JPH0291209A - Synthetic fibers having deodorant properties - Google Patents

Synthetic fibers having deodorant properties

Info

Publication number
JPH0291209A
JPH0291209A JP63245315A JP24531588A JPH0291209A JP H0291209 A JPH0291209 A JP H0291209A JP 63245315 A JP63245315 A JP 63245315A JP 24531588 A JP24531588 A JP 24531588A JP H0291209 A JPH0291209 A JP H0291209A
Authority
JP
Japan
Prior art keywords
inorganic fine
fibers
deodorizing performance
performance
deodorizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63245315A
Other languages
Japanese (ja)
Other versions
JP2544788B2 (en
Inventor
Masao Kawamoto
正夫 河本
Kazuhiko Tanaka
和彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP63245315A priority Critical patent/JP2544788B2/en
Publication of JPH0291209A publication Critical patent/JPH0291209A/en
Application granted granted Critical
Publication of JP2544788B2 publication Critical patent/JP2544788B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a synthetic fiber of deodorizing properties, which is suitably used in the fields of diapers, carpets, curtains and sheets in hospitals, by adding amorphous inorganic fine particles of specific zinc silicate to a thermoplastic polymer having a melting point over a certain temperature. CONSTITUTION:The objective synthetic fiber is composed of (A) a thermoplastic polymer of 150 deg.C and higher melting point and good fiber-forming properties and (B) 0.1 to 10wt.% of substantially amorphous inorganic fine particles of zinc silicate where the average particle size is less than 5 microns, the weight ratio of zinc oxide to silicon dioxide is 1:5 to 5:1, and almost all of the part has the amorphous structure.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、おしめ、カーペット、カーテン、病院用シー
ツ、その他、悪臭を嫌う用途に使用するのに適した優れ
た消臭性能を有する合成繊維に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention provides synthetic fibers with excellent deodorizing performance suitable for use in diapers, carpets, curtains, hospital sheets, and other applications where bad odors are averse. It is related to.

更に詳しくは、世の中の4大悪臭と言われる肉類等の腐
敗臭の主成分であるアンモニア、魚類等の腐敗臭の主成
分であるトリメチルアミン等の塩基性ガスに対しても、
また野菜等の腐敗臭の生成分であるメチルメルカプタン
、卵や牛乳等の腐敗臭の主成分である硫化水素等の酸性
ガスに対しても効果を発揮する広範囲の悪臭成分に対し
て優れた消臭性能を有する繊維に関する。
More specifically, it is also effective against basic gases such as ammonia, which is the main component of the rotten smell of meat, etc., which is said to be the four major odors in the world, and trimethylamine, which is the main component of the rotten smell of fish, etc.
It is also effective against a wide range of odor components, and is effective against methyl mercaptan, which is the product of rotten odors in vegetables, etc., and acid gases, such as hydrogen sulfide, which is the main component of rotten odors in eggs and milk. The present invention relates to fibers having odor performance.

(従来の技術) 合成繊維の中でポリエステル繊維、ポリアミド繊維等は
、その優れた寸法安定性、耐薬品性、強度、耐久性など
の点から、衣料素材として不可欠のものとなっている。
(Prior Art) Among synthetic fibers, polyester fibers, polyamide fibers, etc. have become indispensable as clothing materials due to their excellent dimensional stability, chemical resistance, strength, and durability.

しかしながら、使用用途によっては更に特殊機能の付与
が望まれていた。例えば、病院用シーツ、おしめ、カー
ペット等悪臭を嫌う用途では、できるだけ原因となる悪
臭を軽減させる性能を保持している繊維製品が望まれて
いた。従来゛のものとしては、天然の針、広葉樹からの
抽出物あるいは緑茶からの抽出物などを後加工法などに
よりm維製品表面に付着させたものなどが大部分である
が、耐久性が不十分である欠点があった。特に、繰返し
洗濯などを実施した場合、あるいは繊維製品を染色処理
した場合などに消臭性能が極端に低下してしまう問題点
が発生した。
However, depending on the intended use, it has been desired to provide more special functions. For example, in applications such as hospital sheets, diapers, and carpets where bad odors are averse, textile products that retain the ability to reduce the causing bad odors as much as possible have been desired. Most conventional products are made by attaching natural needles, extracts from broad-leaved trees, extracts from green tea, etc. to the surface of textile products using post-processing methods, but they are not durable. There was a drawback that was enough. In particular, there has been a problem in that the deodorizing performance is extremely reduced when the product is washed repeatedly or when the textile product is dyed.

また耐久性を向上させる目的で樹脂中に練込む消臭剤タ
イプとしては鉄の二価イオン化合物とLアスコルビン酸
を配合させたもの等があるが、ポリエステル中へ配向さ
せるためには耐熱性が不十分であったり、あるいは繊維
製品となった時に悪臭物質を脱臭した後に変色してしま
い繊維素材としては特定の用途にしか使用できないなど
の問題点があった。
In addition, there are deodorant types that are kneaded into resin for the purpose of improving durability, such as those containing a divalent iron ion compound and L-ascorbic acid, but in order to be oriented into polyester, heat resistance is required. There have been problems in that it is insufficient, or when it is made into textile products, it changes color after deodorizing the malodorous substances, so that it can only be used for specific purposes as a textile material.

このような状況から本発明者らは、この問題の解決のた
め鋭を検討した結果本発明に至ったものである。
Under these circumstances, the inventors of the present invention conducted intensive studies to solve this problem, and as a result, they arrived at the present invention.

(発明が解決しようとしている問題点)即ち本発明の課
題は、消臭剤を繊維の表面に付着させる従来の後加工法
等の前記欠点を根本的に解決するために、消臭剤を繊維
内部へ含有させた繊維とする場合に、洗濯耐久性などの
耐久性があり、なおかつ広範囲な悪臭成分の消臭に効果
を発揮し、繊維製品の変色等の欠点を生じない実効のあ
る繊維とするためには、いかなる物を用い、いかなる構
成、条件としたらよいのがという点にあり、本発明はこ
の点を究明したものである。
(Problems to be Solved by the Invention) In other words, an object of the present invention is to apply a deodorant to fibers in order to fundamentally solve the drawbacks of the conventional post-processing method of attaching the deodorant to the surface of fibers. When incorporated into fibers, the fibers have durability such as durability against washing, are effective in deodorizing a wide range of malodorous components, and do not cause defects such as discoloration of textile products. In order to achieve this, what kind of materials should be used and what kind of configuration and conditions should be used?The present invention has clarified this point.

