JPH0633383Y2 - Joint mechanism of inner part copper lifting device - Google Patents

Joint mechanism of inner part copper lifting device

Info

Publication number
JPH0633383Y2
JPH0633383Y2 JP7279988U JP7279988U JPH0633383Y2 JP H0633383 Y2 JPH0633383 Y2 JP H0633383Y2 JP 7279988 U JP7279988 U JP 7279988U JP 7279988 U JP7279988 U JP 7279988U JP H0633383 Y2 JPH0633383 Y2 JP H0633383Y2
Authority
JP
Japan
Prior art keywords
joint
shaft
motor
weight
rotational force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7279988U
Other languages
Japanese (ja)
Other versions
JPH01180725U (en
Inventor
栄一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&D Co Ltd
Original Assignee
A&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&D Co Ltd filed Critical A&D Co Ltd
Priority to JP7279988U priority Critical patent/JPH0633383Y2/en
Publication of JPH01180725U publication Critical patent/JPH01180725U/ja
Application granted granted Critical
Publication of JPH0633383Y2 publication Critical patent/JPH0633383Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は秤量装置内部に収納した校正用の分銅を昇降さ
せる装置に係り、特に環状の校正用分銅を昇降させるよ
うに構成した昇降装置の継手機構に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a device for raising and lowering a calibration weight housed in a weighing device, and in particular to an elevator device configured to raise and lower an annular calibration weight. Regarding the joint mechanism.

〔考案の技術的背景〕[Technical background of the invention]

秤量装置は長時間使用するに従って内部機構の僅かな緩
みや僅かなずれ等のため重量の表示が不正確になる事態
が生じる。また同様なことは、秤量装置を輸送する際の
振動等によっても生じる。この場合秤量装置の重量表示
を適正な値に校正するため、正確な重量が予め判明して
いる校正用の分銅を用いて表示を調整する必要がある
が、従来から最も一般的に実施されている校正作業は、
秤量皿に校正用分銅を載置して校正する方法である。し
かし、この方法では秤量装置とは別個に校正用分銅を保
管して置き、校正の都度その校正用分銅を取り出して使
用する必要があって、取り扱いが不便である。このた
め、校正用分銅を秤量装置内に予め収納しておき、校正
の必要が生じた場合に装置外部からの操作により秤量装
置内に収納された校正用分銅(以下「内蔵分銅」と称す
る)の荷重を秤量物の荷重伝達部に伝達して校正を行う
機構が提供されている。
When the weighing device is used for a long period of time, the display of the weight may be inaccurate due to slight looseness or slight deviation of the internal mechanism. The same thing occurs due to vibrations and the like during transportation of the weighing device. In this case, in order to calibrate the weight display of the weighing device to an appropriate value, it is necessary to adjust the display using a calibration weight whose accurate weight is known in advance. The calibration work
This is a method of calibrating by placing a calibration weight on a weighing pan. However, in this method, it is necessary to store and store the calibration weight separately from the weighing device, and to take out the calibration weight for each calibration, which is inconvenient to handle. For this reason, the calibration weight is stored in the weighing device in advance, and when calibration is required, the calibration weight is stored in the weighing device by an operation from outside the device (hereinafter referred to as "built-in weight"). There is provided a mechanism for performing calibration by transmitting the load of 1 to the load transmitting portion of the weighing object.

この点に関し、考案者等は先に、校正を簡便かつ正確に
行える内部分銅昇降装置を提案している(特願昭62-309
723号)。
In this regard, the inventors have previously proposed an inner copper lifting device that can perform calibration easily and accurately (Japanese Patent Application No. 62-309).
No. 723).

第3図はこの内部分銅昇降機構を示す。図中符号1は大
型(大重量)の内蔵分銅を示し、2は小型(軽量)の内
蔵分銅を示す。図からも明らかなとおり各内蔵分銅1及
び2は平面環状に形成してあり、後述する支持部材によ
り同心円状に配置してある。3はこれら内蔵分銅1及び
2を支持しかつ昇降させる支持部材である。3a、3b、3c
はこの支持部材3のうち平面略「コ」字形の支持部材枠
体3dから枠体内部に展出した内蔵分銅支持アームであ
る。各内蔵分銅1及び2はこの支持アーム3a、3b、3cに
支持されることによりその中心を共通にするよう同心円
状に配置され、かつその共通の中心は秤量物の荷重をビ
ーム側に伝達する荷重伝達軸の軸心と一致するように配
置される。
FIG. 3 shows the internal weight lifting mechanism. In the figure, reference numeral 1 indicates a large (large weight) built-in weight, and 2 indicates a small (lightweight) built-in weight. As is apparent from the figure, the built-in weights 1 and 2 are each formed in a plane annular shape and are arranged concentrically by a supporting member described later. Reference numeral 3 is a support member that supports these built-in weights 1 and 2 and moves them up and down. 3a, 3b, 3c
Is a built-in weight support arm extended from the support member frame 3d having a substantially "U" shape in plan of the support member 3 to the inside of the frame. The built-in weights 1 and 2 are concentrically arranged so that their centers are made common by being supported by the support arms 3a, 3b, 3c, and the common center transmits the load of the weighing object to the beam side. It is arranged so as to coincide with the axis of the load transmission shaft.

次にこの支持部材の枠体3dの四隅には支持ピン4a、4b、
4c、4dが挿通している。このピンの下端部は秤量装置本
体に固定してあり、支持部材3はこのピンに沿って前記
荷重伝達軸の軸心に沿うように各内蔵分銅1、2を水平
状態に保持したまま昇降するようになっている。3e、3f
は枠体3dのうち対向する辺部において突出位置させた昇
降用突片であり、各昇降用突片3e、3fに対して昇降機構
が接触係合することにより支持部材3およびこの支持部
材3に支持された内蔵分銅1及び2を昇降させるように
なっている。
Next, at the four corners of the frame 3d of this support member, support pins 4a, 4b,
4c and 4d are inserted. The lower end of this pin is fixed to the main body of the weighing device, and the supporting member 3 moves up and down along the pin while keeping the internal weights 1 and 2 in a horizontal state along the axis of the load transmission shaft. It is like this. 3e, 3f
Is a lifting / lowering projecting piece that is located at a projecting position on opposite sides of the frame 3d, and the lifting / lowering mechanism makes contact with and engages with the lifting / lowering protruding pieces 3e, 3f. The built-in weights 1 and 2 supported by the are moved up and down.

支持部材の昇降機構について説明すると、5はギヤドモ
ータ6により回転する回転軸であり、この回転軸5に対
しては第1カム7と第2カム8とが設けてある。回転軸
5に設けた2個のカムのうち、第1カム7は支持部材3
の昇降用突片3fの下面と接触しており、別の第2カム8
は昇降運動伝達機構の一部を成す第1揺動板10の一端の
下面に接触している。この揺動板10のカム8接触側と対
向する側の端部は支点11によりX1−Y1方向に揺動するよ
うになっている。次に12はこの第1揺動板10に対してほ
ぼ直角をなすように配置し、かつ支点13により前記突辺
3eと接触する側の端部がX2−Y2方向に揺動するようにし
た第2揺動板であり、その第1揺動板に接触する側の端
部は第1揺動板10の下面に接触位置するように配置して
ある。
The lift mechanism for the support member will be described. Reference numeral 5 is a rotary shaft that is rotated by a geared motor 6, and a first cam 7 and a second cam 8 are provided for the rotary shaft 5. Of the two cams provided on the rotary shaft 5, the first cam 7 is the support member 3
Of the second cam 8 which is in contact with the lower surface of the ascending / descending projection 3f.
Is in contact with the lower surface of one end of the first oscillating plate 10 forming a part of the lifting motion transmission mechanism. The end of the swing plate 10 on the side facing the cam 8 contact side swings in the X1-Y1 direction by a fulcrum 11. Next, 12 is arranged so as to form a right angle with respect to the first oscillating plate 10 and the fulcrum 13 causes the protrusion
3e is a second oscillating plate whose end on the side in contact with 3e is oscillated in the X2-Y2 direction, and the end on the side in contact with the first oscillating plate is the lower surface of the first oscillating plate 10. It is arranged so as to come into contact with.

