JP7297409B2 - Composition for thick film resistor, paste for thick film resistor, and thick film resistor - Google Patents

Composition for thick film resistor, paste for thick film resistor, and thick film resistor Download PDF

Info

Publication number
JP7297409B2
JP7297409B2 JP2018066144A JP2018066144A JP7297409B2 JP 7297409 B2 JP7297409 B2 JP 7297409B2 JP 2018066144 A JP2018066144 A JP 2018066144A JP 2018066144 A JP2018066144 A JP 2018066144A JP 7297409 B2 JP7297409 B2 JP 7297409B2
Authority
JP
Japan
Prior art keywords
thick film
film resistor
composition
glass
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018066144A
Other languages
Japanese (ja)
Other versions
JP2019176112A (en
Inventor
誠 小沢
貴広 植田
勝弘 川久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018066144A priority Critical patent/JP7297409B2/en
Publication of JP2019176112A publication Critical patent/JP2019176112A/en
Application granted granted Critical
Publication of JP7297409B2 publication Critical patent/JP7297409B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Non-Adjustable Resistors (AREA)
  • Conductive Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Glass Compositions (AREA)

Description

本発明は、厚膜抵抗体用組成物、厚膜抵抗体用ペースト、及び厚膜抵抗体に関する。 The present invention relates to a composition for thick film resistors, a paste for thick film resistors, and a thick film resistor.

厚膜抵抗体用ペーストは、ガラスと導電粉末とを含有する厚膜抵抗体用組成物、及び樹脂と溶剤とを含有する有機ビヒクルを主成分としている。そして、電極が形成された絶縁基板上に、係る厚膜抵抗体用ペーストを印刷、乾燥、焼成することで厚膜抵抗体が形成される。また、得られた厚膜抵抗体について、さらにガラスコート処理、レーザートリミング処理、側面と裏面電極の形成を行うことで抵抗器に加工される。 The thick film resistor paste is mainly composed of a thick film resistor composition containing glass and conductive powder, and an organic vehicle containing a resin and a solvent. Then, the thick film resistor is formed by printing, drying, and baking the thick film resistor paste on the insulating substrate on which the electrodes are formed. Further, the obtained thick film resistor is processed into a resistor by further performing glass coating treatment, laser trimming treatment, and formation of side and back electrodes.

厚膜抵抗体には、所定の抵抗値であって、抵抗温度係数(TCR)が小さいこと、電流雑音(ノイズ)等が小さいこと、静電破壊(ESD)や短時間過負荷(STOL)が小さいことが求められている。 A thick film resistor has a predetermined resistance value, a small temperature coefficient of resistance (TCR), a small current noise, etc., and is resistant to electrostatic discharge (ESD) and short-term overload (STOL). Small things are required.

これらの電気特性を満たすために、鉛を含むガラスと、ルテニウム酸鉛といった鉛を含む導電粉末を用いた厚膜抵抗体が汎用されている。しかし、鉛成分は人体や環境に対して毒性があるという問題があった。 In order to satisfy these electrical characteristics, thick film resistors using lead-containing glass and lead-containing conductive powder such as lead ruthenate are widely used. However, there is a problem that the lead component is toxic to the human body and the environment.

そこで、近年は、鉛を含まないガラスフリットと酸化イリジウムといった鉛を含まない導電粉末を用いて電気特性を満たすことができる厚膜抵抗体が提案され(特許文献1)、鉛を含まない厚膜抵抗体が用いられつつある。 Therefore, in recent years, a thick film resistor has been proposed that can satisfy electrical characteristics by using a lead-free glass frit and a lead-free conductive powder such as iridium oxide (Patent Document 1). Resistors are being used.

しかしながら、酸化イリジウムを用いた厚膜抵抗体は、イリジウムが高価であるため、コスト上の問題があった。 However, thick film resistors using iridium oxide have a cost problem because iridium is expensive.

また、鉛成分を含まないルテニウム系導電性成分と、所定の塩基度の鉛成分を含まないガラスと、有機ビヒクルとを含む抵抗体組成物が提案されている。(特許文献2)
この提案によれば、非特許文献1に開示されたガラスの塩基度が0.4~0.9であるガラスを用い、焼成して得られる厚膜抵抗体中にMSil(M:Ba及び/又はSr)結晶を発生させることで優れた厚膜抵抗体が得られることが記載されている。
Also proposed is a resistor composition containing a lead-free ruthenium-based conductive component, a lead-free glass having a predetermined basicity, and an organic vehicle. (Patent document 2)
According to this proposal, MSil 2 O 8 (M: It is described that excellent thick film resistors can be obtained by generating Ba and/or Sr) crystals.

特開2009-007199号公報JP 2009-007199 A 特開2007-103594号公報JP 2007-103594 A

J.Am Ceram. Soc.,77(12)、3113-3118(1994)J. Am Ceram. Soc. , 77(12), 3113-3118 (1994)

しかしながら、特許文献2に開示された抵抗体組成物によれば、ルテニウム系酸化物としてルテニウム複合酸化物を用いることを前提とした発明である。そして、ルテニウム系酸化物がルテニウム複合酸化物であれば良好な特性が得られるものの、本発明の発明者の検討によれば、ルテニウム複合酸化物よりも工業的に簡便に得られる酸化ルテニウムを用いた場合には、良好な特性が得ることができなかった。 However, according to the resistor composition disclosed in Patent Document 2, the invention is based on the assumption that a ruthenium composite oxide is used as the ruthenium-based oxide. If the ruthenium-based oxide is a ruthenium composite oxide, good characteristics can be obtained. In the case of the sintered body, good characteristics could not be obtained.

そして、厚膜抵抗体について、特にノイズ特性を高めることが求められており、中でも単位面積あたりの抵抗値が約10kΩ以上の高抵抗域の厚膜抵抗体とした場合でもノイズ特性が優れた厚膜抵抗体用組成物が求められていた。 Thick film resistors are particularly required to improve their noise characteristics. There has been a demand for a composition for membrane resistors.

上記従来技術の問題に鑑み、本発明の一側面では、導電粉末として酸化ルテニウム粉末を含み、単位面積あたりの抵抗値が10kΩ以上の抵抗域の膜抵抗体とした場合でもノイズ特性が優れた厚膜抵抗体用組成物を提供することを目的とする。 In view of the above-described problems of the prior art, in one aspect of the present invention, even when a film resistor containing ruthenium oxide powder as a conductive powder and having a resistance value per unit area of 10 kΩ or more is used as a film resistor, the thickness is excellent in noise characteristics. An object of the present invention is to provide a composition for membrane resistors.

上記課題を解決するため本発明は、
鉛成分を含まない酸化ルテニウム粉末と、鉛成分を含まないガラスとを含有する抵抗体用組成物であって、厚膜抵抗体とした場合にX線回折パターンにおいてアルミノケイ酸塩結晶相が検出されず、
前記ガラスが、SiO を4mol%以上52mol%以下、Alを1mol%以上6mol%以下含む厚膜抵抗体用組成物を提供する。

In order to solve the above problems, the present invention
A composition for a resistor containing ruthenium oxide powder containing no lead component and glass containing no lead component, wherein an aluminosilicate crystal phase is detected in an X-ray diffraction pattern when used as a thick film resistor. figure,
Provided is a composition for a thick film resistor, wherein the glass contains 4 mol % or more and 52 mol % or less of SiO 2 and 1 mol % or more and 6 mol % or less of Al 2 O 3 .

