JP4546008B2 - Stack for flat semiconductor devices - Google Patents

Stack for flat semiconductor devices Download PDF

Info

Publication number
JP4546008B2
JP4546008B2 JP2001280911A JP2001280911A JP4546008B2 JP 4546008 B2 JP4546008 B2 JP 4546008B2 JP 2001280911 A JP2001280911 A JP 2001280911A JP 2001280911 A JP2001280911 A JP 2001280911A JP 4546008 B2 JP4546008 B2 JP 4546008B2
Authority
JP
Japan
Prior art keywords
stack
flat semiconductor
pressure support
support plate
bolt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001280911A
Other languages
Japanese (ja)
Other versions
JP2003086765A (en
Inventor
利行 矢野
忠士 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2001280911A priority Critical patent/JP4546008B2/en
Publication of JP2003086765A publication Critical patent/JP2003086765A/en
Application granted granted Critical
Publication of JP4546008B2 publication Critical patent/JP4546008B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、平型半導体素子とヒートシンクを交互に積層した積層体を弾性的な押圧力(加圧力)を加えて構成する平型半導体素子用スタックに係り、特に圧接力を保持する構造と圧接力を加える構造を改良した平型半導体素子用スタックに関するものである。
【0002】
【従来の技術】
半導体変換装置は大容量化(高電圧化)の傾向にあり、それに伴い多数個の平型半導体素子が用いられるようになってきている。半導体変換装置は複数個の平型半導体素子と、その平型半導体素子を冷却するためのヒートシンクを交互に積層し弾性的な押圧力を負荷する加圧機構部、フレームとしての絶縁スタッドボルトと加圧支持板等から構成してなる平型半導体素子用スタック(以下単にスタックと言う)を半導体変換装置の回路構成要素として多数使用している。
【0003】
以下、半導体変換装置に使用している従来のスタック例を、図6を用いて説明する。スタック1は複数個の平型半導体素子3及びヒートシンク4を交互に積層し、更にその両端に電気回路接続端子となる導体5とその外側に絶縁スペーサ12を配置して積層体を構成している。積層体の一方の端部にばねの取付け座も兼ねた球面座6と皿ばね7が配置され、これらを両端部で支持する加圧支持板8、9間を連結締付ける為の絶縁スタッドボルト2、固定ナット13A、13Bとから構成されている。
【0004】
このように構成されたスタック1に弾性的な加圧力を保持させる方法として以下の手段が採用されている。一つは絶縁スタッドボルト2に取付けた固定ナット13Bを締めて下部の加圧支持板9を固定した後、図示しないプレス機により所定の加圧力を上部の加圧支持板8に加える。この状態では絶縁スタッドボルト2には引張力は加わっていない。
【0005】
次に固定ナット13Aをプレス機で加圧した状態で締付け、プレス機の加圧を抜き、プレス機を取り去る。これによって絶縁スタッドボルト2には加圧力の反力としての引張力と伸びが生じる。その為、絶縁スタッドボルト2の伸び分を見込んで所定の押圧力を加える。もう一つの方法は、絶縁スタッドボルト2の固定ナット13Aを規定の締付けトルクで直接加圧するものである。
【0006】
【発明が解決しようとする課題】
電力変換装置に用いられているGTOやIGBTやサイリスタ等の平型半導体素子は、冷却のためのヒートシンクや通電のための導体と共に積層され数十kNという高荷重で加圧して使用する。近年、特に設置場所、スペースの制限から装置のコンパクト化が要求されているが、装置の大容量化は部品の大型化ばかりでなく部品間の絶縁距離確保の点からコンパクト化と相反する要因となっている。
【0007】
従来、半導体素子用スタックの圧接力を長期間保持するため絶縁スタッドボルトが使用されている。この絶縁スタッドボルト材料は一般的にガラス繊維強化プラスチック(FRP)が多く用いられている。この材料はガラス繊維に樹脂を含浸し棒状にしたものや引き抜きによって製造され、ガラス繊維方向の強度は金属より高いものが多い。
【0008】
しかし構造部材として使用するために、ねじや穴加工を施すとガラス繊維を切断することになり強度が低下するという特性がある。このように絶縁スタッドボルトとして使用する場合には、他の部品との結合が不可欠である為、その結合や接続構造の最適化が要求されるようになってきている。
【0009】
本発明は、上記点に鑑みてなされたもので、圧接力を長期間に亘り保持することができる絶縁スタッドボルトを用いた平型半導体素子用スタックを提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成する為に発明における平型半導体素子用スタック、複数個の平型半導体素子と複数個のヒートシンクとを交互に積層して構成された積層体と、前記積層体の少なくとも一端に加圧のために設けられた弾性体と、前記積層体及び前記弾性体を間に対向配置された加圧支持板と、対向配置された前記加圧支持板にそれぞれ嵌挿して設けられ、内面中間部に雌ねじ部を有する円筒に形成された接続金具と、前記接続金具の前記雌ねじ部とねじ結合する雄ねじ部が端部に形成され、前記接続金具間を連結する絶縁スタッドボルトとを備え、前記絶縁スタッドボルトの前記雄ねじ部前記接続金具の前記雌ねじ部とのねじ結合部の長さを引張荷重によるせん断応力に耐えられるようにねじ直径の1.5倍〜5倍の長さとしている。
【0011】
この構成により絶縁スタッドボルトのねじ部強度を高めることができる。
【0020】
【発明の実施の形態】
図1は、本発明の実施の形態を示す図である。図1において、平型半導体素子用スタック1は以下のように構成されている。即ち、複数個の平型半導体素子3とヒートシンク4とを交互に積層して構成した積層体Aの両側に夫々電気回路接続端子となる導体5を配置し、一方の導体5に上部加圧支持板8を当接する。
【0021】
他方の導体5には球面座6及び皿ばね7を介して下部加圧支持板9を当接し、両加圧支持板8、9を対向配置する。両加圧支持板8、9の夫々例えば4隅には貫通穴を設けてある。この貫通穴に詳細を図2に示す接続金具10を夫々嵌挿する。尚、両加圧支持板8、9の対向する2箇所に貫通穴を設けるものであっても良い。
【0022】
接続金具10は、一端に加圧支持板に当接係合する段付き部10Aを有する円筒状に形成されている。そして円筒部10Bの中間部にはねじ部10Cを形成してある。このように上、下の加圧支持板8、9に夫々嵌挿した接続金具10間に両端にねじ部を形成した絶縁スタッドボルト2のねじ部を接続金具10のねじ部10Cにねじ込み締付けることにより、上、下の加圧支持板8、9間に配置された積層体A、球面座6、及び皿ばね7を充分な圧接力をもって締付けることができる。
【0023】
ここで絶縁スタッドボルト2の接続金具10にねじ込む長さを、ねじの直径の1.5倍から5倍の長さとしてある。この実施の形態によれば、素子圧接力がそのまま絶縁スタッドボルト2のねじ山にせん断応力として作用する。そのせん断応力に耐えるようにするため、ねじ込むねじ山の数を多くする。
【0024】
つまりねじ込む長さを長くすることが必要である。絶縁スタッドボルト2の場合、ねじ部のせん断強度とねじ込む長さの間には図3に示すような関係があり、ねじ込む長さがねじ直径の1.5倍でねじ部に生じるせん断応力=許容応力となり、ねじがせん断しなくなり、1.5倍以上であれば十分な強度となる。
【0025】
このように絶縁スタッドボルト2を接続金具10にねじ込む長さをねじ直径の1.5倍以上に設定すれば、ねじ部がせん断しないことがわかる。そして5倍以上ではほぼ一定の値となるため1.5〜5倍の間でねじ部の長さを設定すれば数十kNの圧接力によっても十分な強度を有した絶縁スタッドボルト2のねじ接合が可能となる。
【0026】
絶縁スタッドボルト2と接続金具10の連結部分において、絶縁スタッドボルト2の先端ねじ部につながる接続金具10の円筒部10B内に位置する部分の外径を、円筒部10Bの内径と略同径となるように機械加工し、両者を嵌め合い関係にすることで、絶縁スタッドボルト2のねじ部に生じる曲げ方向の動きを前記嵌め合い部分で拘束することができる。
【0027】
このように構成すれば、最大曲げ応力部分が接続金具10端部となり、ねじ部には曲げ応力が生じにくくなるので、絶縁スタッドボルト2のねじ部の強度が向上する。
【0028】
上記実施の形態による平型半導体素子用スタック1によれば、全ての部品が絶縁スタッドボルト2と接続金具10のみのねじ結合で組み立てられており、それ以外の部品は接触或いは嵌合した状態で構成されている。即ち、接続金具10は加圧支持板8、9を貫挿させるだけ、絶縁スタッドボルト2端部を接続金具10にねじ込んだ個所以外には締付けて固定しているところがないため、スタック軸心の多少の芯ずれをこの接触部の微妙な動きで吸収することができ、また分解、組立が容易となる利点がある。