以上の構成において、先ず、各内蔵分銅1及び2を上昇
させて、電磁部側に対する荷重伝達部材である浮枠(図
示せず)に荷重がかからない状態、つまり秤量物の荷重
測定が可能な状態とするには次のような作動をさせる。
In the above configuration, first, the built-in weights 1 and 2 are raised so that no load is applied to the floating frame (not shown) that is a load transmission member for the electromagnetic unit side, that is, a state in which the load of the weighing object can be measured. To do this, operate as follows.

先ず前記ギヤドモータ6を作動させることにより回転軸
5を介して第1、第2の各カム7及び8を回転させる。
最初に第1カム7にいつて説明すると、第1カム7の回
転によりこのカム7に接触する突片3fが上方X3方向に押
上られる。同様に昇降運動伝達機構のうち端部の一方が
第2カム8に接触する第1揺動板10のカム接触端部を押
上る。これにより反対側の端部は支点11を中心としてY1
方向に下降し、第2揺動板12の端部を同方向に押し下げ
る。これにより第2揺動板12の突片3e側の端部はX2方向
に上昇し、この突片を同方向に押上る。つまり各カム
7、8の回転により各突片3e、3fは同時に押上げられ
る。この作動により支持部材は各ピン4a〜4dに沿って上
昇し、この支持部材に支持された各内蔵分銅1及び2は
水平状態を維持したまま上昇する。続いて上昇状態でカ
ムの回転を停止し、各内蔵分銅を支持する。これにより
各内蔵分銅1及び2の荷重は全て支持部材3により支持
され、荷重を伝達する部材である浮枠に対しては秤量皿
に載置された秤量物の荷重のみが伝達される。
First, by operating the geared motor 6, the first and second cams 7 and 8 are rotated via the rotary shaft 5.
First, the first cam 7 will be described. When the first cam 7 rotates, the protrusion 3f contacting the cam 7 is pushed upward in the X3 direction. Similarly, one of the ends of the up-and-down motion transmission mechanism pushes up the cam contact end of the first rocking plate 10 in contact with the second cam 8. As a result, the opposite end is centered on the fulcrum 11, Y1
In the same direction, the end of the second rocking plate 12 is pushed down in the same direction. As a result, the end of the second rocking plate 12 on the side of the protrusion 3e rises in the X2 direction and pushes up this protrusion in the same direction. That is, the protrusions 3e and 3f are simultaneously pushed up by the rotation of the cams 7 and 8. By this operation, the support member rises along the pins 4a to 4d, and the built-in weights 1 and 2 supported by the support member rise while maintaining the horizontal state. Then, the rotation of the cam is stopped in the raised state to support each built-in weight. As a result, all the loads of the built-in weights 1 and 2 are supported by the supporting member 3, and only the load of the weighing object placed on the weighing pan is transmitted to the floating frame which is a member for transmitting the load.

次に校正を行う場合には次の作動をする。When calibrating next, perform the following operations.

