JP4178681B2 - Precision scale - Google Patents

Precision scale Download PDF

Info

Publication number
JP4178681B2
JP4178681B2 JP24636099A JP24636099A JP4178681B2 JP 4178681 B2 JP4178681 B2 JP 4178681B2 JP 24636099 A JP24636099 A JP 24636099A JP 24636099 A JP24636099 A JP 24636099A JP 4178681 B2 JP4178681 B2 JP 4178681B2
Authority
JP
Japan
Prior art keywords
load
beams
beam portion
lever
elastic fulcrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24636099A
Other languages
Japanese (ja)
Other versions
JP2001074539A (en
Inventor
晟 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP24636099A priority Critical patent/JP4178681B2/en
Publication of JP2001074539A publication Critical patent/JP2001074539A/en
Application granted granted Critical
Publication of JP4178681B2 publication Critical patent/JP4178681B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Force In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は上皿はかりに関し、更に詳しくは、ロバーバル機構と、荷重伝達用ののレバー機構を備えた上皿はかりに関する。
【0002】
【従来の技術】
上皿はかり又は上皿天びんにおいては、一般に、図4、及び図5に示すように、ロバーバル機構(パラレルガイドとも称される)10を介して試料皿20を支承することにより、試料皿20が水平を保ったまま上下に変位するように規制し、これによって試料皿20に対する試料の偏置に伴う誤差、いわゆる偏置誤差(四隅誤差とも言う)が生じないように考慮されている。
【0003】
ロバーバル機構10は、両端部分にヒンジ部となる可撓部11a,11bおよび12a,12bを備えた互いに平行な上下2本の梁11および12を介して可動柱13を固定柱14に連結した構造を持ち、試料皿20は可動柱13に支承される。試料皿20に作用する荷重は、可動柱13に連結されたレバー30を介してロードセルないしは電磁力発生機構等の荷重感応部40に伝達される。
【0004】
レバー30は、通常、弾性支点31によって支持されるとともに、その一端側の力点32が連結片50を介して可動柱13に連結される一方、他端側が荷重感応部40に連結され、試料皿20に負荷された被測定荷重を数分の一から百数十分の一のレバー比のもとに縮小して荷重感応部40に伝達する。ここで、レバー30の力点32は前後回転方向(レバー30の長手方向への移動、図5において矢印Rで示す。以下同)に可撓性を有しているとともに、連結片50と可動柱13との連結部についても、前後回転方向に可撓の連結用弾性支点51が介在しており、この連結用弾性支点51と可撓性の力点32によって、試料皿20に荷重が作用することによる、可動柱13の前後方向への僅かな変位と、レバー30の傾斜に起因する力点32の前後方向への僅かな変位を吸収することが図られている。
【0005】
ところで、このようなロバーバル機構10においては、一般に、上下2本の梁11と12の平行度が重要であり、これらの上下の梁11と12が正確に平行になっている条件下で、はじめて試料皿20上の荷重の偏置誤差が解消される。すなわち、図4(A)に示す寸法HとH′が一致するように厳密に調整しなければ偏り偏置誤差が生じる。この調整は、特に精密な電磁力平衡型の電子天びん等においてはμmオーダー以下の精度が必要となる等、HとH′の寸法を測定することで実行し得る程度のものではなく、実際の調整作業では、試料皿20上に載せた荷重を移動させつつ、各位置で計量値が変化しないように平行度の微調整を行う。
【0006】
ところが、近年のはかりの小型化、薄型化の要求により、従来よりもレバー比を大きくして小さなメカニズムで大きな荷重を測定する必要が生じているが、単純に従来品のレバー比を大きくして装置の小型化を図った場合、偏置誤差が大きく発生しやすくなって仕様を満足できなくなる。
【0007】
すなわち、レバー比を大きくして、レバー30の弾性支点31と力点32との間の距離、L1を1mm程度以下に短くした場合、荷重の大きさによって特に前後方向(水平方向)への偏置誤差が大きく変わり易く、上述のような調整機構を用いて、ある荷重に対する偏置誤差を厳密に調整しても、別の荷重では偏置誤差が生じてしまい、はかりとして実用できなくなってしまう。
【0008】
そこで、レバー比を大きくして小型化および薄型化しても、従来のように荷重の大きさによる偏置誤差の変化が少なくなるよう、例えば、先に出願した特願平7−257801号のように、上下の梁11,12のうち、連結用弾性支点51に近い側の下側梁12の剛性が、他側の梁11の剛性に比して大であるように、例えば、下側梁12の厚さを大きくしている。それにより、偏置により可動柱が傾いても可動柱の回転中心Kが連結用弾性支点51の近傍となるので、連結用弾性支点51の位置が、レバー前後方向(水平方向)へ移動する距離が少なくなり、高精度の測定が行える。
【0009】
【発明が解決しようとする課題】
しかしながら、梁自身の伸縮圧縮を抑制しようと、梁を厚くすると、その一方で、梁の曲げ剛性が増加するので、梁が曲がることで荷重の測定が行えるロバーバル機構を備えた上皿はかりにとっては、測定感度を低下させる要因となった。
【0010】
本発明の目的は、このような課題を解決して、測定感度を低下させることなく、偏置誤差を抑制できる上皿はかりを提供することである。
【0011】
【課題を解決するための手段】
上記したような課題を解決するため、本発明は、両端部に可撓部を備えた互いに平行な上下2本の略同一の厚さの梁部材を介して可動柱が固定柱に連結されてなるロバーバル機構の、その可動柱に試料皿が支承されるとともに、その可動柱が、弾性支点を有するレバー機構の力点に対し、前記上下の梁部材の間に位置する連結用弾性支点を介して連結され、そのレバー機構によって前記試料皿上の荷重が荷重感応部に伝達される上皿はかりにおいて、前記連結用弾性支点を中心として前記上下梁までの距離の比をA:Bとしたとき、上下梁の本数の比をB: A となるように前記梁部材と略同一の厚さの梁部材を更に設けて剛性を高められており、前記試料皿に偏置荷重が加わっても、可動柱の回転中心が前記連結用弾性支点にほぼ一致し、前記連結用弾性支点が前後方向(水平方向)に移動することが抑制されるとともに、梁部材の曲げ剛性の増加は最小限であり、梁部材の曲げによって行われる測定については、その感度の低下が抑制される。
【0012】
【発明の実施の形態】
図1は本発明の第1の構成を電磁力平衡型天びんに適用した実施の形態の機構図である。ロバーバル機構10の基本的構造は、図4あるいは図5に示した従来のものと同等であり、両端部にそれぞれ可撓部11a,11b、および12a,12bを備えた上側梁部11および下側梁部12により、可動柱13と固定柱14を連結した構造を持ち、可動柱13には試料皿20が支承される。上側梁部は1本の梁11、下側梁部12は、2本の梁12A,12Bから構成されており、これら梁の厚みは略同一である。
【0013】
また、従来と同様に、この可動柱13に作用する荷重は、弾性支点31によって支持されたレバー30を介して荷重感応部である電磁力発生装置40に伝達される。すなわち、レバー30の一端に設けられた力点32が、連結片50によって連結用弾性支点51を介して可動柱13に連結され、レバー30には支点31を挟んで反対側に電磁力発生装置40のフォースコイル42が固着される。電磁力発生装置40は、永久磁石41aを主体とする磁気回路41が作る静磁場中に、レバー30に固着されたフォースコイル42を可動に配設したものであり、レバー30の変位はその他端部に形成されたスリット33の位置を検知する変位センサ34によって検出され、その変位検出結果が常に零となるようにフォースコイル42に流れる電流が制御される。そして、その電流の大きさから試料皿20上の荷重が検出される。
【0014】
連結用弾性支点51の高さ方向位置は、ロバーバル機構10の上下の梁のうちの下側梁部12により近く、上側梁部11と連結用弾性支点51との上下方向寸法をA、下側梁部12と連結用弾性支点51との上下方向寸法をBとしたとき、A>Bである。
【0015】
そして、上記したように、上側梁部11は1本の梁11で構成されているのに対し、下側梁部12には2本の梁12A,12Bが設けられ、特に本実施例では、これら梁は略同一の厚さのものが使用されているので、梁の本数が多い下側梁部12の剛性は、上側梁部11に対して高くなっている。
【0016】
具体的には、水平方向に圧縮剛性を2倍にアップしようと、1本の梁の厚みを2倍にすると、曲げ剛性は、断面二次モーメントI=bt/12(t:厚さ、b:幅)に比例するので、2=8倍となる。それに対し、同じ梁を2本使用して圧縮剛性を2倍にアップすると、曲げ剛性の方は、単純に2倍になるだけで、曲げ剛性の上昇は1本の梁の厚みを2倍する場合に比べて抑制され、ロバーバル機構の上下の梁部11,12が曲がることで測定が可能な上皿はかりの感度低下は抑制されることになる。
【0017】
そして、図2において、連結用弾性支持点51を中心として上下梁までの距離の比をA:Bとしたとき、この比A:Bに対し、梁の伸縮比δ:δを等しくすると、偏置による可動柱の回転中心Kは、連結用弾性支持点51と一致し、連結用弾性支持点51の移動がほぼ無くなる。
【0018】
本実施例では、連結用弾性支持点51を中心としてA:B=2:1であり、偏置による可動柱の回転中心Kを連結用弾性支持点51と一致させるためには、δ:δ=2:1にする必要があり、下側梁部12の剛性は、上側梁部11の剛性の2倍とする必要があるので、本実施例では、下側梁部12に2本の梁を設けている。なお、A:B=3:1とした場合、下側梁部12の剛性は、上側梁部11の3倍とする必要があるので、下側梁部12には3本の梁を設けることになる。
【0019】
なお、上側梁部11においても、複数の梁で構成することも可能で、その場合、下側梁部12は、上側梁部11よりも多い本数の梁で構成する必要がある。
【0020】
また、本実施例においては、上側梁部11及び下側梁部12を構成する個々の梁の厚さは略同一(剛性が略同一)であるが、必要に応じて、互いに異なった厚さの梁を組み合わせて使用してもよい。例えば、下側梁部12おいて、上側梁部11の3倍の剛性効果を出したい場合、1.5倍厚さの梁を2本を使用したり、2倍厚さの梁を1本と原厚さの梁を1本とを組み合わせて使用することが可能で、それぞれ、曲げ剛性は、(1.5)×2=6.75倍、2+1=9倍となり、1本の梁の厚さを3倍したときの曲げ剛性が3=27倍となるのに対し、曲げ剛性の上昇が抑制できる。ただし、原厚さの梁を3本使用した場合は、曲げ剛性は3倍と最も抑制することが可能であるが、ロバーバル機構の高さ方向の制限で梁の本数が増やせない場合や、その他種々の条件により、上記したように異なった厚さの梁の組み合わせで梁部が構成される。
【0021】
ところで、図3は、本実施例の変形例として、ワンピース方式のロバーバル機構に、本発明を適用した例である。荷重側(可動側)101は固定側102に対し、上側梁部103と下側梁部104によって支持されているが、下側梁部104は、上側梁部103のロバーバル105と同寸法の2枚のロバーバル105で形成されていて、上記した図1の電子天びんにおけるロバーバル機構と同等の効果が得られる。
【0022】
【発明の効果】
以上説明したように、本発明の構成によれば、ロバーバル機構の上下の梁部のうち、可動柱とレバーの力点を繋ぐ連結用弾性支点に近い側の梁の本数を、他側の梁の本数より多く設けることで、下側の梁部の剛性を大きくすることで、測定感度の低下に影響を与える曲げ剛性の相乗的な増加を伴うことなく、連結用弾性支点の前後方向への移動を少なくすることが可能となり、偏置荷重による測定誤差を低減できる。
【図面の簡単な説明】
【図1】電磁力平衡型の電子天びんに適用した実施の形態を示す機構図。
【図2】図1の機構に偏置荷重を負荷したときの作用説明図。
【図3】ワンピース方式のロバーバル機構への適用を示した図。
【図4】従来の、ロバーバル機構とレバーを有する上皿はかり又は天びんの一般的な構成を示す図。
【図5】図4に示した上皿はかり又は天びんの機構図、及び偏置荷重を負荷したときの作用説明図。
【符号の説明】
11 上側梁部
12 下側梁部
12A,12B 梁
20 試料皿
51 連結用弾性支点
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an upper pan scale, and more particularly, to an upper pan scale equipped with a Roverval mechanism and a load transmission lever mechanism.
[0002]
[Prior art]
As shown in FIGS. 4 and 5, in an upper pan balance or an upper balance, generally, the sample pan 20 is supported by supporting the sample pan 20 via a Roverval mechanism (also referred to as a parallel guide) 10. The horizontal displacement is restricted so that the sample is displaced up and down, so that an error associated with the displacement of the sample with respect to the sample dish 20, that is, a so-called displacement error (also referred to as a four-corner error) does not occur.
[0003]
The Roverval mechanism 10 has a structure in which a movable column 13 is connected to a fixed column 14 via two parallel upper and lower beams 11 and 12 having flexible portions 11a, 11b and 12a, 12b that serve as hinges at both ends. The sample tray 20 is supported on the movable column 13. A load acting on the sample pan 20 is transmitted to a load sensing unit 40 such as a load cell or an electromagnetic force generation mechanism via a lever 30 connected to the movable column 13.
[0004]
The lever 30 is normally supported by an elastic fulcrum 31, and a force point 32 at one end thereof is connected to the movable column 13 via a connecting piece 50, while the other end is connected to the load sensitive portion 40, The load to be measured applied to 20 is reduced based on a lever ratio of a fraction to one hundredth and transmitted to the load sensing unit 40. Here, the force point 32 of the lever 30 has flexibility in the front-rear rotation direction (movement of the lever 30 in the longitudinal direction, indicated by an arrow R in FIG. 5, the same applies hereinafter), and the connecting piece 50 and the movable column. The flexible connecting elastic fulcrum 51 is also interposed in the forward and backward rotation direction at the connecting portion with the connecting portion 13, and the load is applied to the sample pan 20 by the connecting elastic fulcrum 51 and the flexible force point 32. It is intended to absorb a slight displacement in the front-rear direction of the movable column 13 and a slight displacement in the front-rear direction of the force point 32 due to the inclination of the lever 30.
[0005]
By the way, in such a robust mechanism 10, generally, the parallelism of the upper and lower beams 11 and 12 is important, and for the first time under the condition that the upper and lower beams 11 and 12 are accurately parallel to each other. The deviation error of the load on the sample pan 20 is eliminated. That is, a deviation deviation error occurs unless the dimensions H and H ′ shown in FIG. This adjustment is not a measure that can be performed by measuring the dimensions of H and H ', for example, in the case of precision electromagnetic force balance type electronic balances, and so on. In the adjustment operation, the parallelism is finely adjusted so that the measurement value does not change at each position while moving the load placed on the sample pan 20.
[0006]
However, due to the recent demands for smaller and thinner scales, it is necessary to measure a large load with a small mechanism by making the lever ratio larger than before, but simply increasing the lever ratio of the conventional product When miniaturization of the device is attempted, a deviation error tends to occur and the specification cannot be satisfied.
[0007]
That is, when the lever ratio is increased and the distance between the elastic fulcrum 31 and the force point 32 of the lever 30 and L1 is shortened to about 1 mm or less, the displacement in particular in the front-rear direction (horizontal direction) depends on the magnitude of the load. The error is easily variable, and even if the deviation error with respect to a certain load is strictly adjusted using the adjustment mechanism as described above, the deviation error is caused with another load, and it becomes impossible to use as a scale.
[0008]
Therefore, even if the lever ratio is increased and the size and thickness are reduced, the change in the deviation error due to the magnitude of the load is reduced as in the prior art. For example, as previously filed in Japanese Patent Application No. 7-257801. In addition, the lower beam 12 on the side close to the coupling elastic fulcrum 51 of the upper and lower beams 11 and 12 is larger than the rigidity of the beam 11 on the other side, for example, the lower beam The thickness of 12 is increased. Thereby, even if the movable column is tilted due to the displacement, the rotation center K of the movable column is in the vicinity of the coupling elastic fulcrum 51, so that the position of the coupling elastic fulcrum 51 moves in the lever longitudinal direction (horizontal direction). Therefore, highly accurate measurement can be performed.
[0009]
[Problems to be solved by the invention]
However, if the beam is thickened to suppress the expansion and contraction of the beam itself, on the other hand, the bending rigidity of the beam increases. Therefore, for an upper pan scale equipped with a robust mechanism that can measure the load by bending the beam. This was a factor that lowered the measurement sensitivity.
[0010]
An object of the present invention is to solve such a problem and provide an upper pan scale capable of suppressing an offset error without lowering measurement sensitivity.
[0011]
[Means for Solving the Problems]
To solve the problems as described above, the present invention, the movable pole is connected to the fixing post via a mutually parallel upper and lower two substantially identical thickness of the beam member having a flexible portion at both ends The sample plate is supported on the movable column of the Roverval mechanism, and the movable column is connected to the force point of the lever mechanism having the elastic fulcrum via the connecting elastic fulcrum. In an upper pan scale that is connected and the load on the sample pan is transmitted to the load-sensitive portion by the lever mechanism, when the ratio of the distance from the upper and lower beams to the upper and lower beams centered on the elastic fulcrum for connection is A: B, A beam member having the same thickness as that of the beam member is further provided so that the ratio of the number of the upper and lower beams is B: A , so that the rigidity is enhanced, and even if an eccentric load is applied to the sample pan, it is movable. rotation center pillars substantially coincides with the said connection elastic fulcrum, before The movement of the connecting elastic fulcrum in the front-rear direction (horizontal direction) is suppressed, and the increase in bending rigidity of the beam member is minimal. It is suppressed.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a mechanism diagram of an embodiment in which the first configuration of the present invention is applied to an electromagnetic force balanced balance. The basic structure of the Roverval mechanism 10 is the same as that of the conventional one shown in FIG. 4 or FIG. 5, and the upper beam portion 11 and the lower side each having flexible portions 11a, 11b and 12a, 12b at both ends, respectively. The beam portion 12 has a structure in which the movable column 13 and the fixed column 14 are connected, and the sample tray 20 is supported on the movable column 13. The upper beam portion is composed of one beam 11 and the lower beam portion 12 is composed of two beams 12A and 12B, and the thicknesses of these beams are substantially the same.
[0013]
Further, as in the prior art, the load acting on the movable column 13 is transmitted to the electromagnetic force generator 40 which is a load sensitive part via the lever 30 supported by the elastic fulcrum 31. In other words, the force point 32 provided at one end of the lever 30 is connected to the movable column 13 by the connecting piece 50 via the connecting elastic fulcrum 51, and the lever 30 has the electromagnetic force generator 40 on the opposite side across the fulcrum 31. The force coil 42 is fixed. In the electromagnetic force generator 40, a force coil 42 fixed to the lever 30 is movably disposed in a static magnetic field generated by a magnetic circuit 41 mainly composed of a permanent magnet 41a. The current flowing in the force coil 42 is controlled so that the displacement detection result detected by the displacement sensor 34 that detects the position of the slit 33 formed in the section is always zero. Then, the load on the sample pan 20 is detected from the magnitude of the current.
[0014]
The height direction position of the connecting elastic fulcrum 51 is closer to the lower beam portion 12 of the upper and lower beams of the Roverval mechanism 10, and the vertical dimension between the upper beam portion 11 and the connecting elastic fulcrum 51 is A, the lower side. When the vertical dimension of the beam portion 12 and the connecting elastic fulcrum 51 is B, A> B.
[0015]
As described above, the upper beam portion 11 is composed of one beam 11, whereas the lower beam portion 12 is provided with two beams 12A and 12B. In this embodiment, in particular, Since these beams have substantially the same thickness, the rigidity of the lower beam portion 12 having a large number of beams is higher than that of the upper beam portion 11.
[0016]
Specifically, an attempt to up compression stiffness in the horizontal direction twice, doubling the thickness of a single beam, flexural rigidity, the second moment I = bt 3/12 (t : thickness, b: width), 2 3 = 8 times. On the other hand, if the same stiffness is used and the compression stiffness is doubled, the flexural stiffness is simply doubled, and the increase in flexural stiffness doubles the thickness of one beam. Compared to the case, the sensitivity of the upper balance that can be measured by bending the upper and lower beam portions 11 and 12 of the Roverval mechanism is suppressed.
[0017]
In FIG. 2, when the ratio of the distance from the upper and lower beams centering on the connecting elastic support point 51 is A: B, the expansion / contraction ratio δ 1 : δ 2 of the beam is equal to the ratio A: B. The rotation center K of the movable column due to the displacement coincides with the coupling elastic support point 51, and the movement of the coupling elastic support point 51 is almost eliminated.
[0018]
In this embodiment, A: B = 2: 1 centering on the coupling elastic support point 51, and in order to make the rotational center K of the movable column due to the displacement coincide with the coupling elastic support point 51, δ 1 : Since δ 2 = 2: 1 needs to be set and the rigidity of the lower beam portion 12 needs to be twice that of the upper beam portion 11, in this embodiment, two are provided in the lower beam portion 12. The beam is provided. In addition, when A: B = 3: 1, the rigidity of the lower beam portion 12 needs to be three times that of the upper beam portion 11, so that the lower beam portion 12 is provided with three beams. become.
[0019]
Note that the upper beam portion 11 can also be composed of a plurality of beams. In this case, the lower beam portion 12 needs to be composed of a larger number of beams than the upper beam portion 11.
[0020]
Further, in this embodiment, the thicknesses of the individual beams constituting the upper beam portion 11 and the lower beam portion 12 are substantially the same (the rigidity is substantially the same), but the thicknesses are different from each other as necessary. These beams may be used in combination. For example, when it is desired to obtain a rigidity effect that is three times that of the upper beam portion 11 in the lower beam portion 12, use two 1.5 times thick beams or one double thickness beam. Can be used in combination with one beam of the original thickness, and the bending stiffness is (1.5 3 ) × 2 = 6.75 times, 2 3 + 1 = 9 times, respectively. The bending stiffness when the thickness of the beam is tripled is 3 3 = 27 times, whereas the increase in bending stiffness can be suppressed. However, when three original-thickness beams are used, the bending rigidity can be minimized by a factor of three. However, if the number of beams cannot be increased due to the restriction in the height direction of the Roverval mechanism, etc. Depending on various conditions, as described above, the beam portion is composed of a combination of beams having different thicknesses.
[0021]
FIG. 3 shows an example in which the present invention is applied to a one-piece type Roverval mechanism as a modification of the present embodiment. The load side (movable side) 101 is supported by the upper beam portion 103 and the lower beam portion 104 with respect to the fixed side 102, but the lower beam portion 104 has the same size as the Roverval 105 of the upper beam portion 103. It is formed of a single piece of Roverval 105, and an effect equivalent to that of the Roverval mechanism in the electronic balance of FIG. 1 described above can be obtained.
[0022]
【The invention's effect】
As described above, according to the configuration of the present invention, of the upper and lower beam portions of the Roverval mechanism, the number of beams on the side close to the connecting elastic fulcrum that connects the power point of the movable column and the lever is set to By providing more than the number, the rigidity of the lower beam can be increased to move the connecting elastic fulcrum in the front-rear direction without causing a synergistic increase in bending stiffness that affects the decrease in measurement sensitivity. Can be reduced, and measurement errors due to the eccentric load can be reduced.
[Brief description of the drawings]
FIG. 1 is a mechanism diagram showing an embodiment applied to an electromagnetic balance electronic balance.
2 is an operation explanatory diagram when an eccentric load is applied to the mechanism of FIG. 1; FIG.
FIG. 3 is a diagram showing application to a one-piece type roval mechanism;
FIG. 4 is a view showing a general configuration of a conventional balance or balance having a Robertval mechanism and a lever.
FIG. 5 is a mechanism diagram of the pan scale or the balance shown in FIG. 4 and an explanatory diagram of operation when an eccentric load is applied.
[Explanation of symbols]
11 Upper beam portion 12 Lower beam portions 12A and 12B Beam 20 Sample pan 51 Elastic fulcrum for connection

Claims (1)

両端部に可撓部を備えた互いに平行な上下2本の略同一の厚さの梁部材を介して可動柱が固定柱に連結されてなるロバーバル機構の、その可動柱に試料皿が支承されるとともに、その可動柱が、弾性支点を有するレバー機構の力点に対し、前記上下の梁部材の間に位置する連結用弾性支点を介して連結され、そのレバー機構によって前記試料皿上の荷重が荷重感応部に伝達される上皿はかりにおいて、前記連結用弾性支点を中心として上下梁までの距離の比をA:Bとしたとき、上下梁の本数の比がB:Aとなるように前記梁部材と略同一の厚さの梁部材を更に設けることで、該梁部の剛性を高めたことを特徴とする上皿はかり。The movable pillar Roberval mechanism formed is connected to the fixed post through the mutually parallel upper and lower two substantially identical thickness of the beam member having a flexible portion at both ends, the sample pan is supported on the movable pole The movable column is connected to the force point of the lever mechanism having an elastic fulcrum through a connecting elastic fulcrum located between the upper and lower beam members, and the load on the sample pan is caused by the lever mechanism. in upper tray instrument which is transmitted to the load sensing portion, the ratio of the distance to the upper and lower beam about said connecting elastic support point a: when is B, the ratio of the number of upper and lower beams B: the so that a An upper pan scale characterized by further providing a beam member having substantially the same thickness as the beam member , thereby increasing the rigidity of the beam portion.
JP24636099A 1999-08-31 1999-08-31 Precision scale Expired - Lifetime JP4178681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24636099A JP4178681B2 (en) 1999-08-31 1999-08-31 Precision scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24636099A JP4178681B2 (en) 1999-08-31 1999-08-31 Precision scale

Publications (2)

Publication Number Publication Date
JP2001074539A JP2001074539A (en) 2001-03-23
JP4178681B2 true JP4178681B2 (en) 2008-11-12

Family

ID=17147408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24636099A Expired - Lifetime JP4178681B2 (en) 1999-08-31 1999-08-31 Precision scale

Country Status (1)

Country Link
JP (1) JP4178681B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005043820B4 (en) * 2005-09-13 2007-08-23 Wipotec Wiege- Und Positioniersysteme Gmbh Lever gear, in particular for a weighing sensor of a working according to the principle of electromagnetic force compensation balance
CN115783658B (en) * 2023-02-08 2023-11-28 成都远峰科技发展有限公司 Spiral conveying metering equipment and system

Also Published As

Publication number Publication date
JP2001074539A (en) 2001-03-23

Similar Documents

Publication Publication Date Title
US6194672B1 (en) Balance with a mechanical coupling area for a calibration weight
US4979580A (en) Force measuring device with sensitivity equalization
AU2011212653B2 (en) Coriolis gyroscope having correction units and method for reducing the quadrature bias
JP6126336B2 (en) Force transmission mechanism with calibration weight that can be coupled and released
US5641948A (en) Force measuring apparatus, particularly balance, compensated for off-center load application
US5962818A (en) Top scale balance
JP2637230B2 (en) Electronic scales
JP4178681B2 (en) Precision scale
EP1288636B1 (en) Electronic balance
JP2013140143A (en) Bridge elements
JP3593954B2 (en) Electronic balance
US4674582A (en) Platform-type scale
JP2000162026A (en) Electric balance
JP3570373B2 (en) Electronic balance
JPH09288019A (en) Load cell and metering apparatus
JP3620169B2 (en) Electronic balance
JPS63277936A (en) Electronic scale
JP3134732B2 (en) Precision weighing scale
JP3633143B2 (en) Electronic balance
JP2000121421A (en) Balance
JP3975611B2 (en) Electronic balance
US20050023048A1 (en) Load cell
JPH01206224A (en) Platform scale
JP3862010B2 (en) Adjustment method for eccentricity error in electronic balances
JPH08128905A (en) Load cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

R150 Certificate of patent or registration of utility model

Ref document number: 4178681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

EXPY Cancellation because of completion of term