JP2539237B2 - Electronic scales - Google Patents

Electronic scales

Info

Publication number
JP2539237B2
JP2539237B2 JP62309723A JP30972387A JP2539237B2 JP 2539237 B2 JP2539237 B2 JP 2539237B2 JP 62309723 A JP62309723 A JP 62309723A JP 30972387 A JP30972387 A JP 30972387A JP 2539237 B2 JP2539237 B2 JP 2539237B2
Authority
JP
Japan
Prior art keywords
built
weight
cam
weights
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62309723A
Other languages
Japanese (ja)
Other versions
JPH01152318A (en
Inventor
栄一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E & D Kk
Original Assignee
E & D Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E & D Kk filed Critical E & D Kk
Priority to JP62309723A priority Critical patent/JP2539237B2/en
Publication of JPH01152318A publication Critical patent/JPH01152318A/en
Application granted granted Critical
Publication of JP2539237B2 publication Critical patent/JP2539237B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は環状に形成された校正用分銅を内蔵する電子
秤に係り、特に大小一対の環状の校正用分銅を有する電
子秤に関する。
Description: TECHNICAL FIELD The present invention relates to an electronic balance containing a calibration weight formed in a ring shape, and more particularly to an electronic balance having a pair of large and small ring-shaped calibration weights.

〔従来の技術〕[Conventional technology]

秤量装置は長時間使用するに従って内部機構の僅かな
緩みや僅かなずれ等のため重量の表示が不正確になる事
態が生じる。また同様なことは、秤量装置を輸送する際
の振動等によっても生じる。この場合秤量装置の重量表
示を適正な値に校正するため、正確な重量が予め判明し
ている校正用の分銅を用いて表示を調整する必要があ
る。
When the weighing device is used for a long period of time, the display of the weight may be inaccurate due to slight looseness or slight deviation of the internal mechanism. The same thing occurs due to vibrations and the like during transportation of the weighing device. In this case, in order to calibrate the weight display of the weighing device to an appropriate value, it is necessary to adjust the display using a calibration weight whose accurate weight is known in advance.

従来から最も一般的に実施されている校正作業は、秤
量皿に校正用分銅を載置して校正する方法である。しか
し、この方法では秤量装置とは別個に校正用分銅を保管
しておき、校正の都度その校正用分銅を取り出して使用
するため取り扱いが不便である。このため、校正用分銅
を秤量装置内に予め収納しておき、校正の必要が生じた
場合に装置外部からの操作により秤量装置内に収納され
た校正用分銅(以下「内蔵分銅」と称する)の荷重を秤
量物の荷重伝達部に伝達して校正を行う機構が提供され
ている。
The most commonly performed calibration work has been a method of placing a calibration weight on a weighing pan for calibration. However, in this method, the calibration weight is stored separately from the weighing device, and the calibration weight is taken out and used for each calibration, which is inconvenient to handle. Therefore, the calibration weight is stored in the weighing device in advance, and when calibration is required, the calibration weight is stored in the weighing device by an operation from the outside of the device (hereinafter referred to as "built-in weight"). There is provided a mechanism for performing calibration by transmitting the load of 1 to the load transmitting portion of the weighing object.

第5図は電磁平行式秤量装置(電子天秤)における内
蔵分銅の昇降機構であって、特開昭60−13224号等によ
り公知の従来形昇降機構を示す。
FIG. 5 shows a lifting mechanism for a built-in weight in an electromagnetic parallel weighing device (electronic balance), which is a conventional lifting mechanism known from JP-A-60-13224.

図中符号50は内蔵分銅であり、その平面形状は真円に
近い環状に形成してある。内蔵分銅の形状としては必ず
しも特定しているわけではなく、秤量装置の内部機構の
配置状態、内蔵分銅昇降機構の構成等により馬蹄形のも
の、棒状のもの等各種の形状のものが使用されている。
然し、発明者らは各種の形状の内蔵分銅を試験した結
果、校正作業の容易さ及び校正の正確さという点から環
状の校正分銅が理想的であることを既に確認している。
Reference numeral 50 in the figure is a built-in weight, and its planar shape is formed in an annular shape close to a perfect circle. The shape of the built-in weight is not necessarily specified, and various shapes such as a horseshoe shape and a bar shape are used depending on the arrangement state of the internal mechanism of the weighing device and the configuration of the built-in weight lifting mechanism. .
However, as a result of testing built-in weights of various shapes, the inventors have already confirmed that an annular calibration weight is ideal in terms of ease of calibration work and accuracy of calibration.

即ち、秤量皿51の支持軸、つまり荷重伝達用軸の軸心
と、環状の内蔵分銅50の中心とを一致させるように内蔵
分銅50を配置すれば、内蔵分銅50の荷重をビーム(秤量
物の荷重を秤量機構に伝達する部材)53に対して支持軸
52の軸心から変位させないで加えることができる。この
ため内蔵分銅の荷重が加わっても浮枠に特別な応力が生
じることはなく、四隅調節等の調節作業を行わなくても
簡単に校正を行うことができるという利点がある。
That is, if the built-in weight 50 is arranged so that the support shaft of the weighing pan 51, that is, the shaft center of the load transmission shaft and the center of the ring-shaped built-in weight 50, are arranged, the load of the built-in weight 50 is measured by the beam (weighing object). Member for transmitting the load to the weighing mechanism) 53 Support shaft
It can be added without being displaced from the axis of 52. Therefore, even if the load of the built-in weight is applied, no special stress is generated in the floating frame, and there is an advantage that the calibration can be easily performed without performing adjustment work such as four-corner adjustment.