【0029】
更に、圧接力を接続金具10の段付き部10Aで支持する構造とすることで、絶縁スタッドボルト2に引張荷重が生じると接続金具10の段付き部10A以外の部分も引張られて伸びるため絶縁スタッドボルト2のねじ山に生じるせん断応力が緩和できる。
【0030】
また図2に示した接続金具10において、ねじ部10Cは接続金具10の中間部(図においては中央部)のみで、両端はめねじ加工を施さない円筒のままの円筒部10Bとしている。この円筒部10Bの特に段付き部10A側の円筒部の内径を、ねじ部10Cのめねじの谷の径(おねじの外径)以上の直径とすることによって、段付き部10A側の円筒部10Bは引張り荷重をこの円筒部10Bで支持する。
【0031】
従って外径を圧接荷重に合わせ選定することで、この部分の弾性伸びにより絶縁スタッドボルト2のねじ山に生じるせん断応力を緩和できる。
【0032】
図4、図5は、本発明の他の実施の形態を示す図である。図においては、先に説明した実施の形態と同一部分には同一符号を記し、その説明は省略する。平型半導体素子用スタック1の上部加圧支持板8の上に、ボルト11A、11B、11Cの3本を貫通して取付けたボルト加圧支持板80を配置させる。これ等ボルト11は、ボルト11Bがスタック1の中心に位置するように配置され、その両側に等間隔でボルト11A、11Cが配置されている。
【0033】
接続金具10は、ボルト加圧支持板80と上部加圧支持板8を貫挿して取り付けてあり、この接続金具10に絶縁スタッドボルト2にねじ込み、平型半導体素子用スタック1を構成している。
【0034】
このような実施の形態によれば、ボルト加圧支持板80にねじ込まれているボルト11A、11B、11Cを交互にねじ込むことでスタック1の圧接を行なうことができる。3本のボルト11のうち2本例えば11A、11Cをねじ込むと必ず1本即ちボルト11Aが緩くなるので、次にそのボルト11Aをねじ込むと他の1本が緩む。これを繰返すことで平型半導体素子3とヒートシンク4を圧接することができる。
【0035】
このような圧接機構を備えた構造にすることで、3本のボルト11A、11B、11Cをねじ込むことによりその反力でスタック1は圧接されるため、絶縁スタッドボルト2にねじりや曲げを生じさせることなく圧接ができるようになる。
以下に、本出願の当初の明細書の[課題を解決するための手段]に記載された内容を付記する。
上記目的を達成する為に第1の発明における平型半導体素子用スタックによれば、複数個の平型半導体素子とヒートシンクとを交互に積層して構成した積層体をこの積層体の少なくとも一端に加圧のために設けた弾性体を介して対向配置した加圧支持板間に配置し、この加圧支持板間を、加圧支持板に支持され且つ嵌挿して設けられた接続金具およびこの接続金具間を接続する絶縁スタッドボルトにより連結し、前記接続金具は内面中間部にねじ部を有する筒状に形成され、この接続金具のねじ部に前記絶縁スタッドボルトの端部に形成したねじ部をねじ結合して成り、前記絶縁スタッドボルトと接続金具とのねじ結合部の長さをねじ直径の1.5倍〜5倍の長さとしたことを特徴とする。
この構成により絶縁スタッドボルトのねじ部強度を高めることができる。
第2の発明における平型半導体素子用スタックによれば、筒状の接続金具の円筒部の内径を、絶縁スタッドボルトのねじ部につながる部分の外径と嵌め合い関係にあるようにしたことを特徴とする。
この構成により絶縁スタッドボルトのねじ部に曲げ方向の力などの無理な力が掛からないようにすることができる。
第3の発明における平型半導体素子用スタックによれば、絶縁スタッドボルトがねじ込まれる接続金具が加圧支持板を貫挿して配置され、接続金具端部を加圧支持板で支持することを特徴とする第1の発明として記載の平型半導体素子用スタック。
この構成により圧接力(絶縁スタッドボルトには引張力が生じる)が接続金具を介して加圧支持板に伝わり、接続金具も絶縁スタッドボルトと共に引張り弾性変形するため絶縁スタッドボルトのねじ部に生じる応力を緩和できる。
第4の発明における平型半導体素子用スタックによれば、絶縁スタッドボルトがねじ込まれる筒状の接続金具のねじ部は中間部のみとし、その両側はねじ加工を施さないねじの谷の径以上の円筒部としたことを特徴とする。
この構成により接続金具のねじ部を挟んで形成した両端部の円筒部は、一方では絶縁スタッドボルトの曲げ防止を、他方の円筒部では引張り荷重を受ける部分が金属部分の円筒のみとなるため、円筒の厚みを調整することで引張力による弾性伸びを利用し、絶縁スタッドボルトに無理な力が生じないようにすることができる。
第5の発明における平型半導体素子用スタックによれば、一方の加圧支持板に対向させてボルト加圧支持板を配置し、このボルト加圧支持板の中央に1本とその両側に等間隔に各1本のボルトをねじ込み、接続金具はボルト加圧支持板を貫挿して設けたことを特徴とする。
この構造により3本のボルトをねじ込むことにより、その反力で平型半導体素子用スタックが圧接されるため絶縁スタッドボルトにはねじりや曲げが生じない圧接ができるようになる。また圧接機構を備えた平型半導体素子用スタックとなる。
【0036】
【発明の効果】
以上説明したように本発明によれば、絶縁スタッドボルトとして例えばFRP製の絶縁棒をねじ結合によって平型半導体素子用スタックのフレームとして構成し、長期間に亘り使用することができる平型半導体素子用スタックを提供できる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を示す平型半導体素子用スタックの構成図。
【図2】平型半導体素子用スタックの絶縁スタッドボルトと結合する接続金具の形状を示す断面図
【図3】絶縁スタッドボルトねじ部の長さとせん断応力との関係を示す特性図。
【図4】本発明の第2の実施の形態を示す平型半導体素子用スタックの圧接機構部の平面図。
【図5】本発明の第2の実施の形態を示す平型半導体素子用スタックの構造を示す正面図。
【図6】従来の平型半導体素子用スタックの構成図。
【符号の説明】
1…スタック
3…平型半導体素子
5…導体
7…さらばね
8B…ボルト加圧支持板
11A,B,C…ボルト
2…絶縁スタッドボルト
4…ヒートシンク
6…球面座
8…上部加圧支持板
9…下部加圧支持板
10…接続金具
11…ボルト
80…ボルト加圧支持板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a stack for a flat semiconductor element in which a laminated body in which flat semiconductor elements and heat sinks are alternately stacked is applied with an elastic pressing force (pressing force). The present invention relates to a stack for a flat semiconductor device having an improved structure for applying force.
[0002]
[Prior art]
Semiconductor conversion devices tend to have larger capacities (higher voltages), and accordingly, a large number of flat semiconductor elements have been used. The semiconductor conversion device is composed of a plurality of flat semiconductor elements, a pressurizing mechanism portion that alternately stacks heat sinks for cooling the flat semiconductor elements and applies an elastic pressing force, an insulating stud bolt as a frame, and an applied force. A large number of flat semiconductor element stacks (hereinafter simply referred to as stacks) formed of pressure support plates and the like are used as circuit components of the semiconductor conversion device.
[0003]
Hereinafter, a conventional stack example used in a semiconductor conversion device will be described with reference to FIG. The stack 1 is formed by alternately laminating a plurality of flat semiconductor elements 3 and heat sinks 4 and further arranging conductors 5 serving as electric circuit connection terminals at both ends thereof and insulating spacers 12 on the outside thereof. . An insulating stud bolt 2 for connecting and tightening between the pressure support plates 8 and 9 for supporting the both ends of the spherical seat 6 also serving as a spring mounting seat and a disc spring 7 is disposed at one end of the laminate. , And fixing nuts 13A and 13B.
[0004]
The following means are employed as a method for holding the elastic pressure force on the stack 1 configured as described above. One is to fix the lower pressure support plate 9 by tightening the fixing nut 13B attached to the insulating stud bolt 2, and then apply a predetermined pressure to the upper pressure support plate 8 by a press machine (not shown). In this state, no tensile force is applied to the insulating stud bolt 2.
[0005]
Next, the fixing nut 13A is tightened in a state of being pressurized with a press machine, the press machine is released, and the press machine is removed. As a result, tensile force and elongation are generated in the insulating stud bolt 2 as reaction force of the applied pressure. Therefore, a predetermined pressing force is applied in anticipation of the extension of the insulating stud bolt 2. Another method is to directly pressurize the fixing nut 13A of the insulating stud bolt 2 with a prescribed tightening torque.
[0006]
[Problems to be solved by the invention]
A flat semiconductor element such as a GTO, IGBT, or thyristor used in a power conversion device is laminated with a heat sink for cooling and a conductor for energization, and is used under pressure with a high load of several tens kN. In recent years, there has been a demand for downsizing of the equipment, especially due to restrictions on installation location and space, but the increase in capacity of the equipment is not only an increase in the size of parts, but also a factor that conflicts with downsizing in terms of securing an insulation distance between parts. It has become.
[0007]
Conventionally, an insulating stud bolt has been used in order to maintain the pressure contact force of the semiconductor element stack for a long period of time. In general, glass fiber reinforced plastic (FRP) is often used as the insulating stud bolt material. This material is manufactured by impregnating a glass fiber with a resin into a rod shape or by drawing, and the strength in the glass fiber direction is often higher than that of a metal.
[0008]
However, in order to use it as a structural member, when a screw or hole is processed, the glass fiber is cut and the strength is lowered. Thus, when using as an insulation stud bolt, since it is indispensable to combine with other parts, optimization of the connection and connection structure has been required.
[0009]
The present invention has been made in view of the above points, and an object of the present invention is to provide a flat semiconductor element stack using an insulating stud bolt capable of maintaining a pressure contact force for a long period of time.
[0010]
[Means for Solving the Problems]
Flat type semiconductor device stack of the present invention to achieve the above object, a laminate constructed by laminating a plurality of flat type semiconductor device and a plurality of heat sinks alternately, at least one end of the laminate An elastic body provided for pressurization, a pressure support plate disposed so as to face the laminated body and the elastic body, and a pressure support plate disposed so as to face each other . a fitting formed in a cylinder having a female thread portion on the inner surface intermediate portions, the female screw portion and a male screw portion that is screwed in the fitting is formed at an end portion, and an insulating stud bolt for connecting the said connection fitting the insulating stud bolt external thread portion and the fitting the female screw portion and 1.5 to 5 times the length of the thread diameter to withstand the shear stress due to the length of the tensile load of the screw connection Satoshi of the of Yes.
[0011]
