JP2532493B2 - Electrode forming method for voltage non-linear resistor - Google Patents

Electrode forming method for voltage non-linear resistor

Info

Publication number
JP2532493B2
JP2532493B2 JP62195929A JP19592987A JP2532493B2 JP 2532493 B2 JP2532493 B2 JP 2532493B2 JP 62195929 A JP62195929 A JP 62195929A JP 19592987 A JP19592987 A JP 19592987A JP 2532493 B2 JP2532493 B2 JP 2532493B2
Authority
JP
Japan
Prior art keywords
sintering
powder
electrode
voltage non
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62195929A
Other languages
Japanese (ja)
Other versions
JPS6439003A (en
Inventor
義和 小林
忠 小野美
純二 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62195929A priority Critical patent/JP2532493B2/en
Publication of JPS6439003A publication Critical patent/JPS6439003A/en
Application granted granted Critical
Publication of JP2532493B2 publication Critical patent/JP2532493B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、焼結体自体が電圧非直線性を有するような
添加物を加えた酸化亜鉛(ZnO)を主成分とする電圧非
直線抵抗器の電極形成方法に関するものである。
TECHNICAL FIELD The present invention relates to a voltage non-linear resistor containing zinc oxide (ZnO) as a main component to which an additive is added so that the sintered body itself has voltage non-linearity. The present invention relates to an electrode forming method.

従来の技術 従来より、ZnOを主成分として、これにBi2O3,Co2O3,S
b2O3,MnO2,Cr2O3,TiO2,Al2O3,SiO2などの金属酸化物を
添加成分として少量加え、高温度下で焼成することによ
って得られる焼結体は、顕著な電圧非直線性を示し、電
圧安定化素子として、またサージ吸収素子として広く用
いられている。
Conventional technology Conventionally, the main component is ZnO, and Bi 2 O 3 , Co 2 O 3 , S
b 2 O 3, MnO 2, Cr 2 O 3, TiO 2, Al 2 O 3, minor as an additive component a metal oxide such as SiO 2 was added, obtained by firing at a high temperature sintered body, It exhibits remarkable voltage non-linearity and is widely used as a voltage stabilizing element and a surge absorbing element.

従来、この種の電圧非直線抵抗器の製造方法は、主成
分のZnOに必要な添加物を加えて混合、成形し、その後
に高温度下で焼結し、しかる後に対向面上にAg粉末をペ
ースト状にして塗布し、500〜900℃程度にて焼付けを行
い、電極形成を行っていた。
Conventionally, this type of voltage non-linear resistor is manufactured by adding the necessary additives to the main component ZnO, mixing, molding, and then sintering at high temperature, and then Ag powder on the facing surface. Was applied in the form of paste and baked at about 500 to 900 ° C. to form electrodes.

発明が解決しようとする問題点 しかしながら、焼結体自体が電圧非直線性を有するよ
うな添加物(例えば、Bi2O3,Co2O3,MnO2,Sb2O3,Cr2O3
を加えたZnOを主成分とする混合物を成形し、焼結を開
始すると、800℃付近まではZnOおよび各成分の固相反応
を中心に徐々に焼結が行われ、800〜900℃付近になると
Bi2O3を中心にした液相反応が急激に開始され、1000℃
付近ではZnOを粒子に粒界層にはBi2O3の固溶成分が形成
され、液相焼結が終了する。しかし、一般的には粒界密
度の向上とZnO粒子の粒成長を促すために、1200〜1300
℃付近にまで焼結温度が上げられている。したがって、
1000℃以上になると必然的にBi2O3を中心にした固溶成
分が蒸発、飛散し易くなり、この現象は成形体形状が小
さくなればなる程、また電極対向面距離が小さくなれば
なる程、焼結体から見た場合、顕著になるものである。
Problems to be Solved by the Invention However, additives (for example, Bi 2 O 3 , Co 2 O 3 , MnO 2 , Sb 2 O 3 , Cr 2 O 3) in which the sintered body itself has voltage nonlinearity are disclosed. )
When a mixture containing ZnO added as a main component is formed and sintering is started, the solid-phase reaction of ZnO and each component is gradually performed up to around 800 ° C, and the temperature is increased to around 800 to 900 ° C. When
The liquid phase reaction centered on Bi 2 O 3 suddenly started at 1000 ℃
In the vicinity, a solid solution component of Bi 2 O 3 is formed in the grain boundary layer with ZnO particles, and the liquid phase sintering is completed. However, in general, in order to improve the grain boundary density and promote the grain growth of ZnO grains, 1200 to 1300
The sintering temperature has been raised to around ℃. Therefore,
Above 1000 ° C, solid solution components centering on Bi 2 O 3 tend to evaporate and scatter. This phenomenon occurs as the compact shape becomes smaller and the electrode facing surface distance becomes smaller. However, it is remarkable when viewed from the sintered body.

