JP2544788B2 - Deodorant synthetic fiber - Google Patents

Deodorant synthetic fiber

Info

Publication number
JP2544788B2
JP2544788B2 JP63245315A JP24531588A JP2544788B2 JP 2544788 B2 JP2544788 B2 JP 2544788B2 JP 63245315 A JP63245315 A JP 63245315A JP 24531588 A JP24531588 A JP 24531588A JP 2544788 B2 JP2544788 B2 JP 2544788B2
Authority
JP
Japan
Prior art keywords
fiber
performance
deodorizing
deodorant
inorganic fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63245315A
Other languages
Japanese (ja)
Other versions
JPH0291209A (en
Inventor
正夫 河本
和彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP63245315A priority Critical patent/JP2544788B2/en
Publication of JPH0291209A publication Critical patent/JPH0291209A/en
Application granted granted Critical
Publication of JP2544788B2 publication Critical patent/JP2544788B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、おしめ、カーペット、カーテン、病院用シ
ーツ、その他、悪臭を嫌う用途に使用するのに適した優
れた消臭性能を有する合成繊維に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a synthetic fiber having an excellent deodorizing property suitable for use in diapers, carpets, curtains, hospital sheets, and other applications where bad odor is disliked. It is about.

更に詳しくは、世の中の4大悪臭と言われる肉類等の
腐敗臭の主成分であるアンモニア、魚類等の腐敗臭の主
成分であるトリメチルアミン等の塩基性ガスに対して
も、また野菜等の腐敗臭の主成分であるメチルメルカプ
タン、卵や牛乳等の腐敗臭の主成分である硫化水素等の
酸性ガスに対しても効果を発揮する広範囲の悪臭成分に
対して優れた消臭性能を有する繊維に関する。
More specifically, ammonia is the main component of the rotting odor of meat, which is said to be one of the four major odors in the world, and basic gases such as trimethylamine, which is the main component of the rotting odor of fish, and the rotting of vegetables. A fiber that has excellent deodorizing performance against a wide range of malodorous components that are effective against acidic gases such as methyl mercaptan, which is the main component of odor, and hydrogen sulfide, which is the main component of rotten odor such as eggs and milk. Regarding

(従来の技術) 合成繊維の中でポリエステル繊維、ポリアミド繊維等
は、その優れた寸法安定性、耐薬品性、強度、耐久性な
どの点から、衣料素材として不可欠のものとなつてい
る。しかしながら、使用用途によっては更に特殊機能の
付与が望まれていた。例えば、病院用シーツ、おしめ、
カーペツト等悪臭を嫌う用途では、できるだけ原因とな
る悪臭を軽減させる性能を保持している繊維製品が望ま
れていた。従来のものとしては、天然の針、広葉樹から
の抽出物あるいは緑茶からの抽出物などを後加工法など
により繊維製品表面に付着させたものなどが大部分であ
るが、耐久性が不十分である欠点があつた。特に、繰返
し洗濯などを実施した場合、あるいは繊維製品を染色処
理した場合などに消臭性能が極端に低下してしまう問題
点が発生した。
(Prior Art) Among synthetic fibers, polyester fibers, polyamide fibers and the like are indispensable as clothing materials in view of their excellent dimensional stability, chemical resistance, strength and durability. However, it has been desired to add a special function depending on the intended use. For example, hospital sheets, diapers,
In applications such as carpets that dislike bad odors, there has been a demand for a fiber product that retains the ability to reduce the bad odor that causes the odor as much as possible. Most of the conventional ones are natural needles, extracts from broad-leaved trees, extracts from green tea, etc. that are attached to the surface of textile products by post-processing methods, etc., but their durability is insufficient. There was a certain drawback. In particular, there has been a problem that the deodorant performance is extremely deteriorated when the laundry is repeatedly washed or the textile product is dyed.

また耐久性を向上させる目的で樹脂中に練込む消臭剤
タイプとしては鉄の二価イオン化合物とL−アスコルビ
ン酸を配合させたもの等があるが、ポリエステル中へ配
向させるためには耐熱性が不十分であつたり、あるいは
繊維製品となつた時に悪臭物質を脱臭した後に変色して
しまい繊維素材としては特定の用途にしか使用できない
などの問題点があつた。
As a deodorant type to be kneaded into a resin for the purpose of improving durability, there is a compound containing a divalent iron ion compound and L-ascorbic acid, but heat resistance is required for orientation in polyester. However, there is a problem in that it is insufficient, or when it is made into a textile product, it discolors after deodorizing a malodorous substance and can be used only for a specific purpose as a textile material.

このような状況から本発明者らは、この問題の解決の
ため鋭意検討した結果本発明に至つたものである。
Under these circumstances, the inventors of the present invention have made extensive studies to solve this problem, and have reached the present invention.

(発明が解決しようとしている問題点) 即ち本発明の課題は、消臭剤を繊維の表面に付着させ
る従来の後加工法等の前記欠点を根本的に解決するため
に、消臭剤を繊維内部へ含有させた繊維とする場合に、
洗濯耐久性などの耐久性があり、なおかつ広範囲な悪臭
成分の消臭に効果を発揮し、繊維製品の変色等の欠点を
生じない実効のある繊維とするためには、いかなる物を
用い、いかなる構成、条件としたらよいのかという点に
あり、本発明はこの点を究明したものである。
(Problems to be Solved by the Invention) That is, an object of the present invention is to add a deodorant to a fiber in order to fundamentally solve the above-mentioned drawbacks such as the conventional post-processing method of attaching the deodorant to the surface of the fiber. When making the fiber contained inside,
In order to make the fiber durable enough to be washed, etc., and effective in deodorizing a wide range of malodorous components, and not causing defects such as discoloration of textile products, what kind of material should be used? The present invention has clarified this point in terms of the structure and conditions.

(問題点を解決するための手段) 本発明の合成繊維は、ポリエステル及び/又はポリア
ミドの如き融点が150℃以上の熱可塑性ポリマー中に、
平均粒子径が5ミクロン以下の優れた消臭性能を有する
無機微粉末を0.1〜10重量%含有せしめたことを特徴と
する消臭性能を有する繊維である。
(Means for Solving Problems) The synthetic fiber of the present invention comprises a thermoplastic polymer having a melting point of 150 ° C. or higher, such as polyester and / or polyamide,
It is a fiber having deodorant performance, characterized by containing 0.1 to 10% by weight of an inorganic fine powder having an excellent deodorant performance having an average particle diameter of 5 microns or less.