(問題点を解決するための手段) 本発明の合成繊維は、ポリエステル及び/又はポリアミ
ドの如き融点が150℃以上の熱可塑性ポリマー中に、
平均粒子径が5ミクロン以下の優れた消臭性能を有する
無機微粉末を0.1〜10重量%含有せしめたことを特
徴とする消臭性能を有する繊維である。
(Means for Solving the Problems) The synthetic fiber of the present invention contains a thermoplastic polymer having a melting point of 150° C. or higher, such as polyester and/or polyamide.
This is a fiber having deodorizing performance characterized by containing 0.1 to 10% by weight of inorganic fine powder having an average particle diameter of 5 microns or less and having excellent deodorizing performance.

以下、本発明の繊維及びその製造法を詳細に説明する。Hereinafter, the fiber of the present invention and its manufacturing method will be explained in detail.

本発明に用いる無機微粒子は、平均粒子径が5ミクロン
以下であることが好ましい。粒径が5ミクロンを庇える
と溶融紡糸時にフィルター詰りや毛羽断糸を起し易く使
用困難である。特に各種衣料素材、寝装製品等への応用
を考えた場合は、単繊維デニールが1デニ一ル前後の細
デニール糸も必要とされ、粒径が大きくなると延伸時の
糸切れが激しくなり好ましくない。従って本発明に用い
る無機微粒子は平均粒径5ミクロン以下°のものが、更
に好ましくは1ミクロン以下のものが望ましい。
The inorganic fine particles used in the present invention preferably have an average particle diameter of 5 microns or less. If the particle size exceeds 5 microns, filter clogging and fluff breakage tend to occur during melt spinning, making it difficult to use. Especially when considering application to various clothing materials, bedding products, etc., fine denier yarn with a single fiber denier of around 1 denier is also required, and the larger the particle size, the more likely the thread will break during drawing, so it is not preferable. do not have. Therefore, it is desirable that the inorganic fine particles used in the present invention have an average particle size of 5 microns or less, more preferably 1 micron or less.

本発明に用いる無機微粒子は、酸化亜鉛と二酸化ケイ素
の比率が重量比でl:5〜5,1の範囲からなる、大部
分がアモルファスな構造を有している、ケイ酸亜鉛の実
質的に無定形微粒子が好ましい。酸化亜鉛と二酸化ケイ
素の比率は好ましくは1:4〜4:1の範囲、更に好ま
しくはl:3〜3;1の範囲が好ましい。
The inorganic fine particles used in the present invention are substantially made of zinc silicate, which has a mostly amorphous structure in which the ratio of zinc oxide to silicon dioxide is in the range of 1:5 to 5.1 by weight. Amorphous fine particles are preferred. The ratio of zinc oxide to silicon dioxide is preferably in the range of 1:4 to 4:1, more preferably in the range of 1:3 to 3:1.

ケイ酸亜鉛は天然に多量に産出されるが、はとんどのも
のは結晶構造を有している。おどろくべきことにこの結
晶構造を有している場合には、消臭性能がほとんど発揮
されない。しかるに実質的にアモルファスな無定形構造
になることにより初めて優れた消臭性能が発現し、なお
かつ、熱可塑性樹脂の中に含有分散されてら十分な消臭
性能が維持されることが見い出された。しかも、アンモ
ニア、トリメチルアミン類の塩基性ガスに対しても、ま
た硫化水素、メチルメルカプタン等の酸性ガスに対して
も良好な消臭効果が発現されることがわかった。
Zinc silicate is naturally produced in large quantities, but most have a crystalline structure. Surprisingly, when it has this crystal structure, it exhibits almost no deodorizing performance. However, it has been found that excellent deodorizing performance is achieved only when the material has a substantially amorphous structure, and that sufficient deodorizing performance is maintained when it is contained and dispersed in a thermoplastic resin. Moreover, it has been found that a good deodorizing effect is exhibited against basic gases such as ammonia and trimethylamines, as well as against acidic gases such as hydrogen sulfide and methyl mercaptan.

ここで述べている、実質的にアモルファスな無定形構造
とは、X線回折分析で、結晶ピークが実質的にほとんど
出てこない状態を言い、このような無機構造にせしめる
ことにより、初めて、優れた消臭性能が発現されたわけ
である。
The substantially amorphous structure mentioned here refers to a state in which virtually no crystalline peaks appear in X-ray diffraction analysis, and by creating such an inorganic structure, excellent This means that the deodorizing performance was achieved.

また、本発明の無機微粒子が消臭性能を有するメカニズ
ムについては現時点では不明であるが、ケイ酸亜鉛中の
酸化亜鉛による、塩基性ガス、酸性ガスの両性に対しで
ある種の讃体形成反応が生じて消臭効果を発揮せしめる
と同時に、無機微粒子のアモルファス構造によるガスの
物理吸着効果も発揮され、総合的に相乗効果によるすぐ
れた消臭性能が発現してくると思われる。更に大きな特
徴は、熱旬塑性ポリマー中に該無機粒子を含有分故山し
め、それをもちいて繊維化した繊維形態のものでも十分
な消臭性能が保持されていることが確認された。通常、
消臭剤を樹脂に内添すると、消臭性能が阻害され効果が
減少してくる傾向があり、特に硫化水素等の酸性ガスの
消臭性能が著しく低下してしまうのが一般的であったが
、本発明の無機微粒子を内添した場合は消臭性能が低下
しないのが大きな特徴である。これについての理由につ
いてはまだ明らかではない。
In addition, although the mechanism by which the inorganic fine particles of the present invention have deodorizing performance is currently unknown, there is a certain type of nutrient-forming reaction caused by zinc oxide in zinc silicate against amphoteric gases such as basic gases and acidic gases. At the same time, the amorphous structure of the inorganic fine particles also exerts a gas physical adsorption effect, and it is thought that excellent deodorizing performance will be developed due to a comprehensive synergistic effect. An even more significant feature is that it has been confirmed that sufficient deodorizing performance is maintained even in the form of fibers made by incorporating the inorganic particles into a thermoplastic polymer and using the inorganic particles to form fibers. usually,
When a deodorizing agent is internally added to a resin, its deodorizing performance tends to be inhibited and its effectiveness decreases, and in particular, it is common for the deodorizing performance of acidic gases such as hydrogen sulfide to be significantly reduced. However, a major feature is that the deodorizing performance does not deteriorate when the inorganic fine particles of the present invention are internally added. The reason for this is not yet clear.