With this configuration, the strength of the threaded portion of the insulating stud bolt can be increased.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a diagram showing an embodiment of the present invention. In FIG. 1, a stack 1 for a flat semiconductor element is configured as follows. That is, conductors 5 serving as electric circuit connection terminals are arranged on both sides of a laminate A constituted by alternately laminating a plurality of flat semiconductor elements 3 and heat sinks 4, and upper pressure support is supported on one conductor 5. The plate 8 is brought into contact.
[0021]
A lower pressure support plate 9 is brought into contact with the other conductor 5 via a spherical seat 6 and a disc spring 7, and both pressure support plates 8 and 9 are arranged to face each other. Each of the pressure support plates 8 and 9 is provided with through holes at, for example, four corners. The fittings 10 shown in detail in FIG. 2 are inserted into the through holes. In addition, you may provide a through-hole in two places where both the pressurization support plates 8 and 9 oppose.
[0022]
The connection fitting 10 is formed in a cylindrical shape having a stepped portion 10A that abuts and engages with the pressure support plate at one end. A screw portion 10C is formed in the middle portion of the cylindrical portion 10B. In this way, the threaded portion of the insulating stud bolt 2 having the threaded portion formed between the connecting metal fittings 10 fitted and inserted into the upper and lower pressure support plates 8 and 9 is screwed into the threaded part 10C of the connecting metal fitting 10 and tightened. Thus, the laminate A, the spherical seat 6 and the disc spring 7 arranged between the upper and lower pressure support plates 8 and 9 can be tightened with a sufficient pressure contact force.
[0023]
Here, the length of the insulating stud bolt 2 screwed into the connection fitting 10 is 1.5 to 5 times the screw diameter. According to this embodiment, the element pressure contact force acts on the thread of the insulating stud bolt 2 as a shear stress as it is. In order to withstand the shear stress, the number of screw threads to be screwed in is increased.
[0024]
In other words, it is necessary to increase the screwing length. In the case of the insulation stud bolt 2, there is a relationship as shown in FIG. 3 between the shear strength of the screw portion and the screwing length, and the shearing stress generated in the screw portion when the screwing length is 1.5 times the screw diameter = allowable. It becomes stress and the screw is not sheared, and if it is 1.5 times or more, sufficient strength is obtained.
[0025]
In this way, it can be seen that if the length of screwing the insulating stud bolt 2 into the connection fitting 10 is set to 1.5 times or more of the screw diameter, the thread portion does not shear. And since it becomes a substantially constant value at 5 times or more, if the length of the thread portion is set between 1.5 and 5 times, the screw of the insulating stud bolt 2 having sufficient strength even with a pressure contact force of several tens of kN Joining is possible.
[0026]
The outer diameter of the portion located in the cylindrical portion 10B of the connection fitting 10 connected to the tip thread portion of the insulation stud bolt 2 in the connecting portion of the insulation stud bolt 2 and the connection fitting 10 is substantially the same as the inner diameter of the cylindrical portion 10B. By performing machining so that the two fit together, the movement in the bending direction generated in the threaded portion of the insulating stud bolt 2 can be restrained by the fitting portion.
[0027]
If comprised in this way, since the largest bending stress part will become the connection metal fitting 10 end part, and it becomes difficult to produce bending stress in a thread part, the intensity | strength of the thread part of the insulation stud bolt 2 improves.
[0028]
According to the flat semiconductor element stack 1 according to the above-described embodiment, all the parts are assembled by the screw connection of only the insulating stud bolt 2 and the connection fitting 10, and the other parts are in contact or fitted. It is configured. That is, since the connection fitting 10 has only the pressure support plates 8 and 9 inserted therethrough, there is no place where the end portion of the insulating stud bolt 2 is tightened and fixed except for the portion screwed into the connection fitting 10. A slight misalignment can be absorbed by the delicate movement of the contact portion, and there is an advantage that disassembly and assembly are easy.
[0029]
Further, by adopting a structure in which the pressure contact force is supported by the stepped portion 10A of the connection fitting 10, when a tensile load is generated on the insulating stud bolt 2, the portion other than the stepped portion 10A of the connection fitting 10 is also pulled and extended. The shear stress generated in the thread of the stud bolt 2 can be relaxed.
[0030]
Further, in the connection fitting 10 shown in FIG. 2, the screw portion 10C is only an intermediate portion (the center portion in the figure) of the connection fitting 10 and is a cylindrical portion 10B that is not subjected to female threading at both ends. By setting the inner diameter of the cylindrical portion of this cylindrical portion 10B, particularly on the stepped portion 10A side, to be equal to or larger than the diameter of the valley of the female screw of the screw portion 10C (the outer diameter of the external thread), the cylindrical portion on the stepped portion 10A side The part 10B supports the tensile load with the cylindrical part 10B.
[0031]
Therefore, by selecting the outer diameter according to the pressure contact load, the shear stress generated in the thread of the insulating stud bolt 2 due to the elastic elongation of this portion can be relaxed.
[0032]
4 and 5 are diagrams showing another embodiment of the present invention. In the figure, the same parts as those of the above-described embodiment are denoted by the same reference numerals, and the description thereof is omitted. On the upper pressure support plate 8 of the flat type semiconductor element stack 1, a bolt pressure support plate 80, which is attached through three bolts 11A, 11B, and 11C, is disposed. These bolts 11 are arranged so that the bolt 11B is positioned at the center of the stack 1, and bolts 11A and 11C are arranged at equal intervals on both sides thereof.
[0033]
The connecting metal fitting 10 has a bolt pressurizing support plate 80 and an upper pressurizing support plate 8 inserted therethrough and is screwed into the insulating stud bolt 2 to constitute the flat semiconductor element stack 1. .
[0034]
According to such an embodiment, the stack 1 can be pressed by alternately screwing the bolts 11 </ b> A, 11 </ b> B, and 11 </ b> C screwed into the bolt pressurizing support plate 80. When two of the three bolts 11, for example 11A and 11C, are screwed in, one bolt 11A is always loosened. When the bolt 11A is next screwed in, the other one is loosened. By repeating this, the flat semiconductor element 3 and the heat sink 4 can be pressed.
[0035]
By adopting a structure having such a pressure contact mechanism, the stack 1 is pressed by the reaction force by screwing the three bolts 11A, 11B, and 11C, so that the insulation stud bolt 2 is twisted or bent. It becomes possible to press-contact without.
The contents described in [Means for Solving the Problems] in the original specification of the present application will be added below.
In order to achieve the above object, according to the flat semiconductor element stack of the first invention, a laminated body constituted by alternately laminating a plurality of flat semiconductor elements and a heat sink is provided at at least one end of the laminated body. Between the pressure support plates arranged opposite to each other via an elastic body provided for pressurization, and between the pressure support plates, a connection fitting provided by being inserted into and supported by the pressure support plate, and this The connecting metal fittings are connected to each other by insulating stud bolts, and the connecting metal fittings are formed in a cylindrical shape having a threaded portion at the inner surface intermediate portion, and the threaded portion formed at the end of the insulating stud bolt at the threaded portion of the connecting metal fitting. And the length of the screw coupling portion between the insulating stud bolt and the connection fitting is 1.5 to 5 times the screw diameter.
With this configuration, the strength of the threaded portion of the insulating stud bolt can be increased.
According to the flat semiconductor element stack in the second invention, the inner diameter of the cylindrical portion of the cylindrical connection fitting is fitted with the outer diameter of the portion connected to the threaded portion of the insulating stud bolt. Features.
With this configuration, it is possible to prevent an excessive force such as a force in the bending direction from being applied to the threaded portion of the insulating stud bolt.
According to the flat semiconductor element stack of the third invention, the connection fitting into which the insulating stud bolt is screwed is disposed through the pressure support plate, and the end of the connection fitting is supported by the pressure support plate. A stack for a flat semiconductor device according to the first invention.
With this configuration, the pressure contact force (a tensile force is generated in the insulation stud bolt) is transmitted to the pressure support plate via the connection fitting, and the connection fitting is also elastically deformed together with the insulation stud bolt, so the stress generated in the thread portion of the insulation stud bolt. Can be relaxed.
According to the flat semiconductor element stack of the fourth invention, the threaded portion of the cylindrical connection fitting into which the insulating stud bolt is screwed is only the middle portion, and both sides thereof are equal to or larger than the diameter of the thread valley where the screw machining is not performed. It is characterized by a cylindrical part.
With this configuration, the cylindrical parts at both ends formed across the threaded part of the connection metal fitting, on the one hand, prevents bending of the insulation stud bolt, and the other cylindrical part receives the tensile load only from the metal part cylinder, By adjusting the thickness of the cylinder, it is possible to make use of the elastic elongation due to the tensile force so that an excessive force is not generated on the insulating stud bolt.
According to the flat semiconductor element stack of the fifth aspect of the invention, the bolt pressure support plate is disposed so as to face one pressure support plate, one at the center of the bolt pressure support plate, and the like on both sides thereof. One bolt is screwed into each interval, and the connection fitting is provided by inserting a bolt pressing support plate.
By screwing three bolts by this structure, the flat semiconductor element stack is pressed by the reaction force, so that the insulating stud bolt can be pressed without twisting or bending. In addition, a stack for a flat semiconductor element having a pressure contact mechanism is provided.
[0036]
【The invention's effect】
As described above, according to the present invention, an insulating rod made of, for example, FRP is used as an insulating stud bolt as a frame of a flat semiconductor element stack by screw connection, and can be used for a long period of time. A stack can be provided.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a stack for a flat semiconductor device showing a first embodiment of the present invention.
FIG. 2 is a cross-sectional view showing the shape of a connection fitting coupled to an insulating stud bolt of a flat semiconductor element stack. FIG. 3 is a characteristic diagram showing the relationship between the length of an insulating stud bolt thread portion and shear stress.
FIG. 4 is a plan view of a press-contact mechanism portion of a flat semiconductor element stack showing a second embodiment of the present invention.
FIG. 5 is a front view showing a structure of a stack for a flat semiconductor element according to a second embodiment of the present invention.
FIG. 6 is a configuration diagram of a conventional flat semiconductor element stack.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Stack 3 ... Flat semiconductor element 5 ... Conductor 7 ... Belleville spring 8B ... Bolt pressurization support plate 11A, B, C ... Bolt 2 ... Insulation stud bolt 4 ... Heat sink 6 ... Spherical seat 8 ... Upper pressurization support plate 9 ... Lower pressure support plate 10 ... Connection fitting 11 ... Bolt 80 ... Bolt pressure support plate

Claims (7)

複数個の平型半導体素子と複数個のヒートシンクとを交互に積層して構成された積層体と、
前記積層体の少なくとも一端に加圧のために設けられた弾性体と、
前記積層体及び前記弾性体を間に対向配置された加圧支持板と、
対向配置された前記加圧支持板にそれぞれ嵌挿して設けられ、内面中間部に雌ねじ部を有する円筒に形成された接続金具と、
前記接続金具の前記雌ねじ部とねじ結合する雄ねじ部が端部に形成され、前記接続金具間を連結する絶縁スタッドボルトとを備え、
前記絶縁スタッドボルトの前記雄ねじ部前記接続金具の前記雌ねじ部とのねじ結合部の長さを引張荷重によるせん断応力に耐えられるようにねじ直径の1.5倍〜5倍の長さとしたこと
を特徴とする平型半導体素子用スタック。
A laminate formed by alternately laminating a plurality of flat semiconductor elements and a plurality of heat sinks ;
An elastic body provided for pressing the at least one end of the laminate,
A pressure support plate disposed so as to face the laminated body and the elastic body ;
A fitting provided in a cylinder having a female threaded portion at the inner surface intermediate portion, which is provided by being fitted and inserted into each of the pressure support plates disposed opposite to each other ,
A male screw portion that is screw-coupled with the female screw portion of the connection fitting is formed at an end , and includes an insulating stud bolt that connects between the connection fittings ,
It was the male screw portion and the 1.5 to 5 times the length of the thread diameter to withstand the shear stress due to tensile load length of the screw connection between the internal thread portion of the fitting of the insulating stud bolts A stack for flat semiconductor devices.
前記接続金具は、円筒部の内径を前記絶縁スタッドボルトの前記雄ねじ部につながる部分の外径と嵌め合い関係にあるようにしたこと
を特徴とする請求項1に記載の平型半導体素子用スタック。
The connection fitting, spur type semiconductor device according to claim 1, characterized in the inner diameter of the cylindrical portion that as in the fitting to the outer diameter of the portion leading to the male threaded portion relations of the insulating stud bolts stack.
前記接続金具は、前記雌ねじ部の両側を前記雌ねじ部の谷の径以上の円筒部としたことを特徴とする請求項1又は請求項2に記載の平型半導体素子用スタック。3. The stack for a flat semiconductor element according to claim 1 , wherein the connection fitting is a cylindrical portion having a diameter equal to or greater than a diameter of a valley of the female screw portion on both sides of the female screw portion . 前記接続金具は、一端に前記加圧支持板で支持される段付き部を有すること
を特徴とする請求項1から請求項3のいずれか1項に記載の平型半導体素子用スタック。
4. The stack for a flat semiconductor element according to claim 1 , wherein the connection fitting has a stepped portion supported at one end by the pressure support plate . 5.
一方の加圧支持板に対向させて配置され、前記接続金具が嵌挿されたボルト加圧支持板と、
前記積層体を圧接するために1本の両側に各1本が前記ボルト加圧支持板に貫挿して設けられた3本のボルトと
を備えたことを特徴とする請求項1から請求項3のいずれか1項に記載の平型半導体素子用スタック。
A bolt pressure support plate that is disposed opposite to one pressure support plate and into which the connection fitting is inserted ;
In order to press-contact the laminated body, three bolts, one on each side of which is inserted through the bolt pressure support plate,
The stack for a flat semiconductor device according to claim 1, wherein the stack for a flat semiconductor device is provided.
前記接続金具は、前記ボルト加圧支持板に嵌挿して設けられ、一端に前記ボルト加圧支持板で支持される段付き部を有することThe connection fitting is provided by being inserted into the bolt pressure support plate, and has a stepped portion supported at the one end by the bolt pressure support plate.
を特徴とする請求項5に記載の平型半導体素子用スタック。The stack for a flat semiconductor device according to claim 5.
前記絶縁スタッドボルトは、ガラス繊維強化プラスチックであることThe insulating stud bolt is made of glass fiber reinforced plastic
を特徴とする請求項1から請求項6のいずれか1項に記載の平型半導体素子用スタック。The flat semiconductor element stack according to claim 1, wherein the stack is a flat semiconductor element stack.
JP2001280911A 2001-09-17 2001-09-17 Stack for flat semiconductor devices Expired - Lifetime JP4546008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001280911A JP4546008B2 (en) 2001-09-17 2001-09-17 Stack for flat semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001280911A JP4546008B2 (en) 2001-09-17 2001-09-17 Stack for flat semiconductor devices

Publications (2)

Publication Number Publication Date
JP2003086765A JP2003086765A (en) 2003-03-20
JP4546008B2 true JP4546008B2 (en) 2010-09-15

Family

ID=19104826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001280911A Expired - Lifetime JP4546008B2 (en) 2001-09-17 2001-09-17 Stack for flat semiconductor devices

Country Status (1)

Country Link
JP (1) JP4546008B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5243353B2 (en) * 2009-06-18 2013-07-24 本田技研工業株式会社 Power converter
CN105489570B (en) * 2016-01-19 2019-02-19 中国船舶重工集团公司第七0四研究所 A kind of large power semiconductor device press-loading apparatus
CN113675154A (en) 2020-05-13 2021-11-19 华为技术有限公司 Chip module and electronic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877063U (en) * 1981-11-17 1983-05-24 株式会社東芝 Maintenance tools for semiconductor equipment
JP2001196535A (en) * 2000-01-11 2001-07-19 Toshiba Corp Stack for flat semiconductor element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877063U (en) * 1981-11-17 1983-05-24 株式会社東芝 Maintenance tools for semiconductor equipment
JP2001196535A (en) * 2000-01-11 2001-07-19 Toshiba Corp Stack for flat semiconductor element

Also Published As

Publication number Publication date
JP2003086765A (en) 2003-03-20

Similar Documents

Publication Publication Date Title
US7497652B2 (en) Plastic fastening device
JP6898162B2 (en) Fixed structure of electronic components
JP4546008B2 (en) Stack for flat semiconductor devices
JP4620910B2 (en) Stack for flat semiconductor devices
US6420655B1 (en) Structure of bus bar assembly for power supply
JP3410011B2 (en) Stack for flat type semiconductor device
KR101099897B1 (en) Lightning arrestor
JP2010027671A (en) Lightning arrester, and method of manufacturing the same
US20230343675A1 (en) Apparatus and Method for Holding a Heat Generating Device
CA2989967A1 (en) Power converter sub-module
US3249374A (en) Apparatus for coupling together two bundles of stressing wires for stressing concrete
JP2003168778A (en) Stack for flat semiconductor element
JP3768731B2 (en) Semiconductor stack
JP2007281353A (en) Arrester
DE102005026233B4 (en) Electric power module
JPH11284125A (en) Stack device for flat semiconductor elements
KR20000005887A (en) Semiconductor clamping device
JP3135432B2 (en) Stack for flat semiconductor device using insulating band
CN110098152B (en) Pressure layering series connection anchor clamps
CN210105031U (en) Replaceable shear wall foot support based on shape memory alloy
CN111585254A (en) Direct current breaker shifts branch road unit based on IEGT
JP3004548B2 (en) Semiconductor stack
JP2008016601A (en) Semiconductor element stack
CN212486117U (en) Direct current breaker shifts branch road unit based on IEGT
CN220210227U (en) Crimping module and power module

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040326

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4546008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term