JPH01152318A - Built-in weight lift - Google Patents

Built-in weight lift

Info

Publication number
JPH01152318A
JPH01152318A JP62309723A JP30972387A JPH01152318A JP H01152318 A JPH01152318 A JP H01152318A JP 62309723 A JP62309723 A JP 62309723A JP 30972387 A JP30972387 A JP 30972387A JP H01152318 A JPH01152318 A JP H01152318A
Authority
JP
Japan
Prior art keywords
built
weight
support member
cam
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62309723A
Other languages
Japanese (ja)
Other versions
JP2539237B2 (en
Inventor
Eiichi Yoshida
栄一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&D Holon Holdings Co Ltd
Original Assignee
A&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&D Co Ltd filed Critical A&D Co Ltd
Priority to JP62309723A priority Critical patent/JP2539237B2/en
Publication of JPH01152318A publication Critical patent/JPH01152318A/en
Application granted granted Critical
Publication of JP2539237B2 publication Critical patent/JP2539237B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To achieve a calibration easily and accurately, by lifting a built-in weight support member along a support pin with an axis center thereof being parallel with a load transmission shaft so that the center of applying a load coincides with the center of transmitting a load of an object to be measured. CONSTITUTION:A built-in weight support member 3 with a part thereof retained in contact with a cam is lifted or lowered by a built-in weight lifting mechanism using a cam mechanism. The built-in weight support member 3 is lifted along support pins 4a-4d with an axis center thereof parallel to a load transmission shaft 16 so that built-in weights 1 and 2 placed thereon are lifted being kept horizontal. Among floating frames 14, the height at which a light build-in weight 2 and a heavy built-in weight 1 are retained in contact is differentiated and when the built-in weights are lowered, first the light built-in weight 2 is placed on the floating frame 14, a condition under which a calibration is performed in a precision measuring mode. With a further lowering of the support member, the heavy built-in weight 1 is also placed on the floating frame 14 to perform a calibration in a large heavy measuring mode.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は秤量装置内部に収納した校正用の分銅を昇降す
る装置に係り、特に環状の校正用分銅を昇降させるのに
好適な装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for lifting and lowering a calibration weight housed inside a weighing device, and particularly to a device suitable for lifting and lowering an annular calibration weight.

〔従来の技術〕[Conventional technology]

秤量装置は長時間使用するに従って内部機構の僅かな緩
みや僅かなずれ等のため重量の表示が不 ゛正確になる
事態が生じる。また同様なことは、秤量装置を輸送する
際の振動等によっても生じる。
As a weighing device is used for a long period of time, the weight display may become inaccurate due to slight loosening or slight deviation of the internal mechanism. A similar problem also occurs due to vibrations and the like when the weighing device is transported.

この場合秤量装置の重量表示を適正な値に校正するため
、正確な重量が予め判明している校正用の分銅を用いて
表示を調整する必要がある。
In this case, in order to calibrate the weight display of the weighing device to an appropriate value, it is necessary to adjust the display using a calibration weight whose exact weight is known in advance.

従来から最も一般的に実施されている校正作業は、秤量
皿に校正用分銅を載置して校正する方法である。しかし
、この方法は秤量装置は別個に校正用分銅を保管して置
き、校正の都度その校正用分銅を取り出して使用する必
要があり、取り扱いが不便である。このため、校正用分
銅を秤量装置内に予め収納しておき、校正の必要が生じ
た場合に装置外部からの操作により秤量装置内に収納さ
れた校正用分銅(以下「内蔵分銅」と称する)の荷重を
秤量物の荷重伝達部に伝達して校正を行う機構が提供さ
れている。
The most commonly performed calibration work has been a method of placing a calibration weight on a weighing pan. However, in this method, it is necessary to separately store a calibration weight in the weighing device, and to take out and use the calibration weight each time calibration is performed, which is inconvenient to handle. For this reason, a calibration weight is stored in the weighing device in advance, and when the need for calibration arises, the calibration weight is stored in the weighing device by operation from outside the device (hereinafter referred to as "built-in weight"). A mechanism is provided that performs calibration by transmitting a load to a load transmission section of a weighed object.

第5図は電磁平行式秤量装置(電子天秤)内に収納した
内蔵分銅の配置状態及びその従来形昇降機構を示す。
FIG. 5 shows the arrangement of built-in weights housed in an electromagnetic parallel weighing device (electronic balance) and its conventional lifting/lowering mechanism.

図中符号50は内蔵分銅であり、その平面形状は真円に
近い環状に形成しである。内蔵分銅の形状としては必ず
しも特定しているわけではなく、秤量装置の内部機構の
配置状態、内蔵分銅昇降機構め構成等により馬蹄形のも
の、棒状のもの等各種の形状のものが使用されている。
The reference numeral 50 in the figure is a built-in weight, and its planar shape is formed into an annular shape close to a perfect circle. The shape of the built-in weight is not necessarily specified, and various shapes such as horseshoe-shaped, rod-shaped, etc. are used depending on the arrangement of the internal mechanism of the weighing device, the structure of the built-in weight lifting mechanism, etc. .

然し、発明者らは各種の形状の内蔵分銅を試験した結果
、校正作業の容易さ及び校正の正確さという点から環状
の校正分銅が最も良いことを既に確認している。
However, as a result of testing built-in weights of various shapes, the inventors have already confirmed that a ring-shaped calibration weight is the best in terms of ease of calibration work and accuracy of calibration.

即ち、秤量皿51の支持軸、つまり荷重伝達用軸の軸心
と、環状の内蔵分銅50の中心とを一致させるように内
蔵分銅50を配置すれば、内蔵分銅50の荷重をビーム
(秤量物の荷重を秤量機構に伝達する部材)53に対し
て支持軸52の軸心から変位させないで加えることがで
きる。このため内蔵分銅の荷重が加わっても浮枠に特別
な応力が生じることはなく、四隅調節等の調節作業を行
わなくても簡単に校正を行うことができるという利点が
ある。
That is, if the built-in weight 50 is arranged so that the axis of the support shaft of the weighing pan 51, that is, the axis for load transmission, and the center of the annular built-in weight 50 are aligned, the load of the built-in weight 50 can be transferred to the beam (weighing object). The load can be applied to the member (53) that transmits the load to the weighing mechanism without displacing it from the axis of the support shaft 52. Therefore, even when the load of the built-in weight is applied, no special stress is generated on the floating frame, and there is an advantage that calibration can be easily performed without performing adjustment work such as adjusting the four corners.

次に符号54は内蔵分銅昇降用の昇降板であり、カム5
5の回転により支点54aを中心として内蔵分銅支持部
がX−Y方向に揺動するようになっている。
Next, reference numeral 54 is a lifting plate for lifting and lowering the built-in weight, and the cam 5
5, the built-in weight support section swings in the X-Y direction about the fulcrum 54a.

この従来構成において、通常の秤量工程では昇降板54
の内蔵分銅支持部をX方向に上昇固定しておき、浮枠5
3に対してはこの内蔵分銅5oの荷重が加わらないよう
にしておく。校正の必要が生じた場合には、カム55を
回転させて昇降板54の内蔵分銅支持部をY方向に下降
させて内蔵分銅50を浮枠53に載置し校正を行う。
In this conventional configuration, in a normal weighing process, the lifting plate 54
The built-in weight support part of is raised and fixed in the X direction, and the floating frame 5
3 so that the load of this built-in weight 5o is not applied. When the need for calibration arises, the cam 55 is rotated to lower the built-in weight support portion of the elevating plate 54 in the Y direction, and the built-in weight 50 is placed on the floating frame 53 to perform calibration.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上の構成の装置は良好な性能を存する反面、次のよう
な問題もあり、より高い校正精度を確保し、かつより容
易な校正作業を実現することは事実上極めて困難であり
、新たな昇降機構の開発が要望されている。
Although the device with the above configuration has good performance, it also has the following problems, and it is actually extremely difficult to ensure higher calibration accuracy and realize easier calibration work, Development of a mechanism is required.

上述の構成の装置では、 (1)先ず秤量可能状態では内蔵分銅は昇降板54によ
り上昇された状態となっており、秤量装置本体における
秤量室の床板56の凹所にその一部が収納された状態と
なっている。この状態で秤量装置の配置替えや輸送等を
行うわけであるが、その際に振動や傾きにより内蔵分銅
50が所定の場所からずれてしまう事態が生じることが
ある。このような事態になると校正時に正確な校正を行
うことが不可能になり、場合によっては浮枠等、秤量装
置の内部機構に損傷を与えるおそれがある。
In the device configured as described above, (1) First, in a state where weighing is possible, the built-in weight is raised by the lifting plate 54, and a part of it is stored in a recess in the floor plate 56 of the weighing chamber in the weighing device main body. The situation is as follows. In this state, the weighing device is rearranged, transported, etc., but at that time, the built-in weight 50 may shift from a predetermined position due to vibration or inclination. In such a situation, it becomes impossible to perform accurate calibration during calibration, and depending on the case, there is a risk of damaging the internal mechanism of the weighing device, such as the floating frame.