次に符号54は内蔵分銅昇降用の昇降板であり、カム55
の回転により支点54aを中心として内蔵分銅支持部がX
−Y方向に揺動するようになっている。
Next, reference numeral 54 is a lift plate for lifting the built-in weight, and a cam 55
Rotation causes the built-in weight support to move around the fulcrum 54a.
It swings in the -Y direction.

この従来構成において、通常の秤量工程では昇降板54
の内蔵分銅支持部をX方向に上昇固定しておき、浮枠53
に対してはこの内蔵分銅50の荷重が加わらないようにし
ておく。校正の必要が生じた場合には、カム55を回転さ
せて昇降板54の内蔵分銅支持部をY方向に下降させて内
蔵分銅50を浮枠53に載置し校正を行う。
In this conventional configuration, the lifting plate 54 is used in the normal weighing process.
The built-in weight support of is raised and fixed in the X direction, and the floating frame 53
For this, make sure that the load of this built-in weight 50 is not applied. If calibration is required, the cam 55 is rotated to lower the built-in weight support portion of the lift plate 54 in the Y direction, and the built-in weight 50 is placed on the floating frame 53 for calibration.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

以上の構成の装置は良好な性能を有する反面、次のよ
うな問題もあり、より高い校正精度を確保し、かつより
容易な校正作業を実現することは事実上極めて困難であ
り、新たな昇降機構の開発が要望されている。
While the device configured as described above has good performance, it also has the following problems, and it is extremely difficult to secure a higher calibration accuracy and realize easier calibration work. Mechanism development is desired.

即ち上述の構成の装置では、 (1)最近の秤量装置、特にロードセル式秤或いは電磁
平衡式秤等の電子秤では荷重を電気的に出力するため秤
量物に応じて測定モードを変更できるようにした装置が
提供されている。例えば最大秤量は低下するが最小目盛
りを小さくした秤量モードと、最小目盛りは大きいが最
大秤量を大きくする秤量モードとする等、一台で複数段
の秤量モードに切り換えることができる装置が提供され
ている。
That is, in the device having the above-mentioned configuration, (1) In recent weighing devices, particularly in electronic scales such as a load cell type balance or an electromagnetic balance type scale, the load is electrically output so that the measurement mode can be changed according to the weighing object. A device is provided. For example, a weighing mode in which the minimum weighing is reduced but the minimum scale is reduced, and a weighing mode in which the minimum scale is large but the maximum weighing is increased are provided. There is.

このような装置において正確な校正を行うためには各
モードに対応した質量を有する内蔵分銅が各々必要とな
る。一方秤量装置は小型化、薄型化が要請され一つの内
蔵分銅を装備するにも充分な空間的余裕を確保すること
が困難となっており、ましてや複数の内蔵分銅を装備す
る余裕等はないので、高い必要性を有するものの各モー
ドに対応して複数の内蔵分銅を昇降させる機構は存在し
ていないのが実情である。
In order to perform accurate calibration in such an apparatus, each built-in weight having a mass corresponding to each mode is required. On the other hand, the weighing device is required to be small and thin, and it is difficult to secure a sufficient space margin to equip one built-in weight, let alone have a margin to equip a plurality of built-in weights. Although there is a high need, there is no mechanism for raising and lowering a plurality of built-in weights corresponding to each mode.

(2)また第5図に示す構成において、秤量物の荷重測
定可能な状態では内蔵分銅は昇降板54により上昇された
状態となっており、秤量装置本体における秤量室の床板
56の凹所にその一部が収納された状態となっている。こ
の状態のままで秤量装置の配置替えや輸送等を行うと、
移動の際の振動や傾きにより内蔵分銅50が所定の場所か
らずれてしまう事態が生じることがある。このような事
態になると校正時に正確な校正を行うことが不可能にな
るおそれがある。また、浮枠53に内蔵分銅50をそのまま
載置した状態で秤量装置を輸送すると振動等により浮枠
に対して瞬間的に当該内蔵分銅の質量の何倍もの荷重が
加わり、浮枠に接続する秤量機構を破壊する虞れがあ
る。このため製品出荷或いは装置の移動に際しては内蔵
分銅を秤量装置から取り出したり、或いは専用のストッ
パを設置するなどして秤量機構を保護するようにしてい
る。しかしながら移送後再度内蔵分銅を積載する作業に
細心の注意を払う必要があり、この様な注意を払っても
内蔵分銅を再装架する際やストッパを取り外す際に秤量
装置の内部機構を損傷する事故が少なからず生じてい
る。
(2) In the configuration shown in FIG. 5, the built-in weight is raised by the elevating plate 54 when the load of the weighing object can be measured.
Part of it is stored in the 56 recesses. If you change the layout of the weighing device or transport it in this state,
The built-in weight 50 may be displaced from a predetermined place due to vibration or inclination during movement. In such a situation, it may be impossible to perform accurate calibration at the time of calibration. Further, when the weighing device is transported with the built-in weight 50 placed on the floating frame 53 as it is, a load of several times the mass of the built-in weight is momentarily applied to the floating frame due to vibration or the like, and the floating weight is connected to the floating frame. There is a risk of destroying the weighing mechanism. Therefore, when the product is shipped or the device is moved, the built-in weight is taken out from the weighing device or a dedicated stopper is installed to protect the weighing mechanism. However, it is necessary to pay close attention to the work of loading the built-in weight again after the transfer, and even if such a caution is taken, the internal mechanism of the weighing device will be damaged when the built-in weight is remounted or the stopper is removed. Not a few accidents have occurred.