以下、本発明の繊維及びその製造法を詳細に説明す
る。
Hereinafter, the fiber of the present invention and the method for producing the same will be described in detail.

本発明に用いる無機微粒子は、平均粒子径が5ミクロ
ン以下であることが好ましい。粒径が5ミクロンを超え
ると溶融紡糸時にフイルター詰りや毛羽断糸を起こし易
く使用困難である。特に各種衣料素材、寝装製品等への
応用を考えた場合は、単繊維デニールが1デニール前後
の細デニール糸も必要とされ、粒径が大きくなると延伸
時の糸切れが激しくなり好ましくない。従つて本発明に
用いる無機微粒子は平均粒径5ミクロン以下のものが、
更に好ましくは1ミクロン以下のものが望ましい。
The inorganic fine particles used in the present invention preferably have an average particle diameter of 5 microns or less. If the particle size exceeds 5 μm, clogging of the filter and fluff breakage are likely to occur during melt spinning, making it difficult to use. In particular, when considering application to various clothing materials, bedding products, etc., fine denier yarn having a monofilament denier of about 1 denier is required, and if the particle size is large, yarn breakage during drawing becomes severe, which is not preferable. Therefore, the inorganic fine particles used in the present invention should have an average particle size of 5 microns or less.
It is more preferable that the diameter is 1 micron or less.

本発明に用いる無機微粒子は、酸化亜鉛と二酸化ケイ
素の比率が重量比で1:5〜5:1の範囲からなる、大部分が
アモルフアスな構造を有している、ケイ酸亜鉛の実質的
に無定形微粒子が好ましい。酸化亜鉛のと二酸化ケイ素
の比率は好ましくは1:4〜4:1の範囲、更に好ましくは1:
3〜3:1の範囲が好ましい。
Inorganic fine particles used in the present invention, the ratio of zinc oxide and silicon dioxide in the range of 1: 5 to 5: 1 by weight ratio, has a mostly amorphous structure, substantially zinc silicate Amorphous fine particles are preferred. The ratio of zinc oxide and silicon dioxide is preferably in the range of 1: 4 to 4: 1, more preferably 1: 4.
A range of 3 to 3: 1 is preferred.

ケイ酸亜鉛は天然に多量に産出されるが、ほとんどの
ものは結晶構造を有している。おどろくべきことにこの
結晶構造を有している場合には、消臭性能がほとんど発
揮されない。しかるに実質的にアルモフアスな無定形構
造になることにより初めて優れた消臭性能が発現し、な
おかつ、熱可塑性樹脂の中に含有分散されても十分な消
臭性能が維持されることが見い出された。しかも、アン
モニア、トリメチルアミン類の塩基性ガスに対しても、
また硫化水素、メチルメルカプタン等の酸性ガスに対し
ても良好な消臭効果が発現されることがわかつた。
Zinc silicate is naturally produced in large amounts, but most have a crystalline structure. Surprisingly, when it has this crystal structure, almost no deodorant performance is exhibited. However, it has been found that excellent deodorizing performance is exhibited only by having a substantially amorphous amorphous structure, and that sufficient deodorizing performance is maintained even when contained and dispersed in the thermoplastic resin. . Moreover, even for basic gases such as ammonia and trimethylamines,
It has also been found that a good deodorizing effect is exhibited even with respect to acidic gases such as hydrogen sulfide and methyl mercaptan.

ここで述べている、実質的にアモルフアスな無定形構
造とは、X線回析分折で、結晶ピークが実質的にほとん
ど出てこない状態を言い、このような無機構造にせしめ
ることにより、初めて、優れた消臭性能が発現されたわ
けである。
The substantially amorphous amorphous structure described here means a state in which substantially no crystal peak appears by X-ray diffraction analysis. That is, excellent deodorizing performance was exhibited.

また、本発明の無機微粒子が消臭性能を有するメカニ
ズムについては現時点では不明でるが、ケイ酸亜鉛中の
酸化亜鉛による、塩基性ガス、酸性ガスの両性に対して
ある種の錯体形成反応が生じて消臭効果を発揮せしめる
と同時に、無機微粒子のアモルフアス構造によるガスの
物理吸着効果も発揮され、総合的に相乗効果によるすぐ
れた消臭性能が発現してくると思われる。更に大きな特
徴は、熱可塑性ポリマー中に該無機粒子を含有分散せし
め、それをもちいて繊維化した繊維形態のものでも十分
な消臭性能が保持されていることが確認された。通常、
消臭剤を樹脂に内添すると、消臭性能が阻害され効果が
減少してくる傾向があり、特に硫化水素等の酸性ガスの
消臭性能が著しく低下してしまうのが一般的であつた
が、本発明の無機微粒子を内添した場合は消臭性能が低
下しないのが大きな特徴である。これについての理由に
ついてはまだ明らかではない。
Further, although the mechanism by which the inorganic fine particles of the present invention have a deodorant performance is not known at present, zinc oxide in zinc silicate causes a certain complex-forming reaction with respect to amphoteric basic gas and acidic gas. In addition to exerting the deodorizing effect, the physical adsorption effect of gas due to the amorphous structure of the inorganic fine particles is also exerted, and it is considered that the excellent deodorizing performance due to the synergistic effect is comprehensively expressed. It was further confirmed that, even when the inorganic particles are contained and dispersed in a thermoplastic polymer, and a fiber form obtained by using the inorganic particles is used, sufficient deodorizing performance is maintained. Normal,
When a deodorant is internally added to the resin, the deodorizing performance tends to be hindered and the effect tends to be reduced, and in particular, the deodorizing performance of acidic gas such as hydrogen sulfide is generally significantly reduced. However, when the inorganic fine particles of the present invention are internally added, the deodorizing performance is not deteriorated. The reason for this is not clear yet.