また本発明の無機微粒子を、例えばポリエチレンテレフ
タレートポリマーに練込み、繊維化したものを、後加工
工程で130℃の高温染色処理を経た後でも消臭性能が
全く低下せず保持されていることがわかった。更に、該
繊維がアンモニア等のガスを脱臭した後、洗濯処理をす
ると、消臭性能を発揮する無機微粒子と脱臭されたガス
分子の錯体がこわれ、洗濯時に消臭ガス成分を洗い落と
してしまい該繊維としては、消臭性能が再び完全に近い
形で再生されることがわかり、洗濯操作を繰り返すこと
により消臭性能を保持した繊維として実質的に寿命のな
い半永久的に使用が可能となることがわかった。
Furthermore, the inorganic fine particles of the present invention are kneaded into, for example, polyethylene terephthalate polymer and made into fibers, and the deodorizing performance is maintained without any decrease even after being subjected to high-temperature dyeing treatment at 130°C in the post-processing process. Understood. Furthermore, when the fibers are washed after deodorizing gases such as ammonia, the complexes of inorganic fine particles that exhibit deodorizing performance and deodorized gas molecules are destroyed, and the deodorizing gas components are washed away during washing, causing the fibers to deteriorate. As a result, it was found that the deodorizing performance can be regenerated almost completely again, and that by repeated washing operations, it is possible to use the fiber semi-permanently, which has virtually no lifespan, as a fiber that retains its deodorizing performance. Understood.

熱可塑性ポリマー中に添加する本発明無機微粒子の添加
量は0.1〜10重量%が好ましい。更に好ましくは0
.5〜10重量%が良い。添加量が0.1%より少なく
なると、十分な消臭性能を有した繊維とは言いがたくな
る。添加量が10%以上になると消臭性能としては十分
であるが、繊維化時の工程性が著しく悪くなり好しくな
い。特に、紡糸時にノズル孔周囲の汚れ発生による単糸
切れ、断糸が頻発してくるとともに、延伸性ら著しく低
下し毛羽、断糸が多発してくる。更に、工程中での糸走
行時の設備の糸道摩耗が激しく発生してくることになり
好ましくない。
The amount of the inorganic fine particles of the present invention added to the thermoplastic polymer is preferably 0.1 to 10% by weight. More preferably 0
.. 5 to 10% by weight is good. When the amount added is less than 0.1%, it is difficult to say that the fiber has sufficient deodorizing performance. If the amount added is 10% or more, the deodorizing performance is sufficient, but the processability during fiberization becomes extremely poor, which is not preferable. In particular, during spinning, single filament breakage and yarn breakage occur frequently due to the occurrence of dirt around the nozzle hole, and the drawability deteriorates significantly, causing fuzz and yarn breakage to occur frequently. Furthermore, the thread path of the equipment during the thread running during the process will be severely worn out, which is undesirable.

本発明の無機粒子は、ケイ酸亜鉛の実質的に無定形物質
であることに大きな特徴があり、該無機粒子を製造する
方法は種々考えられが、例えば、酸化亜鉛粉末と二酸化
ケイ素粉末を所定量混合し、その後高温で焼成し、ただ
ちに急冷粉砕することによっても製造することができる
The inorganic particles of the present invention are characterized in that they are essentially amorphous substances such as zinc silicate, and various methods can be considered for producing the inorganic particles. It can also be produced by quantitatively mixing, then firing at a high temperature, and immediately quenching and pulverizing.

消臭性能の測定例を第1図に示す。アンモニアの場合、
アンモニアセンサーl(東亜電波(株)製A E −2
35)とイオンメーター3(東亜電波(株)製IM−1
E)と記録計4を接続し、容器5中のアンモニアガス濃
度の経時変化を読みとる。容器5中に500ppffi
となるようにアンモニアガスを注射器で所定量入れ、そ
の後、測定試料2をセットし、容器中のアンモニア濃度
を2時間放置後、測定する方法によった。
An example of measuring deodorizing performance is shown in Figure 1. In the case of ammonia,
Ammonia sensor l (A E-2 manufactured by Toa Denpa Co., Ltd.)
35) and ion meter 3 (IM-1 manufactured by Toa Denpa Co., Ltd.)
E) is connected to the recorder 4, and the change over time in the ammonia gas concentration in the container 5 is read. 500 ppffi in container 5
A predetermined amount of ammonia gas was put into the container using a syringe so that the amount of ammonia gas was added, then measurement sample 2 was set, and the ammonia concentration in the container was measured after being left for 2 hours.

硫化水素の場合、所定容器に水硫化ナトリウム、蒸留水
、農塩酸を所定量加え一定量の硫化水素ガスを発生させ
、測定試料を容器中につるし、25℃に保存後フラスコ
内のヘッドスペースを北側式ガス検知管を用いて24時
間放置換測定した。
In the case of hydrogen sulfide, add a specified amount of sodium bisulfide, distilled water, and agricultural hydrochloric acid to a specified container to generate a certain amount of hydrogen sulfide gas, suspend the measurement sample in the container, and after storing it at 25°C, remove the head space in the flask. A 24-hour discharge displacement measurement was performed using a north-side gas detection tube.

本発明の熱可塑性樹脂としては、融点は150℃以上の
繊維形成性に優れたポリマーが好ましい。
As the thermoplastic resin of the present invention, a polymer having a melting point of 150° C. or higher and excellent fiber-forming properties is preferable.

特に好ましくは、ポリエステル又はポリアミドが良い。Particularly preferred are polyester or polyamide.

