes an electrically insulating sheet portion 5b, and electrically conductive pad portions 5a are provided on the front and back of the sheet portion 5b.
[0023]
In the solid oxide fuel cell 1, a plurality of unit cells 4 are arranged on the same plane, and the electric insulating film of the current collector 7 in one of the unit cells 4 adjacent to each other is formed. The current collecting terminal 7a located on the upper surface 6 and the exposed portion 2b of the other unit cell 4 on the side where the battery element 3 of the electrically conductive metal substrate 2 is laminated are joined via the pad portion 5a of the connector 5. ing.
[0024]
In this embodiment, the electrically conductive metal substrate 2 of the single cell 4 is made of SUS430 having a thickness of 100 μm (0.1 mm pore), the fuel electrode layer 3 a constituting the battery element 3 is made of Ni + YSZ having a thickness of 50 μm, and the electrolyte layer 3 c is formed of a film. The 5 μm thick YSZ, the air electrode layer 3 b is a 1 μm thick SSC, the pad portion 5 a of the connector 5 is Au having a size of 0.2 mm × H 0.5 mm, and the sheet portion 5 b is 0.5 mm thick alumina.
[0025]
In the solid oxide fuel cell 1 described above, the current collecting terminal 7a located on the electrically insulating film 6 of the current collector 7 in one of the unit cells 4 adjacent to each other and the other unit cell 4 Since the exposed portion 2b of the electrically conductive metal substrate 2 in the cell 4 is joined via the pad portion 5a of the connector 5, a direct mechanical force may be applied to the battery element 3, which is a brittle material. As a result, mechanical damage to the battery element 3 at the time of power collection is avoided, and a good electrical connection state is obtained when a plurality of single cells 4 are integrated, resulting in electrical loss. Is reduced.
[0026]
Further, in the solid oxide fuel cell 1 described above, since the electric cells 4 and 4 are electrically connected in series, a high voltage output can be obtained. In addition, the connector 5 has the seat portion 5b. Therefore, the connector 5 is highly flexible and can function as a gas separator. In addition, since the external force applied to each cell 4 and 4 when the single cells 4 and 4 are connected can be absorbed, the connector 5 Reliability is improved.
[0027]
Further, since the single cell 4 of the solid oxide fuel cell 1 has a structure in which the thin-film battery element 3 is supported by the electrically conductive metal substrate 2, a single cell made of a conventional ceramic sintered body is used. Therefore, the solid electrolyte fuel cell 1 formed by joining a plurality of the fuel cell unit cells 4 is small and lightweight.
[0028]
[Example 2]
FIG. 4 shows another embodiment of the solid oxide fuel cell according to the present invention.
[0029]
As shown in FIG. 4, this solid oxide fuel cell 11 is different from the solid oxide fuel cell 1 in the previous embodiment in that the connector 15 has a sheet portion 15b having electrical conductivity, The conductive pad portion 15a is provided integrally on the front and back of the seat portion 15b, and the other configuration is the same as that of the solid oxide fuel cell 1 in the previous embodiment.
[0030]
In this embodiment, the electrically conductive metal substrate 2 of the unit cell 4 is made of Inconel 600 having a thickness of 100 μm (0.1 mm pore), the fuel electrode layer 3 a constituting the battery element 3 is made of Ni + SDC having a thickness of 30 μm, and the electrolyte layer 3 c is formed of The 5 μm thick YSZ, the air electrode layer 3 b is a 5 μm thick SSC, the pad 15 a of the connector 15 is Pt of φ0.2 mm × H0.5 mm, and the sheet 15 b is SUS430 + Pt of 0.3 mm thick. I have.
[0031]
Also in the solid oxide fuel cell 11 described above, mechanical damage to the battery element 3 at the time of current collection is avoided, and also, when a plurality of single cells 4 are integrated, electrical loss is reduced.
[0032]
Also, in the solid oxide fuel cell 11 described above, a high voltage output can be obtained. In addition, since the connector 15 has the seat portion 15b, the connector 15 is rich in flexibility. In addition to being able to function as a gas separator, since the external force applied to each cell 4 when connecting the single cells 4 can be absorbed, the reliability of the joined portion is improved.
[0033]
Further, since the single cell 4 of the solid oxide fuel cell 11 is thinner and lighter than a single cell made of a conventional ceramic sintered body, it is formed by joining a plurality of the single cells 4 for a fuel cell. The solid oxide fuel cell 11 can be made small and lightweight.
[0034]
[Example 3]
FIG. 5 shows still another embodiment of the solid oxide fuel cell of the present invention.
[0035]
As shown in FIG. 5, the solid oxide fuel cell 21 is positioned on the electric insulating film 6 of the current collector 7 in one of the unit cells 4 adjacent to each other in the same plane. The cell plate 4A is joined by connecting the current collecting terminal 7a to the exposed portion 2b of the other unit cell 4 on the side where the battery element 3 of the electrically conductive metal substrate 2 is laminated via the pad portion 25a of the connector 25. A current collecting terminal 7a located on the electric insulating film 6 of the current collector 7 in the single cell 4 of the lower cell plate 4A is formed by stacking another cell plate 4A on the cell plate 4A. The upper cell plate 4A has a configuration in which the lower exposed portion 2b 'of the electrically conductive metal substrate 2 in the single cell 4 is joined via the pad portion 25a of the connector 25.
[0036]
In this embodiment, the electrically conductive metal substrate 2 of the single cell 4 is made of SUS430 having a thickness of 75 μm (0.1 mm pore), the fuel electrode layer 3 a constituting the battery element 3 is formed of Ni + YSZ having a thickness of 30 μm, and the electrolyte layer 3 c is formed of a film. The 5 μm thick YSZ and the air electrode layer 3 b are 5 μm thick SSC. 5 mm alumina is used.
[0037]
Also in the solid oxide fuel cell 21 described above, mechanical damage to the battery element 3 during current collection is avoided, and when a plurality of single cells 4 are integrated, electrical loss is reduced.
[0038]
Further, in the solid oxide fuel cell 21 described above, since the connector 25 includes the sheet portion 25b having electrical insulation properties, the insulation between the stacked cell plates 4A, 4A is ensured while the single cell 4 is secured. , 4 are connected in series, and a high voltage output can be obtained. In addition, the connector 25 becomes flexible and can function as a gas separator. Since the external force applied to each of the cells 4 and 4 can be absorbed when the cells 4 and 4 are connected to each other, the reliability of the joined portion is improved, and the interval between the cell plates 4A and 4A stacked on each other can be reduced. It can contribute to the miniaturization of the device. You will get.
[0039]
Further, since the single cell 4 of the solid oxide fuel cell 21 is thinner and lighter than a single cell made of a conventional ceramic sintered body, it is formed by joining a plurality of the single cells 4 for a fuel cell. The solid oxide fuel cell 21 can be made small and lightweight.
[0040]
[Example 4]
FIG. 6 shows still another embodiment of the solid oxide fuel cell according to the present invention.
[0041]
As shown in FIG. 6, in the solid oxide fuel cell 31, the single cell 4 (or the cell plate 4A in the above embodiment) is stacked, and the electric current of the current collector 7 in the lower single cell 4 shown in FIG. The current collecting terminal 7a located on the insulating film 6 and the lower exposed portion 2b 'of the electrically conductive metal substrate 2 in the unit cell 4 in the upper part of the figure are connected to a connector 35 having a sheet portion 35b having electrical conductivity. It is configured to be joined via the pad portion 35a.
[0042]
In this embodiment, the electrically conductive metal substrate 2 of the single cell 4 is made of SUS430 having a thickness of 75 μm (0.1 mm pore), the fuel electrode layer 3 a constituting the battery element 3 is made of Ni + YSZ having a thickness of 30 μm, and the electrolyte layer 3 c is formed of a film. The 5 μm thick YSZ, the air electrode layer 3 b is a 5 μm thick SSC, the pad 35 a of the connector 35 is Pt of φ0.5 mm × H0.5 mm, and the sheet 35 b is SUS430 + Pt of 0.3 mm thick. .
[0043]
Also in the solid oxide fuel cell 31 described above, mechanical damage to the battery element 3 at the time of current collection is avoided, and when a plurality of single cells 4 are integrated, electrical loss is reduced.
[0044]
Further, in the solid oxide fuel cell 31 described above, since the connector 35 includes the sheet portion 35b having electrical conductivity, electrical series joining between the unit cells 4 and 4 stacked together is performed. That is, since all the unit cells 4 constituting the fuel cell are electrically connected in series, a high voltage output can be obtained. In addition, the connector 35 becomes flexible and can be used as a gas separator. In addition to being able to function, since the external force applied to each cell 4 when connecting the single cells 4 can be absorbed, the reliability of the joint portion is improved, and the interval between the unit cells 4 stacked together is improved. Can be narrowed, which can contribute to downsizing of the fuel cell.
[0045]
Further, since the single cell 4 of the solid oxide fuel cell 31 is thinner and lighter than a single cell made of a conventional ceramic sintered body, it is formed by joining a plurality of the single cells 4 for a fuel cell. The solid oxide fuel cell 31 can be made small and lightweight.
[0046]
The detailed configurations of the solid oxide fuel cell and the single cell for a fuel cell according to the present invention are not limited to the above-described embodiment. For example, in the above-described fourth embodiment, the cell plate 4A of the third embodiment is stacked. You may make it.
[Brief description of the drawings]
FIG. 1 is a partially sectional explanatory view showing one embodiment of a solid oxide fuel cell according to the present invention.
FIG. 2 is an explanatory plan view of a single cell of the solid oxide fuel cell device shown in FIG.
FIG. 3 is an explanatory sectional view of a connector of the solid oxide fuel cell device shown in FIG. 1;
FIG. 4 is a partially sectional explanatory view showing another embodiment of the solid oxide fuel cell of the present invention.
FIG. 5 is a partial cross-sectional explanatory view showing still another embodiment of the solid oxide fuel cell of the present invention.
FIG. 6 is a partial cross-sectional explanatory view showing still another embodiment of the solid oxide fuel cell of the present invention.
[Explanation of symbols]
1, 11, 21, 31 Solid oxide fuel cell 2 Electrically conductive metal substrate 2a Porous portions 2b, 2b 'Exposed portion 3 Battery element 3a Fuel electrode layer (electrode layer)
3b Air electrode layer (electrode layer)
3c Electrolyte layer 4 Single cell 5, 15, 25, 35 Connector 5a, 15a, 25a, 35a Pad portion 5b, 15b, 25b, 35b Sheet portion 6 Electrically insulating film 7 Current collector 7a Collector terminal

Claims (6)

多孔質の部分を有する電気伝導性金属基板に一対の電極層間に電解質層を挟み込んで形成した電池要素を積層して成る単セルを備えると共に、電気伝導性のパッド部を有するコネクタを備え、同一平面内で隣接させた単セルの各電池要素以外の部分同士又は互いに積層させた単セルの各電池要素以外の部分同士を上記コネクタのパッド部を介して接合したことを特徴とする固体電解質型燃料電池。A single cell formed by stacking a battery element formed by sandwiching an electrolyte layer between a pair of electrode layers on an electrically conductive metal substrate having a porous portion, and a connector having an electrically conductive pad portion is provided. A solid electrolyte type in which parts other than the respective battery elements of the unit cells adjacent to each other in the plane or parts other than the respective battery elements of the unit cells stacked together are joined via the pad part of the connector. Fuel cell. 多孔質の部分を有する電気伝導性金属基板に一対の電極層間に電解質層を挟み込んで形成した電池要素を積層して成る単セルを備えると共に、電気伝導性のパッド部を有するコネクタを備え、上記単セルにおける電気伝導性金属基板の多孔質の部分から多孔質以外の部分の一部にかけて上記電池要素を積層すると共に、上記電気伝導性金属基板の多孔質以外の部分の表裏を電気絶縁性皮膜でそれぞれ部分的に被覆して、電気伝導性金属基板の電池要素を積層した側の電気絶縁性皮膜から上記電池要素の電気伝導性金属基板とは反対側に位置する電極層にかけて集電体を配置し、同一平面内で隣接させた単セルのうちの一方の単セルにおける集電体の電気絶縁性皮膜上に位置する集電端子と、他方の単セルにおける電気伝導性金属基板の露出部分とを上記コネクタのパッド部を介して接合したことを特徴とする固体電解質型燃料電池。A single cell formed by stacking battery elements formed by sandwiching an electrolyte layer between a pair of electrode layers on an electrically conductive metal substrate having a porous portion, and a connector having an electrically conductive pad portion is provided. The battery element is laminated from the porous part of the electrically conductive metal substrate to a part of the non-porous part in the single cell, and the front and back of the non-porous part of the electrically conductive metal substrate are electrically insulating films. Each of the current collectors is partially covered with an electric conductive metal substrate, from the electric insulating film on the side on which the battery element is laminated to the electrode layer located on the side opposite to the electric conductive metal substrate of the battery element. A current collecting terminal located on the electric insulating film of the current collector in one of the unit cells arranged and adjacent in the same plane, and an exposed portion of the electrically conductive metal substrate in the other unit cell Solid oxide fuel cell characterized by being joined through a pad portion of the connector and. 多孔質の部分を有する電気伝導性金属基板に一対の電極層間に電解質層を挟み込んで形成した電池要素を積層して成る単セルを備えると共に、電気伝導性のパッド部を有するコネクタを備え、上記単セルにおける電気伝導性金属基板の多孔質の部分から多孔質以外の部分の一部にかけて上記電池要素を積層すると共に、上記電気伝導性金属基板の多孔質以外の部分の表裏を電気絶縁性皮膜でそれぞれ部分的に被覆して、電気伝導性金属基板の電池要素を積層した側の電気絶縁性皮膜から上記電池要素の電気伝導性金属基板とは反対側に位置する電極層にかけて集電体を配置し、互いに積層させた単セルのうちの一方の単セルにおける集電体の電気絶縁性皮膜上に位置する集電端子と、他方の単セルにおける電気伝導性金属基板の露出部分とを上記コネクタのパッド部を介して接合したことを特徴とする固体電解質型燃料電池。A single cell formed by stacking battery elements formed by sandwiching an electrolyte layer between a pair of electrode layers on an electrically conductive metal substrate having a porous portion, and a connector having an electrically conductive pad portion is provided. The battery element is laminated from the porous part of the electrically conductive metal substrate to a part of the non-porous part in the single cell, and the front and back of the non-porous part of the electrically conductive metal substrate are electrically insulating films. Each of the current collectors is partially covered with an electric conductive metal substrate, from the electric insulating film on the side on which the battery element is laminated to the electrode layer located on the side opposite to the electric conductive metal substrate of the battery element. Arranged, the current collecting terminal located on the electric insulating film of the current collector in one of the unit cells of the unit cells stacked together, and the exposed portion of the electrically conductive metal substrate in the other unit cell. Solid oxide fuel cell characterized by being joined through a pad of serial connector. コネクタは電気絶縁性を有するシート部を具備し、電気伝導性のパッド部は上記シート部の表裏にそれぞれ設けてある請求項1〜3のいずれか1つの項に記載の固体電解質型燃料電池。The solid oxide fuel cell according to any one of claims 1 to 3, wherein the connector includes a sheet portion having electrical insulation, and the electrically conductive pad portions are respectively provided on the front and back of the sheet portion. コネクタは電気伝導性を有するシート部を具備し、電気伝導性のパッド部は上記シート部の表裏にそれぞれ一体で設けてある請求項1〜3のいずれか1つの項に記載の固体電解質型燃料電池。The solid electrolyte fuel according to any one of claims 1 to 3, wherein the connector includes a sheet portion having electrical conductivity, and the electrically conductive pad portions are provided integrally on the front and back of the sheet portion. battery. 多孔質の部分を有する電気伝導性金属基板と、一対の電極層間に電解質層を挟み込んで積層して成る電池要素と、集電体を備え、上記電気伝導性金属基板の多孔質の部分から多孔質以外の部分の一部にかけて上記電池要素を積層すると共に、上記電気伝導性金属基板の多孔質以外の部分の表裏を電気絶縁性皮膜でそれぞれ部分的に被覆し、電気伝導性金属基板の電池要素を積層した側の電気絶縁性皮膜から上記電池要素の電気伝導性金属基板とは反対側に位置する電極層にかけて上記集電体を配置したことを特徴とする燃料電池用単セル。An electrically conductive metal substrate having a porous portion, a battery element formed by laminating an electrolyte layer between a pair of electrode layers, and a current collector, wherein a porous portion is formed from the porous portion of the electrically conductive metal substrate. The battery element is laminated over a part of the non-metallic part, and the front and back of the non-porous part of the electrically conductive metal substrate are partially covered with an electrically insulating film, respectively. A single cell for a fuel cell, wherein the current collector is arranged from the electric insulating film on the side where the elements are laminated to the electrode layer located on the opposite side of the electric conductive metal substrate of the battery element.
JP2003064427A 2003-03-11 2003-03-11 Solid electrolyte fuel cell and single cell for fuel cell Pending JP2004273341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003064427A JP2004273341A (en) 2003-03-11 2003-03-11 Solid electrolyte fuel cell and single cell for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003064427A JP2004273341A (en) 2003-03-11 2003-03-11 Solid electrolyte fuel cell and single cell for fuel cell

Publications (1)

Publication Number Publication Date
JP2004273341A true JP2004273341A (en) 2004-09-30

Family

ID=33125724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003064427A Pending JP2004273341A (en) 2003-03-11 2003-03-11 Solid electrolyte fuel cell and single cell for fuel cell

Country Status (1)

Country Link
JP (1) JP2004273341A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037618A1 (en) * 2013-09-13 2015-03-19 株式会社デンソー Single cell of fuel cell and method for producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037618A1 (en) * 2013-09-13 2015-03-19 株式会社デンソー Single cell of fuel cell and method for producing same
JP2015056363A (en) * 2013-09-13 2015-03-23 株式会社日本自動車部品総合研究所 Fuel cell unit and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP6317222B2 (en) Solid oxide fuel cell stack
DK2811564T3 (en) fuel Battery
JP5242985B2 (en) Solid oxide fuel cell
US20180040906A1 (en) Fuel cell stack
JP4973500B2 (en) Fuel cell
JP3841148B2 (en) Cell plate and stack for solid oxide fuel cell
JP4892897B2 (en) Fuel cell
JP2004303508A (en) Unit cell structure for fuel cell, and solid oxide type fuel cell using it
JPH1167247A (en) Solid electrolyte fuel cell
JP6389133B2 (en) Fuel cell stack
JP2008251236A (en) Flat lamination type fuel cell
JPH1197038A (en) Solid electrolyte type fuel cell and manufacture of the same
WO2007043366A1 (en) Fuel cell and method for manufacturing same
JP5100036B2 (en) Fuel cell stack device, fuel cell stack coupling device and fuel cell
JP2010205534A (en) Fuel cell power generation unit, and fuel cell stack
JP2004273341A (en) Solid electrolyte fuel cell and single cell for fuel cell
JP5846936B2 (en) Fuel cell
JPH1125999A (en) Solid electrolyte fuel cell
JP2005216535A (en) Fuel cell
JP2003346826A (en) Solid electrolyte fuel cell
JP6119869B2 (en) Solid oxide fuel cell stack
JPH07245107A (en) Solid electrolyte fuel cell
JP6122295B2 (en) Current collecting member, cell stack device, and fuel cell
JP5727429B2 (en) Fuel cell with separator and fuel cell
JP6022959B2 (en) Fuel cell stack device and fuel cell device