ギヤドモータ6を作動させることにより第1、第2の各
カム7、8を再度回転させる。これにより、前述の上昇
時と逆の作動により支持部材3は徐々に下降する。支持
部材3による各内蔵分銅1及び2の支持高さは予め相違
させてあるので、この下降により先ず小型内蔵分銅2の
下面が前記浮枠に載置され、この分銅2の荷重が浮枠に
伝達されることになる。更に支持部材3を下降させて大
型内蔵分銅1が浮枠に載置され、浮枠に対しては両分銅
1及び2の荷重が伝達されることになる。即ち、秤量装
置のうち精密重量測定モードの校正を行う場合には小型
内蔵分銅2のみを浮枠14に載置させる。これにより精密
重量測定モードの校正に適した重量の小型内蔵分銅2に
より正確な校正を行うことができる。また大重量測定モ
ードの校正を行う場合には小型内蔵分銅2及び大型内蔵
分銅1の合計の荷重により校正を行う。
By operating the geared motor 6, the first and second cams 7 and 8 are rotated again. As a result, the support member 3 is gradually lowered by the operation opposite to the above-described rising operation. Since the support heights of the respective built-in weights 1 and 2 by the support member 3 are different in advance, the lower surface of the small built-in weight 2 is first placed on the floating frame by this lowering, and the load of this weight 2 is applied to the floating frame. Will be transmitted. Further, the support member 3 is lowered to place the large built-in weight 1 on the floating frame, and the loads of both weights 1 and 2 are transmitted to the floating frame. That is, when calibrating the precision weighing mode of the weighing device, only the small built-in weight 2 is placed on the floating frame 14. As a result, accurate calibration can be performed with the small built-in weight 2 having a weight suitable for calibration in the precision weight measurement mode. When the calibration in the large weight measurement mode is performed, the calibration is performed by the total load of the small built-in weight 2 and the large built-in weight 1.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

以上具体的に説明した内蔵分銅昇降機構では、内蔵分銅
昇降機構及びこの機構を組み込んだ秤量装置の機構上、
内蔵分銅を昇降する駆動源であるモータをこの昇降機構
近くに配置する空間的余裕がない。このためモータ自体
は昇降機構からかなり離れた位置に配置し、長い回転軸
5を用いて駆動力を伝達することにしている。このよう
に長い回転軸を使用するため回転中に軸が撓んだり、時
間の経過と共にモータの回転軸と回転軸5の軸心とがず
れたりする事態が発生する可能性がある。このように撓
み、ずれ等が生じるとモータに大きな負荷が掛かり、モ
ータの発熱、異音の発生、作動不良、装置の寿命の短縮
等の問題が生じる。このため回転軸に対しては何個所か
に軸受けを配置して回転軸を保持するようにしている
が、問題の根本的な解決にはなっていない。
In the built-in weight lifting mechanism specifically described above, the built-in weight lifting mechanism and the mechanism of the weighing device incorporating this mechanism,
There is no space for arranging the motor, which is a drive source for moving up and down the built-in weight, near this lifting mechanism. For this reason, the motor itself is arranged at a position far away from the lifting mechanism, and the long rotary shaft 5 is used to transmit the driving force. Since such a long rotating shaft is used, there is a possibility that the shaft may bend during rotation, or the rotating shaft of the motor and the shaft center of the rotating shaft 5 may deviate over time. When such bending or deviation occurs, a large load is applied to the motor, which causes problems such as heat generation of the motor, generation of abnormal noise, malfunction, and shortening of the life of the device. For this reason, bearings are arranged in several places with respect to the rotary shaft to hold the rotary shaft, but this is not a fundamental solution to the problem.

〔課題を解決するための手段〕[Means for Solving the Problems]

本考案はこの技術的課題に鑑み構成したものであり、長
大な回転軸とモータの回転軸との間に継手を配置し、か
つこの継手の剛性を回転軸およびモータ回転軸よりも低
くし、この継手部に於いてモータに加わるべき応力を吸
収するように構成した内蔵分銅昇降装置の継手機構であ
る。
The present invention is configured in view of this technical problem, and a joint is arranged between a long rotary shaft and a rotary shaft of a motor, and the rigidity of the joint is lower than those of the rotary shaft and the motor rotary shaft. The joint mechanism of the built-in weight lifting device configured to absorb the stress to be applied to the motor at the joint portion.

〔作用〕[Action]

モータと回転軸との間に介在させた継手により、回転軸
の撓みやこの回転軸とモータ回転軸との軸心のずれ等に
よりよって生じる応力を、この継手が撓むことにより吸
収し、モータに対して特別な応力が加わらないようにす
る。
The joint interposed between the motor and the rotary shaft absorbs the stress generated by the bending of the rotary shaft and the misalignment of the shaft center between the rotary shaft and the motor rotary shaft, and the joint absorbs the stress. Make sure that no special stress is applied to.

〔実施例〕〔Example〕

以下本考案の実施例を図面を参考に具体的に説明する。 Embodiments of the present invention will be specifically described below with reference to the drawings.

第1図において、20はモータ(ギヤドモータ)6の回転
軸6aとこのモータの回転力を内蔵分銅昇降機構に伝達す
る回転軸5(以下モータの回転軸と区別するため「回転
力伝達軸」と称する)との間に配置した継手である。こ
の継手20はモータ6の回転軸6aに挿通配置する接続部20
aと、回転力伝達軸5側に接続する接続部20bと、さらに
これら両接続部の間に配置した応力吸収及び回転力伝達
用の軸20cとからなっている。この応力吸収軸20cは、図
の構成では回転軸6a及び回転力伝達軸5よりも細い軸で
あり、従ってこれら回転軸及び回転力伝達軸と同様の材
料により構成されている場合にはこれら各軸6、5より
も剛性が低くなっている。これにより回転力伝達軸5の
回転時の撓み、回転力伝達軸5とモータ側回転軸6との
軸心のずれ等によりモータ6側に応力が加わろうとする
場合、最も剛性の低い応力吸収軸20cに応力が集中し、
この軸20cが変形して応力を全て吸収する。
In FIG. 1, 20 is a rotary shaft 6a of a motor (geared motor) 6 and a rotary shaft 5 that transmits the rotary force of this motor to a built-in weight lifting mechanism (hereinafter referred to as "rotary force transmitting shaft" to distinguish it from the rotary shaft of the motor). (Referred to as) and a joint arranged between the two. This joint 20 is a connecting portion 20 which is inserted through the rotary shaft 6a of the motor 6 and arranged.
a, a connecting portion 20b connected to the rotational force transmitting shaft 5 side, and a stress absorbing and rotational force transmitting shaft 20c arranged between these connecting portions. The stress absorbing shaft 20c is a shaft thinner than the rotary shaft 6a and the rotary force transmitting shaft 5 in the configuration shown in the figure. Therefore, when the stress absorbing shaft 20c is made of the same material as those of the rotary shaft 6a and the rotary force transmitting shaft 5, these respective The rigidity is lower than that of the shafts 6 and 5. As a result, when stress is applied to the motor 6 side due to bending of the rotational force transmitting shaft 5 during rotation, misalignment of the rotational center of the rotational force transmitting shaft 5 and the motor-side rotating shaft 6, or the like, the stress absorbing shaft with the lowest rigidity Stress concentrates on 20c,
The shaft 20c deforms and absorbs all the stress.

なお継手20の各接続部材20a、20bと回転軸6a及び回転力
伝達軸5との接続はビス等により行う外、角孔したり、
単に嵌挿する等適宜その方法を選択することができる。
The connecting members 20a and 20b of the joint 20 are connected to the rotary shaft 6a and the rotary force transmitting shaft 5 with screws or the like.
The method can be appropriately selected such as simply inserting.

第2図は別の実施例を示す。FIG. 2 shows another embodiment.

この実施例の場合には接続部材20a、20bの間に棒状の軸
を配置する代わりに、コイルバネ21を配置する。このコ
イルバネ21はバネを形成する螺旋線材が密着しており、
常時は棒状の軸同様に作用するが、応力が加わった場合
には弾性体として作用し、その応力に応じて変形して応
力を吸収する。この構成の場合には両軸5および6aの間
で回転力を伝達する軸体が基本的には弾性体であるの
で、応力の吸収をより良好に行うことができる。
In the case of this embodiment, instead of disposing a rod-shaped shaft between the connecting members 20a and 20b, a coil spring 21 is disposed. This coil spring 21 is closely attached to the spiral wire forming the spring,
It always acts like a rod-shaped shaft, but when stress is applied, it acts as an elastic body and deforms according to the stress to absorb the stress. In the case of this configuration, the shaft body that transmits the rotational force between the two shafts 5 and 6a is basically an elastic body, so that the stress can be absorbed better.

なお、以上の構成では継手をモータの回転軸6aと回転力
伝達軸5との間に配置したが、この構成に限定するもの
ではなく、モータ回転軸6と回転力伝達軸5とは応力吸
収が不可能な継手機構で接続し、回転力伝達軸5を例え
ば2分割して、この分割部を前記継手で接続するように
してもほぼ同様に目的を達成することができる。
Although the joint is arranged between the rotating shaft 6a of the motor and the rotational force transmitting shaft 5 in the above configuration, the present invention is not limited to this configuration and the motor rotating shaft 6 and the rotational force transmitting shaft 5 absorb stress. It is possible to achieve substantially the same purpose by connecting with a joint mechanism that is not possible, dividing the rotational force transmission shaft 5 into, for example, two, and connecting the divided portion with the joint.

〔効果〕〔effect〕

本考案は、長大な回転力伝達軸とモータの回転軸との間
に継手を配置し、かつこの継手の剛性を回転軸およびモ
ータ回転軸よりも低くし、この継手部に於いてモータに
加わるべき応力を吸収するように構成したので、回転力
伝達軸の撓み、回転力伝達軸とモータ回転軸とのずれな
どにより生じる応力を継手部に於いて吸収するためモー
タに負荷が掛かることがなく、装置の寿命を延長すると
共に、モータの発熱、異音の発生、作動不良などの問題
が生じない。
According to the present invention, a joint is arranged between a large rotational force transmitting shaft and a motor rotating shaft, and the rigidity of the joint is made lower than that of the rotating shaft and the motor rotating shaft, and the joint is applied to the motor. Since it is configured to absorb the expected stress, the joint part absorbs the stress generated by the bending of the rotational force transmission shaft and the deviation between the rotational force transmission shaft and the motor rotational shaft, so that the motor is not loaded. In addition to prolonging the life of the device, problems such as heat generation of the motor, generation of abnormal noise, malfunction, etc. do not occur.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の実施例を示す秤量装置における内部分
銅昇降装置の平面図、第2図は別の実施例を示す継手の
側面図、第3図は内部分銅昇降装置の作動状態を示す斜
視図である。 1……大型内部分銅、2……小型内部分銅 5……回転力伝達軸、6……モータ 6a……モータ回転軸、20……継手 20a、20b……接続体、21……コイルバネ
FIG. 1 is a plan view of an internal weight lifting device in a weighing device showing an embodiment of the present invention, FIG. 2 is a side view of a joint showing another embodiment, and FIG. 3 is a working state of the internal copper lifting device. It is a perspective view. 1 ... Large inner copper, 2 ... Small inner copper 5 ... Rotation force transmission shaft, 6 ... Motor 6a ... Motor rotating shaft, 20 ... Coupling 20a, 20b ... Connector, 21 ... Coil spring

Claims (3)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】内部分銅昇降機構に対して回転力を伝達す
る回転力伝達軸と、この回転力伝達軸と回転力を発生す
るモータ側との間に継手を配置し、かつこの継手を構成
する回転力伝達部材の剛性を、少なくともモータ側の回
転軸の剛性よりも低くし、モータに加わるべき応力をこ
の継手の回転力伝達部材により吸収するように構成した
ことを特徴とする内部分銅昇降装置の継手機構。
Claim: What is claimed is: 1. A rotational force transmission shaft for transmitting rotational force to an inner part copper lifting mechanism, and a joint is arranged between the rotational force transmission shaft and a motor side for generating the rotational force, and the joint is constructed. The inner part copper lifting / lowering is characterized in that the rigidity of the rotating force transmitting member is at least lower than the rigidity of the rotating shaft on the motor side, and the stress to be applied to the motor is absorbed by the rotating force transmitting member of this joint. Device joint mechanism.
【請求項2】前記回転力伝達軸を2分割し、この分割部
に前記継手を配置するよう構成したことを特徴とする内
部分銅昇降装置の継手機構。
2. A joint mechanism for an internal copper lifting device, wherein the rotational force transmission shaft is divided into two parts, and the joint is arranged in the divided part.
【請求項3】前記継手の回転力伝達部材をコイルバネに
より形成したことを特徴とする実用新案登録請求の範囲
第(1)項または第(2)項記載の内部分銅昇降装置の
継手機構。
3. A joint mechanism for an internal copper lifting device according to claim 1 or 2, wherein the torque transmitting member of the joint is formed of a coil spring.
JP7279988U 1988-06-02 1988-06-02 Joint mechanism of inner part copper lifting device Expired - Lifetime JPH0633383Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7279988U JPH0633383Y2 (en) 1988-06-02 1988-06-02 Joint mechanism of inner part copper lifting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7279988U JPH0633383Y2 (en) 1988-06-02 1988-06-02 Joint mechanism of inner part copper lifting device

Publications (2)

Publication Number Publication Date
JPH01180725U JPH01180725U (en) 1989-12-26
JPH0633383Y2 true JPH0633383Y2 (en) 1994-08-31

Family

ID=31297951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7279988U Expired - Lifetime JPH0633383Y2 (en) 1988-06-02 1988-06-02 Joint mechanism of inner part copper lifting device

Country Status (1)

Country Link
JP (1) JPH0633383Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3667265T3 (en) * 2018-12-14 2022-09-26 Mettler-Toledo Gmbh Calibration weight assembly for a gravimetric measurement device

Also Published As

Publication number Publication date
JPH01180725U (en) 1989-12-26

Similar Documents

Publication Publication Date Title
JP3202317B2 (en) Medical examination table frame
JP4047536B2 (en) Motion transmission device
JP4136183B2 (en) Weighing scale with mechanical connection area for calibration weight
JP5081234B2 (en) Force measuring cell and weighing device with calibration weight device
JPH0633383Y2 (en) Joint mechanism of inner part copper lifting device
KR20150094801A (en) Delta robot
CN112643660A (en) Ankle joint structure and robot
CN106182076B (en) It is a kind of can all-direction rotation mechanical joint
JP2006306519A (en) Vertical oscillation part aligner
JP2539237B2 (en) Electronic scales
JP2543799B2 (en) Electronic scale with weight adjustment mechanism
JPH0515655U (en) Installation parts for electric motors
CN211824700U (en) Platform scale is measureed in load trigger formula response
JP3812422B2 (en) Electronic component mounting equipment
JP2003307264A (en) Ball screw type moving device
JP2002326182A (en) Arm operating mechanism and industrial robot provided with the arm operating mechanism
CN217014586U (en) Scanning bed and medical imaging equipment
JPS6116539Y2 (en)
CN117124355A (en) Transfer robot and robot system
JP7422238B2 (en) Substrate holding hand and substrate transfer robot
JPH0533034U (en) Built-in weight removal device
KR100478737B1 (en) A medical bed possible weight measurement
CN216634418U (en) Clamping manipulator for machining mechanical parts
JPH11108740A (en) Load cell-type weighing device equipped with calibration function
CN215261684U (en) Full-automatic three-coordinate measuring instrument for industrial design