ポリエステルとは、ポリエチレンテレフタレート又はポ
リブチレンテレフタレートを主成分とするポリエステル
であり、テレフタール酸、イソフタール酸、ナフタリン
2.6ジカルボン酸、フタール酸、α、β−(4−カル
ボキシフェノキシ)エタン、4’、4°−ジカルボキン
ジフェニル、5−ナトリウムスルホイソフタル酸などの
芳香族ジカルボン酸もしくはアノピン酸、セバシン酸な
どの脂肪族ジカルボン酸、またはこれらのエステル類と
、エチレングリコール、ジェチレング・リコール、14
−ブタンジオール、ネオペンチルグリコール、シクロヘ
キサン−1,4−ジメタツール、ポリエチレングリコー
ル、ポリテトラメチレングリコールなどのノオール化合
物とから合成される繊維形成性ポリエステルであり、そ
の構成単位の80モル%以上が、特には90モル%以上
がポリエチレンテレフタレート単位又はポリブチレンテ
レフタレート単位であるポリエステルが好ましく、なお
かつ融点が150℃以上であることが望ましい。融点が
低くなると耐熱性不十分等の理由により衣料用等の繊維
素材としての用途がやや限定されてくるため好ましくな
(′)。また、ポリエステル中には、少量の添加剤、た
とえば、酸化チタンなどの艶消し剤、酸化防止剤、蛍光
増白剤、安定剤あるいは紫外線吸収剤などを含んでいて
も良い。
Polyester is a polyester whose main component is polyethylene terephthalate or polybutylene terephthalate, and includes terephthalic acid, isophthalic acid, naphthalene 2.6 dicarboxylic acid, phthalic acid, α,β-(4-carboxyphenoxy)ethane, 4', Aromatic dicarboxylic acids such as 4°-dicarboquine diphenyl, 5-sodium sulfoisophthalic acid or aliphatic dicarboxylic acids such as anopic acid, sebacic acid, or esters thereof, and ethylene glycol, ethylene glycol, 14
- A fiber-forming polyester synthesized from a nool compound such as butanediol, neopentyl glycol, cyclohexane-1,4-dimetatool, polyethylene glycol, polytetramethylene glycol, etc., in which 80 mol% or more of its constituent units are particularly is preferably a polyester in which 90 mol% or more is polyethylene terephthalate units or polybutylene terephthalate units, and desirably has a melting point of 150° C. or higher. If the melting point is low, the use as a fiber material for clothing etc. will be somewhat limited due to insufficient heat resistance etc., which is not preferable ('). The polyester may also contain small amounts of additives, such as matting agents such as titanium oxide, antioxidants, optical brighteners, stabilizers, or ultraviolet absorbers.

またポリアミドとは、ナイロン6、ナイロン66、又は
メタキンレンジアミンナイロンを主成分とするポリアミ
ドであり、少量の第3成分を含む共重合ポリアミドでも
良いが、融点はl 50 ’C以上を維持することが好
ましい。
Polyamide is a polyamide whose main component is nylon 6, nylon 66, or methaquinene diamine nylon, and may also be a copolyamide containing a small amount of a third component, but the melting point must be maintained at 150'C or higher. is preferred.

本発明は長繊維でも短繊維でも同じ効果が期待できるこ
とは言うまでもない。
It goes without saying that the same effect can be expected in the present invention with both long fibers and short fibers.

本発明の!に維とは、織物、編物、不織布またはその加
工製品を構成する繊維をいうが、該繊維以外の繊維、例
えば、木綿、麻、羊毛などの天然繊維、一般のポリエス
テル、ナイロン、アクリルなどの合成繊維、およびアセ
テート、レーヨンなどの半合成繊維などの混繊、混紡、
交編織したものであっても良い。この場合、本発明の繊
維の含有比率は消臭効果の点で30%以上が好ましく、
より好ましくは50%以上である。
The invention! Fiber refers to fibers that make up woven, knitted, non-woven fabrics, or processed products thereof, but includes fibers other than these, such as natural fibers such as cotton, linen, and wool, and synthetic fibers such as general polyester, nylon, and acrylic. Fibers, blended fibers such as semi-synthetic fibers such as acetate and rayon,
It may be of mixed knitting or weaving. In this case, the content ratio of the fiber of the present invention is preferably 30% or more in terms of deodorizing effect,
More preferably, it is 50% or more.

本発明の繊維は、仮燃捲縮加工等の高次加工により、5
角、6角に類貝した形状になったり、紡糸時の異形断面
ノズルにより、3葉形、T形、4葉形、5葉形、6葉形
、7葉形、8葉形等多葉形や各種の断面形状をとること
ができ、その効果は十分に発現される。
The fibers of the present invention can be obtained by high-order processing such as pre-combustion crimping.
It can be shaped like an angular or hexagonal shell, or it can be made into multi-lobed shapes such as trilobal, T-shaped, four-lobed, five-lobed, six-lobed, seven-lobed, eight-lobed, etc. due to the irregular cross-section nozzle during spinning. It can take various shapes and cross-sectional shapes, and its effects are fully expressed.

次に本発明の消臭繊維の製造例について説明する。例え
ばポリエチレンテレフタレート繊維の場合、本発明の無
機微粉末をモノマーであるエチレングリコール中へ所定
量分散させ、振動ミル又はボールミル等で1次粒子が平
均5ミクロン以下まで均一分散させたのち、該無機微粉
末分散エチレングリコールを用い公知の条件でテレフタ
ル酸と反応させた後、重合させその後、繊維化させる方
法がある。この場合には、重合速度が遅くなったり、所
定重合度まで分子量が上昇しないトラブルが時々発生し
たり、また、エステル化工程又は重合工程で無機微粉末
が熱凝集しゃすく、紡糸、延伸工程での糸切れ等の問題
が発生したりする問題が起こる。より安全な方法は、ポ
リエチレンテレフタートボリマーと平均5ミクロン以下
に微粉砕された無機微粒子を二軸混練押出機などで所定
量混練し再ペレット化したものを繊維化する方法である
。この場合、無機微粒子高含有量のマスターポリマーを
作成し、紡糸時にポリマーブレンド方式により所定量に
希釈し繊維化しても良い。
Next, a manufacturing example of the deodorant fiber of the present invention will be explained. For example, in the case of polyethylene terephthalate fiber, a predetermined amount of the inorganic fine powder of the present invention is dispersed in ethylene glycol, which is a monomer, and the inorganic fine powder is uniformly dispersed using a vibration mill or a ball mill to an average of 5 microns or less. There is a method of reacting powdered ethylene glycol with terephthalic acid under known conditions, polymerizing it, and then forming it into fibers. In this case, troubles such as the polymerization rate slowing down or the molecular weight not increasing to a predetermined degree of polymerization sometimes occur, or the inorganic fine powder may thermally agglomerate during the esterification or polymerization process, or during the spinning or drawing process. Problems such as thread breakage may occur. A safer method is to knead a predetermined amount of polyethylene tereftate polymer and inorganic fine particles finely pulverized to an average size of 5 microns or less using a twin-screw kneading extruder or the like, re-pelletize the resulting product, and then make fibers. In this case, a master polymer containing a high content of inorganic fine particles may be prepared and then diluted to a predetermined amount using a polymer blending method during spinning to form fibers.

(発明の効果) 本発明の繊維は、すぐれた消臭性能を有する亜鉛系無機
微粉末を繊維中に含有させることにより、消臭性能が保
持されたものである。しかも、本発明の繊維は耐久性が
非常に長い消臭性能を保持し、頻繁な洗濯を行なっても
消臭性能が低下しないので、例えば耐洗濯性を高度に要
求される病院用シーツ、おしめ等の分野に用いても、十
分に消臭性能を発揮させることが可能である。
(Effects of the Invention) The fibers of the present invention maintain deodorizing performance by incorporating zinc-based inorganic fine powder having excellent deodorizing performance into the fibers. In addition, the fibers of the present invention retain deodorizing performance for a very long time and do not deteriorate even after frequent washing, so they can be used, for example, in hospital sheets and diapers that require high washing resistance. Even when used in fields such as the above, it is possible to sufficiently exhibit deodorizing performance.

(実施例) 以下実施例をあげて本発明を具体的に説明する。(Example) The present invention will be specifically explained below with reference to Examples.

洗たく条件は、以下の試験方法によって行なった。The washing conditions were determined by the following test method.

く洗濯試験法〉 J I S  LO217−103法に従ッテ実施。液
aL40℃の水112に2gの割合で衣料用合成洗剤を
添加溶解し、洗たく液とする。この洗たく液に浴比が1
対30になるように試料及び必要に応じて負荷布を投入
して運転を開始する。5分間処理した後、運転を止め、
試料及び負荷布を脱水機で脱水し、次に洗たく液を常温
の新しい水に替えて同一の浴比で2分間すすぎ洗いをし
た後脱水し、再び2分間すすぎ洗いを行い風乾させる。
Washing test method> Conducted according to JIS LO217-103 method. Liquid aL 2 g of synthetic laundry detergent was added and dissolved in water 112 at 40° C. to obtain a washing liquid. This washing liquid has a bath ratio of 1
Load the sample and load cloth as necessary so that the ratio is 30 to 30, and start the operation. After processing for 5 minutes, stop operation,
Dehydrate the sample and load cloth using a dehydrator, then replace the washing liquid with fresh water at room temperature, rinse for 2 minutes at the same bath ratio, dehydrate, rinse again for 2 minutes, and air dry.

以上の操作を10回くりかえし10回後の測定サンプル
とした。
The above operation was repeated 10 times, and a measurement sample was obtained after 10 times.

実施例1 酸化亜鉛と二酸化ケイ素の重量比が1;3からなるアモ
ルファス構造のケイ酸亜鉛の粒子径が平均5ミクロン以
下の微粉末を、日本製鋼所(株)社製、二軸混練押出機
を用い、ポリエチレンテレフタレート樹脂と混練し、ポ
リエチレンテレフタレート樹脂中に上記無機微粉末を1
0wt%含有したペレットを得た。
Example 1 A fine powder of zinc silicate having an amorphous structure with a weight ratio of zinc oxide and silicon dioxide of 1:3 and an average particle size of 5 microns or less was prepared using a twin-screw kneading extruder manufactured by Japan Steel Works, Ltd. and knead with polyethylene terephthalate resin, and add 1 part of the above inorganic fine powder to the polyethylene terephthalate resin.
A pellet containing 0 wt% was obtained.

次いで、上記無機微粉末10wt%含有ペレットと、通
常のポリエチレンテレフタレートベレットをl:4の割
合でブレンドし、繊維化を実施し、消臭性能を有0た無
機微粉末が2wt%含有した繊維を得た。紡糸温度29
0℃、捲取り速度1000m/minで紡糸を行い、そ
の後ローラープレート方式により延伸を実施し、75デ
ニール24フイラメントのマルチフィラメントを得た。
Next, the above pellets containing 10 wt% of inorganic fine powder and ordinary polyethylene terephthalate pellets were blended at a ratio of 1:4, and fiberization was performed to obtain fibers containing 2 wt% of inorganic fine powder with deodorizing performance. Obtained. Spinning temperature 29
Spinning was performed at 0° C. and a winding speed of 1000 m/min, and then drawing was performed using a roller plate method to obtain a multifilament of 75 denier and 24 filaments.

紡糸性、延伸性共に良好で問題なかった。その後、常法
により筒編地を作成し、リラックス、水洗い、乾燥、プ
レセ°ット処理後、消臭性能を測定した。
Both spinnability and stretchability were good and there were no problems. Thereafter, a tubular knitted fabric was prepared using a conventional method, and after relaxing, washing, drying, and presetting treatments, the deodorizing performance was measured.

2リットル容器中sooppmアンモニア濃度に保持さ
れた雰囲気中へ測定試料logを設置し、2時間後の容
器中アンモニア濃度を測定し、消臭率を算出した。初期
性能ら、JIS規格規格1洸編地の性能もアンモニア消
臭率90%以上の性能が確認された。また、−度アンモ
ニア消臭率を測定した試料を洗たく処理し、再度アンモ
ニア消臭性能を同様にして測定する操作を5回くりかえ
した後の6回目の消臭率は、消臭率90%以上で初期性
能と同じ性能が再び発現していることが確認された。
A measurement sample log was placed in an atmosphere maintained at a sooppm ammonia concentration in a 2-liter container, and the ammonia concentration in the container was measured after 2 hours to calculate the deodorization rate. In addition to the initial performance, the performance of the JIS Standard 1 Ko knitted fabric was confirmed to have an ammonia deodorization rate of 90% or more. In addition, after repeating the procedure of washing the sample whose ammonia deodorization rate was measured and measuring the ammonia deodorization performance again in the same manner five times, the deodorization rate at the sixth time was 90% or more. It was confirmed that the same performance as the initial performance was expressed again.

同様にして、硫化水素についても実施し、2リツトルに
容器中10100ppこ保持された硫化水素雰囲気中へ
測定試料Logを設置し、24時間後の容器中硫化水素
濃度を測定し、消臭率をもとめた。初期性能も、JIS
規格規格1洸 ら硫化水素消臭率80%以上の性能が確認された。
In the same way, hydrogen sulfide was tested, and a measurement sample Log was placed in a 2-liter container containing hydrogen sulfide at 10,100 pp. After 24 hours, the hydrogen sulfide concentration in the container was measured, and the deodorization rate was determined. I asked for it. Initial performance is also JIS
Performance of hydrogen sulfide deodorization rate of 80% or more was confirmed from Standard 1 Ko.

また、アンモニア測定と同様に5回くりかえし操作(測
定→洗たく)後に6回目の硫化水素の測定を行なったと
ころ、初期性能と同様80%以上の消臭性能が確認され
た。
In addition, when hydrogen sulfide was measured for the sixth time after repeating the operation five times (measurement → washing) in the same manner as the ammonia measurement, it was confirmed that the deodorizing performance was 80% or more, which was the same as the initial performance.

比較例1 結晶構造を有した平均粒径5ミクロン以下の酸化亜鉛微
粉末と結晶構造を宵した平均粒径5ミクロン以下の微粉
末を重量比l:3で混合し、日本製鋼所(株)社製、二
軸混練押出機を用い、ポリエチレンテレフタレート樹脂
と混練し、ポリエチレンテレフタレート樹脂中に上記無
機微粉末を1Qvt%含有したベレットを得た。
Comparative Example 1 Fine zinc oxide powder with a crystalline structure and an average particle size of 5 microns or less and fine powder with a crystalline structure and an average particle size of 5 microns or less were mixed at a weight ratio of 1:3, and the powder was prepared by Japan Steel Works, Ltd. The mixture was kneaded with a polyethylene terephthalate resin using a twin-screw kneading extruder manufactured by Co., Ltd. to obtain a pellet containing 1Qvt% of the above inorganic fine powder in the polyethylene terephthalate resin.

次いで、上記無機微粉末1ht%含有ベレットと、通常
のポリエチレンテレフタレートペレットをl:4の割合
でブレンドし、繊維化を実施し、消臭性能を有した無機
微粉末が2wt%含有した繊維を得た。紡糸温度290
℃、捲取り速度1000m/minで紡糸を行い、その
後ローラープレート方式により延伸を実施し、75デニ
ール24フイラメントのマルチフィラメントを得た。紡
糸性、延伸性共に良好で問題なかった。その後、常法に
より筒編地を作成し、リラックス、水洗い、乾燥、プレ
セット処理°後、消臭性能を測定した。
Next, the above pellet containing 1 ht% of inorganic fine powder and ordinary polyethylene terephthalate pellets were blended at a ratio of 1:4, and fiberization was performed to obtain fibers containing 2 wt% of inorganic fine powder with deodorizing performance. Ta. Spinning temperature 290
C. and a winding speed of 1000 m/min, and then drawing was carried out using a roller plate method to obtain a multifilament of 75 denier and 24 filaments. Both spinnability and stretchability were good and there were no problems. Thereafter, a tubular knitted fabric was prepared using a conventional method, and after relaxing, washing with water, drying, and presetting treatment, the deodorizing performance was measured.

2リツトル容器中、500pPmアンモニア濃度に保持
された雰囲気中へ測定試料logを設置し、2時間後の
容器中アンモニア濃度を測定し、消臭率を算出した。初
期性能ら、JIS規格規格1先編地の性能もアンモニア
消臭率35%で不十分な性能であった。また、−度アン
モニア消臭率を測定した試料を洗たく処理し、再度アン
モニア消臭性能を同様にして測定する操作を5回くりか
えした後の6回目の消臭率は35%であった。
A measurement sample log was placed in an atmosphere maintained at an ammonia concentration of 500 pPm in a 2-liter container, and the ammonia concentration in the container was measured after 2 hours to calculate the deodorization rate. The initial performance and other performance of the JIS standard 1 first knitted fabric was also insufficient with an ammonia deodorization rate of 35%. Furthermore, after repeating the procedure 5 times in which the sample whose ammonia deodorization rate was measured was washed and the ammonia deodorization performance was measured again in the same manner, the deodorization rate at the 6th time was 35%.

同様にして、硫化水素についても実施し、2リツトル容
器中100pp1こ保持された硫化水素雰囲気中へ測定
試料logを設置し、24時間後の容器中硫化水素濃度
を測定し、消臭率をもとめた。初期性能も1.MSS規
格1註 化水素消臭率25%で不十分な性能であった。また、ア
ンモニア測定と同様に5回くりかえし操作(測定−洗た
く)後に6回目の硫化水素の測定を行なったところ、初
期性能と同様25%の消臭率であった。
In the same way, hydrogen sulfide was tested, and a measurement sample log was placed in a hydrogen sulfide atmosphere containing 100 pp1 in a 2-liter container, and the hydrogen sulfide concentration in the container was measured after 24 hours to determine the deodorization rate. Ta. Initial performance is also 1. MSS standard 1 hydrogen deodorization rate was 25%, which was insufficient performance. In addition, when hydrogen sulfide was measured for the sixth time after repeating the operation (measurement-washing) five times in the same way as the ammonia measurement, the deodorization rate was 25%, which was the same as the initial performance.

実施例2〜4 第1表に示す条件で実施した。実施例1と同様の無定形
ケイ酸亜鉛を用い、繊維中の含有量を変更して実施した
。含有量の変更は、無定形ケイ酸亜鉛微粉末10wt%
含有ベレットと通常のポリエチレンテレフタレートペレ
ットのブレンド割合を変更して実施した。他の条件は、
実施例1と同様に行ない、いずれも繊維化工程性良好で
消臭性能も十分あることか確認された。
Examples 2 to 4 Examples were carried out under the conditions shown in Table 1. The same amorphous zinc silicate as in Example 1 was used, but the content in the fiber was changed. The content change is amorphous zinc silicate fine powder 10wt%
The experiment was carried out by changing the blending ratio of the contained pellets and ordinary polyethylene terephthalate pellets. Other conditions are
The procedure was carried out in the same manner as in Example 1, and it was confirmed that both had good fiberization process properties and sufficient deodorizing performance.

実施例5.6 第1表に示す条件で用いるポリマーを実施例5はナイロ
ン6、実施例6はポリブチレンテレフタレートを用いて
行なった。実施例5は、紡糸l益度260℃、紡糸直結
延伸方式により75デニール24フイラメントの延伸糸
を得た。実施例6は、紡糸温度260℃、捲取り速度1
200m/minで紡糸を行ない、その後ローラープレ
ート方式により延伸を実施し、75デニール24フイラ
メントの延伸糸を得た。いずれら繊維化工程性は良好で
、消臭性能ら良好であった。
Example 5.6 Polymers used under the conditions shown in Table 1 were nylon 6 in Example 5 and polybutylene terephthalate in Example 6. In Example 5, a drawn yarn of 75 denier and 24 filaments was obtained using a spinning direct drawing method at a spinning yield of 260°C. In Example 6, the spinning temperature was 260°C and the winding speed was 1.
Spinning was carried out at 200 m/min, and then drawing was carried out using a roller plate method to obtain a drawn yarn of 24 filaments of 75 denier. All of them had good fiberization process properties and good deodorizing performance.

実施例78 無定形ケイ酸亜鉛の酸化亜鉛と二酸化ケイ素の混合比率
を変更し、実施例7は酸化亜鉛対二酸化ケイ素1 : 
I、実施例8は3:1で行ない、他の条件は実施例1と
同様に実施した。繊維化工程性良好で消臭性能も十分で
あった。
Example 78 The mixing ratio of zinc oxide and silicon dioxide in amorphous zinc silicate was changed, and Example 7 had a ratio of zinc oxide to silicon dioxide of 1:1.
I, Example 8 was carried out at a ratio of 3:1, and the other conditions were the same as in Example 1. It had good fiberization process properties and sufficient deodorizing performance.

比較例2 酸化亜鉛と二酸化ケイ素の重量比がl:3からなるアモ
ルファス構造のケイ酸亜鉛の粒子径か平均5ミクロン以
下の微粉末を、日本製鋼所(株)社製、二軸混練押出機
を用い、ポリエチレンテレフタレート樹脂と混練し、ポ
リエチレンテレフタレート樹脂中に上記無機微粉末を1
0wt%含有したベレットを得た。
Comparative Example 2 Fine powder of amorphous zinc silicate having a weight ratio of zinc oxide and silicon dioxide of 1:3 with an average particle size of 5 microns or less was fed into a twin-screw kneading extruder manufactured by Japan Steel Works, Ltd. and knead with polyethylene terephthalate resin, and add 1 part of the above inorganic fine powder to the polyethylene terephthalate resin.
A pellet containing 0 wt% was obtained.

次いで上記無機微粉末1ost%含有ペレットと、通常
のポリエチレンテレフタレートベレットを1−199の
割合でブレンドし、繊維化を実施し、消臭性能を有した
無機微粉末がQ、05wt%含有した繊維を得た。紡糸
温度290℃、捲取り速度1000m/+inで紡糸を
行い、その後ローラープレート方式により延伸を実施し
、75デニール24フイラメントのマルチフィラメント
を得た。紡糸性、延伸性共に良好で問題なかった。その
後常法により筒編地を作成し、リラックス、水洗い、乾
燥、プレセット処理後、消臭性能を測定した。
Next, the above pellets containing 1 ost% of inorganic fine powder and ordinary polyethylene terephthalate pellets were blended at a ratio of 1 to 199, and fiberization was performed to obtain fibers containing Q, 05 wt% of inorganic fine powder with deodorizing performance. Obtained. Spinning was carried out at a spinning temperature of 290° C. and a winding speed of 1000 m/+in, and then drawing was carried out using a roller plate method to obtain a multifilament of 75 denier and 24 filaments. Both spinnability and stretchability were good and there were no problems. Thereafter, a tubular knitted fabric was prepared using a conventional method, and after relaxing, washing, drying, and presetting treatments, the deodorizing performance was measured.

比較例3 酸化亜鉛と二酸化ケイ素の重量比がl:3からなるアモ
ルファス構造のケイ酸亜鉛の粒子径が平均5ミクロン以
下の微粉末を、日本製鋼所(株)社製、二輪混練押出機
を用い、ポリエチレンテレフタレート樹脂と混練し、ポ
リエチレンテレフタレート[脂中に上記無機微粉末を1
5wt%含有したベレットを得た。
Comparative Example 3 A fine powder of zinc silicate having an amorphous structure with a weight ratio of zinc oxide and silicon dioxide of 1:3 and an average particle size of 5 microns or less was processed using a two-wheeled kneading extruder manufactured by Japan Steel Works, Ltd. The above inorganic fine powder is mixed with polyethylene terephthalate [fat] and kneaded with polyethylene terephthalate resin.
A pellet containing 5 wt% was obtained.

次いで上記無機微粉末15wt%含有ペレットを用い、
紡糸を実施したところ、紡糸時の単糸切れ、断糸が頻発
した。また延伸性も不良であった。
Next, using the pellets containing 15 wt% of the above inorganic fine powder,
When spinning was carried out, single yarn breakage and yarn breakage occurred frequently during spinning. Moreover, the stretchability was also poor.

比較例4.5 無定形ケイ酸亜鉛の酸化亜鉛と二酸化ケイ素の混合比率
を比較例4は15:85、比較例5は85:15で行な
い、池の条件は実施例1と同様に実施した。
Comparative Example 4.5 The mixing ratio of zinc oxide and silicon dioxide in amorphous zinc silicate was 15:85 in Comparative Example 4 and 85:15 in Comparative Example 5, and the pond conditions were the same as in Example 1. .