このように従来の方法においては、固溶成分の蒸発、
飛散がし易いことから、焼結体の焼結密度が低下し、か
つ焼結体を作成した後に電極形成を行うために、作業性
の面で不利なものであった。
Thus, in the conventional method, evaporation of the solid solution component,
Since it is easy to scatter, the sintered density of the sintered body is lowered, and the electrode is formed after the sintered body is formed, which is disadvantageous in terms of workability.

また、従来ZnOを主成分とした電圧非直線抵抗器の焼
結密度を上げるために、静水圧プレスによる成形とか、
雰囲気焼成とか、あるいはホットプレスによる焼結とか
種々試みられているが、いずれも製造装置が大掛りとな
り、適用も複雑となるものであった。
Moreover, in order to increase the sintering density of the voltage nonlinear resistor whose main component is ZnO, molding by isostatic pressing,
Various attempts have been made, such as firing in an atmosphere and sintering by hot pressing, but all of them require large-scale production equipment and are complicated to apply.

本発明はこのような問題点を解決するものであり、電
圧非直線抵抗素子の焼結過程中に電極焼付けを行なうよ
うにし、かつ焼結過程中にBi2O3などの固溶成分の蒸
発、飛散を抑えることのできる電圧非直線抵抗器の電極
形成方法を提供することを目的とするものである。
The present invention solves such a problem by making electrode baking during the sintering process of a voltage non-linear resistance element, and evaporating solid solution components such as Bi 2 O 3 during the sintering process. It is an object of the present invention to provide an electrode forming method for a voltage non-linear resistor capable of suppressing scattering.

問題点を解決するための手段 この問題点を解決するために本発明の電極形成方法
は、主成分としてのZnOと電圧非直線性を発現する添加
物とで構成される混合物を成形し、800〜1000℃の温度
で予備焼結し、その対向面上にPt粉末をペースト状にし
て塗布した後、上記予備焼結された成形体の焼結過程中
に上記Pt粉末の焼付けを行い、電極を形成するようにし
たものである。また、好ましい実施形態としては、Pt粉
末の平均粒子径を0.5〜0.7μmとした場合である。
Means for Solving the Problems In order to solve this problem, the electrode forming method of the present invention comprises forming a mixture composed of ZnO as a main component and an additive exhibiting voltage nonlinearity, After pre-sintering at a temperature of ~ 1000 ° C and applying Pt powder in a paste form on the opposing surface, baking of the Pt powder is performed during the sintering process of the pre-sintered compact, and the electrode is Are formed. Further, as a preferred embodiment, the Pt powder has an average particle diameter of 0.5 to 0.7 μm.

作用 この構成によれば、Ptのもつ性質上きわめて他の元素
に対して不活性であり、電圧非直線抵抗器の焼結体に影
響を及ぼすことはなく、さらにPt粉末の粒子径にも依存
するが800〜1000℃でPt粉末が焼結開始を行い、1200〜1
300℃でその焼結が終了するために、電圧非直線抵抗素
子の焼結過程中に発生するBi2O3などの固溶成分の蒸
発、飛散が物理的に抑えられることになる。また、それ
と共にPt粉末の焼結過程中にPtからO2を放出するがため
に、電圧非直線抵抗器の焼結体内部にO2がある一定圧力
下で拡散、保持されることから、Pt電極下の焼結体によ
りよい結果を導くことになる。これらのことから、電圧
非直線抵抗器における焼結体の焼結密度を向上させるこ
とができることとなる。そして、電極形成が焼結過程中
に同時に行われるため、生産性の面で非常に有利なもの
となる。
Action According to this structure, Pt is extremely inert to other elements due to its properties, does not affect the sintered body of the voltage nonlinear resistor, and also depends on the particle size of Pt powder. However, Pt powder starts to sinter at 800-1000 ℃, and 1200-1
Since the sintering is completed at 300 ° C., evaporation and scattering of solid solution components such as Bi 2 O 3 generated during the sintering process of the voltage nonlinear resistance element can be physically suppressed. In addition, since O 2 is released from Pt during the sintering process of Pt powder, O 2 is diffused and held under a constant pressure inside the sintered body of the voltage nonlinear resistor. The sintered body under the Pt electrode will lead to better results. From these facts, it is possible to improve the sintering density of the sintered body in the voltage nonlinear resistor. Further, since the electrodes are formed at the same time during the sintering process, it is very advantageous in terms of productivity.

実施例 以下、本発明の実施例について説明する。Examples Hereinafter, examples of the present invention will be described.

まず、最初にZnOを主成分とする混合物の混合、成
形、予備焼結を述べると、ZnO粉末に合計量に対してBi2
O3を0.5モル%,Co2O3を0.5モル%,MnO2を0.5モル%,Sb2
O3を1.0モル%,Cr2O3を0.5モル%の割合で加え、十分に
混合する。その後、少量のPVA(ポリビニルアルコー
ル)溶液を加え、混練,造粒作業を行い、32(μm)
程度のフルイを通した後、17mmφ程度の金型に充填し、
成形加圧力400〜800kg/cm2で成形厚み1.0mm程度の成形
物を得て、空気中で下記の第1表に示すように種々条件
を変えて予備焼結を行った。また、その際におけるBi2O
3などの固溶成分の蒸発、飛散量(バインダー消失は削
除)を示差熱分析により調べた結果を第1表に示す。
First, a mixture of the mixture to first main component ZnO, molding, Stated presintering, Bi 2 with respect to the total amount of ZnO powder
O 3 0.5 mol%, Co 2 O 3 0.5 mol%, MnO 2 0.5 mol%, Sb 2
Add O 3 at 1.0 mol% and Cr 2 O 3 at 0.5 mol% and mix well. After that, a small amount of PVA (polyvinyl alcohol) solution was added, kneading and granulation were performed, and 32 # (μm)
After passing through a sieve of about 10 mm, fill a mold of about 17 mmφ,
A molding having a molding thickness of about 1.0 mm was obtained at a molding pressure of 400 to 800 kg / cm 2 , and pre-sintering was performed in air under various conditions as shown in Table 1 below. Also, at that time Bi 2 O
Table 1 shows the results of the differential thermal analysis of the amount of solid solution components such as 3 evaporated and scattered (binder disappearance was eliminated).

上記の第1表より、予備焼結の必要性を解くと次のよ
うになる。すなわち、第1表から明らかなように、予備
焼結温度と成形加圧力に対する成形体重量におけるBi2O
3などの蒸発、飛散量の関係を見ると、成形加圧力に関
係なく、予備焼結温度1000℃迄はほぼ無視できる範囲で
ある。しかし、700℃迄はほとんどZnOを主成分とし混合
物からなる成形体の焼結反応が行われず、後述するPt粉
末のペーストを塗布、乾燥した時に、成形体の保形性が
悪くなり、実用に向かない。また、予備焼結温度が1100
℃以上になると、上述したようにBi2O3を中心とした固
溶成分の蒸発、飛散量が無視できなくなる。したがっ
て、予備焼結温度は800〜1000℃の範囲とする必要があ
る。
From Table 1 above, the need for pre-sintering is solved as follows. That is, as is clear from Table 1, Bi 2 O in the weight of the compact with respect to the pre-sintering temperature and the compacting pressure.
Looking at the relationship between the amount of evaporation and scattering such as 3 , the pre-sintering temperature up to 1000 ℃ is almost negligible regardless of the molding pressure. However, up to 700 ° C, the sintering reaction of the molded body composed mainly of ZnO as a mixture does not occur, and when the paste of Pt powder described below is applied and dried, the shape retention of the molded body deteriorates and it becomes practical. Not suitable. Also, the pre-sintering temperature is 1100
At temperatures above ℃, as mentioned above, the amount of solid solution components, mainly Bi 2 O 3 , evaporated and scattered cannot be ignored. Therefore, the pre-sintering temperature needs to be in the range of 800 to 1000 ° C.

次に、Pt粉末のペースト作製、上記予備焼結された成
形体の焼結および電極形成について説明する。まず、Pt
粉末のペースト作製は、黒色微粒状のPt粉末100wt%に
対して、バインダーとしてポリビニルブチラール樹脂3w
t%,可塑剤としてジブチルフタレート2.1wt%,溶剤と
して酢酸ブチル23wt%を加えて、ライカイ機などで十分
に混合、混練を行った後、3段ローラを使ってさらに混
練効果を高め、ペースト状に作製した。その後、上記の
800〜1000℃の温度にて予備焼結された成形体の対向面
に対して、スクリーン印刷法にて上記のPt粉末をペース
ト状に作製したものを所望の電極径となるように塗布
し、乾燥を行う。次いで、予備焼結され、Ptペーストが
塗布、乾燥された成形体を1200〜1300℃で焼成する。こ
れにより第1図および第2図に示すように、焼結体1
と、この焼結体1の両面に焼結過程中に焼付けて形成さ
れたPt電極2とよりなる電圧非直線抵抗器が得られる。
Next, the production of Pt powder paste, the sintering of the pre-sintered compact, and the electrode formation will be described. First, Pt
The powder paste is prepared by using polyvinyl butyral resin 3w as a binder for 100 wt% of black fine Pt powder.
t%, 2.1 wt% of dibutyl phthalate as a plasticizer, and 23 wt% of butyl acetate as a solvent are thoroughly mixed and kneaded with a liquor machine, and then the kneading effect is further enhanced by using a three-stage roller to form a paste. It was made. Then above
On the opposing surface of the molded body pre-sintered at a temperature of 800 to 1000 ° C, the above Pt powder prepared in a paste form by a screen printing method was applied so as to have a desired electrode diameter, Dry. Then, the pre-sintered, Pt paste-coated and dried compact is fired at 1200 to 1300 ° C. As a result, as shown in FIG. 1 and FIG.
As a result, a voltage non-linear resistor including Pt electrodes 2 formed by baking on both surfaces of the sintered body 1 during the sintering process is obtained.

下記の第2表は、Pt粉末の平均粒子径を0.4〜1.0μm
の範囲で変化させたPtペーストを上記の800〜1000℃の
温度で予備焼結させた成形体(成形加圧力は400kg/c
m2)に塗布し、乾燥させ、1300℃,1時間にて焼結させた
場合の電圧非直線抵抗器の焼結密度と、電圧非直線抵抗
器の性能である電圧非直線指数αを示す。ここで、焼結
密度を測定する場合はPt電極を削除して行った。また、
一般的に指数αは、 I=(V/C)α で現わされ、αの値が大きい程、電圧非直線抵抗器の性
能がよいものである。
The following Table 2 shows the average particle size of Pt powder is 0.4 to 1.0 μm.
Of Pt paste that has been changed in the above range at a temperature of 800 to 1000 ° C above (molding pressure is 400 kg / c
was applied to m 2), dried, shows the sintered density of the voltage nonlinear resistor when Sintered, a voltage nonlinear index α is the performance of the voltage nonlinear resistor at 1300 ° C., 1 hour . Here, when measuring the sintered density, the Pt electrode was omitted. Also,
Generally, the index α is I = (V / C) α The higher the value of α, the better the performance of the voltage nonlinear resistor.

この第2表の説明を加えると、焼結体密度、非直線指
数αは、予備焼結温度が800〜1000℃の範囲であればほ
とんど優劣の差はなく、むしろPt粉末の平均粒子径に依
存する。そして、平均粒子径が0.4μm以下の場合はペ
ースト作製を行うと、粒子径が小さいために凝集が起り
易く、ペーストがゲル化し易く、実用的でない面が見ら
れる。一方、平均粒子径が0.5〜0.7μmの範囲である
と、ペースト作製が実用的でないといった面はなくな
り、焼結体密度および電圧非直線抵抗器の性能を現わす
非直線指数αが従来品に比較してきわめて大きくなって
いる。その理由としては、Pt粉末の焼結開始温度が800
〜1000℃になり、1300℃,1時間の焼付程度で十分にPt電
極の緻密化が図られ、これによって焼結過程中に発生す
るBi2O3などの固溶成分の蒸発、飛散が抑えられるた
め、焼結体密度および非直線指数αが大きくなっている
ものである。さらに、Pt粉末の平均粒子径が0.8μm以
上になると、Pt粉末の焼結開始温度が1000℃以上にな
り、1300℃,1時間の焼付程度では十分な焼結が図られな
いので、作業工数的には従来法よりも有利ではあるが、
焼結体密度、非直線指数αは従来品に比べて少しの向上
にとどまっている。
With the addition of the explanation in Table 2, the sintered body density and the non-linear index α are almost the same when the presintering temperature is in the range of 800 to 1000 ° C., rather, the average particle diameter of the Pt powder is rather small. Dependent. When the average particle size is 0.4 μm or less, when the paste is prepared, the particle size is small, so that aggregation easily occurs, the paste is easily gelated, and the surface is not practical. On the other hand, when the average particle size is in the range of 0.5 to 0.7 μm, there is no problem that the paste preparation is not practical, and the sintered body density and the nonlinear index α showing the performance of the voltage nonlinear resistor are the same as those of conventional products. It is extremely large in comparison. The reason is that the sintering start temperature of Pt powder is 800
Temperature rises to ~ 1000 ° C, and the Pt electrode is sufficiently densified by baking at 1300 ° C for 1 hour, which suppresses evaporation and scattering of solid solution components such as Bi 2 O 3 generated during the sintering process. Therefore, the sintered body density and the nonlinear index α are increased. Furthermore, if the average particle size of Pt powder is 0.8 μm or more, the sintering start temperature of Pt powder will be 1000 ° C. or more, and sufficient sintering cannot be achieved by baking at 1300 ° C. for 1 hour. Is more advantageous than the conventional method,
Sintered body density and non-linear index α are only slightly improved compared to conventional products.

なお、上記の実施例においては、電圧非直線性を発現
させる添加物として、一部の種類とその組合せについて
のみ示したが、本発明の効果はZnOが主成分である非直
線抵抗器であれば適用し得るものであり、非直線性を発
現させる添加物の種類やその組合せによって制約を受け
るものではない。
In addition, in the above-mentioned examples, as an additive for expressing voltage non-linearity, only some kinds and combinations thereof are shown, but the effect of the present invention is not limited to a non-linear resistor whose main component is ZnO. However, it is applicable and is not limited by the type of additive that causes nonlinearity or the combination thereof.

発明の効果 以上のように本発明は構成されているものであり、Pt
粉末がおよそ800〜1000℃で焼結開始を行い、1200〜130
0℃でその焼結が終了するために、電圧非直線抵抗素子
の焼結過程中に発生するBi2O3などの固溶成分の蒸発、
飛散が物理的に抑えられ、かつそれと共にPt粉末の焼結
過程中にPtからO2を放出するがために、電圧非直線抵抗
器の焼結体内部にO2がある一定圧力下で拡散、保持され
ることから、Pt電極下の焼結体によりよい結果を導くこ
とになり、これらのことから電圧非直線抵抗器における
焼結体の焼結密度を向上させることができる。また、焼
結過程中に発生するBi2O3などの固溶成分の蒸発、飛散
が抑えられるために、電圧非直線指数αを大きくするこ
ともできる。そして、電極形成が焼結過程中に同時に行
われるため、生産性も大きく、かつ製造装置も簡素でよ
いことから、少量多品種にも無理なく適用できるという
利点も有している。
EFFECTS OF THE INVENTION The present invention is configured as described above, and Pt
The powder starts to sinter at approximately 800-1000 ℃, 1200-130
Since the sintering is completed at 0 ° C, evaporation of solid solution components such as Bi 2 O 3 generated during the sintering process of the voltage nonlinear resistance element,
Since the scattering is physically suppressed and O 2 is released from Pt during the sintering process of Pt powder, O 2 diffuses under a constant pressure with O 2 inside the sintered body of the voltage nonlinear resistor. Since it is held, the sintered body under the Pt electrode leads to a better result, and from these, the sintered density of the sintered body in the voltage nonlinear resistor can be improved. Further, since the evaporation and scattering of solid solution components such as Bi 2 O 3 generated during the sintering process can be suppressed, the voltage nonlinear index α can be increased. Further, since the electrodes are formed simultaneously during the sintering process, the productivity is high and the manufacturing apparatus may be simple. Therefore, there is an advantage that it can be reasonably applied to a small amount and a wide variety of products.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法により得られた電圧非直線抵抗器を
示す上面図、第2図は同正面図である。 1……焼結体、2……Pt電極。
FIG. 1 is a top view showing a voltage nonlinear resistor obtained by the method of the present invention, and FIG. 2 is a front view of the same. 1 ... Sintered body, 2 ... Pt electrode.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】主成分としてのZnOと電圧非直線性を発現
する添加物とで構成される混合物を成形し、800〜1000
℃の温度で予備焼結し、その対向面上にPt粉末をペース
ト状にして塗布した後、上記予備焼結された成形体の焼
結過程中に上記Pt粉末の焼付けを行い、電極を形成する
ことを特徴とする電圧非直線抵抗器の電極形成方法。
1. A mixture composed of ZnO as a main component and an additive exhibiting voltage non-linearity is molded to obtain 800-1000.
After pre-sintering at a temperature of ° C and applying Pt powder in a paste form on the opposing surface, baking the Pt powder during the sintering process of the pre-sintered compact to form an electrode A method of forming an electrode of a voltage non-linear resistor, comprising:
【請求項2】Pt粉末の平均粒子径が0.5〜0.7μmである
ことを特徴とする特許請求の範囲第1項に記載の電圧非
直線抵抗器の電極形成方法。
2. The method for forming an electrode of a voltage non-linear resistor according to claim 1, wherein the Pt powder has an average particle diameter of 0.5 to 0.7 μm.
JP62195929A 1987-08-05 1987-08-05 Electrode forming method for voltage non-linear resistor Expired - Fee Related JP2532493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62195929A JP2532493B2 (en) 1987-08-05 1987-08-05 Electrode forming method for voltage non-linear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62195929A JP2532493B2 (en) 1987-08-05 1987-08-05 Electrode forming method for voltage non-linear resistor

Publications (2)

Publication Number Publication Date
JPS6439003A JPS6439003A (en) 1989-02-09
JP2532493B2 true JP2532493B2 (en) 1996-09-11

Family

ID=16349324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62195929A Expired - Fee Related JP2532493B2 (en) 1987-08-05 1987-08-05 Electrode forming method for voltage non-linear resistor

Country Status (1)

Country Link
JP (1) JP2532493B2 (en)

Also Published As

Publication number Publication date
JPS6439003A (en) 1989-02-09

Similar Documents

Publication Publication Date Title
JPS5928962B2 (en) Manufacturing method of thick film varistor
US4010133A (en) Low-fire green ceramic articles and slip compositions for producing same
JPH08306506A (en) High resistance material for zinc oxide varistor, zno varistor using it and their manufacturing method
JP2558722B2 (en) Electrode forming method for voltage non-linear resistor
JP2532493B2 (en) Electrode forming method for voltage non-linear resistor
TW201818426A (en) Composition for positive temperature coefficient resistor, paste for positive temperature coefficient resistor, positive temperature coefficient resistor and method for manufacturing positive temperature coefficient resistor having a wide range of transition temperature and a wide range of adjustable resistivity
JP2614228B2 (en) Ceramic forming composition, semiconductor porcelain base and dielectric porcelain base using the same, and capacitor
JPS6324601A (en) Resistant compound for lithography
JPS62101002A (en) Manufacture of nonlinear resistance element
JP3256366B2 (en) Method of manufacturing voltage non-linear resistor
JPS5832764B2 (en) Manufacturing method of voltage nonlinear resistor
JP2634838B2 (en) Method of manufacturing voltage non-linear resistor
JPH02114603A (en) Manufacture of glaze varistor
JPS6115303A (en) Method of producing oxide voltage nonlinear resistor
JPH10149905A (en) Manufacturing method of varistor
JPH07211519A (en) Voltage non-linear resistor
JP2520699B2 (en) Method of manufacturing voltage-dependent nonlinear resistor
JPH05258914A (en) Manufacture of voltage non-linear resistor
JPH0516641B2 (en)
JPS639646B2 (en)
JPS63278304A (en) Manufacture of voltage non-linearity resistance porcelain
JPH06227852A (en) Electrically conductive composition
JPH07109803B2 (en) Voltage nonlinear resistor and method of manufacturing the same
JPS62237709A (en) Manufacture of voltage nonlinear resistance element
JPS62254405A (en) Manufacture of voltage nonlinear resistance unit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees