JPS6013224A - Electronic balance - Google Patents

Electronic balance

Info

Publication number
JPS6013224A
JPS6013224A JP12215483A JP12215483A JPS6013224A JP S6013224 A JPS6013224 A JP S6013224A JP 12215483 A JP12215483 A JP 12215483A JP 12215483 A JP12215483 A JP 12215483A JP S6013224 A JPS6013224 A JP S6013224A
Authority
JP
Japan
Prior art keywords
mode
weight
built
mass
span
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12215483A
Other languages
Japanese (ja)
Other versions
JPH0550691B2 (en
Inventor
Tadashi Nagaoka
長岡 正
Akira Kawamoto
河本 晟
Yoshio Tanaka
義雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP12215483A priority Critical patent/JPS6013224A/en
Publication of JPS6013224A publication Critical patent/JPS6013224A/en
Publication of JPH0550691B2 publication Critical patent/JPH0550691B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G23/00Auxiliary devices for weighing apparatus
    • G01G23/18Indicating devices, e.g. for remote indication; Recording devices; Scales, e.g. graduated
    • G01G23/36Indicating the weight by electrical means, e.g. using photoelectric cells
    • G01G23/37Indicating the weight by electrical means, e.g. using photoelectric cells involving digital counting
    • G01G23/3707Indicating the weight by electrical means, e.g. using photoelectric cells involving digital counting using a microprocessor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G23/00Auxiliary devices for weighing apparatus
    • G01G23/01Testing or calibrating of weighing apparatus

Abstract

PURPOSE:To obtain high calibrating accuracy without using a highly accurate weight as an enclosed weight, by performing operating process in accordance with a specified operating mode, which is selected by a mode selecting means. CONSTITUTION:Data processing programs are constituted, by 3 mode-executing routines A, B and C. The corresponding routine is executed by the operation of an operating key group 16. Namely, when the mode A is selected, an instrument- error computing routine, which computes a span coefficient K and the instrument error of an enclosed weight 13, is executed. When a mode B is selected, a measuring routine, which obtains the mass on a scale pan 11a by using the memorized span coefficient K and displays the measured value, is executed. When the mode C is selected, a span calibrating routine, which loads the enclosed weight 13, newly obtains a span coefficient K', and updates the memorized span coefficient K into said new coefficient K', is executed. Thus high calibrating accuracy can be obtained without using a highly accurate weight for the enclosed weight.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は電子天びんに関し、更に詳しくは、スパン較正
用の分銅を内蔵した電子天びんに関する・(ロ)従来技
術 高精度の電子天びんにおいては、使用する部品の温度依
存性等の特性から、その精度を維持するには随時較正が
必要であり、その為、質量が既知の分銅を内蔵して、そ
の分銅を荷重検出部に負荷したときの出力とその既知の
質量とから、荷重検出部出力を質量に換算する為の係数
(スパン係数)を更新する、いわゆるスパン較正機能を
備えたものが一般的となっている。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of industrial application The present invention relates to an electronic balance, and more particularly to an electronic balance with a built-in weight for span calibration. (b) Prior art High precision electronic balance Due to the temperature dependence and other characteristics of the parts used, calibration is required from time to time to maintain accuracy. Therefore, when a weight with a known mass is built in and the weight is loaded on the load detection section, It is common to have a so-called span calibration function that updates a coefficient (span coefficient) for converting the load detection section output into mass based on the output of the load detection section and its known mass.

従来のこの種電子天びんでは、上述の内蔵分銅を、公称
質量に合致するよう厳密に質量調整するか、あるいは、
特開昭57−113325にて既に提案されているよう
に、内蔵分銅の質量が公称質量に対して多少の誤差があ
っても良いように、内蔵分銅質量の公称質量に対する誤
差をあらかじめ計測して(器差付け)、その値を電子天
びんに記憶させておくかの方法を採っていた。前者の方
法では、内蔵分銅の製作に生産性を損い、電子天びんの
コストアンプの大きな要因となっていた。また、後者の
方法では、内蔵分銅製作は容易で番よある力(、あらか
じめ別の天びんによって内蔵分銅の誤差を計測しておく
必要があって、手間がかかるとともに器差付けされた内
蔵分銅の管理は困難で、結局この方法によっても実質的
にば電子天びんのコストアップを解消するまでには至っ
ていない。
In conventional electronic balances of this type, the built-in weight described above must be precisely adjusted to match the nominal mass, or
As already proposed in Japanese Patent Application Laid-Open No. 57-113325, the error in the mass of the built-in weight with respect to the nominal mass is measured in advance so that there may be some error in the mass of the built-in weight with respect to the nominal mass. (Instrument setting), the value was stored in the electronic balance. In the former method, productivity was lost in the production of built-in weights, which became a major factor in increasing the cost of electronic balances. In addition, with the latter method, it is easy to manufacture the built-in weight, but the error of the built-in weight must be measured in advance with another balance, which is time-consuming and requires a lot of effort. Management is difficult, and in the end, even this method has not been able to substantially eliminate the cost increase of electronic balances.

(ハ)目的 本発明は上記に鑑みてなされたもので、内蔵分銅に高精
度の分銅を用いず、比較的低コストの粗分鋼を用いると
ともに、その質量をあらかじめ別の天びんで計測せずと
も、すなわち器差付けをせずとも、高い較正精度を得る
ことのできる電子天びんの提供を目的としている。
(c) Purpose The present invention has been made in view of the above, and uses a comparatively low-cost rough weighing steel instead of using a high-precision built-in weight, and does not measure its mass in advance with a separate balance. In other words, the purpose of the present invention is to provide an electronic balance that can obtain high calibration accuracy without having to mount an instrument.

(ニ)構成 本発明の構成を第1図に示す・機能ブロック図に基づい
て説明する。
(d) Structure The structure of the present invention will be explained based on the functional block diagram shown in FIG.

荷重検出部1は、外部荷重又は内蔵分銅2が負荷された
とき、その荷重に対応する電気信号を出力して演算処理
手段3に供給する。内蔵分銅2の質量は、公称質量に対
して任意の誤差を有し、か□ つ、その誤差はあらかじめ計測しておく必要はない。演
算処理手段3は、荷重検出部1からの出力信号を、メモ
リ4に記憶されたA、B、Cの3つの演算モードのうち
、モード選択手段5によって選択された演算モードに従
って演算処理する。モードAは、外部荷重として所定の
公称質量の外部基準分銅を負荷したときと、内蔵分銅2
を負荷したときの荷重検出部1出力から、内蔵分銅2の
公称質量に対する差を算出して記憶するモードである。
When an external load or built-in weight 2 is loaded, the load detection section 1 outputs an electric signal corresponding to the load and supplies it to the arithmetic processing means 3. The mass of the built-in weight 2 has an arbitrary error with respect to the nominal mass, and there is no need to measure this error in advance. The calculation processing means 3 performs calculation processing on the output signal from the load detection section 1 according to the calculation mode selected by the mode selection means 5 from among the three calculation modes A, B, and C stored in the memory 4. Mode A is applied when an external reference weight with a predetermined nominal mass is applied as an external load, and when an internal reference weight 2 is applied as an external load.
In this mode, the difference with respect to the nominal mass of the built-in weight 2 is calculated and stored from the output of the load detection section 1 when a load is applied.

モードBは、荷重検出部1へ外部荷重を負荷したとき、
荷重検出部1の出力を、記憶しているスパン係数を用い
て質量に換算し、計量値として表示させるモードである
。またモードCは、内蔵分銅2を荷重検出部1に負荷し
たときの出力信号と、公称質量およびモードAでめた差
を用いてスパン係数を算出し、モードBにおいて用いる
スパン係数を更新するモードである。
In mode B, when an external load is applied to the load detection section 1,
This is a mode in which the output of the load detection section 1 is converted into mass using the stored span coefficient and displayed as a measured value. Mode C is a mode in which the span coefficient is calculated using the output signal when the built-in weight 2 is loaded on the load detection unit 1, the nominal mass, and the difference determined in mode A, and the span coefficient used in mode B is updated. It is.

(ホ)実施例 以下、本発明実施例を図面に基づいて説明する。(e) Examples Embodiments of the present invention will be described below based on the drawings.

第2図は本発明実施例の構成図である。FIG. 2 is a configuration diagram of an embodiment of the present invention.

荷重検出部11は、秤皿11a上への外部荷重又は、カ
ム12aおよびレバー12b等からなる分銅加除機構1
2により内蔵分銅13が負荷されたとき、その荷重に対
応する電気信号を発生してA−D変換器14を介して制
御部15に供給する。
The load detection unit 11 detects an external load on the weighing plate 11a or a weight adjustment mechanism 1 consisting of a cam 12a, a lever 12b, etc.
2, when the built-in weight 13 is loaded, an electric signal corresponding to the load is generated and supplied to the control section 15 via the AD converter 14.

制御部15はマイクロコンピュータによって構成され、
各種演算やプログラムの実行および各周辺装置を制御す
るCPU15a、後述するプログラムや各種演算結果等
を格納するエリアを備えたメモリ15b、および外部の
周辺機器と当該制御部15を接続する為のインターフェ
イス回路15C等から構成されている。制御部15には
、テンキーや後述する3つのモードを選択する為の選択
キー等を備えた操作キ一群16、および制御部15の指
令に基づいて計量値を表示する表示器17が接続されて
いる。
The control unit 15 is composed of a microcomputer,
A CPU 15a that executes various calculations and programs and controls each peripheral device, a memory 15b that has an area for storing programs and various calculation results described later, and an interface circuit that connects the control unit 15 with external peripheral devices. It is composed of 15C etc. Connected to the control unit 15 are a group of operation keys 16 including a numeric keypad and selection keys for selecting three modes to be described later, and a display 17 that displays weighing values based on commands from the control unit 15. There is.

次に作用を述べる。第3図は本発明実施例のメモリ15
bに書き込まれたデータ処理用プログラムの全体を示す
フローチャートである。プログラムハ、A、B、Cの3
つのモード実行ルーチンによって構成され、操作キ一群
16の操作によって選択されたモードに対応するルーチ
ンが実行される。すなわち、モードAを選択すると、ス
パン係数にと内蔵分銅13の器差を算出する器差算出ル
ーチンが、モードBを選択すると、記憶されているスパ
ン係数Kを用いて秤皿11a上の質量をめて計量値を表
示する測定ルーチンが、またモードCを選択すると、内
蔵分銅13を負荷して新たにスパン係数に′をめ、それ
まで記憶されているスパン係数Kをその値に更新するス
パン較正ルーチンがそれぞれ実行される。
Next, we will discuss the effect. FIG. 3 shows a memory 15 according to an embodiment of the present invention.
2 is a flowchart showing the entire data processing program written in FIG. Program 3, A, B, C
The routine consists of two mode execution routines, and the routine corresponding to the mode selected by operating the operation key group 16 is executed. That is, when mode A is selected, the instrumental error calculation routine calculates the instrumental error of the built-in weight 13 based on the span coefficient, and when mode B is selected, the mass on the weighing pan 11a is calculated using the stored span coefficient K. When the measurement routine that displays the measured value for the first time, selects mode C again, the span coefficient loads the built-in weight 13, adds ' to the span coefficient, and updates the previously stored span coefficient K to that value. Each calibration routine is executed.

次に、これらA、B、Cのモードに対応する各種のルー
チンの詳細を説明する。
Next, details of various routines corresponding to these modes A, B, and C will be explained.

第4図は器差算出ルーチンを示すフローチャートである
。このルーチンは、製作時の工場での較正、あるいはユ
ーザーが手持ちの基準とする分銅を用いての較正の際に
選択されるルーチンである。
FIG. 4 is a flowchart showing the instrumental error calculation routine. This routine is the routine selected during factory calibration at the time of manufacture or calibration using the user's standard weight.

まず秤皿11aへの無負荷時においてゼロ点がチェック
され(STI l) 、ずれていると較正動作に入らず
警告表示してその旨を報知する(STII。
First, the zero point is checked when no load is applied to the weighing pan 11a (STI I), and if it is off, the calibration operation will not begin and a warning will be displayed to notify you (STII).

5T12)。ゼロ点が正常であれば、その無負荷時にお
ける荷重検出部110出力XOを記憶し、基準分銅が秤
皿11a上に載せられるのを待つ(ST14)。この基
準分銅は、公称質量Wrに対してこの電子天びんの読み
取り限度以下の誤差のものか、あるいは読み取り限度の
値まで正確に器差eが付けられた分銅でなければならな
い。基準分銅を載せると(ST15)、オーバーロード
のチェックがなされ、何らかの理由でオーバーロードし
ているときには較正を中止して警告表示する(ST16
.5T17,5T18)。基準分銅に器差eがある場合
には、その値を操作キ一群16のテンキーによって入力
しておく (ST19)。
5T12). If the zero point is normal, the output XO of the load detection section 110 at the time of no load is stored, and the system waits for the reference weight to be placed on the weighing pan 11a (ST14). This reference weight must have an error of less than the reading limit of this electronic balance with respect to the nominal mass Wr, or must be a weight with an instrumental error e accurately up to the value of the reading limit. When a reference weight is placed (ST15), an overload check is performed, and if it is overloaded for some reason, the calibration is stopped and a warning is displayed (ST16).
.. 5T17, 5T18). If there is an instrumental error e in the reference weight, enter that value using the numeric keys in the operation key group 16 (ST19).

そうすると基準分銅を載せたときの荷重検出部11出力
XIが記憶され(ST20)、そのXlと無負荷時の出
力Xoとの差X2と、基準分銅の公称質量Wrおよび器
差eにより、スパン係数Kが、K = (W r + 
e ) / X 2−(l)によって算出される(S’
l’21)。その後基準分銅を降ろすと再度ゼロ点がチ
ェックされ(ST22゜5T23)、ずれている場合に
は較正を中止して警告表示される(ST24,5T25
)。ゼロ点がずれていない場合には、その時点の荷重検
出部11出力Xo ’ (#Xo)を記憶しく5T26
)、内蔵分銅13の負荷を待ち、内蔵分銅13を分銅加
除機構12によって負荷すると、その負荷時の荷重検出
部11出力X3を記憶する(ST27゜5T28)。そ
して、そのXaと無負荷時の出力XO’との差X4と、
5T21で算出したスパン係数に、および基準分銅負荷
時の無負荷時に対する出力差x2とから、内蔵分銅13
の公称質量Wrに対する質量差(器差)ΔWが、 ΔW=K・ (X 4− X 2 ) −(2)によっ
て算出されてメモリ15bに格納され(ST29)、器
差算出ルーチンを終了する。
Then, the output XI of the load detection section 11 when the reference weight is placed is stored (ST20), and the span coefficient is determined by the difference X2 between Xl and the output Xo under no load, the nominal mass Wr of the reference weight, and the instrumental error e. K = (W r +
e)/X2-(l) (S'
l'21). After that, when the reference weight is lowered, the zero point is checked again (ST22゜5T23), and if it is off, the calibration is stopped and a warning is displayed (ST24, 5T25).
). If the zero point is not shifted, remember the load detection unit 11 output Xo'(#Xo) at that time 5T26
), waits for the built-in weight 13 to be loaded, and when the built-in weight 13 is loaded by the weight addition/removal mechanism 12, the output X3 of the load detection section 11 at that time of loading is stored (ST27°5T28). Then, the difference X4 between that Xa and the output XO' under no load,
Based on the span coefficient calculated in 5T21 and the output difference x2 when the reference weight is loaded and when no load is applied, the built-in weight 13
The mass difference (instrumental difference) ΔW with respect to the nominal mass Wr is calculated by ΔW=K·(X 4−

第5図は測定ルーチンを示すフローチャートである。こ
のルーチンは通常の測定時に選択されるルーチンである
。ゼロ点がずれているときには警告を表示し、適正であ
れば測定動作が実行される(Sr10.Sr11.Sr
12)。このルーチンでは、被測定物を秤皿11a上に
載せると(ST33)、その負荷による荷重検出部11
出力Xwが採取され(ST34)、その値がメモリ15
bに格納されているスノぐン係数Kによって質量Wに、
W= K −X w−(3) によって換算され(ST35)、風袋重量Wtが記憶さ
れているときにはその値が減じられて風袋引処理が行な
われて計量値WOが決定され(ST36)、表示器17
に表示される(ST37)。
FIG. 5 is a flowchart showing the measurement routine. This routine is the routine selected during normal measurement. If the zero point is off, a warning will be displayed, and if it is correct, the measurement operation will be executed (Sr10.Sr11.Sr
12). In this routine, when the object to be measured is placed on the weighing plate 11a (ST33), the load detection unit 11 due to the load
The output Xw is sampled (ST34), and its value is stored in the memory 15.
The mass W is given by the Snowgun coefficient K stored in b.
It is converted by W = K - Vessel 17
is displayed (ST37).

第6図はスパン較正ルーチンを示すフローチャートであ
る。このルーチンは、内蔵分銅13を用いてスパン係数
Kを更新する、スパン較正時に選択されるルーチンであ
る。まず、無負荷時のゼロ点がチェックされ、ずれてい
るときには警告表示し、ずれていないときにのみ較正動
作に入る(ST3B、5T39,5T40)。較正動作
に入ると、無負荷時の荷重検出部11出力XOと内蔵分
銅13負荷時の出力X3が記憶され(ST41,5T4
2゜Sr13) 、XaとXoとの差X4と、公称質量
Wr、および器差算出ルーチンでめられた内蔵分銅13
の器差ΔWとにより、スパン係数に′かに’−(Wr+
ΔW ) / X 4−c4)によって算出され(ST
44.)、それまで記憶されているスパン係数Kがその
値に′に更新され(ST45)、以後の測定ルーチンで
はその更新後のスパン係数Kを用いて質量が算出される
FIG. 6 is a flowchart showing the span calibration routine. This routine is a routine selected during span calibration that updates the span coefficient K using the built-in weight 13. First, the zero point under no load is checked, and if it deviates, a warning is displayed, and only if it does not deviate, a calibration operation begins (ST3B, 5T39, 5T40). When the calibration operation starts, the output XO of the load detection section 11 at no load and the output X3 of the built-in weight 13 at load are memorized (ST41, 5T4
2゜Sr13), the difference X4 between Xa and Xo, the nominal mass Wr, and the built-in weight 13 determined by the instrumental error calculation routine.
Due to the instrumental error ΔW of
ΔW ) / X 4-c4) is calculated by (ST
44. ), the span coefficient K stored up to that point is updated to the value '' (ST45), and in the subsequent measurement routine, the mass is calculated using the updated span coefficient K.

なお、以上の実施例では、器差算出ルーチンにおいて、
内蔵分銅13の器差ΔWを算出する前にスパン係数Kを
算出し、その値を用いて(2)式で器差ΔWをめる場合
について述べたが、スパン係数を用いずに下記の(2)
′式により直接器差ΔWをめることもできる。
In addition, in the above embodiment, in the instrumental error calculation routine,
We have described a case in which the span coefficient K is calculated before calculating the instrumental error ΔW of the built-in weight 13, and that value is used to calculate the instrumental error ΔW using equation (2). 2)
It is also possible to directly calculate the instrumental error ΔW using the equation '.

ΔW= (Wr+e)/ (X4 /X2−1)−12
)’この場合、器差算出ルーチンではスパン係数Kをめ
る必要がなく、第4図の5T21および5T29に替え
て、それぞれ第7図(a)、 (b)に示す5T21′
および5T29’を挿入しけおけばよい。
ΔW= (Wr+e)/(X4/X2-1)-12
)' In this case, there is no need to calculate the span coefficient K in the instrumental error calculation routine, and instead of 5T21 and 5T29 in Figure 4, 5T21' shown in Figures 7(a) and (b), respectively.
and 5T29' may be inserted.

また、基準分銅に器差が読み取り限度以内のものを用い
る条件では、操作キ一群のうち器差を入力するためのテ
ンキーが不要となることは云うまでもない。
Furthermore, it goes without saying that under the condition that the reference weight is used with an instrumental error within the reading limit, the numeric keypad for inputting the instrumental error among the group of operation keys becomes unnecessary.

(へ)効果 以上説明したように、本発明によれば、スパン較正用の
内蔵分銅に高精度の分銅を必要とせず、電子天びんのコ
ストを著しく低減させることができる。このコスト低減
は、高精度の電子天びんになる程顕著となる。また、内
蔵分銅の器差は、製造時や検査時において計測、較正さ
れ、前もって別の大びんによって計測して管理しておく
等の手間を必要とせず、上述のコスト低減は実質的なも
のとなる。更に、本発明によれば、基準分銅の質量又は
公称質量と内蔵分銅の質量との差が相当大きな値であっ
ても、高いスパン較正精度を得ることができるので、内
蔵分銅はもはや単に寸法的に所定の大きさに加工するだ
けでその質量は全く測定する必要がなくなった。また、
ユーザーが手持ちの基準分銅を用いて質量管理を行って
いる場合においても、製造時と同様の器差算出ルーチン
を選択できるので、有効に活用することができる。
(f) Effects As explained above, according to the present invention, a high-precision weight is not required as a built-in weight for span calibration, and the cost of an electronic balance can be significantly reduced. This cost reduction becomes more pronounced as the electronic balance becomes more precise. In addition, the built-in weight's instrumental error is measured and calibrated during manufacturing and inspection, eliminating the need for pre-measurement and management using a separate large bottle, and the above-mentioned cost reduction is substantial. becomes. Furthermore, according to the present invention, even if the difference between the mass of the reference weight or the nominal mass and the mass of the built-in weight is considerably large, high span calibration accuracy can be obtained, so that the built-in weight is no longer simply dimensional. There is no need to measure its mass at all, just by processing it into a predetermined size. Also,
Even when the user performs mass control using a standard weight on hand, the same instrumental error calculation routine as used during manufacturing can be selected, so that the user can effectively utilize the standard weight.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示す機能ブロック図、第2図は
本発明実施例の構成図、第3図はそのデータ処理用プロ
グラムの全体を示すフローチャート、第4図、第5図お
よび第6図はその各ルーチンの詳細を示すフローチャー
1−1第7図は本発明の他の実施例の器差算出ルーチン
のフローチャートの要部である。 11−荷重検出部 11a−・秤皿 12・−分銅加除機構 13−内蔵分銅15−・・制御
部 15 a−CP U15b・−メモリ 16−操作
キ一群 17−表示器 特許出願人 株式会社島津製作所 代理人 弁理士西1)新 第6図 第7図 (a) (b)
FIG. 1 is a functional block diagram showing the configuration of the present invention, FIG. 2 is a configuration diagram of an embodiment of the present invention, FIG. 3 is a flowchart showing the entire data processing program, and FIGS. FIG. 6 is a flowchart 1-1 showing details of each routine. FIG. 7 is a main part of a flowchart of an instrumental error calculation routine according to another embodiment of the present invention. 11-Load detection section 11a--Weighing plate 12--Weight addition/removal mechanism 13-Built-in weight 15--Control section 15 a-CP U15b--Memory 16-Group of operation keys 17-Display device Patent applicant Shimadzu Corporation Agent Patent Attorney Nishi 1) New Figure 6 Figure 7 (a) (b)

Claims (3)

【特許請求の範囲】[Claims] (1)負荷された荷重に対応した電気信号を出力する荷
MI*出部と、メモリ゛に記憶された複数の演算モード
と、その複数の演算モードのうち任意のモードを選択す
るモード選択手段と、そのモード選択手段により選択さ
れた演算モードに従って上記荷重検出部出力を演算処理
する演算処理手段と、公称質量に対して任意の誤差を有
するスパン較正用の内蔵分銅を有し、上記複数の演算モ
ードが下記のA、B、Cの3つのモードであることを特
徴とする電子天びん。 モードA;所定の公称質量の外部基準分銅の負荷時およ
び上記内蔵分銅の負荷時における上記荷重検出部出力が
ら、上記内蔵分銅の上記公称質量に対する差を算出して
記憶するモード。 モードB;上記荷重検出部の出力を、記憶されているス
パン係数を用いて質量に換算し、計量値を決定して表示
させるモード。 モードC:上記内蔵分銅の負荷時における上記荷重検出
部出力と、上記公称質量および上記モードAでめた上記
差を用いてスパン係数を算出し、上記モードBにおいて
用いるスパン係数を更新するモード。
(1) A load MI* output section that outputs an electrical signal corresponding to the applied load, a plurality of calculation modes stored in the memory, and a mode selection means that selects any mode from among the plurality of calculation modes. , an arithmetic processing means for arithmetic processing the output of the load detection section according to the arithmetic mode selected by the mode selection means, and a built-in weight for span calibration having an arbitrary error with respect to the nominal mass; An electronic balance characterized by having three calculation modes, A, B, and C below. Mode A: A mode in which the difference between the built-in weight and the nominal mass is calculated and stored from the load detection section output when an external reference weight of a predetermined nominal mass is loaded and when the built-in weight is loaded. Mode B: A mode in which the output of the load detection section is converted into mass using the stored span coefficient, and a measured value is determined and displayed. Mode C: A mode in which a span coefficient is calculated using the output of the load detection section when the built-in weight is loaded, the nominal mass, and the difference determined in Mode A, and the span coefficient used in Mode B is updated.
(2)上記モードAの実行時において、上記外部基準分
銅の負荷時における上記荷重検出部出力から、スパン係
数を算出し、その値を用いて上記内蔵分銅の上記差を算
出するよう構成したことを特徴とする特許請求の範囲第
1項記載の電子天びん。
(2) When executing mode A, the span coefficient is calculated from the output of the load detection section when the external reference weight is loaded, and the difference between the built-in weights is calculated using that value. An electronic balance according to claim 1, characterized in that:
(3)上記モードAにおける上記外部基準分銅に上記公
称質量に対する器差があるとき、その器差を入力するこ
とにより上記外部基準分銅の質量と上記公称質量との差
を補正して、上記内蔵分銅の上記差を算出するよう構成
したことを特徴とする特許請求の範囲第1項又は第2項
記載の電子天びん。
(3) When the external reference weight in mode A has an instrumental error with respect to the nominal mass, by inputting the instrumental error, the difference between the mass of the external reference weight and the nominal mass is corrected, and the built-in The electronic balance according to claim 1 or 2, characterized in that the electronic balance is configured to calculate the difference in weights.
JP12215483A 1983-07-04 1983-07-04 Electronic balance Granted JPS6013224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12215483A JPS6013224A (en) 1983-07-04 1983-07-04 Electronic balance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12215483A JPS6013224A (en) 1983-07-04 1983-07-04 Electronic balance

Publications (2)

Publication Number Publication Date
JPS6013224A true JPS6013224A (en) 1985-01-23
JPH0550691B2 JPH0550691B2 (en) 1993-07-29

Family

ID=14828936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12215483A Granted JPS6013224A (en) 1983-07-04 1983-07-04 Electronic balance

Country Status (1)

Country Link
JP (1) JPS6013224A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243796A (en) * 1985-08-21 1987-02-25 芝浦メカトロニクス株式会社 Vending machine
JPS6312273U (en) * 1986-05-29 1988-01-27
JPS63111426A (en) * 1986-10-30 1988-05-16 Tokyo Electric Co Ltd Electronic scale
JPH01152318A (en) * 1987-12-09 1989-06-14 A & D Co Ltd Built-in weight lift
JPH03291533A (en) * 1990-04-08 1991-12-20 Anritsu Corp Weight selecting device
JP2008055331A (en) * 2006-08-31 2008-03-13 Toyota Boshoku Corp Filter for air cleaner and air cleaner using it

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582638U (en) * 1981-06-29 1983-01-08 株式会社島津製作所 electronic balance
JPS5891130U (en) * 1981-12-15 1983-06-20 株式会社石田衡器製作所 Electronic scales

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582638B2 (en) * 1978-07-19 1983-01-18 株式会社日立製作所 Radioactive waste treatment method and equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582638U (en) * 1981-06-29 1983-01-08 株式会社島津製作所 electronic balance
JPS5891130U (en) * 1981-12-15 1983-06-20 株式会社石田衡器製作所 Electronic scales

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243796A (en) * 1985-08-21 1987-02-25 芝浦メカトロニクス株式会社 Vending machine
JPH0523476B2 (en) * 1985-08-21 1993-04-02 Shibaura Eng Works Ltd
JPS6312273U (en) * 1986-05-29 1988-01-27
JPS63111426A (en) * 1986-10-30 1988-05-16 Tokyo Electric Co Ltd Electronic scale
JPH01152318A (en) * 1987-12-09 1989-06-14 A & D Co Ltd Built-in weight lift
JPH03291533A (en) * 1990-04-08 1991-12-20 Anritsu Corp Weight selecting device
JP2008055331A (en) * 2006-08-31 2008-03-13 Toyota Boshoku Corp Filter for air cleaner and air cleaner using it

Also Published As

Publication number Publication date
JPH0550691B2 (en) 1993-07-29

Similar Documents

Publication Publication Date Title
JPH0652190B2 (en) Electronic balance
WO2006132235A1 (en) Load cell-type electronic balance
EP0044707B1 (en) An electronic balance
JP2001013001A (en) Electronic weighing apparatus with built-in weight
US4914611A (en) Force measuring device
JPS6013224A (en) Electronic balance
JPS6110727A (en) Initial setting method of counting balance
JP4080614B2 (en) An electronic scale having a mechanism for determining whether calibration is appropriate
JP4835878B2 (en) Electronic balance
JPH11125555A (en) Load cell balance
JP2008202939A (en) Electronic balance
JPH0746060B2 (en) Electronic balance
JPH10148566A (en) Method for compensating hysteresis error, and measuring instrument with the function
JP2588391B2 (en) Initial calibration method of gain in digital indicator
JPS60207010A (en) Electronic balance
JPH06331427A (en) Electronic balance
JPH11311565A (en) Load cell balance
JPS61195313A (en) Electronic balance
JPS6039521A (en) Force measuring device provided with temperature compensation
JPH1151757A (en) Electronic weighing apparatus
JPH1137827A (en) Measuring device of load
JPS5833529Y2 (en) Measured value correction method
JPS62228119A (en) Digital display balance
JPS63145922A (en) Measuring apparatus having air density measuring mechanism
JPS63228032A (en) Electronic balance