(3)次に、内蔵分銅50の昇降は支点54aを中心として
揺動する昇降板54により行われるため、内蔵分銅50の昇
降は、実際には支持軸52の軸心に沿って鉛直方向に行わ
れるのではなく、支点54aを中心として円弧を描くこと
になる。この結果浮枠53に載置した状態で支持軸52の軸
心と内蔵分銅50の中心とを正確に一致させるためには内
蔵分銅昇降機構を非常に精密に構成する必要がある。
(3) Next, since the built-in weight 50 is lifted and lowered by the lift plate 54 that swings about the fulcrum 54a, the built-in weight 50 is actually lifted and lowered in the vertical direction along the axis of the support shaft 52. Instead of being performed, an arc is drawn around the fulcrum 54a. As a result, in order to accurately align the shaft center of the support shaft 52 and the center of the built-in weight 50 in the state of being mounted on the floating frame 53, the built-in weight lifting mechanism needs to be configured very precisely.

〔問題点を解決するための手段〕[Means for solving problems]

校正用内蔵分銅として大小二つの環状の内蔵分銅を有
する電子秤であって、内蔵分銅は偏平かつ大径の大型内
蔵分銅と、同大型内蔵分銅と同心円状に位置する偏平か
つ小径の小型内蔵分銅とからなり、両内蔵分銅は荷重伝
達方向に沿って昇降する内蔵分銅支持部材により秤量装
置の荷重伝達機構の一部をなす浮枠に設けられた秤量皿
支持用の支持軸と軸心を共有するよう同心円状に配置さ
れ、当該浮枠にはこれら大小の内蔵分銅を係止する係止
部が係止高さを異にして設けられ、内蔵分銅支持部材の
昇降により大小の内蔵分銅を選択的に浮枠に付加するこ
とが可能に構成された電子秤であることを特徴とする。
An electronic balance having two large and small annular built-in weights as built-in weights for calibration, the built-in weights are flat and large diameter large built-in weights, and flat and small diameter small built-in weights concentric with the large built-in weights. Both built-in weights share the axis with the support shaft for supporting the weighing pan provided on the floating frame that is part of the load transmission mechanism of the weighing device by the built-in weight support member that moves up and down along the load transmission direction. Are arranged in concentric circles so that the floating frame is provided with locking parts for locking these large and small built-in weights at different locking heights, and large and small built-in weights are selected by raising and lowering the built-in weight support member. The electronic scale is configured so that it can be added to the floating frame.

〔作用〕[Action]

カム機構による内蔵分銅昇降機構によって、一部がこ
のカムに接触係止している内蔵分銅支持部材を昇降させ
る。内蔵分銅支持部材は荷重伝達軸とその軸心が平行な
支持ピンに沿って昇降することにより、載置してある内
蔵分銅を水平状態に保持したまま昇降することになる。
浮枠のうち、軽量の小型内蔵分銅と大重量の大型内蔵分
銅とが接触係合する高さを相違させることにより、各内
蔵分銅を下降させた場合に、先ず軽量内蔵分銅が浮枠に
載置され、この状態で精密測定モードに於ける校正を行
う。また支持部材を更に下降させれば大重量内蔵分銅も
浮枠に載置され、大重量測定モードにおける校正を行
う。
The built-in weight lifting mechanism using the cam mechanism moves up and down the built-in weight support member, a portion of which is in contact with and locked by the cam. The built-in weight support member moves up and down along a support pin whose load transmission shaft and its axis are parallel to each other, so that the built-in weight can be moved up and down while holding the built-in weight in a horizontal state.
Of the floating frames, the lightweight small built-in weight and the large heavy built-in weight are brought into contact with each other at different heights so that when the built-in weights are lowered, the lightweight built-in weight is first placed on the floating frame. Then, calibrate in the precision measurement mode in this state. Further, if the support member is further lowered, the large-weight built-in weight is also placed on the floating frame, and calibration in the large-weight measurement mode is performed.

〔実施例〕〔Example〕

以下本発明の一実施例を図面参考に詳細に説明する。 An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図及び第2図は内蔵分銅昇降装置を具体的に示
す。図中符号1は大径の大型(大重量)の内蔵分銅(以
下「大型内蔵分銅」と称する)を示し、2はこの大型内
蔵分銅に比較して小径の小型(軽量)内蔵分銅(以下
「小型内蔵分銅」と称する)を示す。
1 and 2 specifically show the built-in weight lifting device. In the figure, reference numeral 1 indicates a large-diameter (large-weight) built-in weight (hereinafter referred to as "large built-in weight"), and 2 is a small-diameter small (lightweight) built-in weight (hereinafter referred to as "large built-in weight"). "Small built-in weight").

図からも明らかなとおり大型、小型の各内蔵分銅1及
び2は平面形状が円形ドーナツ状の環状(リング状)に
形成されかつ両内蔵分銅1及び2は後述する支持部材に
より軸心(中心)を共通するよう同心円状に配置されて
いる。これら各内蔵分銅1及び2は図示の如く上下の環
状端面が近接するよう薄肉に形成されている。即ち両内
蔵分銅1および2は秤量装置の極めて限られた空間内に
配置可能なよう偏平に形成されている。3はこれら内蔵
分銅1及び2を支持しかつ昇降させる支持部材である。
3a、3b、3cはこの支持部材3のうち平面略「コ」字形の
支持部材枠体3dから枠体内部に展出した内蔵分銅支持ア
ームである。
As is clear from the figure, the large and small built-in weights 1 and 2 are formed in a circular donut-shaped annular shape (ring shape) in plan view, and both built-in weights 1 and 2 are axially (center) by a support member described later. Are arranged concentrically so that they are common. Each of the built-in weights 1 and 2 is formed thin so that the upper and lower annular end surfaces are close to each other. That is, both built-in weights 1 and 2 are formed flat so that they can be placed in a very limited space of the weighing device. Reference numeral 3 is a support member that supports these built-in weights 1 and 2 and moves them up and down.
Reference numerals 3a, 3b, and 3c denote built-in weight support arms extending from the support member frame 3d having a substantially U-shape in plan view to the inside of the frame.

大型及び小型の各内蔵分銅1及び2はこの支持アーム
3a、3b、3cに支持されることによりその軸心を共通にす
るよう同心円状に配置され、かつその共通の軸心は秤量
物の荷重をビーム側に伝達する荷重伝達軸の軸心と一致
するように配置される。また各内蔵分銅1及び2が支持
部材3により支持されている状態においては各内蔵分銅
の上部端面及び支持部材3上部端面がほぼ同一平面上に
位置するようになっており(第1図、第4図参照)、こ
れら内蔵分銅1、2を含めて内蔵分銅昇降機構か極めて
偏平に形成され、秤量装置の限られた空間に組み込み易
いよう構成されている。
The large and small built-in weights 1 and 2 are the support arms.
By being supported by 3a, 3b, 3c, they are arranged concentrically so that their axes are common, and the common axis coincides with the axis of the load transmission shaft that transmits the load of the weighing object to the beam side. Arranged to do so. Further, when the built-in weights 1 and 2 are supported by the support member 3, the upper end surface of each built-in weight and the upper end surface of the support member 3 are located substantially on the same plane (see FIG. 1, FIG. (See FIG. 4), the built-in weight lifting mechanism including these built-in weights 1 and 2 is formed to be extremely flat, and is configured so as to be easily incorporated in the limited space of the weighing device.

次にこの支持部材3の枠体3dの四隅には支持ピン4a、
4b、4c、4dが挿通している。このピンの下端部は秤量装
置本体に固定してあり、支持部材3はこのピンに沿って
前記荷重伝達軸の軸心に沿うようにして各内蔵分銅1、
2を水平状態に保持したまま昇降するようになってい
る。3e、3fは枠体3dのうち対向する辺部において突出位
置させた昇降用突片であり、各昇降用突片3e、3fに対し
て昇降機構が接触係合することにより支持部材3および
この支持部材3に支持された内蔵分銅1及び2を昇降さ
せるようになっている。
Next, at the four corners of the frame 3d of the support member 3, support pins 4a,
4b, 4c and 4d are inserted. The lower end of this pin is fixed to the main body of the weighing device, and the support member 3 extends along this pin along the axial center of the load transmission shaft, and each built-in weight 1,
It is designed to move up and down while holding 2 horizontally. Reference numerals 3e and 3f denote elevating projecting pieces that are projected at the opposite sides of the frame 3d, and the elevating mechanism comes into contact with the elevating projecting pieces 3e and 3f so that the supporting member 3 and The built-in weights 1 and 2 supported by the support member 3 are moved up and down.

次に支持部材の昇降機構について説明する。 Next, the lifting mechanism of the support member will be described.

5はギアドモータ6により回転する回転軸であり、こ
の回転軸5に対しては第1カム7と第2カム8とが設け
てある。また符号9は秤量装置本体側に固定した軸受け
である。回転軸5に設けた2個のカムのうち、第1カム
7は支持部材3の昇降用突片3fの下面と接触しており、
別の第2カム8は昇降運動伝達機構の一部を成す第1揺
動板10の一端の下面に接触している。この揺動板10は支
点11によりX1−Y1方向に揺動するようになっている。次
に12はこの第1揺動板10に対してほぼ直角をなすように
配置し、かつ支点13によりX2−Y2方向に揺動するように
した第2揺動板であり、その第1揺動板に接触する側の
端部は第1揺動板10下面に接触位置するように配置して
ある。
A rotating shaft 5 is rotated by a geared motor 6, and a first cam 7 and a second cam 8 are provided for the rotating shaft 5. Reference numeral 9 is a bearing fixed to the main body of the weighing device. Of the two cams provided on the rotary shaft 5, the first cam 7 is in contact with the lower surface of the lifting projection 3f of the support member 3,
Another second cam 8 is in contact with the lower surface of one end of the first oscillating plate 10 forming a part of the lifting motion transmission mechanism. The swing plate 10 swings in the X1-Y1 direction by a fulcrum 11. Next, reference numeral 12 is a second oscillating plate which is arranged so as to be substantially perpendicular to the first oscillating plate 10 and oscillates in the X2-Y2 direction by a fulcrum 13. The end of the side that contacts the moving plate is arranged so as to be in contact with the lower surface of the first swing plate 10.

第3図は内蔵分銅昇降機構を省略して、各内蔵分銅1
及び2と、荷重伝達用の浮枠の位置関係を示す。図中14
は秤量物の荷重を荷重測定機構に伝達する荷重伝達機構
の一部を成す浮枠を示す。14aはこの浮枠14に形成され
た大型内蔵分銅1を載置支持するための切り欠きであ
り、14bは小型内蔵分銅2を載置支持するための切り欠
きである。これら各切り欠きのうち、小型内蔵分銅2を
支持する切り欠き14bの底部の位置を大型内蔵分銅支持
用の切り欠き14aの位置よりもhだけ高く形成してお
く。因に支持部材3の上下方向移動のストロークは5〜
7mm程度で充分であり、従って前記高低差hは2〜3mm程
度と極めて僅かでよい。
In Fig. 3, the built-in weight lifting mechanism is omitted and each built-in weight 1
2 and 2 and the positional relationship of the floating frame for load transmission. 14 in the figure
Indicates a floating frame that forms a part of the load transmission mechanism that transmits the load of the weighing object to the load measurement mechanism. 14a is a notch for mounting and supporting the large internal weight 1 formed on the floating frame 14, and 14b is a notch for mounting and supporting the small internal weight 2. Among these notches, the bottom of the notch 14b that supports the small built-in weight 2 is formed to be higher than the position of the notch 14a for supporting the large built-in weight by h. By the way, the stroke of the vertical movement of the support member 3 is 5 to
A height of about 7 mm is sufficient, and therefore the height difference h may be as small as about 2 to 3 mm.

次に上記構成装置の作動状態について説明する。 Next, the operating state of the above-mentioned component device will be described.

先ず、各内蔵分銅1及び2を上昇させて、浮枠に荷重
がかからない状態、つまり秤量物の測定可能な状態につ
いて説明する。
First, a description will be given of a state in which the built-in weights 1 and 2 are raised and no load is applied to the floating frame, that is, a measurable state of the weighing object.

ギアドモータ6を作動させることにより回転軸5を介
して第1、第2の各カム7及び8を回転させる、先ず第
1カム7について説明すると、第1カム7の回転により
このカム7に接触する突片3fが上方のX3方向に押上られ
る。同様に昇降運動伝達機構のうち端部の一方が第2カ
ム8に接触する第1揺動板10のカム接触端部を押上る。
これにより反対側の端部は支点11を中心としてY1方向に
下降し、第2揺動板12の端部を同方向に押し下げる。こ
の動作により第2揺動板12の突片3e側の端部はX2方向に
上昇し、この突片3eを同方に向に押し上げる。つまり各
カム7、8の回転により各突片3e、3fは同時に同一方向
に押上げられることになる。この作動により支持部材3
は各ピン4a〜4dに沿って上昇し、この支持部材に支持さ
れた各内蔵分銅1及び2は水平状態を維持したまま上昇
する。続いて上昇位置でカムの回転を停止し、各内蔵分
銅を支持部材3により支持する。これにより各内蔵分銅
1及び2の荷重は全て支持部材3によって支持され、浮
枠14に対しては秤量皿15に載置された秤量物の荷重のみ
が伝達されることになる。なお第4図の符号16は秤量皿
15を支持する支持軸であり、秤量物の荷重を伝達する荷
重伝達軸であり、第3図からも明らかなとおり同心円状
に配置されている内蔵分銅1及び2の共通軸心とこの荷
重伝達軸16の軸心とも共通になるよう構成されている。
By operating the geared motor 6, the first and second cams 7 and 8 are rotated via the rotary shaft 5. First, the first cam 7 will be described. The rotation of the first cam 7 makes contact with the cam 7. The protrusion 3f is pushed upward in the X3 direction. Similarly, one of the ends of the up-and-down motion transmission mechanism pushes up the cam contact end of the first rocking plate 10 in contact with the second cam 8.
As a result, the opposite end is lowered in the Y1 direction about the fulcrum 11, and the end of the second rocking plate 12 is pushed down in the same direction. By this operation, the end of the second rocking plate 12 on the side of the protruding piece 3e rises in the X2 direction and pushes the protruding piece 3e in the same direction. That is, the protrusions 3e, 3f are simultaneously pushed up in the same direction by the rotation of the cams 7, 8. By this operation, the support member 3
Rise along the pins 4a to 4d, and the built-in weights 1 and 2 supported by this support member rise while maintaining a horizontal state. Then, the rotation of the cam is stopped at the raised position, and each built-in weight is supported by the support member 3. As a result, the loads of the internal weights 1 and 2 are all supported by the support member 3, and only the load of the weighing object placed on the weighing pan 15 is transmitted to the floating frame 14. Reference numeral 16 in FIG. 4 is a weighing dish.
A support shaft for supporting the load 15, a load transmission shaft for transmitting the load of the object to be weighed, and a common shaft center of the built-in weights 1 and 2 arranged concentrically as shown in FIG. It is also configured to be common with the axis of the shaft 16.

次に校正を行う場合の作動状態を説明する。 Next, the operating state when performing calibration will be described.

ギヤドモータ6を作動させることにより第1、第2の
各カム7、8を再度回転させる。これにより、前述の上
昇時と逆の作動により支持部材3は徐々に下降する。こ
の下降により支持部材3における各内蔵分銅1及び2の
支持面SL(第6図参照)の位置が第4図に示すL1の位置
に至ると、小型内蔵分銅2の下面が浮枠14の小型内蔵分
銅用切り欠き14bに載置され、この小型内蔵分銅2の荷
重のみが浮枠14に伝達される。更に支持部材3を下降さ
せて支持面SLの位置がL2の位置に至ると、大型内蔵分銅
1が浮枠14の切り欠き14aに載置され、浮枠14に対して
は両分銅1及び2の荷重が伝達されることになる。
By operating the geared motor 6, the first and second cams 7 and 8 are rotated again. As a result, the support member 3 is gradually lowered by the operation opposite to the above-described rising operation. When the position of the supporting surface SL (see FIG. 6) of each of the built-in weights 1 and 2 on the support member 3 reaches the position of L1 shown in FIG. 4 by this descending, the lower surface of the small built-in weight 2 becomes the small size of the floating frame 14. It is placed in the notch 14b for the built-in weight, and only the load of the small built-in weight 2 is transmitted to the floating frame 14. When the support member 3 is further lowered and the position of the support surface SL reaches the position of L2, the large built-in weight 1 is placed in the notch 14a of the floating frame 14, and both weights 1 and 2 are attached to the floating frame 14. Will be transmitted.

ここで、秤量装置のうち精密重量測定モードの校正を
行う場合には支持部材3の支持面SLの位置をL1とL2の間
に位置させて小型内蔵分銅2のみを浮枠14に載置させ
る。これにより精密重量測定モードの校正に適した重量
の小型内蔵分銅2により正確な校正を行うことができ
る。また大重量測定モードの校正を行う場合には前記支
持面SLがL2の位置以下となるように支持部材を下降さ
せ、小型内蔵分銅2及び大型内蔵分銅1の合計の荷重に
より校正を行う。なお以上の作動中、各内蔵分銅1及び
2は支持部材3により鉛直方向に下降するため各内蔵分
銅1及び2の軸心と荷重伝達軸16の軸心とは常に一致し
ているので、校正分銅を載置することにより浮枠に特別
な応力が加わることがなく、常に正確な校正を行うこと
ができる。
Here, in the case of performing calibration in the precise weight measurement mode of the weighing device, the position of the support surface SL of the support member 3 is positioned between L1 and L2, and only the small built-in weight 2 is placed on the floating frame 14. . As a result, accurate calibration can be performed with the small built-in weight 2 having a weight suitable for calibration in the precision weight measurement mode. When performing calibration in the large weight measurement mode, the support member is lowered so that the support surface SL is below the position of L2, and the calibration is performed by the total load of the small built-in weight 2 and the large built-in weight 1. During the above operation, since the built-in weights 1 and 2 descend vertically by the support member 3, the axes of the built-in weights 1 and 2 and the axis of the load transmission shaft 16 are always aligned. By placing the weight, no special stress is applied to the floating frame, and accurate calibration can always be performed.

以上本発明の構成を大型内蔵分銅と小型内蔵分銅の2
種類の内蔵分銅を昇降させる場合を例に説明したが、一
個の内蔵分銅を昇降させよう構成することはもとより、
3個以上の内蔵分銅を順次浮枠に載置するよう構成する
ことも本発明の技術的構成に包含されることは当然であ
る。
As described above, the configuration of the present invention includes a large built-in weight and a small built-in weight.
Although the case of raising and lowering one type of built-in weight has been described as an example, it goes without saying that it is configured to raise and lower one built-in weight.
It goes without saying that a configuration in which three or more built-in weights are sequentially mounted on the floating frame is also included in the technical configuration of the present invention.

〔効果〕〔effect〕

本発明は以上のように複数の内蔵分銅の荷重を荷重伝
達機構に対して選択的に付加することが可能であるた
め、荷重伝達機構に付加する内蔵分銅の荷重を適宜選択
することによって秤量装置の重量計測モードに合わせて
常時適正な校正を行うことが可能となる。
As described above, according to the present invention, the loads of a plurality of built-in weights can be selectively added to the load transmission mechanism. Therefore, the weighing device can be appropriately selected by selecting the load of the built-in weight to be added to the load transmission mechanism. It is possible to always perform proper calibration according to the weight measurement mode of.

また各内蔵分銅は偏平に形成されかつ同心円状に配置
されるため、複数の内蔵分銅を収納配置するにも係わら
ず従来の環状内蔵分銅の昇降機構が収納できる空間があ
れば収納可能であり、秤量装置を厚型かつ大型化するこ
となく複数の内蔵分銅の収納が可能となる。
In addition, since each built-in weight is formed flat and arranged concentrically, even if a plurality of built-in weights are stored and arranged, it can be stored if there is a space where the conventional annular built-in weight lifting mechanism can be stored, A plurality of built-in weights can be stored without increasing the thickness and size of the weighing device.

さらに内蔵分銅昇降機構によって、内蔵分銅支持部材
を昇降させ、内蔵分銅支持部材は荷重伝達軸とその軸心
が平行な支持ピンに沿って昇降することにより、載置し
てある内蔵分銅を水平状態に保持したまま昇降する構成
であるので、浮枠等の荷重伝達部に内蔵分銅を載置した
際に、その荷重付加中心と秤量物の荷重の伝達中心とが
一致し、校正を容易かつ非常に正確に行うことができ
る。
In addition, the built-in weight lifting mechanism raises and lowers the built-in weight support member, and the built-in weight support member moves up and down along a support pin whose load transmission shaft and its axis are parallel, so that the built-in weight is placed in a horizontal state. Since the configuration is such that the built-in weight is placed on the load transmission part such as a floating frame, the center of load addition and the center of load transmission of the weighing object are aligned, making calibration easy and extremely easy. Can be done accurately.

更にまた支持部材は複数本の強固な支持アームにより
支持されるため、秤量装置の移動等に際して振動や大き
な応力が加わっても内蔵分銅を確実に保持することがで
きるため、秤量装置の移送に当たって内蔵分銅を取り出
したり或いは特別のストッパ等を装備する必要がなくな
り、移送時の秤量装置の取り扱いが極めて容易であり、
かつ従来装置の如く内蔵分銅の再装着やストッパの取り
外しに伴う内部機構の損傷等の事故の発生のおそれもな
くなる等各種の効果を奏する。
Furthermore, since the support member is supported by a plurality of strong support arms, the built-in weight can be reliably held even if vibration or large stress is applied when the weighing device is moved, etc. There is no need to take out the weight or equip a special stopper, etc., and the weighing device during transfer is extremely easy to handle.
In addition, various effects such as the risk of an accident such as damage to the internal mechanism due to reattachment of the built-in weight and removal of the stopper as in the conventional device are eliminated.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例を示す大小一対の環状の内蔵分
銅及び各内蔵分銅を昇降させる内蔵分銅昇降装置の斜視
図、第2図は秤量装置内に収納された状態の内蔵分銅昇
降装置の平面図、第3図は内蔵分銅と浮枠との配置状態
を示す内蔵分銅及び浮枠の平面図、第4図は第3図のA
−A線による断面図、第5図は従来の内蔵分銅昇降機構
を示す昇降機の構側面図、第6図は内蔵分銅支持部材の
アームに対する内蔵分銅の載置状態を示す断面図であ
る。 1……大型内蔵分銅 2……小型内蔵分銅 3……内蔵分銅支持部材 3a、3b、3c……支持部材アーム 3d……支持部材枠体 3e、3f……支持部材昇降用突片 4a、4b、4b……支持部材支持用ピン 5……回転軸 6……ギヤドモータ 7……第1カム 8……第2カム 10……第1揺動板 12……第2揺動板 14……浮枠 16……荷重伝達軸
FIG. 1 is a perspective view of a pair of large and small annular built-in weights and a built-in weight lifting device for lifting and lowering each built-in weight, and FIG. 2 is a built-in weight lifting device stored in a weighing device. FIG. 3 is a plan view of the built-in weight and the floating frame showing the arrangement state of the built-in weight and the floating frame, and FIG. 4 is A of FIG.
FIG. 5 is a cross-sectional view taken along line A, FIG. 5 is a side view of an elevator showing a conventional built-in weight lifting mechanism, and FIG. 6 is a cross-sectional view showing how the built-in weight is placed on the arm of the built-in weight support member. 1 …… Large built-in weight 2 …… Small built-in weight 3 …… Built-in weight support members 3a, 3b, 3c …… Supporting member arm 3d …… Supporting member frame 3e, 3f …… Supporting member lifting protrusions 4a, 4b , 4b ...... Support member support pin 5 ...... Rotating shaft 6 ...... Geared motor 7 ...... First cam 8 ...... Second cam 10 ...... First oscillating plate 12 ...... Second oscillating plate 14 ...... Floating Frame 16 ... Load transmission shaft

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】校正用分銅として環状の分銅を内蔵しかつ
当該内蔵分銅を荷重伝達機構の浮き枠に加えることによ
り校正を行う電子秤において、環状の内蔵分銅は偏平か
つ大径の大型内蔵分銅と、偏平かつ小径の小型内蔵分銅
とからなり、両内蔵分銅は荷重伝達方向に沿って昇降す
る内蔵分銅支持部材により、小型内蔵分銅が大型内蔵分
銅の内部空間に収納位置するよう支持され、前記浮枠に
はこれら大小の内蔵分銅を係止する係止部が係止高さを
異にして設けられ、内蔵分銅支持部材の昇降により大小
の内蔵分銅を選択的に浮枠に付加することが可能に構成
された電子秤。
1. An electronic scale for calibrating by incorporating a ring-shaped weight as a calibration weight and adding the built-in weight to a floating frame of a load transmission mechanism, wherein the ring-shaped built-in weight is a flat large-sized built-in weight. And a small built-in weight having a flat and small diameter, both built-in weights are supported by built-in weight supporting members that move up and down along the load transmitting direction so that the small built-in weight is stored in the internal space of the large built-in weight. Locking parts for locking these large and small built-in weights are provided at different heights, and the built-in weight support members can be raised and lowered to selectively add large and small built-in weights to the floating frame. An electronic scale configured as possible.
【請求項2】内蔵分銅支持部材は鉛直方向に固設された
複数の支持ピンに沿って鉛直方向に昇降するよう構成さ
れ、内蔵分銅支持部材昇降機構は、カム機構と、このカ
ム機構に接続する昇降運動伝達機構とから構成され、カ
ム機構は内蔵分銅支持部材に形成され突片に接触する第
1カムと、この第1カムと同軸で前記昇降運動伝達機構
の一部を成す第1揺動板と接触する第2カムとから構成
され、昇降運動伝達機構は前記第1揺動板と、この第1
揺動板に係合して揺動する第2揺動板とから構成され、
前記突片に伝達される第1カムの回転による昇降運動
と、昇降運動伝達機構を介して別の突片に伝達される第
2カムの回転による昇降運動とにより内蔵分銅支持部材
を鉛直方向に昇降させるように構成したことを特徴とす
る特許請求の範囲第(1)項記載の電子秤。
2. The built-in weight support member is configured to vertically move up and down along a plurality of vertically fixed support pins, and the built-in weight support member lifting mechanism is connected to the cam mechanism and the cam mechanism. And a first oscillating mechanism which is formed on the internal weight supporting member and which contacts the protruding piece, and a first oscillating shaft which is coaxial with the first cam and which forms a part of the vertical movement transmitting mechanism. The lifting / lowering motion transmission mechanism includes a first cam and a second cam that is in contact with the moving plate.
And a second swing plate that swings by engaging the swing plate,
The built-in weight support member is vertically moved by the vertical movement by the rotation of the first cam transmitted to the protrusion and the vertical movement by the rotation of the second cam transmitted to another protrusion via the vertical movement transmission mechanism. The electronic scale according to claim 1, wherein the electronic scale is configured to be moved up and down.
JP62309723A 1987-12-09 1987-12-09 Electronic scales Expired - Lifetime JP2539237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62309723A JP2539237B2 (en) 1987-12-09 1987-12-09 Electronic scales

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62309723A JP2539237B2 (en) 1987-12-09 1987-12-09 Electronic scales

Publications (2)

Publication Number Publication Date
JPH01152318A JPH01152318A (en) 1989-06-14
JP2539237B2 true JP2539237B2 (en) 1996-10-02

Family

ID=17996522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62309723A Expired - Lifetime JP2539237B2 (en) 1987-12-09 1987-12-09 Electronic scales

Country Status (1)

Country Link
JP (1) JP2539237B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL1686358T3 (en) 2005-01-26 2009-06-30 Mettler Toledo Gmbh Gravimetric measuring apparatus with calibrating weight
JP6488957B2 (en) * 2015-09-16 2019-03-27 株式会社島津製作所 electronic balance

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5413639B2 (en) * 1972-06-07 1979-06-01
JPS5896225A (en) * 1981-12-03 1983-06-08 Sekisui Jushi Co Ltd Inspector for gravimeter to be inspected
JPS6013224A (en) * 1983-07-04 1985-01-23 Shimadzu Corp Electronic balance
JPS6227626A (en) * 1985-07-29 1987-02-05 Ee & D:Kk Built-in calibration weight type balance

Also Published As

Publication number Publication date
JPH01152318A (en) 1989-06-14

Similar Documents

Publication Publication Date Title
JP4136183B2 (en) Weighing scale with mechanical connection area for calibration weight
JP5081234B2 (en) Force measuring cell and weighing device with calibration weight device
US20200348335A1 (en) Wafer prober
US20180017432A1 (en) Balance having a load changing device and method for operating said balance
JP2539237B2 (en) Electronic scales
CN111323110A (en) Calibration weight assembly for weight measuring device
EP3255393A1 (en) Automatic mass comparator
JP3968002B2 (en) Weight set for electronic scales
EP1098177A2 (en) Automatic submultiple and multiple test weight calibration apparatus
JP2002277312A (en) Load receiving device for scale and load placing stand, and mass comparing and measuring device equipped with load receiving device and load placing stand
CN209894326U (en) Weighing device and gold exchange machine
JP2009016745A (en) Probe assembly
KR102167080B1 (en) Axially symmetric weight measuring apparatus
JPH1019652A (en) Electronic balance
JP7267541B2 (en) Industrial robot adjustment method and measuring instrument
JPH0633383Y2 (en) Joint mechanism of inner part copper lifting device
JP2611608B2 (en) Weighing device
CN111776743B (en) Weight conveying mechanism with automatic centering function and weight weighing assembly
JP2671097B2 (en) Hardness meter load control mechanism
JP6488957B2 (en) electronic balance
JP6178210B2 (en) Tank support housing used in weighing equipment
TWI416654B (en) Mounting device
JPH11108740A (en) Load cell-type weighing device equipped with calibration function
JPS6227626A (en) Built-in calibration weight type balance
CN213579726U (en) Automatic calibration structure for electronic balance