因みに、浮枠53に内蔵分銅50を載置した状態で秤量
装置を輸送すると振動等により浮枠に対して瞬間的に内
蔵分銅の重量の何倍もの荷重が加わり、浮枠に接続する
秤量機構を破壊する虞れがある。このためこの方法は絶
対に不可である。
Incidentally, if the weighing device is transported with the built-in weight 50 placed on the floating frame 53, a load many times the weight of the built-in weight will be instantaneously applied to the floating frame due to vibrations, etc., and the weighing mechanism connected to the floating frame will be damaged. There is a risk of destroying it. Therefore, this method is absolutely impossible.

(2)また前述の輸送時の振動による慣性によって内蔵
分銅50の荷重を支持している昇降板54が撓んだり、
カム55や支点54aに加わる大きな応力により昇降機
構に損傷が生じる可能性もある。
(2) In addition, the lifting plate 54 supporting the load of the built-in weight 50 may be bent due to the inertia caused by the vibration during transportation, as described above.
There is also a possibility that the lifting mechanism may be damaged due to the large stress applied to the cam 55 and the fulcrum 54a.

(3)更に、内蔵分銅50の昇降は支点54aを中心と
して揺動する昇降板54により行われるため、内蔵分銅
50の昇降は、実際には支持軸52の軸心に沿うて行わ
れるのではなく、支点54aを中心として円弧を描くこ
とになる。この結果浮枠53に載置した状態で支持軸5
2の軸心と内蔵分銅50の中心とを正確に一致させるた
めには内蔵分銅昇降機構を非常に精密に構成する必要が
ある。
(3) Furthermore, since the built-in weight 50 is lifted and lowered by the lifting plate 54 that swings around the fulcrum 54a, the built-in weight 50 is actually lifted and lowered along the axis of the support shaft 52. Instead, a circular arc is drawn with the fulcrum 54a as the center. As a result, the support shaft 5 is placed on the floating frame 53.
In order to accurately align the axis of the weight 2 and the center of the built-in weight 50, it is necessary to configure the built-in weight lifting mechanism with great precision.

(4)また最近では、最大秤量は低下するが最小目盛り
を小さくした秤量モードと、最小目盛りは大きいが最大
秤量を大きくする秤量モードとする等、−台で複数段の
秤量モードに切り換えることができる装置が提供されて
いるが、このような装置の場合にはそのモードに対応し
た内蔵分銅が各々必要となる。然し従来の機構では複数
の内蔵分銅を収納した装置もなく、従って各モードに対
応して複数の内蔵分銅を昇降させる機構も存在していな
い。
(4) Recently, it is also possible to switch to a multi-step weighing mode with a - machine, such as a weighing mode in which the maximum weighing capacity is lower but the minimum scale is smaller, and a weighing mode in which the minimum scale is larger but the maximum weight is larger. Although there are devices that can do this, each of these devices requires a built-in weight that corresponds to the mode. However, in the conventional mechanism, there is no device that accommodates a plurality of built-in weights, and therefore there is no mechanism for raising and lowering a plurality of built-in weights corresponding to each mode.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上述した問題点に鑑み構成したものであり、複
数の内蔵分銅を支持し、かつこの内蔵分銅を秤量皿支持
軸等、荷重伝達軸の軸心方向に沿って昇降させる支持部
材と、この内蔵分銅支持部材を昇降させる機構と、内蔵
分銅が複数の場合には各内蔵分銅を順次浮枠に載置する
手段とを有するように構成した内蔵分銅昇降機構である
The present invention has been constructed in view of the above-mentioned problems, and includes a support member that supports a plurality of built-in weights and moves the built-in weights up and down along the axial direction of a load transmission shaft such as a weighing pan support shaft; This built-in weight lifting/lowering mechanism is configured to have a mechanism for lifting and lowering the built-in weight supporting member, and a means for sequentially placing each built-in weight on a floating frame when there is a plurality of built-in weights.

〔作用〕[Effect]

カム機構による内蔵分銅昇降機構によって、−部がこの
カムに接触係止している内蔵分銅支持部材を昇降させる
。内蔵分銅支持部材は荷重伝達軸とその軸心が平行な支
持ピンに沿って昇降することにより、載置しである内蔵
分銅を水平状態に保持したまま昇降することになる。浮
枠のうち、軽量内蔵分銅と重量内蔵分銅とが接触係合す
る高さを相違させることにより、各内蔵分銅を下降させ
た場合に、先ず軽量内蔵分銅が浮枠にi!3i置され、
この状態で精密測定モードに於ける校正を行う。
The built-in weight lifting mechanism using the cam mechanism lifts and lowers the built-in weight supporting member whose negative portion is in contact with and latched to the cam. The built-in weight support member moves up and down along a support pin whose axis is parallel to the load transmission axis, thereby moving up and down while holding the built-in weight placed therein in a horizontal state. By differentiating the heights at which the lightweight built-in weights and the heavy built-in weights contact and engage in the floating frame, when each built-in weight is lowered, the light weight built-in weights first touch the floating frame i! 3i placed,
In this state, perform calibration in precision measurement mode.

また支持部材を更に下降させれば大重量内蔵分銅も浮枠
に載置され、大重量測定モードにおける校正を行う。
Further, when the support member is further lowered, the large built-in weight is also placed on the floating frame, and calibration in the large weight measurement mode is performed.

〔実施例〕〔Example〕

以下本発明の一実施例を図面参考に詳細に説明する。 An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図及び第2図は内蔵分銅昇降装置を具体的に示す。FIGS. 1 and 2 specifically show the built-in weight lifting device.

図中符号1は大型(大重量)の内蔵分銅を示し、2は小
型(軽量)の内蔵分銅を示す。図からも明らかなとおり
各内蔵分銅1及び2は平面環状に形成してあり、後述す
る支持部材により同心円状に配置しである。3はこれら
内蔵分w41及び2を支持しかつ昇降させる支持部材で
ある。3a、3b、3Cはこの支持部材3のうち平面路
「コ」字形の支持部材枠体3dから枠体内部に展出した
内蔵分銅支持アームである。各内蔵分銅1及び2はこの
支持アーム3 a、3 b、 3 cに支持されること
によりその中心を共通にすよう同心円状に配置され、か
つその共通の中心は秤量物の荷重をビーム側に伝達する
荷重伝達軸の軸心と一致するように配置される。
In the figure, reference numeral 1 indicates a large (heavy) built-in weight, and 2 indicates a small (light) built-in weight. As is clear from the figure, the built-in weights 1 and 2 are formed into planar annular shapes, and are arranged concentrically by support members to be described later. 3 is a support member that supports these built-in parts w41 and w41 and raises and lowers them. Reference numerals 3a, 3b, and 3C designate built-in weight support arms of the support member 3 that extend from the U-shaped support member frame 3d into the frame. The built-in weights 1 and 2 are supported by the support arms 3a, 3b, and 3c, so that they are arranged in concentric circles so that their centers are common, and the common centers transfer the load of the object to be weighed to the beam side. The center of the load transmission shaft is aligned with the axis of the load transmission shaft.

次にこの支持部材の枠体3dの四隅には支持ピン4a、
4b、4c、4dが挿通している。このピンの下端部は
秤量装置本体に固定してあり、支持部材3はこのビンに
沿って前記荷重伝達軸の軸心に沿うように各内蔵分銅1
.2を水平状態に保持したまま昇降するようになってい
る。3e、3fは枠体3dのうち対向する辺部において
突出位置させた昇降用突片であり、各昇降用突片3e、
3fに対して昇降機構が接触係合することにより支持部
材3およびこの支持部材3に支持された内蔵分銅1及び
2を昇降させるようになっている。
Next, support pins 4a are provided at the four corners of the frame 3d of this support member.
4b, 4c, and 4d are inserted. The lower end of this pin is fixed to the weighing device main body, and the support member 3 is attached to each built-in weight 1 along the axis of the load transmission shaft.
.. 2 is raised and lowered while being held horizontally. 3e and 3f are elevating protrusions protruding from opposing sides of the frame 3d, each elevating protruding piece 3e,
The support member 3 and the built-in weights 1 and 2 supported by the support member 3 are raised and lowered by the lifting mechanism coming into contact with 3f.

次に支持部材の昇降機構について説明する。Next, a mechanism for raising and lowering the support member will be explained.

5はギヤトモ−タロにより回転する回転軸であり、この
回転軸5に対しては第1カム7と第2カム8とが設けで
ある。また符号9は秤量装置本体側に固定した軸受けで
ある。回転軸5に設けた2個のカムのうち、第1カム7
は支持部材3の昇降用突片3fの下面と接触しており、
別の第2カム8は昇降運動伝達機構の一部を成す第1揺
動板lOの一端の下面に接触している。この揺動板10
は支点11によりX 1−Y 1方向に揺動するように
なっている。次に12はこの第1揺動板10に対してほ
ぼ直角をなすように配置し、かつ支点13によりX2−
Y2方向に揺動するようにした第2揺動板であり、その
第1揺動板に接触する側の端部は第1揺動板10下面に
接触位置するように配置しである。
5 is a rotating shaft rotated by a gear motor, and a first cam 7 and a second cam 8 are provided to this rotating shaft 5. Further, reference numeral 9 is a bearing fixed to the weighing device main body side. Of the two cams provided on the rotating shaft 5, the first cam 7
is in contact with the lower surface of the lifting protrusion 3f of the support member 3,
Another second cam 8 is in contact with the lower surface of one end of the first swing plate lO, which forms a part of the elevating motion transmission mechanism. This rocking plate 10
is designed to swing in the X1-Y1 direction by a fulcrum 11. Next, 12 is arranged so as to be approximately perpendicular to this first rocking plate 10, and with a fulcrum 13, X2-
The second swing plate is configured to swing in the Y2 direction, and the end of the second swing plate that contacts the first swing plate is arranged so as to be in contact with the lower surface of the first swing plate 10.

第3図は内蔵分銅昇降機構を省略して、各内蔵分銅l及
び2と、荷重伝達用の浮枠の位置関係を示す。図中14
は浮枠を示し、14aはこの浮枠14に形成した大型内
蔵分銅lを載置支持するための切り欠きであり、14b
は小型内蔵分銅2を載置支持するための切り欠きである
。これら各切り欠きのうち、小型内蔵分銅2を支持する
切り欠き14bの底部の位置を大型内蔵分銅用切り切り
欠き14bの位置よりもhだけ高く形成しておく。
FIG. 3 omits the built-in weight lifting mechanism and shows the positional relationship between the built-in weights 1 and 2 and the floating frame for load transmission. 14 in the diagram
indicates a floating frame, 14a is a notch for mounting and supporting a large built-in weight l formed in this floating frame 14, and 14b
is a notch for mounting and supporting the small built-in weight 2. Among these notches, the bottom of the notch 14b that supports the small built-in weight 2 is formed higher than the notch 14b for the large built-in weight by h.

次に作動状態について説明する。Next, the operating state will be explained.

先ず、各内蔵分銅1及び2を上昇させて、浮枠に荷重が
かからない状態、つまり秤量物測定可能な状態について
説明する。
First, a state in which the built-in weights 1 and 2 are raised and no load is applied to the floating frame, that is, a state in which the weighed object can be measured will be described.

ギヤトモ−タロを作動させることにより回転軸5を介し
て第1、第2の各カム7及び8を回転させる。先ず第1
カム7にいって説明すると、第1カム7の回転によりこ
のカム7に接触する突片3fが上方X3方向に押上られ
る。同様に昇降運動伝達機構のうち端部の一方が第2カ
ム8に接触する第1揺動板lOのカム接触端部を押上る
。これにより反対側の端部は支点11を中心としてX1
方向に下降し、第2揺動板12の端部を同方向に押し下
げる。これにより第2揺動板12の突片3e側の端部は
X2方向に上昇し、この突片を同方向押上る。つまり各
カム7.8の回転により各突片3e、3fは同時に押上
げられる。この作動により支持部材は各ピン4a〜4d
に沿って上昇し、この支持部材に支持された各内蔵分銅
1及び2は水平状態を維持したまま上昇する。続いて上
界状態でカムの回転を停止し、各内蔵分銅を支持する。
By operating the gear motor, the first and second cams 7 and 8 are rotated via the rotating shaft 5. First of all
Referring to the cam 7, as the first cam 7 rotates, the protrusion 3f that contacts the cam 7 is pushed upward in the X3 direction. Similarly, one of the ends of the elevating motion transmission mechanism pushes up the cam contact end of the first rocking plate lO that contacts the second cam 8. As a result, the opposite end becomes X1 with the fulcrum 11 as the center.
direction, and push down the end of the second swing plate 12 in the same direction. As a result, the end of the second rocking plate 12 on the protruding piece 3e side rises in the X2 direction, pushing this protruding piece upward in the same direction. That is, the rotation of each cam 7.8 pushes up each projection 3e, 3f at the same time. This operation causes the support member to move to each pin 4a to 4d.
The built-in weights 1 and 2 supported by this support member rise while maintaining a horizontal state. Next, the rotation of the cam is stopped in the upper bound state, and each built-in weight is supported.

これにより各内蔵骨w41及び2の荷重は全て支持部材
3により支持され、浮枠14に対しては秤量皿15に載
置された秤量物の荷重のみが伝達される。なお第4図の
符号16は秤量皿15を支持する支持軸であり、秤量物
の荷重を伝達する荷重伝達軸である。
As a result, all the loads of the visceral bones w41 and 2 are supported by the support member 3, and only the load of the object to be weighed placed on the weighing pan 15 is transmitted to the floating frame 14. Note that the reference numeral 16 in FIG. 4 is a support shaft that supports the weighing pan 15, and is a load transmission shaft that transmits the load of the weighed object.

次に校正を行う場合の作動状態を説明する。Next, the operating state when performing calibration will be explained.

ギヤトモ−タロを作動させることにより第1、第2の各
カム7.8を再度回転させる。これにより、前述の上昇
時と逆の作動により支持部材3は徐々に下降する。この
下降により各内蔵分銅l及び2の支持面SL(第6図参
照)の位置が第4図に示すLlの位置に至ると、小型内
蔵分銅2の下面が浮枠14の小型内蔵分銅用切り欠き1
4bに載置され、この分銅2の荷重が浮枠14に伝達さ
れることになる。更に支持部材3を下降させて支持面S
Lの位置がL2の位置に至ると、大型内蔵分銅lが浮枠
14の切り欠き14aに載置され、浮枠14に対しては
両分鋼l及び2の荷重が伝達されることになる。
By operating the gear motor, each of the first and second cams 7.8 is rotated again. As a result, the support member 3 gradually descends by an operation opposite to the above-mentioned ascending operation. As a result of this lowering, when the position of the support surface SL (see FIG. 6) of each built-in weight 1 and 2 reaches the position Ll shown in FIG. Crack 1
4b, and the load of this weight 2 is transmitted to the floating frame 14. Furthermore, the support member 3 is lowered to support the support surface S.
When the position of L reaches the position of L2, the large built-in weight l is placed in the notch 14a of the floating frame 14, and the loads of both weights l and 2 are transmitted to the floating frame 14. .

ここで、秤量装置のうち精密重量測定モードの校正を行
う場合には支持部材3の支持面SLの位置をLlとL2
の間に位置させて小型内蔵分銅2のみを浮枠14に載置
させる。これにより精密重量測定モードの校正に適した
重量の小型内蔵分銅2により正確な校正を行うことがで
きる。また大重量測定モードの校正を行う場合には前記
支持面SLがL2の位置以下となるように支持部材を下
降させ、小型内蔵分銅2及び大型内蔵分銅lの合計の荷
重により校正を行う。なお以上の作動中、各内蔵分銅l
及び2の中心と荷重伝達軸16の軸心とは常に一致して
いるので、校正分銅を載置することにより浮枠に特別な
応力が加わることがなく、常に正確な校正を行うことが
できる。
Here, when calibrating the precision weight measurement mode of the weighing device, the positions of the support surface SL of the support member 3 are adjusted to Ll and L2.
Only the small built-in weight 2 is placed on the floating frame 14 between the two. As a result, accurate calibration can be performed using the small built-in weight 2 having a weight suitable for calibration in the precision weight measurement mode. When performing calibration in the large weight measurement mode, the support member is lowered so that the support surface SL is below the position L2, and the calibration is performed using the total load of the small built-in weight 2 and the large built-in weight 1. During the above operation, each built-in weight l
and 2 and the axis of the load transmission shaft 16 are always aligned, so placing a calibration weight will not apply any special stress to the floating frame, and accurate calibration can always be performed. .

以上本発明の構成を大型内蔵分銅と小型内蔵分銅の2種
類の内蔵分銅を昇降させる場合を例に説明したが、−個
の内蔵分銅を昇降させよう構成することも、3個以上の
内蔵分銅を順次浮枠に載置するよう構成することも本発
明の技術的構成に包含されることは当然である。
The configuration of the present invention has been explained above using an example in which two types of built-in weights, a large built-in weight and a small built-in weight, are raised and lowered. It goes without saying that the technical configuration of the present invention also includes a configuration in which the components are sequentially placed on the floating frame.

〔効果〕〔effect〕

内蔵分銅昇降機構によって、内蔵分銅支持部材を昇降さ
せ、内蔵分銅支持部材は荷重伝達軸とその軸心が平行な
支持ビンに沿って昇降することにより、載置しである内
蔵分銅を水平状態に保持したまま昇降する。このため浮
枠等の荷重伝達部に内蔵分銅を載置した際に、その荷重
付加中心と秤量物の荷重の伝達中心とが一致し、校正を
容易かつ非常に正確に行うことができる。
The built-in weight lifting mechanism raises and lowers the built-in weight support member, and the built-in weight support member moves up and down along the support bin whose axis is parallel to the load transmission axis, thereby bringing the placed built-in weight into a horizontal state. Go up and down while holding it. Therefore, when the built-in weight is placed on a load transmission section such as a floating frame, the center of load application and the center of load transmission of the weighed object coincide, making it possible to perform calibration easily and very accurately.

また支持部材は複数本の強固な支持アームにより支持さ
れるため、秤量装置の移動等に際して振動や大きな応力
が加わっても内蔵分銅を確実に保持することができ、秤
量装置の内部機構に)負傷を与える虞れはない。
In addition, since the support member is supported by multiple strong support arms, the built-in weight can be held securely even if vibration or large stress is applied when the weighing device is moved, resulting in injury to the internal mechanism of the weighing device. There is no risk of giving.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す内蔵分銅昇降装置の斜視
図、第2図は秤量装置内に収納された状態の内蔵分銅昇
降装置の平面図、第3図は内蔵分銅と浮枠との配置状態
を示す内蔵分銅及び浮枠の平面図、第4図は第3図のA
−A線による断面図、第5図は従来の内蔵分銅昇降機構
を示す昇降機構側面図、第6図は内蔵分銅支持部材のア
ームに対する内蔵分銅の載置状態を示す断面図である。 l・・・大型内蔵分銅  2・・・小型内蔵分銅3・・
・内蔵分銅支持部材 3a、3b、3c・・・支持部材アーム3d・・・支持
部材枠体 3e、3r・・・支持部材昇降用突片 4a、4b、4b・・・支持部材支持用ビン5・・・回
転軸  6・・・ギヤドモータ7・・・第1カム  8
・・・第2カムlO・・・第1 tl動板  12・・
・第2揺動板14・・・浮枠   16・・・荷重伝達
軸第3図 C 第4図 第5図 3b(3)
Fig. 1 is a perspective view of a built-in weight lifting device showing an embodiment of the present invention, Fig. 2 is a plan view of the built-in weight lifting device housed in a weighing device, and Fig. 3 shows the built-in weight and floating frame. Figure 4 is a plan view of the built-in weight and floating frame showing the arrangement of the figure A in Figure 3.
5 is a side view of a lifting mechanism showing a conventional built-in weight lifting mechanism, and FIG. 6 is a sectional view showing a state in which the built-in weight is placed on an arm of a built-in weight support member. l...Large built-in weight 2...Small built-in weight 3...
・Built-in weight support members 3a, 3b, 3c...Support member arm 3d...Support member frame 3e, 3r...Protrusions for lifting and lowering the support member 4a, 4b, 4b...Bin 5 for supporting the support member ... Rotating shaft 6 ... Geared motor 7 ... First cam 8
...Second cam lO...First tl moving plate 12...
・Second rocking plate 14...Floating frame 16...Load transmission shaft Fig. 3C Fig. 4 Fig. 5 Fig. 3b (3)

Claims (3)

【特許請求の範囲】[Claims] (1)内蔵分銅の荷重を秤量装置の荷重伝達部に付加す
ることにより秤量装置の校正を行うようにしたものにお
いて、環状に形成した内蔵分銅を支持し、かつ秤量物の
荷重伝達方向に沿って昇降するよう構成した内蔵分銅支
持部材と、この内部分銅支持部材を昇降させる昇降機構
とからなる内蔵分銅昇降装置。
(1) In a weighing device that calibrates the weighing device by applying the load of the built-in weight to the load transmission part of the weighing device, the built-in weight is supported in an annular shape, and A built-in weight lifting device comprising a built-in weight support member configured to move up and down, and a lifting mechanism that moves the internal weight support member up and down.
(2)前記内蔵分銅支持部材により支持される環状の内
蔵分銅を2以上とし、かつ秤量装置の荷重伝達部に於け
る内蔵分銅載置面の高さを分銅毎に相違させるよう構成
し、校正すべき荷重測定モードに対応して各内蔵分銅を
荷重伝達部に順次載置するよう構成したことを特徴とす
る特許請求の範囲第(1)項記載の内蔵分銅昇降装置。
(2) The number of annular built-in weights supported by the built-in weight support member is two or more, and the height of the built-in weight mounting surface in the load transmission section of the weighing device is configured to be different for each weight, and calibration is performed. The built-in weight elevating device according to claim 1, characterized in that the built-in weights are sequentially placed on the load transmission section in accordance with the load measurement mode to be used.
(3)前記内蔵分銅支持部材昇降機構を、カム機構と、
このカム機構に接続する昇降運動伝達機構とから構成し
、カム機構は支持部材に形成した突片に接触する第1カ
ムと、この第1カムと同軸で前記昇降運動伝達機構の一
部を成す第1揺動板と接触する第2カムとから構成し、
昇降運動伝達機構は前記第1揺動板と、この第1揺動板
に係合して揺動する第2揺動板とから構成し、突片に伝
達される第1カムの回転による昇降運動と、昇降運動伝
達機構を介して別の突片に伝達される第2カムの回転に
よる昇降運動により内蔵分銅支持部材を昇降させるよう
に構成したことを特徴とする特許請求の範囲第(1)項
記載の内蔵分銅昇降装置。
(3) The built-in weight support member lifting mechanism is a cam mechanism,
The cam mechanism includes a first cam that contacts a protrusion formed on the support member, and a vertical motion transmission mechanism that is coaxial with the first cam and forms a part of the vertical motion transmission mechanism. Consisting of a first rocking plate and a second cam in contact with the
The elevating motion transmission mechanism is composed of the first swing plate and a second swing plate that engages with and swings from the first swing plate, and the elevating motion transmission mechanism is configured to move up and down by the rotation of the first cam transmitted to the protrusion. Claim 1 is characterized in that the built-in weight support member is raised and lowered by the movement and the lifting movement caused by the rotation of the second cam which is transmitted to another projecting piece via the lifting movement transmission mechanism. Built-in weight lifting device as described in ).
JP62309723A 1987-12-09 1987-12-09 Electronic scales Expired - Lifetime JP2539237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62309723A JP2539237B2 (en) 1987-12-09 1987-12-09 Electronic scales

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62309723A JP2539237B2 (en) 1987-12-09 1987-12-09 Electronic scales

Publications (2)

Publication Number Publication Date
JPH01152318A true JPH01152318A (en) 1989-06-14
JP2539237B2 JP2539237B2 (en) 1996-10-02

Family

ID=17996522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62309723A Expired - Lifetime JP2539237B2 (en) 1987-12-09 1987-12-09 Electronic scales

Country Status (1)

Country Link
JP (1) JP2539237B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7478551B2 (en) 2005-01-26 2009-01-20 Mettler-Toledo Ag Modular calibration weight
JP2017058220A (en) * 2015-09-16 2017-03-23 株式会社島津製作所 electronic balance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916672A (en) * 1972-06-07 1974-02-14
JPS5896225A (en) * 1981-12-03 1983-06-08 Sekisui Jushi Co Ltd Inspector for gravimeter to be inspected
JPS6013224A (en) * 1983-07-04 1985-01-23 Shimadzu Corp Electronic balance
JPS6227626A (en) * 1985-07-29 1987-02-05 Ee & D:Kk Built-in calibration weight type balance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916672A (en) * 1972-06-07 1974-02-14
JPS5896225A (en) * 1981-12-03 1983-06-08 Sekisui Jushi Co Ltd Inspector for gravimeter to be inspected
JPS6013224A (en) * 1983-07-04 1985-01-23 Shimadzu Corp Electronic balance
JPS6227626A (en) * 1985-07-29 1987-02-05 Ee & D:Kk Built-in calibration weight type balance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7478551B2 (en) 2005-01-26 2009-01-20 Mettler-Toledo Ag Modular calibration weight
JP2017058220A (en) * 2015-09-16 2017-03-23 株式会社島津製作所 electronic balance

Also Published As

Publication number Publication date
JP2539237B2 (en) 1996-10-02

Similar Documents

Publication Publication Date Title
JP5081234B2 (en) Force measuring cell and weighing device with calibration weight device
KR20190088888A (en) Wafer prober
JP2000237983A (en) Board chuck device
JPH01152318A (en) Built-in weight lift
KR20210004163A (en) Processing apparatus for a substrate and method of driving the same
KR20060135301A (en) Vacuum gauge calibration device for 1, 10, 100 torr
EP3255393A1 (en) Automatic mass comparator
KR100206641B1 (en) Structure of rotary arm and device chuck part of a device handler
JP2001153749A (en) Load cell inspecting apparatus
JP7267541B2 (en) Industrial robot adjustment method and measuring instrument
JP2671097B2 (en) Hardness meter load control mechanism
CN111199909B (en) Base assembly and semiconductor processing equipment
JPH0633383Y2 (en) Joint mechanism of inner part copper lifting device
JPH1019652A (en) Electronic balance
JP2543799B2 (en) Electronic scale with weight adjustment mechanism
CN112197848A (en) Automatic loading device for weight loading
JP6488957B2 (en) electronic balance
TWI416654B (en) Mounting device
JP2019214107A (en) Teaching data creating system and teaching data creating method
CN213336447U (en) Automatic loading device for weight loading
RU15934U1 (en) DEVICE FOR MONITORING POWER SENSORS
JP2005069910A (en) Dimension and weight measuring device for article
CN211824700U (en) Platform scale is measureed in load trigger formula response
KR102121418B1 (en) Substrate support apparatus and control method thhereof
JPH0735394Y2 (en) Wafer positioning device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040927

A131 Notification of reasons for refusal

Effective date: 20041005

Free format text: JAPANESE INTERMEDIATE CODE: A131

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041110

A521 Written amendment

Effective date: 20041202

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050104