また本発明の無機微粒子を、例えばポリエチレンテレ
フタレートポリマーに練込み、繊維化したものを、後加
工工程で130℃の高温染色処理を経た後でも消臭性能が
全く低下せず保持されていることがわかつた。更に、該
繊維がアンモニア等のガスを脱臭した後、洗濯処理をす
ると、消臭性能を発揮する無機微粒子と脱臭されたガス
分子の錯体がこわれ、洗濯時に消臭ガス成分を洗い落と
してしまい該繊維としては、消臭性能が再び完全に近い
形で再生されることがわかり、洗濯操作を繰り返すこと
により消臭性能を保持した繊維として実質的に寿命のな
い半永久的に使用が可能となることがわかつた。
Further, the inorganic fine particles of the present invention are kneaded into, for example, polyethylene terephthalate polymer and made into a fiber, and the deodorant performance is maintained without being deteriorated even after being subjected to a high temperature dyeing treatment at 130 ° C. in a post-processing step. Wakatsuta. Furthermore, when the fiber is deodorized with a gas such as ammonia and then subjected to a washing treatment, the complex of the inorganic fine particles exhibiting the deodorizing performance and the deodorized gas molecule is broken, and the deodorizing gas component is washed off during the washing, and thus the fiber is removed. As a result, it was found that the deodorant performance was reproduced almost completely again, and by repeating the washing operation, it becomes possible to use it as a fiber that retains the deodorant performance, with virtually no life and semipermanently. Wakatsuta.

熱可塑性ポリマー中に添加する本発明無機微粒子の添
加量は0.1〜10重量%が好ましい。更に好ましくは0.5〜
10重量%が良い。添加量が0.1%より少なくなると、十
分な消臭性能を有した繊維とは言いがたくなる。添加量
が10%以上になると消臭性能としては十分であるが、繊
維化時の工程性が著しく悪くなり好ましくない。特に、
紡糸時にノズル孔周囲の汚れ発生による単糸切れ、断糸
が頻発してくるとともに、延伸性も著しく低下し毛羽、
断糸が多発してくる。更に、工程中での糸走行時の設備
の糸道摩耗が激しく発生してくることになり好ましくな
い。
The amount of the inorganic fine particles of the present invention added to the thermoplastic polymer is preferably 0.1 to 10% by weight. More preferably 0.5-
10% by weight is good. When the amount added is less than 0.1%, it is difficult to say that the fiber has sufficient deodorizing performance. When the addition amount is 10% or more, the deodorizing performance is sufficient, but the processability during fiberizing is significantly deteriorated, which is not preferable. In particular,
During spinning, single yarn breakage and yarn breakage frequently occur due to stains around the nozzle holes, and the drawability is also significantly reduced, resulting in fluff,
Thread breaks occur frequently. Furthermore, the yarn path wear of the equipment during running of the yarn during the process is severely generated, which is not preferable.

本発明の無機粒子は、ケイ酸亜鉛の実質的に無定形物
質であることに大きな特徴があり、該無機粒子を製造す
る方法は種々考えられが、例えば、酸化亜鉛粉末と二酸
化ケイ素粉末を所定量混合し、その後高温で焼成し、た
だちに急冷粉砕することによつても製造することができ
る。
The inorganic particles of the present invention are characterized by being a substantially amorphous substance of zinc silicate, and various methods for producing the inorganic particles are conceivable. For example, zinc oxide powder and silicon dioxide powder are used. It can also be manufactured by quantitatively mixing, then calcining at a high temperature, and then immediately rapidly pulverizing.

消臭性能の測定例を第1図に示す。アンモニアの場
合、アンモニアセンサー1(東亜電波(株)製AE−23
5)とイオンメーター3(東亜電波(株)製IM−IE)と
記録計4を接続し、容器5中のアンモニアガス濃度の経
時変化を読みとる。容器5中に500ppmとなるようにアン
モニアガスを注射器で所定量入れ、その後、測定試験2
をセットし、容器中のアンモニア濃度を2時間放置後、
測定する方法によつた。
An example of measurement of deodorant performance is shown in FIG. In the case of ammonia, ammonia sensor 1 (AE-23 manufactured by Toa Denpa Co., Ltd.)
5), an ion meter 3 (IM-IE manufactured by Toa Denpa Co., Ltd.) and a recorder 4 are connected, and the change with time of the ammonia gas concentration in the container 5 is read. A predetermined amount of ammonia gas was put into the container 5 with a syringe, and then the measurement test 2
Set, and after leaving the ammonia concentration in the container for 2 hours,
It depends on the method of measurement.

硫化水素の場合、所定容器に水硫化ナトリウミ、蒸留
水、濃塩酸を所定量加え一定量の硫化水素ガスを発生さ
せ、測定試料を容器中につるし、25℃に保存後フラスコ
内のヘッドスペースを北川式ガス検知管を用いて24時間
放置後測定した。
For hydrogen sulfide, add a certain amount of sodium hydrogen sulfide, distilled water, and concentrated hydrochloric acid to a specified container to generate a certain amount of hydrogen sulfide gas, hang the measurement sample in the container, and store it at 25 ° C. Measurements were made after leaving for 24 hours using a Kitagawa gas detector tube.

本発明の熱可塑性樹脂としては、融点は150℃以上の
繊維形成性に優れたポリマーが好ましい。特に好ましく
は、ポリエステル又はポリアミドが良い。
The thermoplastic resin of the present invention is preferably a polymer having a melting point of 150 ° C. or higher and having excellent fiber-forming properties. Polyester or polyamide is particularly preferable.

ポリエステルとは、ポリエチレンテレフタレート又は
ポリブチレンテレフタレートを主成分とするポリエステ
ルであり、テレフタール酸、イソフタール酸、ナフタリ
ン2,6ジカルボン酸、フタール酸、α,β−(4−カル
ボキシフエノキシ)エタン、4′,4′−ジカルボキシジ
フエニル、5−ナトリウムスルホイソフタル酸などの芳
香族ジカルボン酸もしくはアジピン酸、セバシン酸など
の脂肪族ジカルボン酸、またはこれらのエステル類と、
エチレングリコール、ジエチレングリコール、1,4−ブ
タンジオール、ネオペンチルグリコール、シクロヘキサ
ン−1,4−ジメタノール、ポリエチレングリコール、ポ
リテトラメチレングリコールなどのジオール化合物とか
ら合成される繊維形成性ポリエステルであり、その構成
単位の80モル%以上が、特には90モル%以上がポリエチ
レンテレフタレート単位又はポリブチレンテレフタレー
ト単位であるポリエステルが好ましく、なおかつ融点が
150℃以上であることが望ましい。融点が低くなると耐
熱性不十分等の理由により衣料用等の繊維素材としての
用途がやや限定されてくるため好ましくない。また、ポ
リエステル中には、小量の添加剤、たとえば、酸化チタ
ンなどの艶消し剤、酸化防止剤、蛍光増白剤、安定剤あ
るいは紫外線吸収剤などを含んでいても良い。
Polyester is a polyester containing polyethylene terephthalate or polybutylene terephthalate as a main component, and terephthalic acid, isophthalic acid, naphthalene 2,6 dicarboxylic acid, phthalic acid, α, β- (4-carboxyphenoxy) ethane, 4 Aromatic dicarboxylic acid such as ′, 4′-dicarboxydiphenyl, 5-sodium sulfoisophthalic acid or adipic acid, aliphatic dicarboxylic acid such as sebacic acid, or esters thereof,
A fiber-forming polyester synthesized from a diol compound such as ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol, cyclohexane-1,4-dimethanol, polyethylene glycol or polytetramethylene glycol. A polyester in which 80 mol% or more, particularly 90 mol% or more of the units are polyethylene terephthalate units or polybutylene terephthalate units is preferable, and the melting point is
It is preferably 150 ° C or higher. When the melting point is low, the use as a fiber material for clothing is somewhat limited due to insufficient heat resistance and the like, which is not preferable. Further, the polyester may contain a small amount of additives, for example, a matting agent such as titanium oxide, an antioxidant, an optical brightener, a stabilizer or an ultraviolet absorber.

またポリアミドとは、ナイロン6、ナイロン66、又は
メタキシレンジアミンナイロンを主成分とするポリアミ
ドであり、小量の第3成分を含む共重合ポリアミドでも
良いが、融点は150℃以上を維持することが好ましい。
Polyamide is a polyamide whose main component is nylon 6, nylon 66, or meta-xylenediamine nylon, and may be a copolyamide containing a small amount of a third component, but the melting point may be maintained at 150 ° C or higher. preferable.

本発明は長繊維でも短繊維でも同じ効果が期待できる
ことはい言うまでもない。
It goes without saying that the present invention can be expected to have the same effect with long fibers and short fibers.

本発明の繊維とは、織物、編物、不織布またはその加
工製品を構成する繊維をいうが、該繊維以外の繊維、例
えば、木綿、麻、羊毛などの天然繊維、一般のポリエス
テル、ナイロン、アクリルなどの合成繊維、およびアセ
テート、レーヨンのどの半合成繊維などの混織、混紡、
交編織したものであつても良い。この場合、本発明の繊
維の含有比率は消臭効果の点で30%以上が好ましく、よ
り好ましくは50%以上である。
The fiber of the present invention refers to a fiber constituting a woven fabric, a knitted fabric, a non-woven fabric or a processed product thereof, but a fiber other than the fiber, for example, natural fiber such as cotton, hemp and wool, general polyester, nylon, acrylic and the like. Synthetic fiber, and mixed woven fabric, such as acetate, rayon, and semi-synthetic fiber such as rayon,
It may be a mixed knitted fabric. In this case, the content ratio of the fiber of the present invention is preferably 30% or more, more preferably 50% or more from the viewpoint of deodorizing effect.

本発明の繊維は、仮燃捲縮加工等の高次加工により、
5角、6角に類似した形状になつたり、紡糸時の異形断
面ノズルにより、3葉形、T形、4葉形、5葉形、6葉
形、7葉形、8葉形等多葉形や各種の断面形状をとるこ
とができ、その効果は十分に発現される。
The fiber of the present invention, by high-order processing such as calcining crimping,
It has a shape similar to pentagonal or hexagonal, and has a multi-lobed shape such as trilobal, T-shaped, 4-lobe, 5-lobe, 6-lobe, 7-lobe, 8-lobe, etc. due to the irregular cross-section nozzle during spinning. The shape and various cross-sectional shapes can be taken, and the effect is sufficiently exhibited.

次に本発明の消臭繊維の製造例について説明する。例
えばポリエチレンテレフタレート繊維の場合、本発明の
無機微粉末をモノマーであるエチレングリコール中へ所
定量分散させ、振動ミル又はボールミル等で1次粒子が
平均5ミクロン以下まで均一分散させたのち、該無機微
粉末分散エチレングリコールを用い公知の条件でテレフ
タル酸と反応させた後、重合させその後、繊維化させる
方法がある。この場合には、重合速度が遅くなつたり、
所定重合度まで分子量が上昇しないトラブルが時々発生
したり、また、エステル化工程又は重合工程で無機微粉
末が熱凝集しやすく、紡糸、延伸工程での糸切れ等の問
題が発生したりする問題が起こる。より安全な方法は、
ポリエチレンテレフタートポリマーの平均5ミクロン以
下に微粉砕された無機微粒子を二軸混練押出機などで所
定量混練し再ペレツト化したものを繊維化する方法であ
る。この場合、無機微粒子高含有量のマスターポリマー
を作成し、紡糸時にポリマーブレンド方式による所定量
に希釈し繊維化しても良い。
Next, a production example of the deodorant fiber of the present invention will be described. For example, in the case of polyethylene terephthalate fiber, a predetermined amount of the inorganic fine powder of the present invention is dispersed in ethylene glycol which is a monomer, and the primary particles are uniformly dispersed to an average of 5 microns or less by a vibration mill or a ball mill. There is a method in which powder-dispersed ethylene glycol is reacted with terephthalic acid under known conditions, then polymerized, and then fiberized. In this case, the polymerization rate becomes slow,
Occasionally a problem that the molecular weight does not increase to a predetermined degree of polymerization occurs, or the inorganic fine powder is likely to be thermally aggregated in the esterification step or the polymerization step, causing problems such as yarn breakage in spinning and drawing steps. Happens. A safer way is
This is a method of kneading a predetermined amount of inorganic fine particles of polyethylene terephthalate polymer finely pulverized to an average of 5 microns or less by a twin-screw kneading extruder or the like and re-pelletizing them to form fibers. In this case, a master polymer having a high content of inorganic fine particles may be prepared, and may be made into a fiber by diluting to a predetermined amount by a polymer blending method during spinning.

(発明の効果) 本発明の繊維は、すぐれた消臭性能を有する亜鉛無機
微粉末を繊維中に含有されることにより、消臭性能が保
持されたものである。しかも、本発明の繊維は耐久性が
非常に長い消臭性能を保持し、頻繁な洗濯を行なつても
消臭性能が低下しないので、例えば耐洗濯性を高度に要
求される病院用シーツ、おしめ等の分野に用いても、十
分に消臭性能を発揮させることが可能である。
(Effect of the Invention) The fiber of the present invention has deodorant performance retained by containing zinc inorganic fine powder having excellent deodorant performance in the fiber. Moreover, the fiber of the present invention has a very long-lasting deodorant performance, and the deodorant performance does not deteriorate even after frequent washing, so that, for example, a hospital sheet, which is highly required to have wash resistance, Even when used in the field of diapers and the like, it is possible to exert sufficient deodorizing performance.

(実施例) 以下実施例をあげて本発明を具体的に説明する。洗た
く条件は、以下の試験方法によつて行なつた。
(Examples) The present invention will be specifically described with reference to examples. The washing conditions were as follows.

<洗濯試験法> JIS L0217−103法に従つて実施。液温40℃の水1lに2g
の割合で衣料用合成洗剤を添加溶解し、洗たく液とす
る。この洗たく液に浴比が1対30になるように試料及び
必要に応じて負荷布を投入して運転を開始する。5分間
処理した後、運転を止め、試験及び負荷布を脱水機で脱
水し、次に洗たく液を常温の新しい水に替えて同一の浴
比で2分間すすぎ洗いをした後脱水し、再び2分間すす
ぎ洗いを行い風乾させる。以上の操作を10回くりかえし
10回後の測定サンプルとした。
<Washing test method> Implemented in accordance with JIS L0217-103 method. 2 g per liter of water at a liquid temperature of 40 ° C
Add and dissolve a synthetic detergent for clothing at the ratio of to make a washing liquid. A sample and a load cloth are added to the washing liquid so that the bath ratio becomes 1:30, and the operation is started. After treating for 5 minutes, the operation was stopped, the test and load cloths were dehydrated with a dehydrator, and then the washing liquid was replaced with fresh water at room temperature, rinsed for 2 minutes with the same bath ratio, then dehydrated, and again with 2 Rinse for minutes and air dry. Repeat the above operation 10 times
It was used as a measurement sample after 10 times.

実施例1 酸化亜鉛と二酸化ケイ素の重量比が1:3からなるアモ
ルフアス構造のケイ酸亜鉛の粒子径が平均5ミクロン以
下の微粉末を、日本製鋼所(株)社製、二軸混練押出機
を用い、ポリエチレンテレフタレート樹脂と混練し、ポ
リエチレンテレフタレート樹脂中に上記無機微粉末を10
wt%含有したペレツトを得た。
Example 1 A twin-screw kneading extruder manufactured by Japan Steel Works, Ltd. was used as a fine powder having an average particle size of 5 microns or less of zinc silicate having an amorphous structure and having a weight ratio of zinc oxide and silicon dioxide of 1: 3. Kneaded with polyethylene terephthalate resin using
A pellet containing wt% was obtained.

次いで、上記無機微粉末10wt%含有ペレツトと、通常
のポリエチレンテレフタレートペレツトを1:4の割合で
ブレンドし、繊維化を実施し、消臭性能を有した無機微
粉末が2wt%含有した繊維を得た。紡糸温度290℃、捲取
り速度1000m/minで紡糸を行い、その後ローラープレー
ト方式により延伸を実施し、75デニール24フイラメント
のマルチフイラメントを得た。紡糸性、延伸性共に良好
で問題なかつた。その後、常法により筒編地を作成し、
リラツクス、水洗い、乾燥、プレセツト処理後、消臭性
能を測定した。
Then, the above inorganic fine powder containing 10 wt% pellets and ordinary polyethylene terephthalate pellets were blended at a ratio of 1: 4, fiberization was carried out, and inorganic fine powder having deodorant performance contained 2 wt% of fibers. Obtained. Spinning was performed at a spinning temperature of 290 ° C. and a winding speed of 1000 m / min, and then stretched by a roller plate method to obtain a multifilament of 75 denier 24 filament. The spinnability and drawability were good and there was no problem. After that, create a tubular knitted fabric by a conventional method,
After the relax, washing with water, drying and presetting, the deodorizing performance was measured.

2リツトル容器中500ppmアンモニア濃度に保持された
雰囲気中へ測定試料10gを設置し、2時間後の容器中ア
ンモニア濃度を測定し、消臭率を算出した。初期性能
も、JIS規格10回洗たく後、筒編地の性能もアンモニア
消臭率90%以上の性能が確認された。また、一度アンモ
ニア消臭率を測定した試料を洗たく処理し、再度アンモ
ニア消臭性能を同様にして測定する操作を5回くりかえ
した後の6回目の消臭率は、消臭率90%以上で初期性能
と同じ性能が再び発現していることが確認された。
10 g of the measurement sample was placed in an atmosphere kept at a 500 ppm ammonia concentration in a 2-liter container, and the ammonia concentration in the container after 2 hours was measured to calculate the deodorizing rate. After washing the JIS standard 10 times, the performance of the tubular knitted fabric was confirmed to be 90% or more of the ammonia deodorizing rate. In addition, the sample for which the ammonia deodorizing rate was once measured was washed, and the operation of measuring the ammonia deodorizing performance again in the same manner was repeated 5 times, but the 6th deodorizing rate was 90% or more. It has been confirmed that the same performance as the initial performance has reappeared.

同様にして、硫化水素についても実施し、2リツトル
に容器中100ppmに保持された硫化水素雰囲気中へ測定試
料10gを設置し、24時間後の容器中硫化水素濃度を測定
し、消臭率をもとめた。初期性能も、JIS規格10回洗た
く後、筒編地の性能も硫化水素消臭率80%以上の性能が
確認された。また、アンモニア測定と同様に5回くりか
えし操作(測定→洗たく)後に6回目の硫化水素の測定
を行なつたところ、初期性能と同様80%以上を消臭性能
が確認された。
Similarly, for hydrogen sulfide, place 10 g of the measurement sample in a hydrogen sulfide atmosphere held at 100 ppm in the container in 2 liters, measure the hydrogen sulfide concentration in the container after 24 hours, and measure the deodorization rate. I asked. After the JIS standard washes 10 times, the performance of the tubular knitted fabric was confirmed to be hydrogen sulfide deodorizing rate of 80% or more. Further, when the hydrogen sulfide was measured for the sixth time after repeating the operation 5 times (measurement → washing) in the same manner as the ammonia measurement, 80% or more of the deodorant performance was confirmed as in the initial performance.

比較例1 結晶構造を有した平均粒径5ミクロン以下の酸化亜鉛
微粉末と結晶構造を有した平均粒径5ミクロン以下の微
粉末を重量比1:3で混合し、日本製鋼所(株)社製、二
軸混練押出機を用い、ポリエチレンテレフタレート樹脂
と混練し、ポリエチレンテレフタレート樹脂中に上記無
機微粉末を10wt%を含有したペレツトを得た。
Comparative Example 1 A zinc oxide fine powder having a crystal structure and an average particle size of 5 microns or less and a fine powder having a crystal structure and an average particle size of 5 microns or less were mixed at a weight ratio of 1: 3, and manufactured by Japan Steel Works, Ltd. It was kneaded with a polyethylene terephthalate resin using a twin-screw kneading extruder manufactured by the same company to obtain a pellet containing 10 wt% of the above inorganic fine powder in the polyethylene terephthalate resin.

次いで、上記無機微粉末10wt%含有ペレツトと、通常
のポリエチレンテレフタレートを1:4の割合でブレンド
し、繊維化を実施し、消臭性能を有した無機微粉末が2w
t%含有した繊維を得た。紡糸温度290℃、捲取り速度10
00m/minで紡糸を行い、その後ローラープレート方式に
より延伸を実施し、75デニール24フイラメントのマルチ
フイラメントを得た。紡糸性、延伸性共に良好で問題な
かつた。その後、常法により筒編地を作成し、リラツク
ス、水洗い、乾燥、プレセツト処理後、消臭性能を測定
した。
Then, the inorganic fine powder 10 wt% containing pellets and ordinary polyethylene terephthalate were blended in a ratio of 1: 4, fiberization was carried out, and the inorganic fine powder having deodorant performance was 2 w.
A fiber containing t% was obtained. Spinning temperature 290 ℃, winding speed 10
Spinning was carried out at 00 m / min, and then drawing was carried out by a roller plate method to obtain a multifilament of 75 denier 24 filament. The spinnability and drawability were good and there was no problem. Then, a tubular knitted fabric was prepared by an ordinary method, and after relaxing, washing with water, drying and pre-setting, the deodorizing performance was measured.

2リツトル容器中、500ppmアンモニア濃度に保持され
た雰囲気中へ測定試験10gを設置し、2時間後の容器中
アンモニア濃度を測定し、消臭率を算出した。初期性能
も、JIS規格10回洗たく後筒編地の性能もアンモニア消
臭率35%で不十分な性能であつた。また、一度アンモニ
ア消臭率を測定した試料を洗たく処理し、再度アンモニ
ア消臭性能を同様にして測定する操作を5回くりかえし
た後の6回目の消臭率は35%であつた。
In a 2-liter container, 10 g of a measurement test was placed in an atmosphere kept at an ammonia concentration of 500 ppm, the ammonia concentration in the container after 2 hours was measured, and the deodorizing rate was calculated. The initial performance and the performance of the tubular knitted fabric after the JIS standard washes 10 times were insufficient with the ammonia deodorizing rate of 35%. Further, the sample for which the ammonia deodorizing rate was once measured was washed, and the operation of measuring the ammonia deodorizing performance again in the same manner was repeated 5 times, and the 6th deodorizing rate was 35%.

同様にして、硫化水素についても実施し、2リツトル
容器中100ppmに保持された硫化水素雰囲気中へ測定試料
を設置し、24時間後の容器中硫化水素濃度を測定し、消
臭率をもとめた。初期性能も、JIS規格10回洗たく後筒
編地の性能も硫化水素消臭率25%で不十分な性能であつ
た。また、アンモニア測定と同様に5回くりかえし操作
(測定→洗たく)後に6回目の硫化水素の測定を行なつ
たところ、初期性能と同様25%の消臭率であつた。
Similarly, for hydrogen sulfide, a measurement sample was placed in a hydrogen sulfide atmosphere held at 100 ppm in a 2-liter container, the hydrogen sulfide concentration in the container was measured after 24 hours, and the deodorization rate was determined. . The initial performance and the performance of the tubular knitted fabric after the JIS standard washes 10 times were insufficient with a hydrogen sulfide deodorization rate of 25%. Further, when the hydrogen sulfide was measured for the sixth time after repeating the operation 5 times (measurement → washing) in the same manner as the ammonia measurement, the deodorizing rate was 25% as in the initial performance.

実施例2〜4 第1表に示す条件で実施した。実施例1と同様の無定
形ケイ酸亜鉛を用い、繊維中の含有量を変更して実施し
た。含有量の変更は、無定形ケイ酸亜鉛微粉末10wt%含
有ペレツトと通常のポリエチレンテレフタレートペレツ
トのブレンド割合を変更して実施した。他の条件は、実
施例1と同様に行ない、いずれも繊維化工程性良好で消
臭性能も十分あることが確認された。
Examples 2 to 4 It was carried out under the conditions shown in Table 1. The same amorphous zinc silicate as in Example 1 was used, and the content in the fiber was changed. The content was changed by changing the blend ratio of pellets containing 10 wt% of amorphous zinc silicate fine powder and ordinary polyethylene terephthalate pellets. Other conditions were the same as in Example 1, and it was confirmed that all of them had good fiberizing processability and sufficient deodorizing performance.

実施例5,6 第1表に示す条件で用いるポリマーを実施例5はナイ
ロン6、実施例6はポリブチレンテレフタレートを用い
て行なつた。実施例5は、紡糸温度260℃、紡糸直結延
伸方式により75デニール24フイラメントの延伸糸を得
た。実施例6は、紡糸温度260℃、捲取り速度1200m/min
で紡糸を行ない、その後ローラープレート方式により延
伸を実施し、75デニール24フイラメントの延伸糸を得
た。いずれも繊維化工程性は良好で、消臭性能も良好で
あつた。
Examples 5 and 6 Polymers used under the conditions shown in Table 1 were prepared using nylon 6 in Example 5 and polybutylene terephthalate in Example 6. In Example 5, a drawn yarn of 75 denier 24 filament was obtained by a spinning direct drawing method at a spinning temperature of 260 ° C. Example 6 has a spinning temperature of 260 ° C. and a winding speed of 1200 m / min.
Was spun and then drawn by a roller plate system to obtain a drawn yarn of 75 denier 24 filament. In all cases, the fiberizing processability was good, and the deodorizing performance was also good.

実施例7,8 無定形ケイ酸亜鉛の酸化亜鉛と二酸化ケイ素の混合比
率を変更し、実施例7は酸化亜鉛対二酸化ケイ素1:1、
実施例8は3:1で行ない、他の条件は実施例1と同様に
実施した。繊維化工程性良好で消臭性能も十分であつ
た。
Examples 7,8 The mixing ratio of zinc oxide and silicon dioxide in amorphous zinc silicate was changed, and in Example 7, zinc oxide to silicon dioxide 1: 1,
Example 8 was performed 3: 1 and other conditions were the same as in Example 1. The fiberizing processability was good and the deodorizing performance was sufficient.

比較例2 酸化亜鉛と二酸化ケイ素の重量比が1:3からなるアモ
ルフアス構造のケイ酸亜鉛の粒子径が平均5ミクロン以
下の微粉末を、日本製鋼所(株)社製、二軸混練押出機
を用い、ポリエチレンテレフタレート樹脂と混練し、ポ
リエチレンテレフタレート樹脂中に上記無機微粉末を10
wt%含有したペレツトを得た。
Comparative Example 2 A twin-screw kneading extruder manufactured by Japan Steel Works, Ltd. was used as a fine powder of zinc silicate having an amorphous structure with a weight ratio of zinc oxide and silicon dioxide of 1: 3 and having an average particle size of 5 microns or less. Kneaded with polyethylene terephthalate resin using
A pellet containing wt% was obtained.

次いで上記無機微粉末10wt%含有ペレツトと、通常の
ポリエチレンテレフタレートペレツトを1:199の割合で
ブレンドし、繊維化を実施し、消臭性能を有した無機微
粉末が0.05wt%含有した繊維を得た。紡糸温度290℃、
捲取り速度1000m/minで紡糸を行い、その後ローラープ
レート方式により延伸を実施し、75デニール24フイラメ
ントのマルチフイラメントを得た。紡糸性、延伸性共に
良好で問題なかつた。その後常法により筒編地を作成
し、リラツクス、水洗い、乾燥、プレセツト処理後、消
臭性能を測定した。
Then, the above inorganic fine powder containing 10 wt% of pellets and ordinary polyethylene terephthalate pellets were blended at a ratio of 1: 199, fiberization was carried out, and the inorganic fine powder having deodorant performance contained 0.05 wt% of fibers. Obtained. Spinning temperature 290 ℃,
Spinning was carried out at a winding speed of 1000 m / min, and then stretching was carried out by a roller plate method to obtain a multifilament of 75 denier 24 filament. The spinnability and drawability were good and there was no problem. After that, a tubular knitted fabric was prepared by an ordinary method, and after relaxing, washing with water, drying, and pre-setting, the deodorizing performance was measured.

比較例3 酸化亜鉛と二酸化ケイ素の重量比が1:3からなるアモ
ルフアス構造のケイ酸亜鉛の粒子径が平均5ミクロン以
下の微粉末を、日本製鋼所(株)社製、二軸混練押出機
を用い、ポリエチレンテレフタレート樹脂と混練し、ポ
リエチレンテレフタレート樹脂中に上記無機微粉末を15
wt%含有したペレツトを得た。
Comparative Example 3 A twin-screw kneading extruder manufactured by Japan Steel Works, Ltd. was used as a fine powder having an average particle size of 5 microns or less of zinc silicate having an amorphous structure and having a weight ratio of zinc oxide and silicon dioxide of 1: 3. Is mixed with polyethylene terephthalate resin, and the above inorganic fine powder is mixed in polyethylene terephthalate resin 15
A pellet containing wt% was obtained.

次いで上記無機微粉末15wt%含有ペレツトを用い、紡
糸を実施したところ、紡糸時の単糸切れ、断糸が頻発し
た。また延伸性も不良であつた。
Next, when spinning was performed using the pellet containing 15 wt% of the inorganic fine powder, single yarn breakage and yarn breakage frequently occurred during spinning. The stretchability was also poor.

比較例4,5 無定形ケイ酸亜鉛の酸化亜鉛と二酸化ケイ素の混合比
率を比較例4は15:85、比較例5は85:15で行ない、他の
条件は実施例1と同様に実施した。
Comparative Examples 4 and 5 The mixing ratio of zinc oxide and silicon dioxide of amorphous zinc silicate was 15:85 in Comparative Example 4 and 85:15 in Comparative Example 5, and other conditions were the same as in Example 1. .

消臭性能としては実施例1より低いレベルであつた。 The deodorizing performance was lower than that of Example 1.

比較例6 粒子径が5ミクロン以下の酸化亜鉛微粉末を実施例1
と同様にいて二軸押出機を用い、ポリエチレンテレフタ
レート樹脂と混練し、ポリエチレンテレフタレート樹脂
中に酸化亜鉛を2.0重量%含有したペレットを得た。
Comparative Example 6 A zinc oxide fine powder having a particle size of 5 microns or less was prepared in Example 1.
In the same manner as described above, a twin-screw extruder was used to knead with a polyethylene terephthalate resin to obtain pellets containing 2.0% by weight of zinc oxide in the polyethylene terephthalate resin.

このペレットを用い、紡糸を行った。工程性は良好で
あったが、消臭性能のレベルは低いものであった。
Spinning was performed using these pellets. The processability was good, but the level of deodorant performance was low.

【図面の簡単な説明】[Brief description of drawings]

第1図は消臭性能測定装置の一例を示す図である。 1……センサー 2……測定資料(消臭繊維構造物) 3……イオンメーター 4……記録計 5……容器 FIG. 1 is a diagram showing an example of a deodorant performance measuring device. 1 …… Sensor 2 …… Measurement material (deodorant fiber structure) 3 …… Ion meter 4 …… Recorder 5 …… Container

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】平均粒子径5ミクロン以下の、酸化亜鉛と
二酸化ケイ素の比率が1:5〜5:1からなる大部分がアモル
フアスな構造であるケイ酸亜鉛の実質的に無定形無機微
粒子が、融点150℃以上の熱可塑性ポリマー中に0.1〜10
重量%存在していることを特徴とする消臭性能を有する
合成繊維。
1. Substantially amorphous inorganic fine particles of zinc silicate having an average particle size of 5 microns or less and having a ratio of zinc oxide to silicon dioxide of 1: 5 to 5: 1 and having a mostly amorphous structure. , 0.1 to 10 in a thermoplastic polymer with a melting point of 150 ° C or higher
Synthetic fiber having deodorant performance, characterized by being present in a weight percentage.
JP63245315A 1988-09-28 1988-09-28 Deodorant synthetic fiber Expired - Fee Related JP2544788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63245315A JP2544788B2 (en) 1988-09-28 1988-09-28 Deodorant synthetic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63245315A JP2544788B2 (en) 1988-09-28 1988-09-28 Deodorant synthetic fiber

Publications (2)

Publication Number Publication Date
JPH0291209A JPH0291209A (en) 1990-03-30
JP2544788B2 true JP2544788B2 (en) 1996-10-16

Family

ID=17131842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63245315A Expired - Fee Related JP2544788B2 (en) 1988-09-28 1988-09-28 Deodorant synthetic fiber

Country Status (1)

Country Link
JP (1) JP2544788B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019143257A (en) * 2018-02-20 2019-08-29 日本エステル株式会社 Core-sheath-type polyester composite fiber, false-twist yarn of core-sheath-type polyester composite fiber, knitted fabric, and manufacturing method of core-sheath-type polyester composite fiber

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200415A (en) * 1992-07-27 1994-07-19 Nippon Ester Co Ltd Deodorizing polyester fiber
TW297060B (en) * 1995-02-15 1997-02-01 Takeda Pharm Industry Co Ltd
JP3679738B2 (en) * 2001-07-16 2005-08-03 三菱レイヨン株式会社 Flame retardant polypropylene fiber and method for producing the same
JP5341673B2 (en) * 2009-08-24 2013-11-13 帝人株式会社 Deodorant fiber and method for producing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62215010A (en) * 1986-03-17 1987-09-21 Teijin Ltd Deodorizing fiber
JPS6354935A (en) * 1986-08-25 1988-03-09 Titan Kogyo Kk White deodorant and its production
JPS6366320A (en) * 1986-09-05 1988-03-25 Dainichi Color & Chem Mfg Co Ltd Deodorizing pan fiber and production thereof
JP2599703B2 (en) * 1987-03-10 1997-04-16 ライオン株式会社 Deodorant composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019143257A (en) * 2018-02-20 2019-08-29 日本エステル株式会社 Core-sheath-type polyester composite fiber, false-twist yarn of core-sheath-type polyester composite fiber, knitted fabric, and manufacturing method of core-sheath-type polyester composite fiber
JP7117710B2 (en) 2018-02-20 2022-08-15 日本エステル株式会社 Core-sheath type polyester composite fiber, false twist yarn of core-sheath type polyester composite fiber, woven and knitted fabric, and method for producing core-sheath type polyester composite fiber

Also Published As

Publication number Publication date
JPH0291209A (en) 1990-03-30

Similar Documents

Publication Publication Date Title
JP4423882B2 (en) Polylactic acid fiber
JPH0291009A (en) Antifungal formed products and their production
KR101241349B1 (en) Polymeric materials, which contain inorganic solids, and methods for the production thereof
JP2544788B2 (en) Deodorant synthetic fiber
JP2809640B2 (en) Polyester fiber and method for producing the same
JPH0299606A (en) Fiber having deodorant and antimicrobial performance and production thereof
JP2809648B2 (en) Composite fiber with deodorant performance
JP2945264B2 (en) Antimicrobial fiber and method for producing the same
JPH01246204A (en) Antimicrobial formed products and their production
JP2905629B2 (en) Deodorant and deodorant fiber
JP4298383B2 (en) Antibacterial polyester fiber and method for producing the same
JP3104891B2 (en) Hollow composite fiber and method for producing the same
JP2593890B2 (en) Antibacterial molded article and method for producing the same
JPH09157978A (en) Textile product comprising deodorizing/antimicrobial acrylic synthetic fiber
JPH0533265A (en) Antibacterial and antifungal deodorant staple fiber having hydrophilic nature
JPH11100713A (en) Antimicrobial cellulose acetate fiber containing chitosan and its production
JPH06235116A (en) Antimicrobial fiber and web
JP2002030568A (en) Polyester-based fiber structure
JPH02169740A (en) Bacteriostatic deodorizing cloth
JPH01250411A (en) Antifungal formed product and production thereof
JPH02182902A (en) Antifungal swimming inner
JPS6047952B2 (en) How to prevent polyester from pilling
JP2007169800A (en) Deodorant/flame retardant polyester-based fibrous structure and method for producing the same
JP2006144137A (en) Polylactic acid fiber structure
JPH02221413A (en) Hygroscopic polyester fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees