JPH1019652A - Electronic balance - Google Patents

Electronic balance

Info

Publication number
JPH1019652A
JPH1019652A JP16786596A JP16786596A JPH1019652A JP H1019652 A JPH1019652 A JP H1019652A JP 16786596 A JP16786596 A JP 16786596A JP 16786596 A JP16786596 A JP 16786596A JP H1019652 A JPH1019652 A JP H1019652A
Authority
JP
Japan
Prior art keywords
weights
weight
movable column
built
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16786596A
Other languages
Japanese (ja)
Inventor
Junji Iizuka
淳史 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP16786596A priority Critical patent/JPH1019652A/en
Publication of JPH1019652A publication Critical patent/JPH1019652A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Force In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To regularly perform a precise span and linearity calibration even when a displacement error is caused by setting the load position to a movable column of upper and lower built-in weights onto the vertical axis of the center of a tray, and adding and subtracting the loads of the weights. SOLUTION: A tray 1 is supported by a movable column 21 through a tray receiving shaft 1a bent in crank form. Two built-in weights 41, 42 are loaded on the movable column 21 on the vertical axis Cv passing the center of the tray 1. Namely, weight receivers 211, 212 protruded on the side surface of the movable column 21 are inserted into the frame body 51 of a weight adding and subtracting mechanism 5, and an end surface cam 54 is rotated by a motor 55 to vertically move first and second weight lifting shafts 52, 53. Then, each weight 41, 42 is laid into either one of the state placed on the weight receiver 211, 212 on the vertical axis Cv, and the state lifted by each lifting shaft 52, 53. Thus, even in the load state of both the weights 41, 42 or one of the weights 41, 42, the load acts on the central axis of the tray 1, and is never influenced by the displacement error.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電子天びんに関し、
更に詳しくは、ロバーバル機構および内蔵分銅並びにそ
の加除機構を備えた電子天びんに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic balance,
More specifically, the present invention relates to an electronic balance having a roberval mechanism, a built-in weight, and a mechanism for adding and removing the weight.

【0002】[0002]

【従来の技術】電子天びんにおいては、一般に、皿をロ
バーバル機構ないしはパラレルガイドと称される機構に
よって支承することにより、その変位の方向を鉛直方向
に規制するとともに、皿に対する偏置荷重による誤差、
つまり偏置誤差(四隅誤差)を解消するように考慮され
ている。ロバーバル機構は、天びんベース等に固定され
る固定柱に、互いに平行な上下の梁を介して可動柱を支
承した機構であり、その可動柱に皿が支承され、また、
その可動柱が荷重感応部に連結される。
2. Description of the Related Art In an electronic balance, generally, a plate is supported by a mechanism called a roberval mechanism or a parallel guide to restrict the direction of its displacement in a vertical direction, and to correct an error caused by an eccentric load on the plate.
That is, consideration is given to eliminating the eccentric errors (four corner errors). The Roberval mechanism is a mechanism in which a movable column is supported on fixed columns fixed to a balance base or the like via upper and lower beams parallel to each other, and a plate is supported on the movable column,
The movable column is connected to the load sensitive part.

【0003】また、このような電子天びんにおいて、較
正用の既知質量の分銅を内蔵するとともに、その分銅の
加除機構を備えたものがある。この較正用の内蔵分銅
は、スパン較正およびリニアリティ較正の双方を可能と
するためには2つ必要であり、通常、それぞれが質量既
知で、互いに略等しい質量を持ち、かつ、その合計質量
が天びんひょう量の近傍の質量となるような分銅が内蔵
される。そして、スパン較正時には2つの分銅が同時に
可動柱に負荷され、その状態での荷重データとこれらの
合計質量値とからスパン係数が算出されるとともに、リ
ニアリティ較正時には、一方の分銅の負荷状態における
荷重データとその分銅質量値、および2つの分銅の負荷
状態における荷重データとその合計質量値とから、リニ
アリティ補正係数が算出される。
[0003] Some of such electronic balances have a built-in weight of a known mass for calibration and a mechanism for adding and removing the weight. Two built-in calibration weights are necessary to enable both span calibration and linearity calibration. Usually, each of the weights has a known mass, has a mass approximately equal to each other, and the total mass is the balance. A weight with a mass near the weighing capacity is built-in. At the time of span calibration, two weights are simultaneously applied to the movable column, and the span coefficient is calculated from the load data in that state and the total mass thereof. At the time of linearity calibration, the load of one weight under the loaded state is A linearity correction coefficient is calculated from the data, the mass value of the weight, and the load data of the two weights in the loaded state and the total mass value.

【0004】このような2つの内蔵分銅を持つ電子天び
んにおいては、従来、各分銅は、例えば可動柱の左右両
側等、互いに水平方向に所定の距離だけ離れた位置にお
いて可動柱に負荷されるように構成されている。
In such an electronic balance having two built-in weights, conventionally, each weight is loaded on the movable column at a position horizontally separated from each other by a predetermined distance, for example, on the left and right sides of the movable column. Is configured.

【0005】[0005]

【発明が解決しようとする課題】ところで、ロバーバル
機構は、上下の梁が水平である場合に偏置誤差を解消す
ることができるものであり、その調整は天びんの製造工
程において、皿上への荷重の負荷位置を変更しつつ厳密
に行われる。
By the way, the roberval mechanism is capable of eliminating an eccentric error when the upper and lower beams are horizontal, and the adjustment is carried out in a process of manufacturing the balance by placing the beam on a plate. Strictly performed while changing the load position of the load.

【0006】しかし、このような偏置誤差の調整を厳密
に行った後においても、例えば天びん機構内部の温度分
布等に起因して、僅かではあるが偏置誤差が生じること
がある。このような偏置誤差が生じた場合、2つの内蔵
分銅を備えた従来の電子天びんでは、正確な較正を行う
ことができないという問題がある。
However, even after such an eccentricity error is strictly adjusted, a slight eccentricity error may occur due to, for example, a temperature distribution inside the balance mechanism. When such an eccentricity error occurs, a conventional electronic balance having two built-in weights has a problem that accurate calibration cannot be performed.

【0007】すなわち、2つの内蔵分銅とその加除機構
を備えた従来の電子天びんにおいては、前記したよう
に、2つの内蔵分銅は水平方向に互いに所定の距離だけ
離れた位置で可動柱に対して負荷されるため、2つの分
銅の負荷位置が皿の中心軸を挟んで水平方向に互いに等
距離であり、かつ、これら2つの分銅の質量が互いに等
しいという条件のもとに、2つの分銅の負荷状態におい
てその合計質量の重心が皿の中心軸上に位置するが故に
偏置誤差の影響は受けないものの、このような条件が揃
っていても、リニアリティ較正時における片方の分銅の
みの負荷状態では常に偏置誤差の影響を受けることにな
る。また、2つの分銅の質量が相違したり、あるいは2
つの分銅の負荷位置の皿の中心軸からの距離が互いに異
なる場合には、両方の分銅を負荷した状態でも偏置誤差
の影響を受ける。このような偏置誤差の影響を受けた荷
重データを元に、リニアリティ較正およびスパン較正を
行ってしまうと、当然のことながら正しい較正を行うこ
とができず、較正後の測定結果の全てに誤差が含まれる
結果となる。
That is, in a conventional electronic balance having two built-in weights and a mechanism for adding and removing the same, as described above, the two built-in weights are horizontally separated from the movable column by a predetermined distance from each other. Since the weights are loaded, the loading positions of the two weights are equidistant from each other horizontally across the center axis of the pan, and the weights of the two weights are equal to each other. In the load state, the center of gravity of the total mass is located on the center axis of the plate, so it is not affected by the eccentricity error.However, even if such conditions are satisfied, the load state of only one weight at the time of linearity calibration Then, it is always affected by the deviation error. Also, the weights of the two weights may differ, or
If the distances between the load positions of the two weights from the center axis of the pan are different from each other, the eccentricity error is also affected even when both weights are loaded. If linearity calibration and span calibration are performed based on the load data affected by such an eccentric error, it is naturally impossible to perform correct calibration, and all the measurement results after calibration will have errors. Is included.

【0008】本発明はこのような実情に鑑みてなされた
もので、2つの内蔵分銅とその加除機構を備えた電子天
びんにおいて、天びん機構内部の温度分布等に起因して
偏置誤差が生じても、常に正確なスパン較正並びにリニ
アリティ較正を行うことのできる電子天びんの提供を目
的としている。
The present invention has been made in view of such circumstances, and in an electronic balance having two built-in weights and an addition / removal mechanism, an eccentricity error occurs due to a temperature distribution inside the balance mechanism. Another object of the present invention is to provide an electronic balance capable of always performing accurate span calibration and linearity calibration.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めの構成を、実施の形態を表す図1,図2を参照しつつ
説明すると、本発明の電子天びんは、皿1がロバーバル
機構2で支承され、かつ、そのロバーバル機構2の可動
柱21が荷重感応部3に連結されるとともに、リニアリ
ティおよびスパン較正用として2つの内蔵分銅41,4
2と、これらの内蔵分銅41,42の一方または両方を
可動柱21に対して負荷/負荷解除する分銅加除機構5
を備えた電子天びんにおいて、2つの内蔵分銅41,4
2の可動柱21への負荷位置が、それぞれ皿1の中心を
通る鉛直軸Cv上であることによって特徴づけられる。
A structure for achieving the above object will be described with reference to FIGS. 1 and 2 showing an embodiment. In the electronic balance of the present invention, a plate 1 is provided with a roberval mechanism 2. And the movable column 21 of the roberval mechanism 2 is connected to the load sensitive part 3 and has two built-in weights 41 and 4 for linearity and span calibration.
2 and a weight adding / removing mechanism 5 for loading / unloading one or both of these built-in weights 41 and 42 on the movable column 21.
In an electronic balance equipped with two internal weights 41, 4
The position of the load on the second movable column 21 is characterized by being on a vertical axis Cv passing through the center of the dish 1.

【0010】2つの内蔵分銅41,42は、それぞれに
皿1の中心線上において互いに上下の位置関係のもとに
可動柱21に負荷されることになり、互いの質量がある
程度異なっていても、その両方または片方を負荷したい
ずれの状態においても、常にその荷重は皿1の中心線上
に作用する。従って、電子天びんに何らかの理由で偏置
誤差が生じていても、スパン較正時およびリニアリティ
較正時における内蔵分銅負荷時の荷重データにはその偏
置誤差の影響は及ばない。
[0010] The two built-in weights 41 and 42 are respectively loaded on the movable column 21 on the center line of the plate 1 in a vertical relationship with each other. In either state where both or one of them is loaded, the load always acts on the center line of the dish 1. Therefore, even if the electronic balance has an eccentric error for some reason, the eccentric error does not affect the load data when the internal weight is loaded during the span calibration and the linearity calibration.

【0011】[0011]

【発明の実施の形態】図1は本発明の実施の形態の模式
的な全体構成図で、内蔵分銅41,42の可動柱21へ
の負荷位置を明確にすべく分銅加除機構5を取り除いた
状態で示す図である。
FIG. 1 is a schematic overall configuration diagram of an embodiment of the present invention, in which a weight adding / removing mechanism 5 has been removed in order to clarify the load positions of built-in weights 41 and 42 on a movable column 21. It is a figure shown in a state.

【0012】試料を載せるための皿1は、皿受け軸11
を介してロバーバル機構2の可動柱21に支承されてい
る。ロバーバル機構2は、互いに平行で、かつ、それぞ
れの両端部に可撓部eを備えた上下の梁22,23によ
り、可動柱21と固定柱24とを連結した構造を持ち、
可動柱21は連結部材31aを介してレバー31の一端
に連結されている。
A plate 1 on which a sample is to be placed has a plate receiving shaft 11
Through the movable column 21 of the roberval mechanism 2. The roberval mechanism 2 has a structure in which a movable column 21 and a fixed column 24 are connected to each other by upper and lower beams 22 and 23 having flexible portions e at both ends thereof, which are parallel to each other.
The movable column 21 is connected to one end of the lever 31 via a connecting member 31a.

【0013】レバー31は弾性支点31bによって回動
自在に支承されており、その他端の変位は変位センサ3
2によって検出される。また、レバー31には電磁力発
生装置33のフォースコイル33aが固着されている。
電磁力発生装置33は、永久磁石を主体とする磁気回路
33bとそれが作る静磁場中に変位自在に配置されたフ
ォースコイル33aによって構成されている。そして、
これらレバー31,変位センサ32,および電磁力発生
装置33が荷重感応部3を構成している。すなわち、皿
1に作用する荷重は可動柱21を介してレバー31に伝
達されるが、そのレバー31の変位が変位センサ32で
検出され、その変位検出結果が常に零となるように電磁
力発生装置33のフォースコイル33aに流れる電流が
制御され、その電流の大きさから皿1に対する荷重の大
きさが検出される。
The lever 31 is rotatably supported by an elastic fulcrum 31b.
2 detected. The force coil 33a of the electromagnetic force generator 33 is fixed to the lever 31.
The electromagnetic force generating device 33 includes a magnetic circuit 33b mainly composed of a permanent magnet and a force coil 33a which is displaceable in a static magnetic field generated by the magnetic circuit 33b. And
The lever 31, the displacement sensor 32, and the electromagnetic force generator 33 constitute the load sensing unit 3. That is, the load acting on the plate 1 is transmitted to the lever 31 via the movable column 21, but the displacement of the lever 31 is detected by the displacement sensor 32, and the electromagnetic force is generated so that the displacement detection result is always zero. The current flowing through the force coil 33a of the device 33 is controlled, and the magnitude of the load on the plate 1 is detected from the magnitude of the current.

【0014】さて、この例においては、皿受け軸11は
クランク状に屈曲しており、その上端部に支承された皿
1は、可動柱21に対して外側、つまり固定柱24と反
対側に持ち出された状態となっている。これにより、皿
1の中心を通る鉛直軸Cvは可動柱21の外側を通るこ
とになり、その鉛直軸Cv上に、2つの内蔵分銅41と
42がそれぞれ可動柱21に対して負荷される。すなわ
ち、可動柱21の側面に上下2つの分銅受け211,2
12が鉛直軸Cvを横切るように突出形成されており、
この各分銅受け211,212に内蔵分銅41,42が
それぞれ負荷される。
In this example, the plate receiving shaft 11 is bent in a crank shape, and the plate 1 supported on its upper end is located outside the movable column 21, that is, on the side opposite to the fixed column 24. It has been taken out. Thereby, the vertical axis Cv passing through the center of the plate 1 passes outside the movable column 21, and the two built-in weights 41 and 42 are loaded on the movable column 21 on the vertical axis Cv. That is, two upper and lower weight receivers 211 and 2 are provided on the side surface of the movable column 21.
12 is formed so as to protrude across the vertical axis Cv,
Built-in weights 41 and 42 are loaded on the weight receivers 211 and 212, respectively.

【0015】この各内蔵分銅41,42は、分銅加除機
構5によって各分銅受け211,212に対して個別に
負荷または負荷解除され、2つの内蔵分銅41,42が
いずれも負荷されない状態と、一方の内蔵分銅42のみ
が負荷される状態、および双方の内蔵分銅41,42が
負荷される状態の3つの状態を取ることが可能となって
いる。
Each of the built-in weights 41 and 42 is individually loaded or unloaded by the weight adding / removing mechanism 5 to each of the weight receivers 211 and 212, so that the two built-in weights 41 and 42 are not loaded. It is possible to take three states: a state where only the internal weight 42 is loaded and a state where both the internal weights 41 and 42 are loaded.

【0016】図2は分銅加除機構5の詳細構造の説明図
で、図1にA−Aで表される面で切断した断面図を示し
ている。なお、この図2では、一方の内蔵分銅42のみ
の負荷状態を示している。
FIG. 2 is an explanatory view of a detailed structure of the weight adding / removing mechanism 5, and FIG. 1 is a cross-sectional view cut along a plane indicated by AA in FIG. FIG. 2 shows a load state of only one internal weight 42.

【0017】この図2に示すように、分銅加除機構5
は、枠体51と、その枠体51に形成されたガイド部5
1a,51bによって上下方向に変位自在にガイドされ
た第1の分銅持ち上げ軸52と、同じく枠体51に形成
されたガイド部51cによって上下方向に変位自在にガ
イドされた第2の分銅持ち上げ軸53、各分銅持ち上げ
軸52,53を上下動させるための端面カム54、およ
びその端面カム54を回動させるためのモータ55等に
よって構成されている。
As shown in FIG. 2, the weight adding / removing mechanism 5
Is a frame 51 and a guide portion 5 formed on the frame 51.
A first weight lifting shaft 52 guided vertically displaceably by 1a and 51b, and a second weight lifting shaft 53 guided vertically vertically by a guide portion 51c also formed on the frame 51. An end cam 54 for moving the weight lifting shafts 52 and 53 up and down, and a motor 55 for rotating the end cam 54 are provided.

【0018】端面カム54は、図3に平面図で示すよう
に、円板54aの上面にその回転中心と同心のピッチ円
Pに沿って3つの突起部54b,54cおよび54dが
形成されたもので、そのピッチ円P上に第1および第2
の分銅持ち上げ軸52および53の下端が当接するよう
になっている。従って、この端面カム54を回動位置に
応じて、図3(A)の回動位置では双方の分銅持ち上げ
軸52,53が上方に移動し、同図(B)の位置では一
方の分銅持ち上げ軸52のみが上方に移動し、同図
(C)の位置では各分銅持ち上げ軸52,53がいずれ
も下方に位置した状態となる。
As shown in a plan view in FIG. 3, the end face cam 54 has three projections 54b, 54c and 54d formed on the upper surface of a disk 54a along a pitch circle P concentric with the center of rotation thereof. And the first and the second on the pitch circle P.
The lower ends of the weight lifting shafts 52 and 53 are in contact with each other. Accordingly, both weight lifting shafts 52 and 53 move upward in the rotation position of FIG. 3A according to the rotation position of the end face cam 54, and lift one of the weights in the position of FIG. Only the shaft 52 moves upward, and at the position shown in FIG. 4C, each of the weight lifting shafts 52 and 53 is located below.

【0019】可動柱21の側面に突出形成された各分銅
受け211,212はそれぞれ枠体51の内部に挿入さ
れており、各内蔵分銅41および42は、それぞれ、モ
ータ55の駆動による端面カム54の回動に伴う第1お
よび第2の分銅持ち上げ軸52および53の上下動によ
って、鉛直軸Cv上で分銅受け211,212上に載せ
られた状態か、あるいは各分銅持ち上げ軸52,53に
よって持ち上げられた状態のいずれかとなる。
Each of the weight receivers 211 and 212 protruding from the side surface of the movable column 21 is inserted into the frame 51, and each of the built-in weights 41 and 42 is connected to an end face cam 54 driven by a motor 55. The first and second weight lifting shafts 52 and 53 move up and down with the rotation of the weight, so that the weights are placed on the weight receivers 211 and 212 on the vertical axis Cv or lifted by the respective weight lifting shafts 52 and 53. State.

【0020】すなわち、各分銅持ち上げ軸52,53に
は内蔵分銅41,42を持ち上げるための持ち上げ部材
52a,53aが装着されており、各分銅受け211,
212にはその持ち上げ部材52a,53aを貫通させ
得る貫通孔211a,212bが形成されている。各分
銅持ち上げ軸52,53が上方に移動した状態では、内
蔵分銅41,42は持ち上げ部材52a,53aと、枠
体51に設けられた分銅当たり51d,51eの間に挟
み込まれた状態となり、この状態では各内蔵分銅41,
42および分銅持ち上げ軸52,53はいずれも分銅受
け211,212に対して非接触の状態となる。一方、
分銅持ち上げ軸52,53が下方に位置する状態では、
内蔵分銅41,42は自重により鉛直軸Cv上で分銅受
け211,212の上に載った状態となり、また、この
状態においても分銅持ち上げ軸52,53は分銅受け2
11,212には非接触の状態が保たれる。
That is, lifting members 52a and 53a for lifting the built-in weights 41 and 42 are mounted on the weight lifting shafts 52 and 53, respectively.
The 212 is formed with through holes 211a and 212b through which the lifting members 52a and 53a can pass. When the weight lifting shafts 52 and 53 are moved upward, the internal weights 41 and 42 are sandwiched between the lifting members 52a and 53a and the weights 51d and 51e provided on the frame 51, respectively. In the state, each built-in weight 41,
The weight 42 and the weight lifting shafts 52 and 53 are not in contact with the weight receivers 211 and 212. on the other hand,
In the state where the weight lifting shafts 52 and 53 are located below,
The built-in weights 41 and 42 are placed on the weight receivers 211 and 212 on the vertical axis Cv by their own weights. In this state, the weight lifting shafts 52 and 53 are also connected to the weight receiver 2.
A non-contact state is maintained at 11 and 212.

【0021】以上の本発明の実施の形態において、各内
蔵分銅41,42は、いずれも皿1の中心を通る鉛直軸
Cv上において分銅受け211,212を介して可動柱
21に負荷されるため、各内蔵分銅41,42の質量が
一致していなくても、双方の内蔵分銅41,42の負荷
状態、および、一方の内蔵分銅42の負荷状態のいずれ
においても、その荷重は皿1の中心軸上に作用し、偏置
誤差の影響を受けることがない。よってこの実施の形態
においては、何らかの原因で偏置誤差が生じていても、
その影響を受けることなく、正確なスパン較正並びにリ
ニアリティ較正が可能となる。
In the above embodiment of the present invention, each of the built-in weights 41 and 42 is loaded on the movable column 21 via the weight receivers 211 and 212 on the vertical axis Cv passing through the center of the plate 1. Even if the weights of the internal weights 41 and 42 do not match, in both the loaded state of the two internal weights 41 and 42 and the loaded state of the one internal weight 42, the load is the center of the plate 1. Acts on the shaft and is not affected by eccentric errors. Therefore, in this embodiment, even if an eccentric error occurs for some reason,
Accurate span calibration and linearity calibration can be performed without being affected.

【0022】なお、以上の実施の形態では、皿1の中心
を通る鉛直線Cv上において各内蔵分銅41,42を可
動柱21に負荷すべく、皿受け軸1aをクランク状に屈
曲させた例を示したが、本発明はこれに限られることな
く、例えば可動柱21の中心軸上に皿1を支承するとと
もに、その可動柱21の中心部分を空洞とし、その空洞
部分に各内蔵分銅41,42の分銅受けを設けることに
よって、皿受け軸を屈曲させることなく、皿1の中心を
通る鉛直軸Cv上に各内蔵分銅を負荷することが可能と
なる。
In the above embodiment, the dish receiving shaft 1a is bent in a crank shape so that the built-in weights 41 and 42 are loaded on the movable column 21 on the vertical line Cv passing through the center of the dish 1. However, the present invention is not limited to this. For example, the plate 1 is supported on the central axis of the movable column 21, the central portion of the movable column 21 is hollow, and each built-in weight 41 is provided in the hollow portion. , 42 makes it possible to load each built-in weight on the vertical axis Cv passing through the center of the dish 1 without bending the dish receiving shaft.

【0023】また、各内蔵分銅の加除機構は、上記した
例に限られることなく、皿を通る鉛直軸上において各内
蔵分銅を負荷し得る機構であれば、他の公知の任意の機
構を採用し得ることは言うまでもない。
The mechanism for adding and removing each internal weight is not limited to the above example, and any other known mechanism may be used as long as it can load each internal weight on a vertical axis passing through the pan. It goes without saying that it can be done.

【0024】[0024]

【発明の効果】以上のように、本発明によれば、スパン
並びにリニアリティ較正用の2つの内蔵分銅が、それぞ
れ皿の中心を通る鉛直軸上において可動柱に負荷される
から、天びん機構の温度分布等の何らかの原因によって
偏置誤差が生じている状態で較正動作を行っても、各内
蔵分銅の荷重はそれぞれ独立的に皿の中心軸上に作用す
るため、偏置誤差の影響を受けることなく、常に正確な
較正を行うことが可能となった。
As described above, according to the present invention, since the two built-in weights for span and linearity calibration are respectively loaded on the movable column on the vertical axis passing through the center of the plate, the temperature of the balance mechanism is reduced. Even if the calibration operation is performed while an eccentricity error is occurring due to some reason such as distribution, the load of each built-in weight acts independently on the center axis of the dish, so it may be affected by the eccentricity error And accurate calibration can always be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の模式的な全体構成図で、
内蔵分銅41,42の可動柱21への負荷位置を明確に
すべく分銅加除機構5を取り除いた状態で示す図
FIG. 1 is a schematic overall configuration diagram of an embodiment of the present invention.
FIG. 3 shows the internal weights 41 and 42 with the weight removing mechanism 5 removed to clarify the load position on the movable column 21.

【図2】図1においてA−Aで表される面で切断した断
面図で示す分銅加除機構5の詳細構造の説明図
FIG. 2 is an explanatory diagram of a detailed structure of a weight adding / removing mechanism 5 shown in a cross-sectional view cut along a plane indicated by AA in FIG. 1;

【図3】平面図で示す端面カム54の作用説明図FIG. 3 is an explanatory view of an operation of an end cam shown in a plan view.

【符号の説明】[Explanation of symbols]

1 皿 1a 皿受け軸 2 ロバーバル機構 21 可動柱 211,212 分銅受け 3 荷重感応部 31 レバー 32 変位センサ 33 電磁力発生装置 41,42 内蔵分銅 5 分銅加除機構 51 枠体 52 第1の分銅持ち上げ軸 53 第2の分銅持ち上げ軸 54 端面カム 54a,54b,54c 突起部 55 モータ REFERENCE SIGNS LIST 1 plate 1a plate receiving shaft 2 roberval mechanism 21 movable column 211, 212 weight receiver 3 load sensitive part 31 lever 32 displacement sensor 33 electromagnetic force generator 41, 42 built-in weight 5 weight adding and removing mechanism 51 frame 52 first weight lifting shaft 53 Second Weight Lifting Shaft 54 End Face Cams 54a, 54b, 54c Projection 55 Motor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 皿がロバーバル機構で支承され、かつ、
そのロバーバル機構の可動柱が荷重感応部に連結される
とともに、リニアリティおよびスパン較正用として2つ
の内蔵分銅と、これらの内蔵分銅の一方または両方を上
記可動柱に対して負荷/負荷解除する分銅加除機構を備
えた電子天びんにおいて、上記2つの内蔵分銅の上記可
動柱への負荷位置が、それぞれ皿の中心を通る鉛直軸上
であることを特徴とする電子天びん。
1. A dish is supported by a Roberval mechanism, and
The movable column of the roberval mechanism is connected to the load sensitive part, and two internal weights for linearity and span calibration, and a weight addition / removal for loading / unloading one or both of these internal weights to / from the movable column. An electronic balance provided with a mechanism, wherein a load position of the two built-in weights on the movable column is on a vertical axis passing through a center of the plate.
JP16786596A 1996-06-27 1996-06-27 Electronic balance Pending JPH1019652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16786596A JPH1019652A (en) 1996-06-27 1996-06-27 Electronic balance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16786596A JPH1019652A (en) 1996-06-27 1996-06-27 Electronic balance

Publications (1)

Publication Number Publication Date
JPH1019652A true JPH1019652A (en) 1998-01-23

Family

ID=15857525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16786596A Pending JPH1019652A (en) 1996-06-27 1996-06-27 Electronic balance

Country Status (1)

Country Link
JP (1) JPH1019652A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1098177A2 (en) * 1999-11-05 2001-05-09 Secretary of Agency of Industrial Science and Technology Automatic submultiple and multiple test weight calibration apparatus
US8162635B2 (en) 2005-10-25 2012-04-24 Nitto Kohki Co., Ltd. Low vibration pump
DE10157804B4 (en) * 2001-11-27 2014-04-24 Mettler-Toledo Ag Weight set for an electronic balance
JP2017058220A (en) * 2015-09-16 2017-03-23 株式会社島津製作所 electronic balance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1098177A2 (en) * 1999-11-05 2001-05-09 Secretary of Agency of Industrial Science and Technology Automatic submultiple and multiple test weight calibration apparatus
EP1098177A3 (en) * 1999-11-05 2002-01-16 Secretary of Agency of Industrial Science and Technology Automatic submultiple and multiple test weight calibration apparatus
DE10157804B4 (en) * 2001-11-27 2014-04-24 Mettler-Toledo Ag Weight set for an electronic balance
US8162635B2 (en) 2005-10-25 2012-04-24 Nitto Kohki Co., Ltd. Low vibration pump
JP2017058220A (en) * 2015-09-16 2017-03-23 株式会社島津製作所 electronic balance

Similar Documents

Publication Publication Date Title
CN101870399B (en) Stocker system and method of managing stocker
JP3423979B2 (en) Probe method and probe device
CN104568105B (en) Weighing unit with the equipment for correcting eccentric load error and the method for correcting eccentric load error
JPH1019652A (en) Electronic balance
US20100133016A1 (en) Scales
EP0706035B1 (en) Top pan balance
CN111323110A (en) Calibration weight assembly for weight measuring device
US5212657A (en) Kinetofrictional force testing apparatus
US4067408A (en) Balance mechanism
EP0432979A2 (en) Scale for operation under oscillating conditions
JP2611608B2 (en) Weighing device
US4106580A (en) Force measuring apparatus
JP2539237B2 (en) Electronic scales
JP6488957B2 (en) electronic balance
US6710890B1 (en) Substrate thickness determination
JP2913962B2 (en) Balances for measuring plate samples
JP4178681B2 (en) Precision scale
JP3279052B2 (en) Electronic balance
JPH10307058A (en) Electronic balance
JP2671097B2 (en) Hardness meter load control mechanism
JPH0943043A (en) Weighing instrument
JP2000208590A (en) Method and apparatus for detecting position of wafer
JP3975611B2 (en) Electronic balance
JP3418554B2 (en) Flat plate holding device and flat plate holding method
JPH07169820A (en) Peephole of closed container

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040527

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040817

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20041012

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041116