JP3768731B2 - Semiconductor stack - Google Patents

Semiconductor stack Download PDF

Info

Publication number
JP3768731B2
JP3768731B2 JP16768399A JP16768399A JP3768731B2 JP 3768731 B2 JP3768731 B2 JP 3768731B2 JP 16768399 A JP16768399 A JP 16768399A JP 16768399 A JP16768399 A JP 16768399A JP 3768731 B2 JP3768731 B2 JP 3768731B2
Authority
JP
Japan
Prior art keywords
bolts
pressure
pressure contact
spring
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16768399A
Other languages
Japanese (ja)
Other versions
JP2000357769A (en
Inventor
亮 中嶋
利行 矢野
和弘 佐藤
寿彰 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP16768399A priority Critical patent/JP3768731B2/en
Publication of JP2000357769A publication Critical patent/JP2000357769A/en
Application granted granted Critical
Publication of JP3768731B2 publication Critical patent/JP3768731B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数の半導体素子とヒートシンクなどが交互に重ねられた半導体スタックに関する。
【0002】
【従来の技術】
半導体変換装置は大容量化(高電圧化)の傾向にあり、それに伴い多数個の平形半導体素子が用いられるようになってきている。半導体変換装置は複数個の平形半導体素子と、その平形半導体素子を冷却するための冷却体としてのヒートシンクを交互に積層し弾性的な押圧力を負荷する圧接機構部、固定ボルトと圧接支持板、ばね等から構成している半導体スタック(以下、単にスタックと言う)を半導体変換装置の主回路を構成する上で多数使用している。
【0003】
以下、半導体変換装置に使用している従来のスタックを図9を用いて説明する。
図9に示すように、スタックの左右の圧接支持板10A,11Aには一対の固定ボルト12Aが貫挿され、左右の圧接支持板10A,11Aの間に後術するように重ねられた平形半導体素子3Aやヒートシンク2Aを左右の固定ナット13Aによって所定の圧力で締め付けている。
【0004】
即ち、左側の圧接支持板11Aの右側には、円錐座5Cの底部が重ねられ、この円錐座5Cの右端には、絶縁碍子4Aに続いてヒートシンク2Aが重ねられている。このヒートシンク2Aの右側には、平形半導体素子3Aが重ねられ、更にヒートシンク2A、絶縁スペーサ14、ヒートシンク2A、平形半導体素子3A、ヒートシンク2A及び絶縁碍子4Aなどが同一軸心上に続いて重ねられている。
【0005】
右端の絶縁碍子4Aの右側には、円錐座5Cの頂部が接していて、この円錐座5Cの右側の底部には帯板上の加圧板7Aが重ねられている。この加圧板7Aを貫通した一対の固定ボルト12Aには、加圧板7Aとこの加圧板7Aの右側の圧接支持板10Aの左側面との間に、破線で示す円筒状のばねガイド8Bがそれぞれ設置され、このばねガイドは背中合わせに重ねられた複数枚のさらばね8Aを貫通している。
【0006】
このように構成されたスタックに弾性的な圧接力を保持させるため、プレス機(図示省略)により所定の圧接力を加え、その後固定ナット13Aを圧接支持板10Aに接触するまで回す。この状態では固定ボルト12Aには力は加わっていなく、プレス機を取り去ると固定ボルト12Aには圧接力の反力として引張力が加わる。従って、プレス機を取り去った際に加わる固定ボルト12Aの伸び分見込んで所定の増し締めを行うか、伸び分を加味したプレス値にしておく必要があった。
【0007】
また、従来のスタック構造の場合、高圧接力を必要とする平形半導体素子を使用する際には、2点のさらばねで高圧接力を保持しているため、どうしても皿ばね個々の強さ(ばね定数)を高める必要がある。そのためには、皿ばねを大型化し、皿ばね個々のバネ性をアップさせるか、皿ばねを同方向に重ね合わせることにより、皿ばねの組み合わせでばね定数をアップさせる(図10参照)の2通りがある。
【0008】
しかしながら、前者の場合は、皿ばねばかりでなく、皿ばね周りの用品が外形アップとなりメリットはない。また、後者の場合は、皿ばねにはヒステリシス特性(非線形特性)というものがあり、これは、「皿ばねの弾性特性(変位と力)が全くの比例関係ではなく加圧時(圧縮時)と減圧時(引張時)とで特性カーブがかわる」というもので図10のように同方向に皿ばねを重ねた場合、ばね性をアップさせても、重ねた分だけ(重ねた皿ばねの枚数分だけ)ヒステリシス特性が顕著に出てしまい、スタックの熱応力による皿ばねの伸縮のために圧接力が安定しなり、場合により素子の上限圧接力以上、または下限圧接力以下になる恐れがある(図11参照)。
【0009】
【発明が解決しようとする課題】
近年、サイリスタ素子等の半導体素子は、その大容量化に伴って直径が大きくなり、スタック構成時の素子の所定の単位面積加圧力を保つために、直径の2乗倍で圧接力も増大している。それに伴い下記問題点があげられる。
(1)圧接後の力を保持するためにボルト及びばねが大型化する。
(2)圧接力の増大により、汎用のスパナ・トルクレンチ等の工具での人力締付作業が不可能になる。
(3)その回避策の第1手段として、スパナ等の締め付け工具を大型の物を使用すれば良いが、その工具の回転角度が思うようにとれず、締め込むことが困難になる。
(4)その回避策の第2手段として、特殊工具の使用も考えられるが、特殊工具に付き保守・管理が面倒で、コストアップを伴う。
【0010】
そこで、この回避策として圧接を人力で容易に行うことができ、スタックに対し、所要の圧接力を容易に且つ均等に負荷することができ、平形半導体素子に過大な圧接力が負荷されるのを防止できる圧接機構とする。
【0011】
また、従来のスタック構成で挙げたばねのヒステリシス特性についても、各ばねにかかる力が小さければヒステリシス特性も小さく抑えることができるため、スタックに負荷される大きな圧接力を複数のボルトとばねに分散させ、ボルト1本及びばね1カ所当たりにかかる締付力(圧接力)を低減することにより、ばねのヒステリシス特性を最小限に押さえ込める。
【0012】
従って、本発明の目的は、非常に大きなの圧接力を必要とする素子を使用するスタックにおいても、プレス機や特殊工具を使用せずに人力により圧接可能な圧接機構部を有する半導体スタックを提供することにある。
【0013】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る発明は、2つの圧接支持板の間に少なくとも加圧板を介して複数の半導体素子とヒートシンクが同軸に重ねられ、前記圧接支持板の一方とこの一方の圧接支持板の内側に設けられた加圧板の間に挟持されたばね部を介して前記半導体素子及び前記ヒートシンクが締め付けられた半導体スタックにおいて、前記加圧板の内側に圧接球面座を配置し、前記ばね部当該半導体スタックの圧接力の負荷を分担する複数のボルトとばねで構成して前記複数のボルトと前記ばねを前記加圧板の中心から等距離の円周上に配置し、且つ前記加圧板は前記複数のボルトと同数のネジ穴を形成し、前記複数のボルトは前記ネジ穴を介して前記加圧板から前記圧接球面座に向けて貫通され、前記加圧板と前記圧接支持板間に配置した前記ばねを圧縮させ、その反力で前記圧接球面座を押圧することで前記半導体素子及び前記ヒートシンクを締め付けたことを特徴とする。
【0014】
従って、このように構成された請求項1に係る発明においては、電力変換装置の容量が大きくなればなるほど、より大容量の電気部品が必要となり、より大容量の平形半導体素子はより大きな圧接力を必要としているような状況下においても、当該半導体スタックに負荷される圧接力が複数のボルトに均等に分散され、ボルト一本当たりの締付力(圧接力)が小さくできる。ボルト複数本分で大きな圧接力を容易に人力により生み出すことができる。
【0016】
更に、上記加圧板が複数のボルトに対し共通のナットとして機能し、ボルト締付力(圧接力)×ボルト本数分の圧接力を当該半導体スタックに与えることができ、ボルト複数本分で大きな圧接力を容易に入力により生み出すことができる。また、上記加圧板は複数のボルトに対し共通のナットとして構成しているため、ある一点のボルトのみ締め付けた場合、上記加圧板に傾きが生じ、ボルトは少量しか締め付けられず、少量ずつのボルト締め付けの繰り返しで、均等な各ばねの反力を生じさせることができる。
【0017】
また、請求項に係る発明は、上記複数のボルトの先端を球状にしていることを特徴とする。従って、請求項に係る発明においては、上記複数のボルトの先端を球状にしていることにより、各ばねの反力を素子の中心により正確に上記加圧板に伝えることができ、スタックとして最適な圧接状態を作りだすことができる。
【0018】
更に、請求項に係る発明は、上記圧接支持板の少なくとも一方に貫通孔を形成し、この貫通孔にゲージを設けたことを特徴とする。従って、請求項に係る発明においては、当該半導体スタック内加圧ばね部のセンターの圧縮量、すなわち加圧板の変位量を上記ゲージにより管理し、素子の圧力管理を行うことができる。
【0019】
また、請求項に対応する発明は、上記複数のボルトにゲージ表示を施したことを特徴とする。従って、請求項に係る発明においては、当該半導体スタックの圧接力につながるばねの圧縮量をそれぞれのボルトに表示されているゲージにより管理することにより、より精度の高い素子の圧力管理を行うことができる。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を用いて説明する。
(第1の実施の形態)
まず、本発明の第1の実施の形態について、図面を用いて説明する。
【0024】
図1は、本実施の形態のスタック構造の平面図、図2は、その正面図である。
尚、本実施の形態は、複数個の締付ボルト9a〜9dが4本の場合を例に図示している。
【0025】
図1及び図2において、平形半導体素子用スタック1は複数個の冷却体であるヒートシンク2と平形半導体素子3とが軸心線上に積層して配置され、両端に絶縁碍子4、球面座5a,5bと同一軸心上に重ねられ、スタック1の両端は圧接支持体10,11に狭持され、固定ボルト12と固定ナット13によりスタッキングが保持されている。そして、スタック1の両端又は何れか一方にはスタック1の加圧機構である複数個の皿ばね8、複数個の締付ボルト9a〜9d、加圧板7、圧接球面座6が配置され、スタック1を構成している。複数個の締付ボルト9a〜9d及び複数個の皿ばね8は、スタック1の中心から等距離に円周上に配置されている。
【0026】
そこで、上記のような加圧機構とすることにより、大きな圧接力を複数の締付ボルト9a〜9dで作り出すことができ、ボルトの本数を増加することにより非常に大きな圧接力も人力のレベルで対応でき、特殊なプレス機等が不要になる。
【0027】
(第2の実施の形態)
次に、本発明の第2の実施の形態について、図3を用いて説明する。
図3は、スタック内加圧機構部詳細図(図1のA−A断面図)である。
【0028】
図3に示すように、加圧板7は複数の締付ボルト9a〜9dの共通のナットとして機能し、加圧板7には複数の締付ボルト9a〜9dに対応するネジ穴が切ってあり、複数の締付ボルト9a〜9dを締め込んでいくとそのネジ穴に締付ボルト9a〜9dはネジ込まれ、加圧板7は上方向に押し上げられる。それにより、複数の締付ボルト9a〜9dが個々に貫通している皿ばね8が圧縮され、長さG1が縮んでいき、その反力F1で複数の締付ボルト9a〜9dが圧接球面座6を押し下げ、スタックの圧接力が生まれている。
【0029】
この構成により、複数の締付ボルト9a〜9dの締付力(圧接力)×ボルト本数分の圧接力をスタックに与えることができ、ボルト複数本分で大きな圧接力を容易に人力により生み出すことができる。また、加圧板7は複数のボルト9a〜9dに対し共通のナットとして構成しているため、ある一点のボルトのみ締め付けた場合、加圧板7に傾きが生じ、加圧板7に切っているネジ穴のネジ山とボルトのネジ山が噛んでしまい、少量しか締め付けられず、少量ずつの各ボルト9a〜9dの締め付けの繰り返しで、均等な各皿ばね8の反力を生じさせている。
【0030】
上記構成とすることによって、最適な均等圧接状態が実現できるスタック構造となる。
(第3の実施の形態)
次に、本発明の第3の実施の形態について、図4を用いて説明する。
【0031】
図4に示すように、本実施の形態は、複数の締付ボルト9a〜9dの先端を球状にしている。
従って、上記構成とすることにより、複数の締付ボルト9a〜9dは球状の一点で圧接球面座6と接し、より理想的に各皿ばね8からの反力を圧接球面座6に伝え、スタックとして最適な圧接状況を作り出すことが可能となる。
【0032】
(第4の実施の形態)
次に、本発明の第4の実施の形態について、図5を用いて説明する。
図5に示すように、本実施の形態は、スタック加圧機構部のセンター(圧接支持体10)に貫通穴をあけていて、そこにゲージ15を装着し、圧接力を生み出す皿ばね8の圧縮変位量G1をそのゲージ15により測定し、管理することができる。
【0033】
従って、上記構成とすることにより、圧接力のトルク管理ではなく締付量のゲージ管理により圧接力を容易に管理することができ、トルク管理で行っていた場合に起こる可能性があった作業者による締付誤差を最低限に抑えることが可能となる。
【0034】
(第5の実施の形態)
次に、本発明の第5の実施の形態について、図6を用いて説明する。
図6に示すように、本実施の形態は、複数の締付ボルト9a〜9dにゲージ16を切っておき、圧接力を生み出す皿ばね8の圧縮変位量G1を複数の締付ボルト9a〜9dのそれぞれのゲージで均等に管理することにより、各締付ボルト9a〜9dの締付量のレベルを合わせることができる。
【0035】
従って、上記構成とすることにより、先の実施の形態に比べ、更にバランスのとれた圧接力を容易に管理することができ、トルク管理で行っていた場合に起こる可能性があった作業者による締付誤差をより一層抑えることが可能となる。
【0036】
(その他の実施の形態)
以上述べた第1乃至第5の実施の形態においては、皿ばねを適用したが、図7に示すように第6の実施の形態として板ばねを、また、図8に示すように第7の実施の形態としてコイルばねをそれぞれ適用しても、本発明は実現できる。
【0037】
【発明の効果】
以上説明したように、本発明によれば、高圧接力仕様の半導体素子を用いた場合においても、特殊なプレス機や締め付け治具を使用することなしに、数本の締付ボルトで並列的に締め付けることにより、大きな圧接力を人力により生み出せる。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態を示す平面図。
【図2】 本発明の第1の実施の形態を示す正面図。
【図3】 本発明の第2の実施の形態を示す図1のA−A矢視図。
【図4】 本発明の第3の実施の形態を示す図。
【図5】 本発明の第4の実施の形態を示す図1のA−A矢視図。
【図6】 本発明の第5の実施の形態を示す図1のA−A矢視図。
【図7】 本発明の第6の実施の形態を示す図1のA−A矢視図。
【図8】 本発明の第7の実施の形態を示す図1のA−A矢視図。
【図9】 従来の半導体スタックを示す構成図。
【図10】 同方向に重ね合わせた複数の皿ばねを示す構成図。
【図11】 ばねのヒステリシス特性を示すグラフ。
【符号の説明】
1…スタック、2,2A…ヒートシンク、3,3A…平形半導体素子、4,4A…絶縁碍子、5a,5b…球面座、5C…円錐座、6…圧接球面座、7,7A…加圧板、8,8A…皿ばね、8B…ばねガイド、9a〜9d…締付ボルト、10,10A,11,11A…圧接支持体、12,12A…固定ボルト、13,13A…固定ナット、14…絶縁スペーサ、15…ゲージ、16…締付ボルト上のゲージ、20…板ばね、21…コイルばね。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor stack in which a plurality of semiconductor elements and heat sinks are alternately stacked.
[0002]
[Prior art]
Semiconductor conversion devices tend to have larger capacities (higher voltages), and accordingly, a large number of flat semiconductor elements have been used. The semiconductor conversion device comprises a plurality of flat semiconductor elements and a pressure contact mechanism part that alternately stacks heat sinks as cooling bodies for cooling the flat semiconductor elements and loads an elastic pressing force, a fixing bolt and a pressure contact support plate, A large number of semiconductor stacks composed of springs or the like (hereinafter simply referred to as “stacks”) are used to construct the main circuit of the semiconductor conversion device.
[0003]
Hereinafter, a conventional stack used in a semiconductor conversion device will be described with reference to FIG.
As shown in FIG. 9, a pair of fixing bolts 12A are inserted into the left and right pressure contact support plates 10A and 11A of the stack, and are stacked so as to perform a subsequent operation between the left and right pressure contact support plates 10A and 11A. The element 3A and the heat sink 2A are fastened with a predetermined pressure by left and right fixing nuts 13A.
[0004]
That is, the bottom of the conical seat 5C is overlaid on the right side of the left pressure contact support plate 11A, and the heat sink 2A is overlaid on the right end of the conical seat 5C following the insulator 4A. A flat semiconductor element 3A is stacked on the right side of the heat sink 2A, and a heat sink 2A, an insulating spacer 14, a heat sink 2A, a flat semiconductor element 3A, a heat sink 2A, an insulator 4A, and the like are continuously stacked on the same axis. Yes.
[0005]
The top of the conical seat 5C is in contact with the right side of the insulator 4A at the right end, and the pressure plate 7A on the strip is overlaid on the bottom of the right side of the conical seat 5C. Cylindrical spring guides 8B indicated by broken lines are respectively installed between the pressure plate 7A and the left side surface of the pressure contact support plate 10A on the right side of the pressure plate 7A on the pair of fixing bolts 12A that penetrate the pressure plate 7A. The spring guide passes through a plurality of springs 8A stacked back to back.
[0006]
In order to maintain an elastic pressure contact force in the stack configured as described above, a predetermined pressure contact force is applied by a press machine (not shown), and then the fixing nut 13A is rotated until it contacts the pressure contact support plate 10A. In this state, no force is applied to the fixing bolt 12A. When the press machine is removed, a tensile force is applied to the fixing bolt 12A as a reaction force of the pressure contact force. Therefore, it is necessary to perform a predetermined tightening in consideration of the elongation of the fixing bolt 12A applied when the press machine is removed, or to set the press value in consideration of the elongation.
[0007]
In addition, in the case of the conventional stack structure, when using a flat semiconductor element that requires high pressure contact force, since the high pressure contact force is maintained by two springs, the strength of each disc spring (spring constant) ) Need to be increased. For that purpose, the spring constant is increased by increasing the size of the disc spring and increasing the spring characteristics of each disc spring, or by stacking the disc springs in the same direction, thereby increasing the spring constant (see FIG. 10). There is.
[0008]
However, in the former case, not only the disc spring but also the articles around the disc spring are increased in outer shape, and there is no merit. In the latter case, the disc spring has a hysteresis characteristic (non-linear characteristic). This is because “the elastic characteristics (displacement and force) of the disc spring are not proportional to each other but are pressurized (compressed). When the disc springs are stacked in the same direction as shown in Fig. 10, even if the spring performance is increased, only the amount of overlap (the amount of the stacked disc springs) (Only the number of sheets) Hysteresis characteristics are conspicuous, and the pressure contact force is stabilized due to the expansion and contraction of the disc spring due to the thermal stress of the stack. In some cases, the upper limit pressure contact force or the lower limit pressure contact force may be exceeded. Yes (see FIG. 11).
[0009]
[Problems to be solved by the invention]
In recent years, a semiconductor element such as a thyristor element has a larger diameter with an increase in capacity, and in order to maintain a predetermined unit area pressing force of the element at the time of stack configuration, the pressure contact force is increased by the square of the diameter. Yes. Along with this, the following problems are raised.
(1) Bolts and springs are enlarged in order to maintain the force after pressure contact.
(2) Increase in pressure contact force makes it impossible to perform manual tightening with a general-purpose tool such as a spanner or torque wrench.
(3) As a first means for avoiding the problem, a large tool such as a spanner may be used. However, the rotation angle of the tool cannot be as expected and it is difficult to tighten.
(4) Although a special tool can be used as a second means for avoiding the problem, it is troublesome to maintain and manage the special tool, which increases costs.
[0010]
Therefore, as a workaround, pressure welding can be easily performed manually, and the required pressure welding force can be easily and evenly applied to the stack, and an excessive pressure welding force is applied to the flat semiconductor element. A pressure welding mechanism that can prevent
[0011]
Also, with regard to the hysteresis characteristics of the springs listed in the conventional stack configuration, if the force applied to each spring is small, the hysteresis characteristics can be kept small, so that the large pressure contact force applied to the stack is distributed to multiple bolts and springs. By reducing the tightening force (pressure contact force) applied to one bolt and one spring, the hysteresis characteristic of the spring can be minimized.
[0012]
Accordingly, an object of the present invention is to provide a semiconductor stack having a pressure contact mechanism that can be pressed by a human force without using a press or a special tool even in a stack that uses an element that requires a very large pressure contact force. There is to do.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, a plurality of semiconductor elements and a heat sink are coaxially stacked between at least two pressure contact support plates via a pressure plate. In a semiconductor stack in which the semiconductor element and the heat sink are clamped via a spring portion sandwiched between pressure plates provided inside a pressure support plate , a pressure contact spherical seat is disposed inside the pressure plate, and the spring portion the placing said plurality of bolts and constituted by spring the plurality of bolts which share the load of the pressing force of the semiconductor stack spring on the circumference from the center equidistant of said pressure plate and said pressure plate The same number of screw holes as the plurality of bolts are formed, and the plurality of bolts pass through the screw holes from the pressure plate toward the pressure contact spherical seat, and the pressure plate and the pressure contact support plate The semiconductor element and the heat sink are tightened by compressing the spring disposed between them and pressing the pressure contact spherical seat with the reaction force .
[0014]
Therefore, in the invention according to claim 1 configured as described above, the larger the capacity of the power conversion device, the larger the capacity of electric components is required, and the larger capacity of the flat semiconductor element has a greater pressure contact force. Even under such circumstances, the pressure contact force applied to the semiconductor stack is evenly distributed to the plurality of bolts, and the tightening force (pressure contact force) per bolt can be reduced. A large pressure contact force can be easily generated by human power with multiple bolts.
[0016]
Furthermore, the pressure plate functions as a common nut for a plurality of bolts, and can provide a bolting force (pressure contact force) x a pressure contact force equivalent to the number of bolts to the semiconductor stack. Force can be easily generated by input. In addition, since the pressure plate is configured as a common nut for a plurality of bolts, when only one bolt is tightened, the pressure plate is inclined, and the bolt is tightened only in a small amount. By repeating the tightening, a uniform reaction force of each spring can be generated.
[0017]
The invention according to claim 2 is characterized in that tips of the plurality of bolts are spherical. Therefore, in the invention according to claim 2 , by making the tips of the plurality of bolts spherical, the reaction force of each spring can be accurately transmitted to the pressure plate through the center of the element, which is optimal as a stack. A pressure contact state can be created.
[0018]
Further, the invention according to claim 3 is characterized in that a through hole is formed in at least one of the press contact support plates, and a gauge is provided in the through hole. Therefore, in the invention according to claim 3 , the compression amount of the center of the pressure spring portion in the semiconductor stack, that is, the displacement amount of the pressure plate can be managed by the gauge, and the pressure of the element can be managed.
[0019]
The invention corresponding to claim 4 is characterized in that a gauge display is applied to the plurality of bolts. Therefore, in the invention according to claim 4 , more accurate element pressure management is performed by managing the compression amount of the spring that leads to the pressure contact force of the semiconductor stack by the gauge displayed on each bolt. Can do.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
First, a first embodiment of the present invention will be described with reference to the drawings.
[0024]
FIG. 1 is a plan view of the stack structure of the present embodiment, and FIG. 2 is a front view thereof.
In the present embodiment, the case where there are four tightening bolts 9a to 9d is shown as an example.
[0025]
1 and 2, a flat semiconductor element stack 1 includes a plurality of heat sinks 2 which are cooling bodies and a flat semiconductor element 3 stacked on an axial center line, and an insulator 4 and spherical seats 5a, 5b is stacked on the same axis, and both ends of the stack 1 are sandwiched between pressure contact supports 10 and 11, and stacking is held by a fixing bolt 12 and a fixing nut 13. A plurality of disc springs 8, a plurality of clamping bolts 9a to 9d, a pressurizing plate 7, and a press contact spherical surface seat 6 serving as a pressurizing mechanism for the stack 1 are disposed at both ends or either one of the stack 1, 1 is configured. The plurality of tightening bolts 9 a to 9 d and the plurality of disc springs 8 are arranged on the circumference equidistant from the center of the stack 1.
[0026]
Therefore, by using the pressure mechanism as described above, a large pressure contact force can be created by a plurality of tightening bolts 9a to 9d, and by increasing the number of bolts, a very large pressure contact force can be handled at the level of human power. This eliminates the need for special press machines.
[0027]
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG.
FIG. 3 is a detailed view (a cross-sectional view taken along line AA in FIG. 1) of the in-stack pressurizing mechanism.
[0028]
As shown in FIG. 3, the pressure plate 7 functions as a common nut for the plurality of tightening bolts 9a to 9d, and the pressure plate 7 has screw holes corresponding to the plurality of tightening bolts 9a to 9d. When the plurality of tightening bolts 9a to 9d are tightened, the tightening bolts 9a to 9d are screwed into the screw holes, and the pressure plate 7 is pushed upward. As a result, the disc spring 8 through which the plurality of tightening bolts 9a to 9d penetrate individually is compressed and the length G1 is contracted, and the reaction force F1 causes the plurality of tightening bolts 9a to 9d to be pressed against the spherical contact surface. 6 is pushed down, and the pressure of the stack is born.
[0029]
With this configuration, it is possible to apply a tightening force (pressure contact force) of a plurality of tightening bolts 9a to 9d x a pressure contact force equivalent to the number of bolts to the stack, and easily generate a large pressure contact force for a plurality of bolts manually. Can do. Further, since the pressure plate 7 is configured as a common nut for the plurality of bolts 9a to 9d, when only one bolt is tightened, the pressure plate 7 is inclined, and the screw hole cut in the pressure plate 7 The screw threads of the bolts and the screw threads of the bolts are bitten, and only a small amount is tightened. By repeating the tightening of the bolts 9a to 9d in small amounts, a uniform reaction force of the disc springs 8 is generated.
[0030]
By setting it as the said structure, it becomes a stack structure which can implement | achieve an optimal uniform press-contact state.
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG.
[0031]
As shown in FIG. 4, in the present embodiment, the tips of the plurality of tightening bolts 9a to 9d are made spherical.
Accordingly, with the above-described configuration, the plurality of tightening bolts 9a to 9d are in contact with the press contact spherical seat 6 at one spherical point, and more ideally, reaction force from each disc spring 8 is transmitted to the press contact spherical seat 6, and the stack As a result, it is possible to create an optimum pressure contact situation.
[0032]
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 5, in this embodiment, a through hole is made in the center (pressure contact support 10) of the stack pressurization mechanism, and a gauge 15 is attached thereto to generate a pressure contact force. The compression displacement amount G1 can be measured by the gauge 15 and managed.
[0033]
Therefore, by adopting the above configuration, it is possible to easily manage the pressure contact force not by torque management of the pressure contact force but by gauge management of the tightening amount, and an operator who may have occurred when performing torque management. It is possible to minimize the tightening error due to the.
[0034]
(Fifth embodiment)
Next, a fifth embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 6, in the present embodiment, the gauge 16 is cut in the plurality of tightening bolts 9 a to 9 d, and the compression displacement amount G1 of the disc spring 8 that generates the pressure contact force is set to the plurality of tightening bolts 9 a to 9 d. The level of the tightening amount of each of the tightening bolts 9a to 9d can be adjusted by evenly managing with the respective gauges.
[0035]
Therefore, by adopting the above configuration, a more balanced pressure contact force can be easily managed as compared to the previous embodiment, and by an operator who may have occurred when performing torque management. It is possible to further suppress the tightening error.
[0036]
(Other embodiments)
In the first to fifth embodiments described above, the disc spring is applied. However, as shown in FIG. 7, a leaf spring is used as the sixth embodiment, and as shown in FIG. The present invention can be realized even if a coil spring is applied as an embodiment.
[0037]
【The invention's effect】
As described above, according to the present invention, even when using a semiconductor element with a high-pressure contact force specification, several clamping bolts can be used in parallel without using a special press or a clamping jig. By tightening, a large pressure contact force can be generated by human power.
[Brief description of the drawings]
FIG. 1 is a plan view showing a first embodiment of the present invention.
FIG. 2 is a front view showing a first embodiment of the present invention.
FIG. 3 is an AA arrow view of FIG. 1 showing a second embodiment of the present invention.
FIG. 4 is a diagram showing a third embodiment of the present invention.
FIG. 5 is an AA arrow view of FIG. 1 showing a fourth embodiment of the present invention.
6 is an AA arrow view of FIG. 1 showing a fifth embodiment of the present invention.
FIG. 7 is an AA arrow view of FIG. 1 showing a sixth embodiment of the present invention.
FIG. 8 is an AA arrow view of FIG. 1 showing a seventh embodiment of the present invention.
FIG. 9 is a configuration diagram showing a conventional semiconductor stack.
FIG. 10 is a configuration diagram showing a plurality of disc springs stacked in the same direction.
FIG. 11 is a graph showing the hysteresis characteristic of a spring.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Stack, 2A ... Heat sink, 3, 3A ... Flat semiconductor element, 4, 4A ... Insulator, 5a, 5b ... Spherical seat, 5C ... Conical seat, 6 ... Pressure contact spherical seat, 7, 7A ... Pressure plate, 8, 8A ... disc spring, 8B ... spring guide, 9a to 9d ... clamping bolt, 10, 10A, 11, 11A ... pressure contact support, 12, 12A ... fixing bolt, 13, 13A ... fixing nut, 14 ... insulating spacer 15 ... Gauge, 16 ... Gauge on the clamping bolt, 20 ... Leaf spring, 21 ... Coil spring.

Claims (4)

2つの圧接支持板の間に少なくとも加圧板を介して複数の半導体素子とヒートシンクが同軸に重ねられ、前記圧接支持板の一方とこの一方の圧接支持板の内側に設けられた加圧板の間に挟持されたばね部を介して前記半導体素子及び前記ヒートシンクが締め付けられた半導体スタックにおいて、
前記加圧板の内側に圧接球面座を配置し、前記ばね部当該半導体スタックの圧接力の負荷を分担する複数のボルトとばねで構成して前記複数のボルトと前記ばねを前記加圧板の中心から等距離の円周上に配置し、且つ前記加圧板は前記複数のボルトと同数のネジ穴を形成し、前記複数のボルトは前記ネジ穴を介して前記加圧板から前記圧接球面座に向けて貫通され、前記加圧板と前記圧接支持板間に配置した前記ばねを圧縮させ、その反力で前記圧接球面座を押圧することで前記半導体素子及び前記ヒートシンクを締め付けたことを特徴とする半導体スタック。
A plurality of semiconductor elements and a heat sink are coaxially stacked between two pressure contact support plates via at least a pressure plate, and are sandwiched between one of the pressure support plates and the pressure plate provided inside the one pressure support plate. In the semiconductor stack in which the semiconductor element and the heat sink are tightened through the part,
A pressure contact spherical seat is arranged on the inner side of the pressure plate, and the spring portion is composed of a plurality of bolts and springs that share the load of the pressure contact force of the semiconductor stack, and the plurality of bolts and the spring are arranged at the center of the pressure plate. The pressure plate is formed with the same number of screw holes as the plurality of bolts, and the plurality of bolts are directed from the pressure plate to the pressure contact spherical seat through the screw holes. The semiconductor element and the heat sink are tightened by compressing the spring disposed between the pressure plate and the pressure contact support plate and pressing the pressure contact spherical seat by the reaction force. stack.
前記複数のボルトの先端を球状にしていることを特徴とする請求項1記載の半導体スタック。  2. The semiconductor stack according to claim 1, wherein tips of the plurality of bolts are spherical. 前記圧接支持板の少なくとも一方に貫通孔を形成し、この貫通孔にゲージを設けたことを特徴とする請求項1又は2記載の半導体スタック。  3. The semiconductor stack according to claim 1, wherein a through hole is formed in at least one of the press contact support plates, and a gauge is provided in the through hole. 前記複数のボルトにゲージ表示を施したことを特徴とする請求項1又は2記載の半導体スタック。  3. The semiconductor stack according to claim 1, wherein gauge indication is given to the plurality of bolts.
JP16768399A 1999-06-15 1999-06-15 Semiconductor stack Expired - Lifetime JP3768731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16768399A JP3768731B2 (en) 1999-06-15 1999-06-15 Semiconductor stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16768399A JP3768731B2 (en) 1999-06-15 1999-06-15 Semiconductor stack

Publications (2)

Publication Number Publication Date
JP2000357769A JP2000357769A (en) 2000-12-26
JP3768731B2 true JP3768731B2 (en) 2006-04-19

Family

ID=15854301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16768399A Expired - Lifetime JP3768731B2 (en) 1999-06-15 1999-06-15 Semiconductor stack

Country Status (1)

Country Link
JP (1) JP3768731B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100393099B1 (en) * 2000-12-26 2003-07-31 앰코 테크놀로지 코리아 주식회사 Semiconductor package
KR100429885B1 (en) * 2002-05-09 2004-05-03 삼성전자주식회사 Multi-chip package improving heat spread characteristics and manufacturing method the same
JP2006276339A (en) * 2005-03-29 2006-10-12 21 Aomori Sangyo Sogo Shien Center Pressure device for manufacturing liquid crystal display panel
CN100334717C (en) * 2005-05-14 2007-08-29 河北华整实业有限公司 Power electronic power device module
JP5471705B2 (en) * 2010-03-29 2014-04-16 株式会社デンソー Power converter and manufacturing method thereof
JP5440324B2 (en) * 2010-03-30 2014-03-12 株式会社デンソー Power converter
JP5644631B2 (en) * 2011-03-30 2014-12-24 株式会社デンソー Power converter
CN212587468U (en) * 2020-06-24 2021-02-23 扬州四菱电子有限公司 Crimping type module electrode crimping device

Also Published As

Publication number Publication date
JP2000357769A (en) 2000-12-26

Similar Documents

Publication Publication Date Title
JP3768731B2 (en) Semiconductor stack
RU2447385C2 (en) Device for clamp-up of flow module plates, reactor plates or heat-exchanger plates
JPH1197054A (en) Fastening structure and method of layered body
EP2109885B1 (en) Compression clamping of semiconductor components
US4636917A (en) Precalibrated element for securing and locking semiconductors and heat sinks arranged in alternating rows
JP4620910B2 (en) Stack for flat semiconductor devices
JP2011043442A (en) Fluctuation load detection pad, fluctuation load detection plate using the same, distributed type fluctuation load detection plate, and fluctuation load detector
JP3410011B2 (en) Stack for flat type semiconductor device
US5940273A (en) Semiconductor clamping device
JP2004335777A (en) Stack for flat semiconductor element
JP3808680B2 (en) Stack for flat semiconductor devices
EP0082516B1 (en) Apparatus and method for compressing a fuel cell stack
JP4546008B2 (en) Stack for flat semiconductor devices
JP2988807B2 (en) Semiconductor stack
DE3223532A1 (en) Arrangement for clamping a plurality of disc-shaped semiconductor components
WO2016174695A1 (en) Pressure-contact type semiconductor element stack
JP2003168778A (en) Stack for flat semiconductor element
JP3069236B2 (en) Semiconductor stack
US20240179872A1 (en) Disc cell assembly clamp
GB2221793A (en) Mounting arrangements for electronic components
JPS59110149A (en) Pressurizing device for semiconductor element unit
JPH0214203Y2 (en)
JP7534966B2 (en) Pressurizing device and method for adjusting pressurizing force
CA1092724A (en) Semiconductor pressure mounting
JPH0786500A (en) Stack for flat type semiconductor element using insulating band

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040326

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050523

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060202

R150 Certificate of patent or registration of utility model

Ref document number: 3768731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term