・消臭性能としては実施例1より低いレベルであつた。- The deodorizing performance was at a lower level than in Example 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は消臭性111i測定装置の一例を示す図である
。 センサー 測定資料(71!l臭a椎構造物) イオンメーター 記録計 容    器
FIG. 1 is a diagram showing an example of a deodorizing property 111i measuring device. Sensor measurement data (71!l odor vertebrae structure) Ion meter recorder container

Claims (1)

【特許請求の範囲】[Claims] 平均粒子径5ミクロン以下の、酸化亜鉛と二酸化ケイ素
の比率が1:5〜5:1からなる大部分がアモルファス
な構造であるケイ酸亜鉛の実質的に無定形無機微粒子が
、融点150℃以上の熱可塑性ポリマー中に0.1〜1
0重量%存在していることを特徴とする消臭性能を有す
る合成繊維。
Substantially amorphous inorganic fine particles of zinc silicate with an average particle size of 5 microns or less and a mostly amorphous structure with a ratio of zinc oxide and silicon dioxide of 1:5 to 5:1 have a melting point of 150°C or higher. 0.1 to 1 in the thermoplastic polymer of
A synthetic fiber having deodorizing performance characterized by being present in an amount of 0% by weight.
JP63245315A 1988-09-28 1988-09-28 Deodorant synthetic fiber Expired - Fee Related JP2544788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63245315A JP2544788B2 (en) 1988-09-28 1988-09-28 Deodorant synthetic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63245315A JP2544788B2 (en) 1988-09-28 1988-09-28 Deodorant synthetic fiber

Publications (2)

Publication Number Publication Date
JPH0291209A true JPH0291209A (en) 1990-03-30
JP2544788B2 JP2544788B2 (en) 1996-10-16

Family

ID=17131842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63245315A Expired - Fee Related JP2544788B2 (en) 1988-09-28 1988-09-28 Deodorant synthetic fiber

Country Status (1)

Country Link
JP (1) JP2544788B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200415A (en) * 1992-07-27 1994-07-19 Nippon Ester Co Ltd Deodorizing polyester fiber
US5690922A (en) * 1995-02-15 1997-11-25 Takeda Chemical Industries, Ltd. Deodorizable fibers and method of producing the same
JP2003027330A (en) * 2001-07-16 2003-01-29 Mitsubishi Rayon Co Ltd Flame-retardant polypropylene fiber and method for producing the same
JP2011042909A (en) * 2009-08-24 2011-03-03 Teijin Fibers Ltd Deodorant fiber and method for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7117710B2 (en) * 2018-02-20 2022-08-15 日本エステル株式会社 Core-sheath type polyester composite fiber, false twist yarn of core-sheath type polyester composite fiber, woven and knitted fabric, and method for producing core-sheath type polyester composite fiber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62215010A (en) * 1986-03-17 1987-09-21 Teijin Ltd Deodorizing fiber
JPS6354935A (en) * 1986-08-25 1988-03-09 Titan Kogyo Kk White deodorant and its production
JPS6366320A (en) * 1986-09-05 1988-03-25 Dainichi Color & Chem Mfg Co Ltd Deodorizing pan fiber and production thereof
JPS63220874A (en) * 1987-03-10 1988-09-14 ライオン株式会社 Deodorant composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62215010A (en) * 1986-03-17 1987-09-21 Teijin Ltd Deodorizing fiber
JPS6354935A (en) * 1986-08-25 1988-03-09 Titan Kogyo Kk White deodorant and its production
JPS6366320A (en) * 1986-09-05 1988-03-25 Dainichi Color & Chem Mfg Co Ltd Deodorizing pan fiber and production thereof
JPS63220874A (en) * 1987-03-10 1988-09-14 ライオン株式会社 Deodorant composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200415A (en) * 1992-07-27 1994-07-19 Nippon Ester Co Ltd Deodorizing polyester fiber
US5690922A (en) * 1995-02-15 1997-11-25 Takeda Chemical Industries, Ltd. Deodorizable fibers and method of producing the same
JP2003027330A (en) * 2001-07-16 2003-01-29 Mitsubishi Rayon Co Ltd Flame-retardant polypropylene fiber and method for producing the same
JP2011042909A (en) * 2009-08-24 2011-03-03 Teijin Fibers Ltd Deodorant fiber and method for producing the same

Also Published As

Publication number Publication date
JP2544788B2 (en) 1996-10-16

Similar Documents

Publication Publication Date Title
JP2503057B2 (en) Antibacterial molded article and method for producing the same
TWI766029B (en) Charge generating yarn for bacteria countermeasure, method for producing charge generating yarn for bacteria countermeasure, and antibacterial fabric
KR102110248B1 (en) Collagen containing-plastic masterbatch, the manufacturing method thereof, the product therefrom, and application thereof
KR101241349B1 (en) Polymeric materials, which contain inorganic solids, and methods for the production thereof
JPH0291209A (en) Synthetic fibers having deodorant properties
JPH11124729A (en) Antimicrobial fiber and its production
JP2809640B2 (en) Polyester fiber and method for producing the same
JPH0299606A (en) Fiber having deodorant and antimicrobial performance and production thereof
JP2945264B2 (en) Antimicrobial fiber and method for producing the same
JPH01246204A (en) Antimicrobial formed products and their production
JP2809648B2 (en) Composite fiber with deodorant performance
US5783304A (en) Acidic or basic gas absorptive fiber and fabric
JP2593890B2 (en) Antibacterial molded article and method for producing the same
JP2905629B2 (en) Deodorant and deodorant fiber
JPH01250411A (en) Antifungal formed product and production thereof
JPH09157978A (en) Textile product comprising deodorizing/antimicrobial acrylic synthetic fiber
JP2004360091A (en) Antimicrobial polyester yarn and method for producing the same
JPH11100713A (en) Antimicrobial cellulose acetate fiber containing chitosan and its production
JPH06235116A (en) Antimicrobial fiber and web
JP2004339616A (en) Special cross-section fiber
JPS62223318A (en) Deodorizing polyester fiber and production thereof
JPH02169740A (en) Bacteriostatic deodorizing cloth
JP2003313728A (en) Deodorant fiber, method for producing the same and woven or knitted fabric
JP2007169800A (en) Deodorant/flame retardant polyester-based fibrous structure and method for producing the same
JP2000064149A (en) Structure containing fiber for preventing sweat odor and body odor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees