JP6848327B2 - A method for producing a composition for a positive temperature coefficient resistor, a paste for a positive temperature coefficient resistor, a positive temperature coefficient resistor, and a positive temperature coefficient resistor. - Google Patents

A method for producing a composition for a positive temperature coefficient resistor, a paste for a positive temperature coefficient resistor, a positive temperature coefficient resistor, and a positive temperature coefficient resistor. Download PDF

Info

Publication number
JP6848327B2
JP6848327B2 JP2016205560A JP2016205560A JP6848327B2 JP 6848327 B2 JP6848327 B2 JP 6848327B2 JP 2016205560 A JP2016205560 A JP 2016205560A JP 2016205560 A JP2016205560 A JP 2016205560A JP 6848327 B2 JP6848327 B2 JP 6848327B2
Authority
JP
Japan
Prior art keywords
temperature coefficient
positive temperature
coefficient resistor
resistor
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016205560A
Other languages
Japanese (ja)
Other versions
JP2018067640A (en
Inventor
勝弘 川久保
勝弘 川久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016205560A priority Critical patent/JP6848327B2/en
Priority to TW106132982A priority patent/TWI654624B/en
Priority to KR1020170133807A priority patent/KR20180043173A/en
Priority to CN201710973679.6A priority patent/CN107967973A/en
Priority to CN202011420907.5A priority patent/CN112670045B/en
Publication of JP2018067640A publication Critical patent/JP2018067640A/en
Priority to KR1020190070811A priority patent/KR102341611B1/en
Application granted granted Critical
Publication of JP6848327B2 publication Critical patent/JP6848327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/022Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances
    • H01C7/023Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances containing oxides or oxidic compounds, e.g. ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06533Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/006Apparatus or processes specially adapted for manufacturing resistors adapted for manufacturing resistor chips

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Non-Adjustable Resistors (AREA)
  • Thermistors And Varistors (AREA)

Description

本発明は、正温度係数抵抗体の製造において用いられる組成物および抵抗ペーストに関する。さらには、この抵抗ペーストを用いて形成した正温度係数抵抗体に関する。 The present invention relates to compositions and resistance pastes used in the manufacture of positive temperature coefficient resistors. Furthermore, the present invention relates to a positive temperature coefficient resistor formed by using this resistance paste.

正温度係数抵抗体は、温度の上昇と共にその比抵抗が増加する抵抗体である。特にある温度で比抵抗が急激に増加するものは「PTCサーミスタ」と呼ばれ、温度制御素子、過電流制御素子、低温度発熱体等として広く応用されている。
この「PTCサーミスタ」は、BaTiO系セラミックスを代表とする無機系の材料を利用するものと、熱可塑性のポリマーにカーボンブラック等の導電性充填剤を分散させた有機系材料を利用するものに大別される。
A positive temperature coefficient resistor is a resistor whose specific resistance increases as the temperature rises. In particular, a device whose resistivity suddenly increases at a certain temperature is called a "PTC thermistor" and is widely applied as a temperature control element, an overcurrent control element, a low temperature heating element and the like.
This "PTC thermistor" uses an inorganic material typified by BaTiO 3 ceramics and an organic material in which a conductive filler such as carbon black is dispersed in a thermoplastic polymer. It is roughly divided.

BaTiO系セラミックスは、Ba、Ti等の原料を均一に混合した後、仮焼して複合酸化物の結晶化を進めておく必要があり、この結晶化させた複合酸化物を加圧形成した成形体を焼成する事によって製造される。
このため素子の形状に制限があり、小型化が難しい。また、スイッチング温度と呼ばれる、BaTiO系セラミックスの比抵抗が急激に変化する温度は、一般にキュリー点の120℃程度の温度である。
BaTiO 3 based ceramics, Ba, after mixing the raw materials uniformly or Ti, calcined to must promote crystallization of the composite oxide, a composite oxide was the crystallized was pressure formed Manufactured by firing the molded body.
Therefore, the shape of the element is limited, and it is difficult to reduce the size. Also called switching temperature, the temperature at which the resistivity changes abruptly in BaTiO 3 based ceramics are typically of the order of 120 ° C. Curie point temperature.

特許文献1には、BaTiO系セラミックのBaの一部をアルカリ金属元素に置換したり、Tiの一部をNb等の5族元素に置換したサーミスタ磁組成物が開示されているが、250℃より高温のキュリー点の開示はなく、これをより高温にするのは非常に困難である。更に、調整可能なセラミックスの比抵抗の範囲が小さい。 Patent Document 1, or by substituting a part of BaTiO 3 based ceramic of Ba in alkali metal element, but the thermistor magnetic composition part is replaced with Group 5 element such as Nb of Ti is disclosed, There is no disclosure of Curie points above 250 ° C, and it is very difficult to make them hotter. Further, the range of the resistivity of the adjustable ceramics is small.

一方、有機系材料を用いた「PTCサーミスタ」は素子形状の制限が少なく、導電性充填剤の種類や含有率によって比抵抗を変える事が出来、調整可能な比抵抗の範囲が広い利点がある。しかし、熱可塑性のポリマーが軟化する温度から、得られるスイッチング温度には制限があり、高温で抵抗値が急激に変化する素子を作る事ができない。また、マトリックスであるポリマーは、高温における長期使用や繰り返し高温となる環境では分解が進んでしまい信頼性に乏しい欠点がある。 On the other hand, the "PTC thermistor" using an organic material has the advantage that there are few restrictions on the element shape, the resistivity can be changed depending on the type and content of the conductive filler, and the range of adjustable resistivity is wide. .. However, there is a limit to the switching temperature that can be obtained from the temperature at which the thermoplastic polymer softens, and it is not possible to manufacture an element whose resistance value changes rapidly at high temperatures. In addition, the polymer, which is a matrix, has a drawback of poor reliability because decomposition proceeds in a long-term use at a high temperature or in an environment where the temperature is repeatedly high.

この他、Ag等の導電性粒子をガラス中に分散させた「PTCサーミスタ」も特許文献2に提案されているが、低い比抵抗に限られることと、スイッチング温度が高過ぎて400℃以下にはならなく、スイッチング温度より低い温度において、高い正の温度係数となるなどの欠点がある。 In addition, a "PTC thermistor" in which conductive particles such as Ag are dispersed in glass is also proposed in Patent Document 2, but it is limited to a low resistivity and the switching temperature is too high to be 400 ° C or lower. However, there are drawbacks such as a high positive temperature coefficient at a temperature lower than the switching temperature.

そこで、250℃以上、400℃以下の温度範囲において、スイッチング動作を可能とする抵抗体の開発が望まれている。 Therefore, it is desired to develop a resistor capable of switching operation in a temperature range of 250 ° C. or higher and 400 ° C. or lower.

WO2014−141814国際公開公報WO2014-141814 International Publication 特開平11−97207号公報Japanese Unexamined Patent Publication No. 11-97207

このような状況の中、本発明は、素子形状の制限が少なく、調整可能な比抵抗の範囲が広く、250℃〜400℃の範囲でスイッチングする、高温における信頼性の高い正温度係数抵抗体用の組成物、その組成物による抵抗体ペースト、その抵抗体ペーストから形成される抵抗体、及びその製造方法を提供するものである。 Under such circumstances, the present invention is a highly reliable positive temperature coefficient resistor at high temperature, which has few restrictions on the element shape, a wide range of adjustable specific resistance, and switches in the range of 250 ° C to 400 ° C. The present invention provides a composition for use, a resistor paste made from the composition, a resistor formed from the resistor paste, and a method for producing the same.

本発明は、導電性粒子としてルテニウム系酸化物粒子とガラス転移点が250℃〜400℃のガラス粉末を混合した正温度係数抵抗体用組成物および抵抗体ペーストを課題解決の手段とする。 In the present invention, a composition for a positive temperature coefficient resistor and a resistor paste in which ruthenium-based oxide particles and glass powder having a glass transition point of 250 ° C. to 400 ° C. are mixed as conductive particles are used as means for solving the problem.

本発明の第1の発明は、金属酸化物系導電性粒子と400℃以下のガラス転移点を有するガラス粉末とを含有することを特徴とする正温度係数抵抗体用組成物で、その第2の発明は、第1の発明におけるガラス粉末が、400℃以下のガラス転移点と、前記ガラス転移点より50℃以上高い軟化点を有することを特徴とする正温度係数抵抗体用組成物である。 The first invention of the present invention is a composition for a positive temperature coefficient resistor characterized by containing metal oxide-based conductive particles and a glass powder having a glass transition point of 400 ° C. or lower . The present invention is a composition for a positive temperature coefficient resistor, wherein the glass powder according to the first invention has a glass transition point of 400 ° C. or lower and a softening point of 50 ° C. or higher higher than the glass transition point. ..

本発明の第3の発明は、第1及び第2の発明における金属酸化物系導電性粒子が、ルテニウム系酸化物粒子であることを特徴とする正温度係数抵抗体用組成物である。 A third invention of the present invention is a composition for a positive temperature coefficient resistor, characterized in that the metal oxide-based conductive particles in the first and second inventions are ruthenium-based oxide particles.

本発明の第4の発明は、第3の発明におけるルテニウム系酸化物粒子が、酸化ルテニウム粒子であることを特徴とする正温度係数抵抗体用組成物である。 The fourth invention of the present invention is a composition for a positive temperature coefficient resistor, characterized in that the ruthenium-based oxide particles in the third invention are ruthenium oxide particles.

本発明の第5の発明は、有機ビヒクルと、前記第1から第4の発明のいずれかに記載の正温度係数抵抗体用組成物を含有することを特徴とする正温度係数抵抗体用ペーストである。 A fifth aspect of the present invention is a paste for a positive temperature coefficient resistor, which comprises an organic vehicle and the composition for a positive temperature coefficient resistor according to any one of the first to fourth inventions. Is.

本発明の第6の発明は、400℃以下のガラス転移点を有するガラス中に金属酸化物系導電性粒子が含まれていることを特徴とする正温度係数抵抗体である。 A sixth aspect of the present invention is a positive temperature coefficient resistor characterized in that metal oxide-based conductive particles are contained in glass having a glass transition point of 400 ° C. or lower.

本発明の第7の発明は、第6の発明における金属酸化物系導電性粒子が、ルテニウム系酸化物粒子であることを特徴とする正温度係数抵抗体である。 A seventh invention of the present invention is a positive temperature coefficient resistor characterized in that the metal oxide-based conductive particles in the sixth invention are ruthenium-based oxide particles.

本発明の第8の発明は、第7の発明におけるルテニウム系酸化物粒子が、酸化ルテニウム粒子であることを特徴とする正温度係数抵抗体である。 Eighth inventions of the present invention are ruthenium-based oxide particles in the seventh aspect of the invention is a positive temperature coefficient resistor which is a ruthenium oxide particles.

本発明の第9の発明は、第5の発明に記載の正温度係数抵抗体用ペーストを、絶縁基板上に塗布、焼成することによって、有機溶剤と有機樹脂を消失させ、ガラス粉末を軟化させて前記正温度係数抵抗体用ペーストに含まれる金属酸化物系導電性粒子を、前記正温度係数抵抗体用ペーストに含有されるガラス粉末により形成されるガラスマトリックス内に取り込み、乾燥して固化させることによって製造されることを特徴とする正温度係数抵抗体の製造方法である。 In the ninth invention of the present invention, the positive temperature coefficient resistor paste according to the fifth invention is applied and fired on an insulating substrate to eliminate the organic solvent and the organic resin and soften the glass powder. The metal oxide-based conductive particles contained in the paste for a positive temperature coefficient resistor are taken into a glass matrix formed by the glass powder contained in the paste for a positive temperature coefficient resistor, dried and solidified. It is a method for manufacturing a positive temperature coefficient resistor, which is characterized in that it is manufactured by the above.

本発明によれば、素子形状の制限が少なく、調整可能な比抵抗の範囲が広く、250℃〜400℃の範囲でスイッチングする、高温における信頼性の高い正温度係数抵抗体用の組成物、その組成物による抵抗体ペースト、その抵抗体ペーストから形成される抵抗体を容易に得られる。 According to the present invention, a composition for a highly reliable positive temperature coefficient resistor at high temperature, which has few restrictions on the element shape, has a wide range of adjustable specific resistance, and switches in the range of 250 ° C to 400 ° C. A resistor paste made from the composition and a resistor formed from the resistor paste can be easily obtained.

実施例1に係る抵抗体の「電気抵抗の温度依存性」を示す図である。It is a figure which shows the "temperature dependence of the electric resistance" of the resistor which concerns on Example 1. FIG. 実施例2に係る抵抗体の「電気抵抗の温度依存性」を示す図である。It is a figure which shows "the temperature dependence of the electric resistance" of the resistor which concerns on Example 2. FIG. 実施例3に係る抵抗体の「電気抵抗の温度依存性」を示す図である。It is a figure which shows "the temperature dependence of the electric resistance" of the resistor which concerns on Example 3. FIG. 実施例4に係る抵抗体の「電気抵抗の温度依存性」を示す図である。It is a figure which shows "the temperature dependence of the electric resistance" of the resistor which concerns on Example 4. FIG. 実施例5に係る抵抗体の「電気抵抗の温度依存性」を示す図である。It is a figure which shows "the temperature dependence of the electric resistance" of the resistor which concerns on Example 5. 比較例1に係る抵抗体の「電気抵抗の温度依存性」を示す図である。It is a figure which shows "the temperature dependence of the electric resistance" of the resistor which concerns on Comparative Example 1. 比較例2に係る抵抗体の「電気抵抗の温度依存性」を示す図である。It is a figure which shows "the temperature dependence of the electric resistance" of the resistor which concerns on Comparative Example 2.

本発明は、ルテニウム酸化物粒子等の金属酸化物系導電性粒子とガラス粉末を含有する正温度係数抵抗体用組成物において、ガラス転移点が250℃以上、400℃以下のガラス粉末を使用することによって得られた抵抗体が、250℃以上、400℃以下の温度範囲内の設定温度を境に急激に抵抗値が変化する現象を見出し、さらに鋭意開発した結果、このようなガラス転移点を持つガラス粉末と金属酸化物系導電性粒子との組合せにより、温度上昇に対する比抵抗の上昇割合が変化する温度であるスイッチング温度が250℃から400℃の範囲で制御可能な正温度係数抵抗体の完成に至ったものである。 The present invention uses a glass powder having a glass transition point of 250 ° C. or higher and 400 ° C. or lower in a composition for a positive temperature coefficient resistor containing metal oxide-based conductive particles such as ruthenium oxide particles and glass powder. As a result of discovering a phenomenon in which the resistance value of the obtained resistor suddenly changes at a set temperature within the temperature range of 250 ° C. or higher and 400 ° C. or lower, and further diligently developing it, such a glass transition point was established. A positive temperature coefficient resistor whose switching temperature can be controlled in the range of 250 ° C to 400 ° C, which is the temperature at which the rate of increase in specific resistance with respect to temperature rise changes depending on the combination of the glass powder and the metal oxide-based conductive particles. It has been completed.

一般に、ガラスマトリックス中に、導電性粒子が分散している厚膜抵抗体では、ガラスマトリックスの体積膨張によって導電性粒子間の接触が弱くなり比抵抗の増加を招くものである。
ところで、ガラスは、そのガラス転移点を境に体積膨張率が大きく変化し、ガラス転移点の高温側では、低温側よりも体積膨張率が高い性質を持っている。
本発明に係る正温度係数抵抗体でも、ガラス転移点の高温側で体積膨張率が高くなるので、ガラス転移点を境に比抵抗の増加率も変化する。すなわちガラス転移点以上の温度では、ガラス転移点以下の温度よりも抵抗値の増加率が急激に大きくなると期待された。
In general, in a thick film resistor in which conductive particles are dispersed in a glass matrix, the contact between the conductive particles becomes weak due to the volume expansion of the glass matrix, which causes an increase in specific resistance.
By the way, the volume expansion coefficient of glass changes greatly with the glass transition point as a boundary, and the glass has a property that the volume expansion coefficient is higher on the high temperature side of the glass transition point than on the low temperature side.
Even in the positive temperature coefficient resistor according to the present invention, since the volume expansion coefficient increases on the high temperature side of the glass transition point, the increase rate of the specific resistance also changes at the glass transition point. That is, it was expected that the rate of increase in the resistance value would be sharply larger at the temperature above the glass transition point than at the temperature below the glass transition point.

しかしながら、一般的な厚膜抵抗体は850℃前後で焼成されるが、ガラス転移点が低いガラスを用いるとガラスが過度に軟化し、厚膜抵抗体の形状が維持できないなど不具合が生じるため、500℃以上のガラス転移点を示すガラスを用いることが一般的である。 However, although a general thick film resistor is fired at around 850 ° C., if glass having a low glass transition point is used, the glass becomes excessively soft and the shape of the thick film resistor cannot be maintained. It is common to use glass that exhibits a glass transition point of 500 ° C. or higher.

ところで、ガラス転移点が500℃以上のガラス粉末と金属酸化物系導電性粒子を用いると、スイッチング温度が500℃以上の正温度係数抵抗体が可能と考えられるが、スイッチング温度が500℃を超える正温度係数抵抗体が得られたとすると、この正温度係数抵抗体は、500℃以上の温度で動作することとなる。そのために、正温度係数抵抗体だけではなく、厚膜抵抗体に組み込まれる端子電極などの周辺部品も500℃以上の温度に曝されることになり、端子電極の劣化などの問題が生じる。
また、スイッチング温度を500℃より低く抑えたい場合には、これらの組合せは利用できなかった。
By the way, if a glass powder having a glass transition point of 500 ° C. or higher and a metal oxide-based conductive particle are used, it is considered that a positive temperature coefficient resistor having a switching temperature of 500 ° C. or higher is possible, but the switching temperature exceeds 500 ° C. Assuming that a positive temperature coefficient resistor is obtained, the positive temperature coefficient resistor operates at a temperature of 500 ° C. or higher. Therefore, not only the positive temperature coefficient resistor but also peripheral parts such as terminal electrodes incorporated in the thick film resistor are exposed to a temperature of 500 ° C. or higher, which causes problems such as deterioration of the terminal electrodes.
Further, when it is desired to keep the switching temperature lower than 500 ° C., these combinations cannot be used.

このような問題からすれば、厚膜抵抗体で正温度係数抵抗体を形成する場合、そのスイッチング温度が400℃以下の抵抗体を望まれた場合には対応できず、その対応品の提供が希求されている。 From such a problem, when a positive temperature coefficient resistor is formed from a thick film resistor, it cannot be dealt with when a resistor having a switching temperature of 400 ° C. or less is desired, and a corresponding product cannot be provided. It is sought after.

そこで、本発明で用いるガラス粉末は、ガラス転移点が400℃以下、好ましくは250℃以上、400℃以下の範囲にガラス転移点を持つ成分組成のガラス粉末を用いる。
上記のようなガラス転移点を有するガラス粉末の組成は限定されないが、例としてはホウ酸鉛系のガラスや、リン酸スズ系のガラス、バナジウム酸テルルガラスなどがある。
Therefore, as the glass powder used in the present invention, a glass powder having a component composition having a glass transition point in the range of 400 ° C. or lower, preferably 250 ° C. or higher and 400 ° C. or lower is used.
The composition of the glass powder having the glass transition point as described above is not limited, and examples thereof include lead borate-based glass, tin phosphate-based glass, and tellurium vanadium acid.

本発明におけるガラス粉末のガラス転移点の下限は限定しないが、現時点では酸化物ガラスでは実質上240℃を下回るものは見出されていないので、望ましい範囲として250℃以上、400℃以下とする。なお、本発明で用いるガラス粉末のガラス転移点や軟化点は、ガラス粉末の組成により調整できる。具体的には、ガラスを構成するケイ素、ホウ素、アルミニウム、亜鉛、鉛、ビスマスなどの各元素の配合割合を調整すればよい。
ここで、ガラス転移点は、ガラス粉末を再溶融などして得られるロッド状の試料を熱機械分析法(TMA)にて大気中で測定し、熱膨張曲線の屈曲点を示す温度として測定される。
The lower limit of the glass transition point of the glass powder in the present invention is not limited, but at present, no oxide glass substantially below 240 ° C. has been found, and therefore, the desirable ranges are 250 ° C. or higher and 400 ° C. or lower. The glass transition point and softening point of the glass powder used in the present invention can be adjusted by adjusting the composition of the glass powder. Specifically, the mixing ratio of each element such as silicon, boron, aluminum, zinc, lead, and bismuth constituting the glass may be adjusted.
Here, the glass transition point is measured as a temperature indicating a bending point of a thermal expansion curve by measuring a rod-shaped sample obtained by remelting glass powder or the like in the atmosphere by a thermomechanical analysis method (TMA). To.

また、本発明で用いるガラス粉末の軟化点は、ガラス転移点より50℃以上高い温度であることが望ましい。
ガラス粉末の軟化点は、ガラスの軟化が起こる最も低い温度であり、軟化点を大きく超える温度では正温度係数抵抗体の形状を維持できない。本発明に係る正温度係数抵抗体は、ガラス転移点を超える温度でも正温度係数抵抗体を維持する必要がある。そのため、本発明で用いるガラス粉末の軟化点はガラス転移点より50℃以上高い温度で、後述する焼成温度の上限値未満の温度が望ましい。
Further, it is desirable that the softening point of the glass powder used in the present invention is a temperature higher than the glass transition point by 50 ° C. or more.
The softening point of the glass powder is the lowest temperature at which the glass softens, and the shape of the positive temperature coefficient resistor cannot be maintained at a temperature well exceeding the softening point. The positive temperature coefficient resistor according to the present invention needs to maintain the positive temperature coefficient resistor even at a temperature exceeding the glass transition point. Therefore, the softening point of the glass powder used in the present invention is preferably a temperature higher than the glass transition point by 50 ° C. or more and less than the upper limit of the firing temperature described later.

ここで軟化点は、ガラス粉末を示差熱分析法(TG−DTA)にて大気中で測定し、最も低温側の示差熱曲線の減少が発現する温度よりも高温側の次の示差熱曲線が減少するピークの温度である。
なお、本発明で用いるガラス粉末のガラス転移点や軟化点は、ガラス粉末の成分組成により調整するものである。
Here, the softening point is measured by measuring the glass powder in the atmosphere by a differential thermal analysis method (TG-DTA), and the next differential thermal curve on the higher temperature side than the temperature at which the decrease in the differential thermal curve on the lowest temperature side appears is The temperature of the peak that decreases.
The glass transition point and softening point of the glass powder used in the present invention are adjusted according to the component composition of the glass powder.

ガラス粉末の粒径は特に制限しないが、抵抗値のバラツキや安定性を考慮するとレーザ回折散乱型の粒度分布計の体積分布径のメジアン値(D50)が10μm以下のものが望ましく、さらに望ましくは3μm以下である。 The particle size of the glass powder is not particularly limited, but considering the variation in resistance value and stability , it is desirable that the median value (D 50 ) of the volume distribution diameter of the laser diffraction scattering type particle size distribution meter is 10 μm or less, and more preferably. Is 3 μm or less.

本発明における導電性粒子には、金属酸化物系導電性粒子を用いる。
その金属酸化物系導電性粒子としてはルテニウム系酸化物粒子、酸化イリジウム粒子、酸化スズ粒子やアンチモン添加酸化スズ粒子等の酸化スズ系粒子、スズ添加酸化インジウム粒子が挙げられる。
これらの金属酸化物系導電性粒子の製造方法は、例えば、水溶液中で金属元素の水酸化物の沈殿を得て、添加元素の化合物と、大気雰囲気や不活性雰囲気などを適宜選択し加熱焙焼することで得ることができる。
Metal oxide-based conductive particles are used as the conductive particles in the present invention.
Examples of the metal oxide-based conductive particles include ruthenium-based oxide particles, iridium oxide particles, tin oxide-based particles such as tin oxide particles and antimony-added tin oxide particles, and tin-added indium oxide particles.
The method for producing these metal oxide-based conductive particles is, for example, to obtain a precipitate of a hydroxide of a metal element in an aqueous solution, appropriately select a compound of an additive element, an air atmosphere, an inert atmosphere, or the like, and heat roast. It can be obtained by baking.

上記金属酸化物系導電性粒子のうち、導電率の高さから、ルテニウム系酸化物粒子が好ましく、そのルテニウム系酸化物粒子としては、二酸化ルテニウム(以下酸化ルテニウムという)の他ルテニウム酸鉛、ルテニウム酸ビスマス等のパイロクロア型結晶構造を有するものや、ルテニウム酸ストロンチウム、ルテニウム酸カルシウム等のペロブスカイト型の結晶構造を有する酸化物粒子が好適である。
さらに、ルテニウム酸化物は、ガラスとの配合比を変えることによって広い抵抗値領域をカバーすることができ、しかも特定の金属酸化物等を少量添加することによって抵抗温度係数を調整することができる。
Among the above metal oxide-based conductive particles, ruthenium-based oxide particles are preferable because of their high conductivity, and the ruthenium-based oxide particles include ruthenium dioxide (hereinafter referred to as ruthenium oxide), lead ruthenium acid, and ruthenium. Pyrochloroa-type crystal structures such as bismuth acid and oxide particles having a perovskite-type crystal structure such as strontium ruthenium and calcium ruthenium are suitable.
Further, the ruthenium oxide can cover a wide resistance value region by changing the compounding ratio with glass, and the temperature coefficient of resistance can be adjusted by adding a small amount of a specific metal oxide or the like.

ガラス粉末とルテニウム系酸化物粒子の混合割合は、ガラス粉末と導電性粒子の合計に対し導電性粒子が10質量%〜50質量%である。導電性粒子が10質量%より小さいと抵抗値が高くなりすぎ、50質量%より多いと膜が脆くなりすぎる。
このようなガラス粉末とルテニウム系酸化物粒子の配合割合ならば、本発明に係る正温度係数抵抗体用組成物から得られる正温度係数抵抗体の表面は、平滑になり膜構造が保たれ、温度変化などで正温度係数抵抗体が破損することはない。
The mixing ratio of the glass powder and the ruthenium-based oxide particles is 10% by mass to 50% by mass of the conductive particles with respect to the total of the glass powder and the conductive particles. If the conductive particles are less than 10% by mass, the resistance value becomes too high, and if it is more than 50% by mass, the film becomes too brittle.
With such a blending ratio of the glass powder and the ruthenium-based oxide particles, the surface of the temperature coefficient resistor obtained from the composition for the temperature coefficient resistor according to the present invention becomes smooth and the film structure is maintained. The positive temperature coefficient resistor is not damaged by temperature changes.

また、ガラスとの配合比によってなだらかに抵抗値を調整する観点から、導電性粒子の粒径は限定されないが、0.1μm以下が望ましい。導電性粒子の粒径の測定方法は、BET法で比表面積を測定し、粒状に換算して粒径を求めてもよい。 Further, from the viewpoint of gently adjusting the resistance value according to the compounding ratio with glass, the particle size of the conductive particles is not limited, but is preferably 0.1 μm or less. As a method for measuring the particle size of the conductive particles, the specific surface area may be measured by the BET method and converted into particles to obtain the particle size.

ところで、ガラス粉末と導電性粒子を含む抵抗体組成物の導電性粒子には、金属酸化物系粒子の他に、銀−パラジウム合金粒子等の金属粒子を用いることも知られているが、導電性粒子を金属粒子のみで構成する場合、金属粒子が酸化したり焼結することがあり所望の抵抗値が得られない、あるいは温度変化などで正温度係数抵抗体が破損する恐れがあるために、本発明に係る正温度係数抵抗体用組成物に用いることは望ましくない。 By the way, as the conductive particles of the resistor composition containing the glass powder and the conductive particles, it is known that metal particles such as silver-palladium alloy particles are used in addition to the metal oxide-based particles. When the sex particles are composed of only metal particles, the metal particles may be oxidized or sintered and the desired resistance value may not be obtained, or the positive temperature coefficient resistor may be damaged due to temperature changes or the like. , It is not desirable to use it in the composition for a positive temperature coefficient resistor according to the present invention.

そこで、本発明の正温度係数抵抗体用組成物には、抵抗値や抵抗温度係数の改善、調整を目的として添加剤を加えても良く、MnO、Nb、Ta、TiO、CuO、ZrO、Al、SiO、MgSiO、ZrSiOがあげられる。
これらの添加剤を加えることで、より優れた特性を有する正温度係数抵抗体を作製する事ができる。その添加する量は目的によって調整されるが、ルテニウム酸化物導電粒子とガラス粉末の合計100重量部に対して通常20重量部以下である。
なお、添加剤は、個数平均径のメジアン値(D50)で3μm以下の粉末状でも良いし、正温度係数抵抗体用ペーストを焼成する過程で有機金属化合物が分解して、これら添加剤の化合物を生じてもよい。
Therefore, an additive may be added to the composition for a positive temperature coefficient resistor of the present invention for the purpose of improving or adjusting the resistance value and the temperature coefficient of resistance, and MnO 2 , Nb 2 O 5 , Ta 2 O 5 , Examples thereof include TiO 2 , CuO, ZrO 2 , Al 2 O 3 , SiO 2 , Mg 2 SiO 4 , and ZrSiO 4 .
By adding these additives, a positive temperature coefficient resistor having better characteristics can be produced. The amount to be added is adjusted according to the purpose, but is usually 20 parts by weight or less based on 100 parts by weight of the total of the ruthenium oxide conductive particles and the glass powder.
The additive may be in the form of a powder having a median value (D 50 ) of the number average diameter of 3 μm or less, or the organometallic compound is decomposed in the process of firing the paste for a positive temperature coefficient resistor, and these additives are used. Compounds may be produced.

ルテニウム酸化物導電粒子とガラス粉末は、必要に応じて添加剤と共に印刷用のペーストとするために有機ビヒクル中に混合、分散される。
使用する有機ビヒクルには特に制限はなく、ターピネオール、ブチルカルビトール、ブチルカルビトールアセテート等の溶剤にエチルセルロース、アクリル酸エステル、メタアクリル酸エステル、ロジン、マレイン酸エステル等の樹脂を溶解した有機ビヒクルが用いられる。また、必要に応じて、分散剤や可塑剤などを加える事ができる。
分散方法も特に制限されないが、微細な粒子を分散させる3本ロールミルやビーズミル、遊星ミル等を用いるのが一般的である。有機ビヒクルの配合比率は印刷や塗布方法によって適宣調整されるが、ルテニウム酸化物導電粒子、ガラス粉末、添加剤の合計100重量部に対して20〜200重量部程度である。
The ruthenium oxide conductive particles and the glass powder are mixed and dispersed in an organic vehicle to form a printing paste together with additives as required.
The organic vehicle used is not particularly limited, and an organic vehicle in which resins such as ethyl cellulose, acrylic acid ester, methacrylic acid ester, rosin, and maleic acid ester are dissolved in a solvent such as tarpineol, butyl carbitol, and butyl carbitol acetate can be used. Used. Further, if necessary, a dispersant, a plasticizer, or the like can be added.
The dispersion method is not particularly limited, but it is common to use a three-roll mill, a bead mill, a planetary mill, or the like that disperses fine particles. The blending ratio of the organic vehicle is appropriately adjusted by the printing or coating method, but is about 20 to 200 parts by weight with respect to 100 parts by weight of the total of the ruthenium oxide conductive particles, the glass powder and the additive.

[抵抗体の製造方法]
本発明に係る正温度係数抵抗体の製造方法の一例は、正温度係数抵抗体用ペーストをセラミック等の絶縁基板上に公知のスクリーン印刷法等で塗布する印刷工程、正温度係数抵抗体用ペーストに含まれる溶剤を加熱除去し乾燥膜を得る乾燥工程、得られた乾燥膜を焼成する焼成工程の各工程を順に経て製造される。
[Manufacturing method of resistor]
An example of the method for manufacturing a positive temperature coefficient resistor according to the present invention is a printing process in which a positive temperature coefficient resistor paste is applied onto an insulating substrate such as ceramic by a known screen printing method or the like, and a positive temperature coefficient resistor paste. It is produced through each step of a drying step of heating and removing the solvent contained in the above to obtain a dry film and a firing step of firing the obtained dry film.

焼成工程では、樹脂を加熱して除去する脱バインダーを経て、使用したガラス粉末の軟化点より高い温度で焼成し、ガラス粉末が軟化して粒子同士が融着・溶融してガラス膜状のガラスマトリックスを形成するとともに、基材に固着される。
また導電性粒子は、ガラス粉末の周囲に存在し、乾燥膜を焼成する際に、ガラス粉末の融着により形成されたガラスマトリックス内に固着される。
結果的に、正温度係数抵抗体は、ガラス粉末が融着して形成されたガラスマトリックス中に導電性粒子が導入された焼成体として得られる。
In the firing process, the resin is debindered by heating to remove it, and then fired at a temperature higher than the softening point of the glass powder used. The glass powder softens and the particles are fused and melted to form a glass film-like glass. It forms a matrix and is fixed to the substrate.
In addition, the conductive particles exist around the glass powder and are fixed in the glass matrix formed by the fusion of the glass powder when the dry film is fired.
As a result, the positive temperature coefficient resistor is obtained as a fired body in which conductive particles are introduced into a glass matrix formed by fusing glass powder.

その焼成工程における焼成温度は、使用するガラス粉末のガラス転移点、及び軟化点を考慮して決定するもので、焼成温度が高すぎる場合では、所定形状に焼成体を形成できず、低すぎる場合にも焼成が不十分となり所定形状の焼成体が得られず、また導電性粒子の焼成体内への導入が不十分となる。
その温度範囲として、軟化点+50℃〜150℃が好ましく、軟化点+60℃〜130℃がより好ましい。
The firing temperature in the firing step is determined in consideration of the glass transition point and the softening point of the glass powder to be used. If the firing temperature is too high, the fired body cannot be formed into a predetermined shape and is too low. However, the firing is insufficient, a fired body having a predetermined shape cannot be obtained, and the introduction of the conductive particles into the fired body is insufficient.
As the temperature range, the softening point + 50 ° C. to 150 ° C. is preferable, and the softening point + 60 ° C. to 130 ° C. is more preferable.

なお、乾燥工程の乾燥温度や乾燥時間はペースト中の溶剤が揮発させるのに十分な条件を適時選択する事ができる。
絶縁基板には、アルミナなどのセラミック基板が用いられる。また、得られた正温度係数抵抗体に端子電極を設けて電気回路と接続させる。なお、前記端子電極は、あらかじめ絶縁基板に、公知の厚膜銀ペースト等を用いて形成してもよい。
これまで、本発明を説明してきたが、本発明に係る正温度係数抵抗体用組成物を焼成することで得られる抵抗体が、本発明に係る正温度係数抵抗体であり、本発明に係る正温度数抵抗体組成物を有機ビヒクルに分散することで正温度係数抵抗体用ペーストを得ることができる。
The drying temperature and drying time of the drying step can be timely selected under conditions sufficient for the solvent in the paste to volatilize.
A ceramic substrate such as alumina is used as the insulating substrate. Further, a terminal electrode is provided on the obtained positive temperature coefficient resistor and connected to an electric circuit. The terminal electrode may be formed on an insulating substrate in advance by using a known thick film silver paste or the like.
Although the present invention has been described so far, the resistor obtained by firing the composition for a positive temperature coefficient resistor according to the present invention is the positive temperature coefficient resistor according to the present invention, and relates to the present invention. it can be a positive temperature coefficient resistor composition by dispersing in an organic vehicle to obtain a positive temperature coefficient resistor-body paste.

本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。
本発明の実施例と比較例に使用したガラス粉末の成分組成、個数平均径のメジアン値(D50)、ガラス転移点を表1に示す。
導電性粒子には、BET法による比表面積測定から求めた比表面積が20m /g、粒径40nmの酸化ルテニウム粒子を用い、ガラス粉末には、レーザ回折散乱型の粒度分布計の個数平均径のメジアン値(D50)が1.5μmの表1に示す各ガラス粉末を用いた。
上記導電性粒子とガラス粉末を表2に示す混合比とし、その合計100重量部に対して、43重量部の有機ビヒクル中に、添加、混合後、3本ロールミルで分散させて供試材の抵抗ペーストを作製した。
Although the present invention will be specifically described, the present invention is not limited to these examples.
Table 1 shows the component composition of the glass powder used in Examples and Comparative Examples of the present invention, the median value (D 50 ) of the number mean diameter, and the glass transition point.
For the conductive particles, ruthenium oxide particles having a specific surface area of 20 m 2 / g and a particle size of 40 nm obtained from the specific surface area measurement by the BET method were used, and for the glass powder, the number average diameter of the laser diffraction scattering type particle size distributor was used. Each glass powder shown in Table 1 having a median value (D 50) of 1.5 μm was used.
The conductive particles and the glass powder were mixed as shown in Table 2, and the total of 100 parts by weight was added to and mixed with 43 parts by weight of the organic vehicle, and then dispersed with a three-roll mill to prepare the test material. A resistance paste was prepared.

次に、予めアルミナ基板に焼成して形成したAgの電極上に、作製した抵抗ペーストを印刷し、150℃×5分の条件で乾燥後、表2に示す各ガラス粉末の軟化度合に合わせた温度まで昇温した後10分間保持する条件で焼成し室温まで下げて抵抗体を形成した。
供試材の抵抗体サイズは、抵抗体幅を1.0mm、抵抗体長さ(電極間)を1.0mmとなるようにした。
Next, the prepared resistance paste was printed on the Ag electrode formed by firing on an alumina substrate in advance, dried under the conditions of 150 ° C. × 5 minutes, and then adjusted to the degree of softening of each glass powder shown in Table 2. After raising the temperature to the temperature, firing was performed under the condition of holding for 10 minutes, and the temperature was lowered to the room temperature to form a resistor.
The resistor size of the test material was such that the resistor width was 1.0 mm and the resistor length (between electrodes) was 1.0 mm.

作製した抵抗体が示す「抵抗値の温度依存性」を、温度制御のできるオーブンを用い、そのオーブン内に4端子法の電位抵抗測定試料とした上記供試材を載置し、オーブン温度を変えながら、4端子法により電気抵抗をデジタルマルチメータで測定した。
その測定結果を、図1から図5(実施例1から実施例5)、図6(比較例1)、図7(比較例2)に示す。
Using an oven that can control the temperature of the "temperature dependence of the resistance value" indicated by the produced resistor, the above-mentioned test material used as a 4-terminal method potential resistance measurement sample is placed in the oven, and the oven temperature is adjusted. While changing, the electrical resistance was measured with a digital multimeter by the 4-terminal method.
The measurement results are shown in FIGS. 1 to 5 (Examples 1 to 5), FIG. 6 (Comparative Example 1), and FIG. 7 (Comparative Example 2).

Figure 0006848327
Figure 0006848327

Figure 0006848327
Figure 0006848327

実施例1、2は、ガラス転移点240℃のガラス粉末と酸化ルテニウム粒子からなる抵抗体である。図1、図2に示される抵抗値の温度特性から、およそ250℃で温度に対する抵抗値変化(抵抗温度係数)が変わっている事がわかる。この抵抗温度係数の変曲点は原料であるガラスのガラス転移点とほぼ一致する。
実施例3、4は、ガラス転移点270℃のガラス粉末と酸化ルテニウム粒子からなる抵抗体である。図3、4から抵抗温度係数の変曲点がおよそ280℃で現われ、ガラスの転移点とほぼ一致する。
実施例5は、ガラス転移点が400℃のガラス粉末と酸化ルテニウム粒子からなる抵抗体である。図5から抵抗温度係数の変曲点がおよそ400℃で現われ、ガラスの転移点とほぼ一致する。
Examples 1 and 2 are resistors made of glass powder having a glass transition point of 240 ° C. and ruthenium oxide particles. From the temperature characteristics of the resistance values shown in FIGS. 1 and 2, it can be seen that the change in resistance value (resistance temperature coefficient) with respect to temperature changes at about 250 ° C. The inflection point of this temperature coefficient of resistance almost coincides with the glass transition point of the glass as a raw material.
Examples 3 and 4 are resistors composed of glass powder having a glass transition point of 270 ° C. and ruthenium oxide particles. From FIGS. 3 and 4, the inflection point of the temperature coefficient of resistance appears at about 280 ° C., which almost coincides with the transition point of the glass.
Example 5 is a resistor composed of glass powder having a glass transition point of 400 ° C. and ruthenium oxide particles. From FIG. 5, the inflection point of the temperature coefficient of resistance appears at about 400 ° C., which almost coincides with the transition point of the glass.

以上の実施例に対して、図6、7に示す比較例1、2ではガラス転移点が510℃と550℃のガラスと酸化ルテニウムからなる抵抗体の抵抗温度特性を示した。いずれも25℃〜500℃の温度範囲では、抵抗温度特性の変曲点は現われなかった。 In contrast to the above Examples, Comparative Examples 1 and 2 shown in FIGS. 6 and 7 showed the resistance temperature characteristics of the resistor made of glass and ruthenium oxide having glass transition points of 510 ° C. and 550 ° C. In each case, no inflection point of resistance temperature characteristics appeared in the temperature range of 25 ° C. to 500 ° C.

実施例、比較例から判るように、本発明によれば、従来困難であった250℃から400℃の温度範囲で抵抗温度係数が変化する正温係数抵抗体を製造することができ、抵抗温度係数の変曲点は原料ガラスのガラス転移点を調整することによって選択することが可能となる。 As can be seen from Examples and Comparative Examples, according to the present invention, it is possible to manufacture a positive temperature coefficient resistor whose resistance temperature coefficient changes in the temperature range of 250 ° C. to 400 ° C., which has been difficult in the past, and the resistance temperature. The temperature coefficient variation point can be selected by adjusting the glass transition point of the raw material glass.

Claims (9)

金属酸化物系導電性粒子と400℃以下のガラス転移点を有するガラス粉末とを含有することを特徴とする正温度係数抵抗体用組成物。 A composition for a positive temperature coefficient resistor, which comprises metal oxide-based conductive particles and a glass powder having a glass transition point of 400 ° C. or lower. 前記ガラス粉末が、400℃以下のガラス転移点と、前記ガラス転移点より50℃以上高い軟化点を有することを特徴とする請求項1に記載の正温度係数抵抗体用組成物。The composition for a positive temperature coefficient resistor according to claim 1, wherein the glass powder has a glass transition point of 400 ° C. or lower and a softening point of 50 ° C. or higher higher than the glass transition point. 前記金属酸化物系導電性粒子が、ルテニウム系酸化物粒子であることを特徴とする請求項1又は2に記載の正温度係数抵抗体用組成物。 The composition for a positive temperature coefficient resistor according to claim 1 or 2 , wherein the metal oxide-based conductive particles are ruthenium-based oxide particles. 前記ルテニウム系酸化物粒子が、酸化ルテニウム粒子であることを特徴とする請求項に記載の正温度係数抵抗体用組成物。 The composition for a positive temperature coefficient resistor according to claim 3 , wherein the ruthenium-based oxide particles are ruthenium oxide particles. 有機ビヒクルと、前記請求項1からのいずれかに記載の前記正温度係数抵抗体用組成物を含有することを特徴とする正温度係数抵抗体用ペースト。 A paste for a positive temperature coefficient resistor, which comprises an organic vehicle and the composition for a positive temperature coefficient resistor according to any one of claims 1 to 4. 400℃以下のガラス転移点を有するガラス中に金属酸化物系導電性粒子が含有されていることを特徴とする正温度係数抵抗体。 A positive temperature coefficient resistor characterized in that metal oxide-based conductive particles are contained in glass having a glass transition point of 400 ° C. or lower. 前記金属酸化物系導電性粒子が、ルテニウム系酸化物粒子であることを特徴とする請求項に記載の正温度係数抵抗体。 The positive temperature coefficient resistor according to claim 6 , wherein the metal oxide-based conductive particles are ruthenium-based oxide particles. 前記ルテニウム系酸化物粒子が、酸化ルテニウム粒子であることを特徴とする請求項に記載の正温度係数抵抗体。 The positive temperature coefficient resistor according to claim 7 , wherein the ruthenium-based oxide particles are ruthenium oxide particles. 請求項に記載の正温度係数抵抗体用ペーストを、絶縁基板上に塗布、焼成することによって、有機溶剤と有機樹脂を消失させ、ガラス粉末を軟化させて前記正温度係数抵抗体用ペーストに含まれる金属酸化物系導電性粒子を、前記正温度係数抵抗体用ペーストに含有されるガラス粉末により形成されるガラスマトリックス内に取り込み、乾燥して固化させることによって製造されることを特徴とする正温度係数抵抗体の製造方法。 By applying and firing the paste for a positive temperature coefficient resistor according to claim 5 on an insulating substrate, the organic solvent and the organic resin are eliminated, and the glass powder is softened to obtain the paste for a positive temperature coefficient resistor. It is characterized in that it is produced by incorporating the contained metal oxide-based conductive particles into a glass matrix formed of glass powder contained in the paste for a positive temperature coefficient resistor, drying and solidifying the mixture. A method for manufacturing a positive temperature coefficient resistor.
JP2016205560A 2016-10-19 2016-10-19 A method for producing a composition for a positive temperature coefficient resistor, a paste for a positive temperature coefficient resistor, a positive temperature coefficient resistor, and a positive temperature coefficient resistor. Active JP6848327B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016205560A JP6848327B2 (en) 2016-10-19 2016-10-19 A method for producing a composition for a positive temperature coefficient resistor, a paste for a positive temperature coefficient resistor, a positive temperature coefficient resistor, and a positive temperature coefficient resistor.
TW106132982A TWI654624B (en) 2016-10-19 2017-09-26 Composition for positive temperature coefficient resistor, paste for positive temperature coefficient resistor, positive temperature coefficient resistor and manufacturing method of positive temperature coefficient resistor
KR1020170133807A KR20180043173A (en) 2016-10-19 2017-10-16 Composition for positive temperature coefficient resistor, paste for positive temperature coefficient resistor, positive temperature coefficient resistor and method for producing positive temperature coefficient resistor
CN201710973679.6A CN107967973A (en) 2016-10-19 2017-10-19 Positive temperature coefficient resistor body composition, paste, the manufacture method of resistive element and resistive element
CN202011420907.5A CN112670045B (en) 2016-10-19 2017-10-19 Composition for positive temperature coefficient resistor, paste, resistor, and method for producing resistor
KR1020190070811A KR102341611B1 (en) 2016-10-19 2019-06-14 Composition for positive temperature coefficient resistor, paste for positive temperature coefficient resistor, positive temperature coefficient resistor and method for producing positive temperature coefficient resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016205560A JP6848327B2 (en) 2016-10-19 2016-10-19 A method for producing a composition for a positive temperature coefficient resistor, a paste for a positive temperature coefficient resistor, a positive temperature coefficient resistor, and a positive temperature coefficient resistor.

Publications (2)

Publication Number Publication Date
JP2018067640A JP2018067640A (en) 2018-04-26
JP6848327B2 true JP6848327B2 (en) 2021-03-24

Family

ID=61997666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016205560A Active JP6848327B2 (en) 2016-10-19 2016-10-19 A method for producing a composition for a positive temperature coefficient resistor, a paste for a positive temperature coefficient resistor, a positive temperature coefficient resistor, and a positive temperature coefficient resistor.

Country Status (4)

Country Link
JP (1) JP6848327B2 (en)
KR (2) KR20180043173A (en)
CN (2) CN112670045B (en)
TW (1) TWI654624B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7271248B2 (en) * 2019-03-20 2023-05-11 ローム株式会社 thermal print head
CN111739941A (en) 2019-03-25 2020-10-02 台达电子企业管理(上海)有限公司 Semiconductor chip

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5814721B2 (en) * 1979-03-30 1983-03-22 株式会社東芝 Method for manufacturing thick film type positive temperature semiconductor device
JPS57205462A (en) * 1981-06-12 1982-12-16 Sumitomo Metal Mining Co Ltd Resistance paint
DE3941283C1 (en) * 1989-12-14 1991-01-31 W.C. Heraeus Gmbh, 6450 Hanau, De
JP3255985B2 (en) * 1992-08-11 2002-02-12 コーア株式会社 Thick film positive temperature coefficient thermistor composition, method for producing the same and thick film positive temperature coefficient thermistor
JPH1197207A (en) * 1997-09-16 1999-04-09 Mitsubishi Electric Corp Ptc thermister element
JPH1197209A (en) * 1997-09-18 1999-04-09 Mitsubishi Electric Corp Current-limiting element and method for manufacturing it
DE102007026924A1 (en) * 2007-06-12 2008-12-18 Epcos Ag Positive temperature coefficient material of electrical resistance and method of making the same
KR101138246B1 (en) * 2010-12-24 2012-04-24 (주) 케이엠씨 테크놀러지 Manufacturing method of paste composition having low temperature coefficient resistance for resistor, thick film resistor and manufacturing method of the resistor
KR101138238B1 (en) * 2010-12-24 2012-04-24 (주) 케이엠씨 테크놀러지 Manufacturing method of paste composition for resistor using coating metal oxide, thick film resistor and manufacturing method of the resistor
WO2012176696A1 (en) * 2011-06-21 2012-12-27 住友金属鉱山株式会社 Ruthenium oxide powder, composition for thick film resistor elements using same, and thick film resistor element
CN105026336A (en) 2013-03-11 2015-11-04 Tdk株式会社 PTC thermistor ceramic composition and PTC thermistor element
US9892828B2 (en) * 2014-09-12 2018-02-13 Shoei Chemical Inc. Thick film resistor and production method for same

Also Published As

Publication number Publication date
KR102341611B1 (en) 2021-12-22
TW201818426A (en) 2018-05-16
JP2018067640A (en) 2018-04-26
KR20180043173A (en) 2018-04-27
CN112670045B (en) 2024-05-28
KR20190071658A (en) 2019-06-24
TWI654624B (en) 2019-03-21
CN107967973A (en) 2018-04-27
CN112670045A (en) 2021-04-16

Similar Documents

Publication Publication Date Title
JP3907725B2 (en) Thick film paste composition containing no cadmium and lead
KR102119623B1 (en) Thick film resistor composition and thick film resistor paste comprising the same
KR102341611B1 (en) Composition for positive temperature coefficient resistor, paste for positive temperature coefficient resistor, positive temperature coefficient resistor and method for producing positive temperature coefficient resistor
WO2021221173A1 (en) Thick film resistor paste, thick film resistor, and electronic component
KR100686533B1 (en) Glass composition for thick film resistor paste, thick film resistor paste, thick-film resistor, and electronic device
TW201814727A (en) Lead-free thick film resistor composition, lead-free thick film resistor and production method thereof
JP7139691B2 (en) Composition for thick film resistor, thick film resistor paste and thick film resistor
TWI803673B (en) Composition for thick film resistors, paste for thick film resistors, and thick film resistors
JP2005129806A (en) Resistor paste and thick film resistor
JP2013214591A (en) Thick film composition for forming thermistor, paste composition, and thermistor using the same
JP2018154520A (en) Thick film resistor composition having positive temperature coefficient of resistance, thick film resistor paste using the same, thick film resistor, and temperature sensor
JP6558253B2 (en) Thick film resistor composition and resistor paste
JP7116362B2 (en) Resistor composition, resistor paste, and resistor
JP7390103B2 (en) Resistor compositions, resistance pastes, thick film resistors
JP7297409B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP6804044B2 (en) A composition for a resistor, a resistor paste containing the same, and a thick film resistor using the same.
WO2021221172A1 (en) Thick film resistor paste, thick film resistor, and electronic component
JP2021193705A (en) Thick film resistor composition and thick film resistance paste including the same
JP2021193704A (en) Thick film resistor composition and thick film resistance paste including the same
JP2023077053A (en) Composition for thick film resistor, paste for the thick film resistor, and the thick film resistor
JP2018198259A (en) Composition for negative characteristic resistor, resistance paste for negative characteristic resistor, and negative characteristic thermistor
JP2006273706A (en) Glass composition for thick-film resistor paste, thick film resistor paste, thick-film resistor, and electronic device
JP2005072485A (en) Resistor paste and resistor and method for manufacturing resistor
JP2008218379A (en) Thick film resistor composition, resistance paste, and thick film resistor
JP2006079908A (en) Conductive material, manufacturing method of the same, resistive element paste, resistive element and electronic parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210215

R150 Certificate of patent or registration of utility model

Ref document number: 6848327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150