本発明の一側面によれば、導電粉末として酸化ルテニウム粉末を含み、単位面積あたりの抵抗値が10kΩ以上の抵抗域の厚膜抵抗体とした場合でもノイズ特性が優れた厚膜抵抗体用組成物を提供することができる。 According to one aspect of the present invention, a composition for a thick film resistor that contains ruthenium oxide powder as a conductive powder and has excellent noise characteristics even when the thick film resistor has a resistance value of 10 kΩ or more per unit area. can provide things.

以下、本発明の厚膜抵抗体用組成物、厚膜抵抗体用ペースト、及び厚膜抵抗体の一実施形態について説明する。
[厚膜抵抗体用組成物]
本実施形態の厚膜抵抗体用組成物は、鉛成分を含まない酸化ルテニウム粉末と、鉛成分を含まないガラスとを含有することができる。そして、本実施形態の厚膜抵抗体用組成物は、厚膜抵抗体とした場合に、X線回折パターンにおいてアルミノケイ酸塩結晶相が検出されないことが好ましい。
An embodiment of the composition for a thick film resistor, the paste for a thick film resistor, and the thick film resistor of the present invention will be described below.
[Composition for thick film resistor]
The composition for a thick film resistor of the present embodiment can contain ruthenium oxide powder containing no lead component and glass containing no lead component. When the composition for a thick film resistor of the present embodiment is made into a thick film resistor, it is preferable that no aluminosilicate crystal phase is detected in the X-ray diffraction pattern.

本発明の発明者らの検討によれば、厚膜抵抗体とした場合にノイズ特性が悪い場合は、厚膜抵抗体の内部に結晶相が発生していた。そこで、厚膜抵抗体のノイズ特性が悪化する理由としては、導電粉末である酸化ルテニウム粉末の粒子の間にアルミノケイ酸塩の結晶相が介在し、導電粉末により形成される導電パスが阻害されているため、もしくは結晶相が発生することで厚膜抵抗体内部に微小のクラックが発生して導電粉末の粒子の接触状態を悪化させるためと推認される。 According to the studies by the inventors of the present invention, when a thick film resistor has poor noise characteristics, a crystalline phase occurs inside the thick film resistor. Therefore, the reason why the noise characteristics of the thick film resistor deteriorate is that the crystal phase of the aluminosilicate intervenes between the particles of the ruthenium oxide powder, which is the conductive powder, and the conductive path formed by the conductive powder is obstructed. It is presumed that the contact state of the particles of the conductive powder is deteriorated due to the generation of microcracks inside the thick film resistor due to the presence of the crystal phase or the generation of the crystal phase.

係る知見に基づき、本実施形態の厚膜抵抗体用組成物は、厚膜抵抗体とした場合に、X線回折パターンにおいてアルミノケイ酸塩結晶相が検出されない厚膜抵抗体用組成物とすることができる。 Based on this knowledge, the composition for thick film resistors of the present embodiment is a composition for thick film resistors in which an aluminosilicate crystal phase is not detected in the X-ray diffraction pattern when used as a thick film resistor. can be done.

本実施形態の厚膜抵抗体用組成物によれば、従来ではノイズ特性を十分に高めることが困難であった、単位面積あたり(1mm×1mm)の抵抗値が10kΩ以上の抵抗域の厚膜抵抗体とした場合でも、ノイズ特性を良好なものとすることができる。 According to the composition for a thick film resistor of the present embodiment, a thick film having a resistance value of 10 kΩ or more per unit area (1 mm × 1 mm), which was difficult to sufficiently improve noise characteristics in the past, Good noise characteristics can be obtained even when a resistor is used.

以下、本実施形態の厚膜抵抗体用組成物が含有する各成分について説明する。
(1)酸化ルテニウム粉末
酸化ルテニウム粉末は導電粉末であり、鉛成分を含まないことが好ましい。なお、鉛成分を含まない酸化ルテニウム粉末とは、鉛を意図して添加していないことを意味し、鉛の含有量が0であることを意味する。ただし、製造工程等で不純物成分、不可避成分として混入することを排除するものではない。
Each component contained in the composition for a thick film resistor of this embodiment will be described below.
(1) Ruthenium oxide powder The ruthenium oxide powder is a conductive powder and preferably does not contain lead. The ruthenium oxide powder containing no lead component means that lead is not intentionally added, and means that the lead content is zero. However, it does not exclude the contamination as an impurity component or an unavoidable component in the manufacturing process or the like.

酸化ルテニウム粉末の調製方法や、物性は特に限定されるものではないが、例えば、水酸化ルテニウム粉末を800℃以上900℃以下の焼成温度で、空気中で焼成することで得られる。焼成温度を上記範囲とすることで、酸化ルテニウム粉末の平均粒径(比表面積径)を15nm以上120nm以下とすることができる。 The preparation method and physical properties of the ruthenium oxide powder are not particularly limited. By setting the firing temperature within the above range, the average particle diameter (specific surface area diameter) of the ruthenium oxide powder can be set to 15 nm or more and 120 nm or less.

なお、上記平均粒径は、酸化ルテニウム粉末の比表面積をBET法によって測定し、その比表面積と酸化ルテニウム粉末の密度から求めることができる。具体的には、係る平均粒径(nm)は、粉末の比表面積をS(m/g)、密度をρ(g/cm)と表したときの6×10/(ρ・S)の計算値とすることができる。 The average particle size can be obtained from the specific surface area of the ruthenium oxide powder measured by the BET method and the density of the ruthenium oxide powder. Specifically, the average particle size (nm) is 6 ×10 3 / (ρ S ) can be calculated.

また、酸化ルテニウム粉末は、含有する粗大粒子が少なく粒径が均一であり、結晶子径が大きいことが望ましい。その理由としては、酸化ルテニウム粉末に含まれる粗大粒子が少なく、粒径が均一であり、結晶子径が大きいと、厚膜抵抗体とした場合のノイズ値を特に抑制することが可能であるためである。 Further, it is desirable that the ruthenium oxide powder contains few coarse particles, has a uniform particle size, and has a large crystallite size. The reason for this is that when the ruthenium oxide powder contains few coarse particles, has a uniform particle size, and has a large crystallite size, it is possible to particularly suppress the noise value when used as a thick film resistor. is.

導電粉末は酸化ルテニウム粉末のみから構成することもできるが、所望の抵抗値領域に応じて、銀粉末、パラジウム粉末といった貴金属を含む粉末をさらに添加、含有することもできる。
(2)ガラス
ガラスとしては鉛成分を含まないガラス(ガラス粉末)を用いることができる。なお、鉛成分を含まないガラスとは、鉛を意図して添加していないことを意味し、鉛の含有量が0であることを意味する。ただし、製造工程等で不純物成分、不可避成分として混入することを排除するものではない。
The conductive powder can be composed of only ruthenium oxide powder, but it can also contain powders containing noble metals such as silver powder and palladium powder, depending on the desired resistance value range.
(2) Glass As the glass, glass (glass powder) containing no lead component can be used. The glass containing no lead component means that lead is not intentionally added, and means that the lead content is zero. However, it does not exclude the contamination as an impurity component or an unavoidable component in the manufacturing process or the like.

ガラスの組成は特に限定されないが、ガラスは、SiOとBとRO(RはCa、Sr、Baから選択された1種類以上の元素)と、Alとを含むことができ、Alの含有割合が6mol%以下であることが好ましい。 The composition of the glass is not particularly limited, but the glass may contain SiO 2 , B 2 O 3 , RO (R is one or more elements selected from Ca, Sr, and Ba), and Al 2 O 3 . It is preferable that the content of Al 2 O 3 is 6 mol % or less.

なお、以下の各成分の含有割合(mol%)について説明する場合、特に断らない場合、酸化物として計算した場合の含有割合を意味する。すなわち例えばガラスの組成をICP(Inductively Coupled Plasma)発光分光分析等により、各元素、つまりAl等の含有割合として評価した場合においては、Alとして酸化物に換算した後の値が対応した値であることを意味する。 When describing the content ratio (mol%) of each component below, unless otherwise specified, it means the content ratio calculated as an oxide. That is, for example, when the composition of glass is evaluated as the content ratio of each element, that is, Al or the like, by ICP (Inductively Coupled Plasma) emission spectroscopic analysis or the like, the value after conversion to oxide as Al 2 O 3 corresponds. value.

ガラスは、一般的に、所定の成分またはそれらの前駆体を目的とする配合にあわせて混合し、得られた混合物を溶融し急冷することによって製造できる。溶融温度は特に限定されるものではないが例えば1400℃前後とすることができる。また、急冷の方法についても特に限定されないが、溶融物を冷水中に入れるか冷ベルト上に流すことにより行うことができる。 Glasses can generally be produced by mixing the given components or their precursors into a desired formulation, melting and quenching the resulting mixture. Although the melting temperature is not particularly limited, it can be around 1400°C, for example. Also, the method of quenching is not particularly limited, but it can be carried out by placing the melt in cold water or flowing it on a cooling belt.

ガラスの所定の成分またはそれらの前駆体を目的とする配合にあわせて混合し、得られた混合物を溶融した際に、ガラス成分の分相等が発生することがある。厚膜抵抗体を形成するガラスは、均質であることが望ましく、分相することは望ましくない。そのような分相の発生を抑制するために、本実施形態の厚膜抵抗体用組成物に用いるガラスは、Alを含有することが望ましい。 When predetermined glass components or their precursors are mixed in accordance with the desired composition and the resulting mixture is melted, phase separation of the glass components may occur. The glass forming the thick film resistor should be homogeneous and should not be phase split. In order to suppress the occurrence of such phase separation, the glass used in the composition for thick film resistors of the present embodiment preferably contains Al 2 O 3 .

しかし、SiOとBとROとAlとを含むガラスは、ガラス自体が分相などしていなくても、酸化ルテニウム粉末と組み合わせて厚膜抵抗体用組成物とした時や、該厚膜抵抗体用組成物を焼成する際にアルミノケイ酸塩結晶相が発生することがある。そして、アルミノケイ酸塩結晶相が厚膜抵抗体の中に生じると、厚膜抵抗体の電気特性の1つであるノイズが劣ってしまう。 However, even if the glass containing SiO 2 , B 2 O 3 , RO and Al 2 O 3 is not phase-separated, when it is combined with ruthenium oxide powder to form a composition for a thick film resistor, Also, an aluminosilicate crystal phase may occur when the composition for thick film resistors is fired. When the aluminosilicate crystal phase occurs in the thick film resistor, noise, which is one of the electrical characteristics of the thick film resistor, is degraded.

本発明の発明者らの検討によれば、SiOとBとROとAlを含むガラスであっても、Alの含有割合が6mol%以下の場合、厚膜抵抗体中にアルミノケイ酸塩結晶相をX線回折パターンで確認されることはない。すなわちSiOとBとROとAlを含み、Alの含有割合が6mol%以下のガラスは、導電粉末との混合割合等によらず、アルミノケイ酸塩結晶相が発生しないガラスとなる。そして、X線回折パターンでアルミノケイ酸塩結晶相が確認できない厚膜抵抗体は、ノイズ特性にも優れている。このため、本実施形態の厚膜抵抗体用組成物に用いるガラスは、Alの含有割合が6mol%以下であることが好ましい。 According to studies by the inventors of the present invention, even in a glass containing SiO 2 , B 2 O 3 , RO, and Al 2 O 3 , when the content of Al 2 O 3 is 6 mol % or less, a thick film No X-ray diffraction pattern confirms an aluminosilicate crystal phase in the resistor. That is, glass containing SiO 2 , B 2 O 3 , RO, and Al 2 O 3 and having an Al 2 O 3 content of 6 mol % or less has an aluminosilicate crystal phase regardless of the mixing ratio with the conductive powder. It becomes glass that does not occur. A thick-film resistor in which an aluminosilicate crystal phase cannot be confirmed in an X-ray diffraction pattern also has excellent noise characteristics. Therefore, it is preferable that the content of Al 2 O 3 in the glass used for the thick film resistor composition of the present embodiment is 6 mol % or less.

なお、本実施形態の厚膜抵抗体用組成物に用いるガラスは、Alを含有することが好ましいから、Alの含有割合は0よりも多くすることができる。 The glass used for the thick film resistor composition of the present embodiment preferably contains Al 2 O 3 , so the content of Al 2 O 3 can be greater than zero.

本実施形態の厚膜抵抗体用組成物に用いるガラスは、SiO、B、RO、Alのみから構成することもできるが、その他の任意の成分をさらに含有することもできる。本実施形態の厚膜抵抗体用組成物に用いるガラスがさらに含有できる任意の成分としては、ZrO、TiO、SnO、ZnO、LiO、NaO、KO等から選択された1種類以上が挙げられる。 The glass used for the thick film resistor composition of the present embodiment can be composed only of SiO 2 , B 2 O 3 , RO, and Al 2 O 3 , but may further contain other optional components. can. The optional component that the glass used in the composition for thick film resistors of the present embodiment can further contain is selected from ZrO 2 , TiO 2 , SnO 2 , ZnO, Li 2 O, Na 2 O, K 2 O, and the like. one or more types.

ZrO、TiOはガラスの耐候性を向上させることができる。また、SnO、ZnO、LiO、NaO、KO等はガラスの溶融時の流動性を高める働きがある。 ZrO 2 and TiO 2 can improve the weather resistance of glass. Also, SnO 2 , ZnO, Li 2 O, Na 2 O, K 2 O, etc. have the function of increasing the fluidity of the glass when it is melted.

そして、本実施形態の厚膜抵抗体用組成物に用いるガラスは、さらにZnOを含有することが好ましい。ZnOの含有割合は15mol%以上とすることが好ましい。ZnOは、ガラスを溶融した際の流動性を高める働きを有する。なお、本実施形態の厚膜抵抗体用組成物に用いるガラスがZnOを含有する場合、その含有量の上限は特に限定されないが、他の成分の含有量を十分に確保する観点から45mol%以下であることが好ましい。 The glass used for the thick film resistor composition of the present embodiment preferably further contains ZnO. The content of ZnO is preferably 15 mol % or more. ZnO has the function of increasing the fluidity when the glass is melted. When the glass used for the composition for a thick film resistor of the present embodiment contains ZnO, the upper limit of the content is not particularly limited, but from the viewpoint of sufficiently securing the content of other components, it is 45 mol % or less. is preferred.

なお、本実施形態の厚膜抵抗体用組成物に用いるガラスは、既述の様にSiOとBとROとAlとを含むことが好ましい。この際、ROとして、CaOとBaOとを含有することがより好ましい。係るガラスは上述のようにさらにZnOを含むこともできる。また、係るガラスはさらにアルカリ金属の酸化物を含むこともできる。 The glass used for the thick film resistor composition of the present embodiment preferably contains SiO 2 , B 2 O 3 , RO and Al 2 O 3 as described above. At this time, it is more preferable to contain CaO and BaO as RO. Such glasses may additionally contain ZnO as described above. Also, such a glass may further contain oxides of alkali metals.

このため、本実施形態の厚膜抵抗体用組成物に用いるガラスは、SiOとBとAlと、CaOと、BaOと、ZnOとを含むこともでき、場合によってはさらにアルカリ金属の酸化物とを含むこともできる。なお、本実施形態の厚膜抵抗体用組成物のガラスは上記成分から構成することもできる。 Therefore, the glass used in the thick film resistor composition of the present embodiment may contain SiO 2 , B 2 O 3 , Al 2 O 3 , CaO, BaO, and ZnO, and in some cases, Further, it can also contain oxides of alkali metals. The glass of the composition for thick film resistors of the present embodiment can also be composed of the above components.

ガラスの熱的特性として、ガラス転移点と軟化点が知られており、ガラスの組成変化に伴う転移点と軟化点との変化は概ね比例関係を有している。 A glass transition point and a softening point are known as thermal properties of glass, and changes in the transition point and softening point due to changes in the composition of the glass generally have a proportional relationship.

そして、本発明の発明者らの検討によれば、厚膜抵抗体のノイズ特性の向上には、厚膜抵抗体用組成物に用いるガラスのガラス転移点が580℃以上630℃以下であることが好ましい。上記範囲のガラス転移点を有するガラスを選択したことにより厚膜抵抗体のノイズ特性が向上する理由は明らかではないが、実験的な検討の結果、アルミノケイ酸塩結晶相が析出しないガラスで、上記ガラス転移点を有するガラスを用いることでノイズ特性が向上する傾向がある。 According to the study by the inventors of the present invention, the glass transition point of the glass used in the composition for the thick film resistor should be 580° C. or higher and 630° C. or lower in order to improve the noise characteristics of the thick film resistor. is preferred. It is not clear why the noise characteristics of the thick film resistor are improved by selecting a glass having a glass transition point within the above range. Noise characteristics tend to be improved by using a glass having a glass transition point.

ガラス転移点は、ガラスを示差熱分析法(TG-DTA)にて大気中、10℃/minの昇温速度で昇温、加熱し、得られた示差熱曲線の最も低温側の示差熱曲線の減少が発現する温度とした。 The glass transition point is the differential thermal curve on the lowest temperature side of the differential thermal curve obtained by heating and heating the glass at a temperature rising rate of 10 ° C./min in the atmosphere by differential thermal analysis (TG-DTA). was defined as the temperature at which the decrease in

本実施形態の厚膜抵抗体用組成物に用いるガラスは、例えばSiOの含有割合を4mol%以上65mol%以下、Bの含有割合を2mol%以上30mol%以下、Alの含有割合を1mol%以上6mol%以下、CaOの含有割合を2mol%以上20mol%以下、ZnOの含有割合を0以上45mol%以下、BaOの含有割合を5mol%以上50mol%以下、アルカリ金属の酸化物の含有割合を0以上8mol%以下とすることができる。なお、ZnOの含有割合は15mol%以上であることが好ましい。 The glass used for the thick film resistor composition of the present embodiment has, for example, a SiO 2 content of 4 mol % to 65 mol %, a B 2 O 3 content of 2 mol % to 30 mol %, and an Al 2 O 3 content of 4 mol % to 65 mol %. The content ratio is 1 mol% to 6 mol%, the content ratio of CaO is 2 mol% to 20 mol%, the content ratio of ZnO is 0 to 45 mol%, the content ratio of BaO is 5 mol% to 50 mol%, alkali metal oxides can be 0 or more and 8 mol % or less. Note that the content of ZnO is preferably 15 mol % or more.

各成分の含有割合が上記範囲のガラスの場合、ガラス転移点を580℃以上630℃以下とすることができる。 When the content ratio of each component is in the above range, the glass transition point can be 580° C. or higher and 630° C. or lower.

本実施形態の厚膜抵抗体用組成物に用いるガラスの平均粒径は特に限定されないが、0.1μm以上5μm以下であることが好ましく、0.1μm以上3μm以下がより好ましい。厚膜抵抗体用組成物に含まれるガラスの平均粒径を5μm以下とすることで、厚膜抵抗体とした場合のノイズ特性を特に高めることができる。一方、ガラスの平均粒径を過度に小さくすると、生産性が低くなり、不純物等の混入も増える恐れがある。このため、ガラスの平均粒径は0.1μm以上であることが好ましい。 The average particle diameter of the glass used in the composition for thick film resistors of the present embodiment is not particularly limited, but is preferably 0.1 μm or more and 5 μm or less, more preferably 0.1 μm or more and 3 μm or less. By setting the average particle size of the glass contained in the thick film resistor composition to 5 μm or less, the noise characteristics of the thick film resistor can be particularly improved. On the other hand, if the average particle diameter of the glass is excessively small, the productivity will be lowered and there is a possibility that impurities and the like will be mixed. Therefore, the average particle size of the glass is preferably 0.1 μm or more.

ガラスの平均粒径は、レーザー回折を利用した粒度分布計により測定することができる。 The average particle size of glass can be measured with a particle size distribution meter using laser diffraction.

厚膜抵抗体用組成物の導電粉末と、ガラスとの混合比率は特に限定されるものではなく、厚膜抵抗体とした場合に要求される抵抗値等に応じて任意に選択することができる。なお、導電粉末としては、既述の様に酸化ルテニウム粉末を用いることができる。 The mixing ratio of the conductive powder and the glass in the composition for thick film resistors is not particularly limited, and can be arbitrarily selected according to the resistance value etc. required when making a thick film resistor. . As the conductive powder, ruthenium oxide powder can be used as described above.

ただし、例えば高抵抗域の厚膜抵抗体とするためにはガラスの配合割合を増やし、例えば厚膜抵抗体用組成物の導電粉末と、ガラスとの合計に対するガラスの含有率を80質量%以上とすることになる。そして、本発明の発明者らの検討によれば、アルミノケイ酸塩結晶相が発生し易いガラスを用いた厚膜抵抗体用組成物では、厚膜抵抗体用組成物の導電粉末と、ガラスとの合計に対するガラスの含有率が80質量%以上の場合にアルミノケイ酸塩結晶相が発生し易い。 However, for example, in order to obtain a thick film resistor in a high resistance range, the proportion of glass is increased, for example, the content of glass with respect to the total of conductive powder and glass in the composition for thick film resistor is 80% by mass or more. It will be According to the studies of the inventors of the present invention, in a composition for a thick film resistor using a glass in which an aluminosilicate crystal phase is likely to occur, the conductive powder of the composition for a thick film resistor and the glass When the content of glass with respect to the total of is 80% by mass or more, an aluminosilicate crystal phase is likely to occur.

なお、ここでいうアルミノケイ酸塩結晶相が発生し易いガラスとは、例えばAlの含有量が6mol%より過度に多いガラス等が挙げられる。 Here, the glass in which the aluminosilicate crystal phase is likely to occur includes, for example, glass in which the content of Al 2 O 3 is excessively higher than 6 mol %.

ところで、厚膜抵抗体用組成物は、単位面積あたりの抵抗値が100kΩ、1MΩ等となるよう導電粉末とガラス等を配合された各抵抗値を示す複数の厚膜抵抗体用組成物を混合して、所望の抵抗値を得られるように調整されて使用される。混合に用いる各抵抗値を示す厚膜抵抗体用組成物は、混合の自由度のために、同じ導電粉末と同じガラスを使用するのが一般的である。これは、各抵抗値を示す厚膜抵抗体用組成物のガラスが異なれば、混合しても混合割合に応じた抵抗値やその他の電気特性は発現しないためである。このような厚膜抵抗体用組成物の使用態様から、厚膜抵抗体用組成物で用いるガラスは、導電粉末と、ガラスとの合計に対するガラスの含有率が80質量%以上の場合であってもアルミノケイ酸塩結晶相が発生しないガラスであることが好ましい。 By the way, the composition for thick film resistors is obtained by mixing a plurality of compositions for thick film resistors, each of which has a resistance value of 100 kΩ, 1 MΩ, etc., and which contains conductive powder and glass, etc. Then, it is used after being adjusted so as to obtain the desired resistance value. Compositions for thick film resistors exhibiting respective resistance values used for mixing generally use the same conductive powder and the same glass for the degree of freedom in mixing. This is because if the glass of the thick film resistor composition showing each resistance value is different, the resistance value and other electrical properties corresponding to the mixing ratio will not be exhibited even if they are mixed. From such a usage mode of the composition for thick film resistors, the glass used in the composition for thick film resistors should have a glass content of 80% by mass or more with respect to the total of the conductive powder and the glass. It is also preferable that the glass is a glass in which an aluminosilicate crystal phase does not occur.

本実施形態の厚膜抵抗体用組成物中の導電粉末は、導電粉末とガラスとの合計に対する導電粉末の含有率は、5質量%以上65質量%以下であることが好ましい。 The content of the conductive powder in the composition for a thick film resistor of the present embodiment is preferably 5% by mass or more and 65% by mass or less with respect to the total of the conductive powder and the glass.

厚膜抵抗体用組成物中の導電粉末の含有割合を上記範囲とすることで、厚膜抵抗体とした場合に、低抵抗領域から高抵抗領域まで抵抗値を発現させることが可能となる。なお、厚膜抵抗体用組成物には、電気特性を調整するために金属酸化物粉末を添加してもよい。電気特性を調整するための添加剤として使用される金属酸化物粉末としては、酸化銅、酸化チタン、酸化マンガンなどが適宜用いてよい。
[厚膜抵抗体用ペースト]
本実施形態の厚膜抵抗体用ペーストは、既述の厚膜抵抗体用組成物と、有機ビヒクルとを含むことができる。特に有機ビヒクル中に既述の厚膜抵抗体用組成物が分散されていることが好ましい。有機ビヒクルの組成は特に限定されないが、例えばエチルセルロースなどの樹脂と、ターピオネールなどの溶剤を含有することができる。
By setting the content of the conductive powder in the composition for a thick film resistor within the above range, the thick film resistor can exhibit a resistance value ranging from a low resistance region to a high resistance region. Metal oxide powder may be added to the composition for thick film resistors in order to adjust electrical properties. Copper oxide, titanium oxide, manganese oxide, and the like may be appropriately used as the metal oxide powder used as an additive for adjusting electrical properties.
[Paste for thick film resistors]
The thick film resistor paste of the present embodiment can contain the aforementioned thick film resistor composition and an organic vehicle. In particular, it is preferable that the composition for thick film resistors is dispersed in an organic vehicle. Although the composition of the organic vehicle is not particularly limited, it may contain, for example, a resin such as ethyl cellulose and a solvent such as terpionail.

本実施形態の厚膜抵抗体用ペーストは、厚膜抵抗体用組成物と、有機ビヒクルとから構成することもできるが、さらに任意の成分を含有することもできる。 The thick film resistor paste of the present embodiment can be composed of the thick film resistor composition and the organic vehicle, but can also contain optional components.

任意の成分としては、例えば分散剤や、可塑剤、樹脂、溶剤等が挙げられる。分散剤や可塑剤、樹脂や溶剤は、乾燥、焼成によって除去される。
厚膜抵抗体用ペーストの製造方法は特に限定されないが、例えば導電粉末である酸化ルテニウム粉末と、ガラスと、有機ビヒクルとその他原料を混合し、スリーロールミル(三本ロールミル)等で混練することで製造することができる。なお、酸化ルテニウム粉末と、ガラスとは予め混合し、厚膜抵抗体用組成物としてから用いることもできる。
[厚膜抵抗体]
本実施形態の厚膜抵抗体は、既述の厚膜抵抗体用組成物を含有することができる。
Optional components include, for example, dispersants, plasticizers, resins, and solvents. Dispersants, plasticizers, resins and solvents are removed by drying and baking.
The method for producing the thick film resistor paste is not particularly limited, but for example, ruthenium oxide powder, which is a conductive powder, glass, an organic vehicle, and other raw materials are mixed and kneaded in a three-roll mill (three-roll mill) or the like. can be manufactured. Note that the ruthenium oxide powder and the glass can be mixed in advance and used as a composition for a thick film resistor.
[Thick film resistor]
The thick film resistor of this embodiment can contain the composition for thick film resistors described above.

既述の厚膜抵抗体用組成物や、厚膜抵抗体用ペーストを焼成することで厚膜抵抗体とすることができる。例えば、既述の厚膜抵抗体用ペーストを塗布後、乾燥、焼成すると、厚膜抵抗体用ペーストに含まれていた分散剤や、可塑剤、樹脂、溶剤は、乾燥、焼成によって除去される。一方、酸化ルテニウム粉末は、焼成後において、そのまま残留したり、ガラスに取り込まれたりすることで、機能を発現している。 A thick film resistor can be obtained by firing the composition for a thick film resistor or the paste for a thick film resistor. For example, when the thick-film resistor paste described above is applied and then dried and fired, the dispersant, plasticizer, resin, and solvent contained in the thick-film resistor paste are removed by drying and firing. . On the other hand, the ruthenium oxide powder exhibits its function by remaining as it is or by being incorporated into the glass after firing.

本発明の発明者らの検討によれば、抵抗値領域においてノイズ値が高い(悪い)場合は、厚膜抵抗体の内部に結晶相が発生している。ノイズ値が高くなる理由としては、導電粉末である酸化ルテニウム粉末の粒子の間にアルミノケイ酸塩の結晶相が介在し、導電粉末により形成される導電パスが阻害されているため、もしくは結晶相が発生することで厚膜抵抗体内部に微小のクラックが発生し導電粉末の粒子の接触状態を悪化させるためと推察している。 According to studies by the inventors of the present invention, when the noise value is high (bad) in the resistance value region, a crystalline phase occurs inside the thick film resistor. The reason for the high noise value is that the crystal phase of the aluminosilicate intervenes between the particles of the ruthenium oxide powder, which is the conductive powder, and the conductive path formed by the conductive powder is obstructed. It is presumed that this is because minute cracks are generated inside the thick film resistor and the contact state of the particles of the conductive powder is deteriorated.

厚膜抵抗体中の結晶相の存在は、厚膜抵抗体用ペーストを乾燥、焼成することで得られた厚膜抵抗体について、X線回折測定を行う方法や、厚膜抵抗体の断面SEM像を観察する方法等により確認できる。 The presence of a crystalline phase in the thick film resistor can be determined by a method of X-ray diffraction measurement of a thick film resistor obtained by drying and firing a thick film resistor paste, or a cross-sectional SEM of the thick film resistor. It can be confirmed by a method of observing an image or the like.

本実施形態の厚膜抵抗体は既述の厚膜抵抗体用組成物を含有しており、X線回折パターンにおいてアルミノケイ酸塩結晶相が検出されないものとすることができる。 The thick film resistor of the present embodiment contains the thick film resistor composition described above, and the aluminosilicate crystal phase is not detected in the X-ray diffraction pattern.

また、従来特に高抵抗域の厚膜抵抗体においてノイズ特性が悪い場合が多かった。しかし、本実施形態の厚膜抵抗体によれば、高抵抗域においても優れたノイズ特性を発揮することができる。このため、本実施形態の厚膜抵抗体は、例えば単位面積(1mm×1mm)あたりの抵抗値が8kΩ以上であることが好ましく、10kΩ以上であることがより好ましい。 In addition, conventional thick-film resistors, especially in the high-resistance range, often have poor noise characteristics. However, according to the thick film resistor of this embodiment, excellent noise characteristics can be exhibited even in the high resistance region. For this reason, the thick film resistor of the present embodiment preferably has a resistance value of 8 kΩ or more, more preferably 10 kΩ or more, per unit area (1 mm×1 mm), for example.

厚膜抵抗体は例えば以下の手順で製造できる。まず、厚膜抵抗体用ペーストをスクリーン印刷機等により、電極が印刷されたアルミナ基板等の絶縁基板上に印刷する。その後、乾燥により溶剤を揮発、除去した後に、例えば800℃以上900℃以下の焼成温度で焼成を行うことで、厚膜抵抗体を形成することができる。
[抵抗器、抵抗器の製造]
本実施形態の抵抗器は、既述の厚膜抵抗体から製造することができる。
A thick film resistor can be manufactured, for example, by the following procedure. First, a thick-film resistor paste is printed by a screen printer or the like on an insulating substrate such as an alumina substrate on which electrodes are printed. Then, after volatilizing and removing the solvent by drying, the thick film resistor can be formed by firing at a firing temperature of, for example, 800° C. or higher and 900° C. or lower.
[Manufacture of resistors and resistors]
The resistor of this embodiment can be manufactured from the thick film resistor described above.

具体的にはまず、厚膜抵抗体の表面にガラスペーストを塗布、乾燥し、800℃よりも低い温度で焼成することでガラス膜を形成できる。その後、抵抗値調整の為のレーザートリミングを行ったり、保護コート処理、側面電極ペーストを行うことで抵抗器を製造することができる。 Specifically, a glass film can be formed by first applying a glass paste to the surface of the thick film resistor, drying it, and firing it at a temperature lower than 800°C. After that, the resistor can be manufactured by performing laser trimming for resistance value adjustment, protective coating treatment, and side electrode paste.

以下に具体的な実施例、比較例等を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。
(評価方法)
(1)抵抗値測定
製造した厚膜抵抗体について、デジタルマルチメーター(KEITHLEY社製、2001番)により抵抗値を測定し、得られた抵抗値を、厚膜抵抗体の厚さが7μmの場合に換算して、その抵抗体厚膜の抵抗値とした。
(2)ノイズ(電流雑音)測定
厚膜抵抗体のノイズについて、ノイズメーター(ノイズ研究所製RCN-2011)を用いて測定した。
(3)酸化ルテニウム粉末の粒径
酸化ルテニウム粉末の粒径(比表面積径)は比表面積と密度より算出した。比表面積は測定が簡単にできるBET1点法を用いた。酸化ルテニウム粉末の粒径(nm)は、密度をρ(g/cm)、比表面積をS(m/g)とし、粉末を真球とみなし、以下の式(1)により算出した。
酸化ルテニウムの粒径(nm)=6×10/(ρ・S) ・・・(1)
以下の実施例、比較例では、酸化ルテニウムの密度を7.05g/cmとして計算した。
(4)ガラス粉末の平均粒径
ガラス粉末を粒度分布測定器(マイクロトラック・ベル社製 型式:HRA9320-X100)で粒度分布を測定し、その体積平均値(mv)を平均粒径(体積平均粒径)とした。
(5)ガラス粉末のガラス転移点
ガラス粉末のガラス転移点は、ガラス粉末を示差熱分析法(TG-DTA)にて大気中にて毎分10℃で昇温し、加熱し、得られた示差熱曲線の最も低温側の示差熱曲線の減少が発現する温度とした。
(6)アルミノケイ酸塩結晶相の確認
焼成して得られたXRD測定用厚膜抵抗体をX線回折装置(スペクトリス社製 型式:X'PERT-PRO)で分析した。XRD測定用厚膜抵抗体のX線回折パターンからは、例えば酸化ルテニウムおよびアルミナに帰属されるピーク、ガラス成分が結晶物を含む場合はそのピークを確認できる。そして、得られたX線回折パターンから析出している結晶を確認し、アルミノケイ酸塩結晶相の有無を確認した。
(試料の作製条件)
以下、各実施例、比較例の試料の作製条件について説明する。
[実施例1]
ガラス粉末Aを45.8質量部と、酸化ルテニウム粉末を14.2質量部との割合で含む厚膜抵抗体用組成物を調製した。
Although specific examples, comparative examples, etc. will be given and described below, the present invention is not limited to these examples.
(Evaluation method)
(1) Resistance value measurement The resistance value of the manufactured thick film resistor is measured with a digital multimeter (manufactured by KEITHLEY, No. 2001), and the obtained resistance value is measured when the thickness of the thick film resistor is 7 μm. , and used as the resistance value of the resistor thick film.
(2) Noise (current noise) measurement The noise of the thick film resistor was measured using a noise meter (RCN-2011 manufactured by Noise Laboratory).
(3) Particle size of ruthenium oxide powder The particle size (specific surface area diameter) of the ruthenium oxide powder was calculated from the specific surface area and density. The specific surface area was measured using the BET one-point method, which allows easy measurement. The particle size (nm) of the ruthenium oxide powder was calculated by the following formula (1), where ρ (g/cm 3 ) was the density, S (m 2 /g) was the specific surface area, and the powder was regarded as a true sphere.
Particle size of ruthenium oxide (nm)=6×10 3 /(ρ·S) (1)
In the following examples and comparative examples, the density of ruthenium oxide was calculated as 7.05 g/cm 3 .
(4) Average particle size of glass powder The particle size distribution of the glass powder is measured with a particle size distribution analyzer (manufactured by Microtrac Bell, model: HRA9320-X100), and the volume average value (mv) is the average particle size (volume average particle size).
(5) Glass transition point of glass powder The glass transition point of the glass powder was obtained by heating the glass powder at a rate of 10°C per minute in the atmosphere by differential thermal analysis (TG-DTA). The temperature at which a decrease in the differential thermal curve on the lowest temperature side of the differential thermal curve appears.
(6) Confirmation of Aluminosilicate Crystal Phase The fired thick-film resistor for XRD measurement was analyzed with an X-ray diffractometer (Model: X'PERT-PRO manufactured by Spectris). From the X-ray diffraction pattern of the thick film resistor for XRD measurement, peaks attributed to, for example, ruthenium oxide and alumina, and peaks when the glass component contains crystals can be confirmed. Precipitated crystals were confirmed from the obtained X-ray diffraction pattern, and the presence or absence of an aluminosilicate crystal phase was confirmed.
(Sample preparation conditions)
The conditions for producing the samples of each example and comparative example will be described below.
[Example 1]
A composition for a thick film resistor containing 45.8 parts by mass of glass powder A and 14.2 parts by mass of ruthenium oxide powder was prepared.

そして、係る厚膜抵抗体用組成物60質量部と、有機ビヒクル40質量部とをスリーロールミルで混練し、厚膜抵抗体用ペーストを得た。 Then, 60 parts by mass of the composition for thick film resistor and 40 parts by mass of the organic vehicle were kneaded in a three-roll mill to obtain a paste for thick film resistor.

なお、ガラス粉末Aの組成、ガラス転移点、平均粒径は表2に示す。 Table 2 shows the composition, glass transition point, and average particle size of the glass powder A.

また、用いた酸化ルテニウム粉末は、比表面積から算出した平均粒径が40nmであった。 The ruthenium oxide powder used had an average particle size of 40 nm calculated from the specific surface area.

有機ビヒクルは、エチルセルロースを15質量%と、ターピネオールを85質量%の割合で含有している。 The organic vehicle contains 15% by mass of ethyl cellulose and 85% by mass of terpineol.

銀を主成分とする厚膜電極が形成されたアルミナ基板上に、調製した厚膜抵抗体用ペーストを1mm×1mmの正方形パターンとなるようにスクリーン印刷した。次いで、150℃で乾燥し、空気中で850℃で15分間焼成して、厚膜抵抗体を製造した。 The prepared thick film resistor paste was screen-printed in a square pattern of 1 mm×1 mm on an alumina substrate on which a thick film electrode containing silver as a main component was formed. It was then dried at 150° C. and fired in air at 850° C. for 15 minutes to produce a thick film resistor.

なお、焼成後において6.5μm以上7.5μm以下の膜厚になるように厚膜抵抗体を形成した。 The thick film resistor was formed so as to have a film thickness of 6.5 μm or more and 7.5 μm or less after firing.

得られた厚膜抵抗体について、抵抗値、ノイズを測定した。その結果を表1に示す。 The resistance value and noise of the obtained thick film resistor were measured. Table 1 shows the results.

また、アルミナ基板上に上記厚膜抵抗体用ペーストを印刷し、次いで150℃で乾燥し、空気中で850℃で15分間焼成することで、1.5cm角で厚みが20μmのXRD測定用厚膜抵抗体を得た。得られたXRD測定用厚膜抵抗体について、X線回折装置により分析した。評価結果を表1に示す。
[実施例2]
ガラス粉末Aを49.6質量部と、酸化ルテニウム粉末を10.4質量部との割合で含む厚膜抵抗体用組成物を用意した。
In addition, the thick film resistor paste was printed on an alumina substrate, then dried at 150 ° C. and fired in air at 850 ° C. for 15 minutes to obtain a thickness of 1.5 cm square and a thickness of 20 μm for XRD measurement. A membrane resistor was obtained. The obtained thick film resistor for XRD measurement was analyzed by an X-ray diffraction device. Table 1 shows the evaluation results.
[Example 2]
A composition for a thick film resistor containing 49.6 parts by mass of glass powder A and 10.4 parts by mass of ruthenium oxide powder was prepared.

そして、係る厚膜抵抗体用組成物60質量部と、有機ビヒクル40質量部とをスリーロールミルで混練し、厚膜抵抗体用ペーストを得た。なお、酸化ルテニウム粉末と、有機ビヒクルは実施例1と同じものを用いた。 Then, 60 parts by mass of the composition for thick film resistor and 40 parts by mass of the organic vehicle were kneaded in a three-roll mill to obtain a paste for thick film resistor. The same ruthenium oxide powder and organic vehicle as in Example 1 were used.

得られた厚膜抵抗体用ペーストを用いた点以外は実施例1と同様にして厚膜抵抗体、XRD測定用厚膜抵抗体を製造した。また、実施例1と同様に評価を行った。評価結果を表1に示す。
[実施例3]
ガラス粉末Aを53.3質量部と、酸化ルテニウム粉末を6.7質量部との割合で含む厚膜抵抗体用組成物を用意した。
A thick film resistor and a thick film resistor for XRD measurement were manufactured in the same manner as in Example 1 except that the obtained thick film resistor paste was used. Moreover, evaluation was performed in the same manner as in Example 1. Table 1 shows the evaluation results.
[Example 3]
A composition for a thick film resistor containing 53.3 parts by mass of glass powder A and 6.7 parts by mass of ruthenium oxide powder was prepared.

そして、係る厚膜抵抗体用組成物60質量部と、有機ビヒクル40質量部とをスリーロールミルで混練し、厚膜抵抗体用ペーストを得た。なお、酸化ルテニウム粉末と、有機ビヒクルは実施例1と同じものを用いた。 Then, 60 parts by mass of the composition for thick film resistor and 40 parts by mass of the organic vehicle were kneaded in a three-roll mill to obtain a paste for thick film resistor. The same ruthenium oxide powder and organic vehicle as in Example 1 were used.

得られた厚膜抵抗体用ペーストを用いた点以外は実施例1と同様にして厚膜抵抗体、XRD測定用厚膜抵抗体を製造した。また、実施例1と同様に評価を行った。評価結果を表1に示す。
[実施例4]
ガラス粉末Aを56.9質量部と、酸化ルテニウム粉末を3.1質量部との割合で含む厚膜抵抗体用組成物を用意した。
A thick film resistor and a thick film resistor for XRD measurement were manufactured in the same manner as in Example 1 except that the obtained thick film resistor paste was used. Moreover, evaluation was performed in the same manner as in Example 1. Table 1 shows the evaluation results.
[Example 4]
A composition for a thick film resistor containing 56.9 parts by mass of glass powder A and 3.1 parts by mass of ruthenium oxide powder was prepared.

そして、係る厚膜抵抗体用組成物60質量部と、有機ビヒクル40質量部とをスリーロールミルで混練し、厚膜抵抗体用ペーストを得た。なお、酸化ルテニウム粉末と、有機ビヒクルは実施例1と同じものを用いた。 Then, 60 parts by mass of the composition for thick film resistor and 40 parts by mass of the organic vehicle were kneaded in a three-roll mill to obtain a paste for thick film resistor. The same ruthenium oxide powder and organic vehicle as in Example 1 were used.

得られた厚膜抵抗体用ペーストを用いた点以外は実施例1と同様にして厚膜抵抗体、XRD測定用厚膜抵抗体を製造した。また、実施例1と同様に評価を行った。評価結果を表1に示す。
[実施例5]
ガラス粉末Bを46.7質量部と、酸化ルテニウム粉末を13.3質量部との割合で含む厚膜抵抗体用組成物を用意した。
A thick film resistor and a thick film resistor for XRD measurement were manufactured in the same manner as in Example 1 except that the obtained thick film resistor paste was used. Moreover, evaluation was performed in the same manner as in Example 1. Table 1 shows the evaluation results.
[Example 5]
A composition for a thick film resistor containing 46.7 parts by mass of glass powder B and 13.3 parts by mass of ruthenium oxide powder was prepared.

そして、係る厚膜抵抗体用組成物60質量部と、有機ビヒクル40質量部とをスリーロールミルで混練し、厚膜抵抗体用ペーストを得た。 Then, 60 parts by mass of the composition for thick film resistor and 40 parts by mass of the organic vehicle were kneaded in a three-roll mill to obtain a paste for thick film resistor.

なお、ガラス粉末Bの組成、ガラス転移点、平均粒径は表2に示す。 Table 2 shows the composition, glass transition point, and average particle size of the glass powder B.

酸化ルテニウム粉末と、有機ビヒクルは実施例1と同じものを用いた。 The same ruthenium oxide powder and organic vehicle as in Example 1 were used.

得られた厚膜抵抗体用ペーストを用いた点以外は実施例1と同様にして厚膜抵抗体、XRD測定用厚膜抵抗体を製造した。また、実施例1と同様に評価を行った。評価結果を表1に示す。
[実施例6]
ガラス粉末Bを50.2質量部と、酸化ルテニウム粉末を9.8質量部との割合で含む厚膜抵抗体用組成物を用意した。
A thick film resistor and a thick film resistor for XRD measurement were manufactured in the same manner as in Example 1 except that the obtained thick film resistor paste was used. Moreover, evaluation was performed in the same manner as in Example 1. Table 1 shows the evaluation results.
[Example 6]
A composition for a thick film resistor containing 50.2 parts by mass of glass powder B and 9.8 parts by mass of ruthenium oxide powder was prepared.

そして、係る厚膜抵抗体用組成物60質量部と、有機ビヒクル40質量部とをスリーロールミルで混練し、厚膜抵抗体用ペーストを得た。なお、酸化ルテニウム粉末と、有機ビヒクルは実施例1と同じものを用いた。 Then, 60 parts by mass of the composition for thick film resistor and 40 parts by mass of the organic vehicle were kneaded in a three-roll mill to obtain a paste for thick film resistor. The same ruthenium oxide powder and organic vehicle as in Example 1 were used.

得られた厚膜抵抗体用ペーストを用いた点以外は実施例1と同様にして厚膜抵抗体、XRD測定用厚膜抵抗体を製造した。また、実施例1と同様に評価を行った。評価結果を表1に示す。
[実施例7]
ガラス粉末Bを53.3質量部と、酸化ルテニウム粉末を6.7質量部との割合で含む厚膜抵抗体用組成物を用意した。
A thick film resistor and a thick film resistor for XRD measurement were manufactured in the same manner as in Example 1 except that the obtained thick film resistor paste was used. Moreover, evaluation was performed in the same manner as in Example 1. Table 1 shows the evaluation results.
[Example 7]
A composition for a thick film resistor containing 53.3 parts by mass of glass powder B and 6.7 parts by mass of ruthenium oxide powder was prepared.

そして、係る厚膜抵抗体用組成物60質量部と、有機ビヒクル40質量部とをスリーロールミルで混練し、厚膜抵抗体用ペーストを得た。なお、酸化ルテニウム粉末と、有機ビヒクルは実施例1と同じものを用いた。 Then, 60 parts by mass of the composition for thick film resistors and 40 parts by mass of the organic vehicle were kneaded in a three-roll mill to obtain a paste for thick film resistors. The same ruthenium oxide powder and organic vehicle as in Example 1 were used.

得られた厚膜抵抗体用ペーストを用いた点以外は実施例1と同様にして厚膜抵抗体、XRD測定用厚膜抵抗体を製造した。また、実施例1と同様に評価を行った。評価結果を表1に示す。
[実施例8]
ガラス粉末Bを55.6質量部と、酸化ルテニウム粉末を4.4質量部との割合で含む厚膜抵抗体用組成物を用意した。
A thick film resistor and a thick film resistor for XRD measurement were manufactured in the same manner as in Example 1 except that the obtained thick film resistor paste was used. Moreover, evaluation was performed in the same manner as in Example 1. Table 1 shows the evaluation results.
[Example 8]
A composition for a thick film resistor containing 55.6 parts by mass of glass powder B and 4.4 parts by mass of ruthenium oxide powder was prepared.

そして、係る厚膜抵抗体用組成物60質量部と、有機ビヒクル40質量部とをスリーロールミルで混練し、厚膜抵抗体用ペーストを得た。なお、酸化ルテニウム粉末と、有機ビヒクルは実施例1と同じものを用いた。 Then, 60 parts by mass of the composition for thick film resistors and 40 parts by mass of the organic vehicle were kneaded in a three-roll mill to obtain a paste for thick film resistors. The same ruthenium oxide powder and organic vehicle as in Example 1 were used.

得られた厚膜抵抗体用ペーストを用いた点以外は実施例1と同様にして厚膜抵抗体、XRD測定用厚膜抵抗体を製造した。また、実施例1と同様に評価を行った。評価結果を表1に示す。
[実施例9]
ガラス粉末Cを48.9質量部と、酸化ルテニウム粉末を11.1質量部との割合で含む厚膜抵抗体用組成物を用意した。
A thick film resistor and a thick film resistor for XRD measurement were manufactured in the same manner as in Example 1 except that the obtained thick film resistor paste was used. Moreover, evaluation was performed in the same manner as in Example 1. Table 1 shows the evaluation results.
[Example 9]
A composition for a thick film resistor containing 48.9 parts by mass of glass powder C and 11.1 parts by mass of ruthenium oxide powder was prepared.

そして、係る厚膜抵抗体用組成物60質量部と、有機ビヒクル40質量部とをスリーロールミルで混練し、厚膜抵抗体用ペーストを得た。 Then, 60 parts by mass of the composition for thick film resistor and 40 parts by mass of the organic vehicle were kneaded in a three-roll mill to obtain a paste for thick film resistor.

なお、ガラス粉末Cの組成、ガラス転移点、平均粒径は表2に示す。 Table 2 shows the composition, glass transition point, and average particle size of the glass powder C.

酸化ルテニウム粉末と、有機ビヒクルは実施例1と同じものを用いた。 The same ruthenium oxide powder and organic vehicle as in Example 1 were used.

得られた厚膜抵抗体用ペーストを用いた点以外は実施例1と同様にして厚膜抵抗体、XRD測定用厚膜抵抗体を製造した。また、実施例1と同様に評価を行った。評価結果を表1に示す。
[実施例10]
ガラス粉末Cを51.2質量部と、酸化ルテニウム粉末を8.8質量部との割合で含む厚膜抵抗体用組成物を用意した。
A thick film resistor and a thick film resistor for XRD measurement were manufactured in the same manner as in Example 1 except that the obtained thick film resistor paste was used. Moreover, evaluation was performed in the same manner as in Example 1. Table 1 shows the evaluation results.
[Example 10]
A composition for a thick film resistor containing 51.2 parts by mass of glass powder C and 8.8 parts by mass of ruthenium oxide powder was prepared.

そして、係る厚膜抵抗体用組成物60質量部と、有機ビヒクル40質量部とをスリーロールミルで混練し、厚膜抵抗体用ペーストを得た。なお、酸化ルテニウム粉末と、有機ビヒクルは実施例1と同じものを用いた。 Then, 60 parts by mass of the composition for thick film resistor and 40 parts by mass of the organic vehicle were kneaded in a three-roll mill to obtain a paste for thick film resistor. The same ruthenium oxide powder and organic vehicle as in Example 1 were used.

得られた厚膜抵抗体用ペーストを用いた点以外は実施例1と同様にして厚膜抵抗体、XRD測定用厚膜抵抗体を製造した。また、実施例1と同様に評価を行った。評価結果を表1に示す。
[実施例11]
ガラス粉末Cを52.4質量部と、酸化ルテニウム粉末を7.6質量部との割合で含む厚膜抵抗体用組成物を用意した。
A thick film resistor and a thick film resistor for XRD measurement were manufactured in the same manner as in Example 1 except that the obtained thick film resistor paste was used. Moreover, evaluation was performed in the same manner as in Example 1. Table 1 shows the evaluation results.
[Example 11]
A composition for a thick film resistor containing 52.4 parts by mass of glass powder C and 7.6 parts by mass of ruthenium oxide powder was prepared.

そして、係る厚膜抵抗体用組成物60質量部と、有機ビヒクル40質量部とをスリーロールミルで混練し、厚膜抵抗体用ペーストを得た。なお、酸化ルテニウム粉末と、有機ビヒクルは実施例1と同じものを用いた。 Then, 60 parts by mass of the composition for thick film resistor and 40 parts by mass of the organic vehicle were kneaded in a three-roll mill to obtain a paste for thick film resistor. The same ruthenium oxide powder and organic vehicle as in Example 1 were used.

得られた厚膜抵抗体用ペーストを用いた点以外は実施例1と同様にして厚膜抵抗体、XRD測定用厚膜抵抗体を製造した。また、実施例1と同様に評価を行った。評価結果を表1に示す。
[実施例12]
ガラス粉末Cを53.6質量部と、酸化ルテニウム粉末を6.4質量部との割合で含む厚膜抵抗体用組成物を用意した。
A thick film resistor and a thick film resistor for XRD measurement were manufactured in the same manner as in Example 1 except that the obtained thick film resistor paste was used. Moreover, evaluation was performed in the same manner as in Example 1. Table 1 shows the evaluation results.
[Example 12]
A composition for a thick film resistor containing 53.6 parts by mass of glass powder C and 6.4 parts by mass of ruthenium oxide powder was prepared.

そして、係る厚膜抵抗体用組成物60質量部と、有機ビヒクル40質量部とをスリーロールミルで混練し、厚膜抵抗体用ペーストを得た。なお、酸化ルテニウム粉末と、有機ビヒクルは実施例1と同じものを用いた。 Then, 60 parts by mass of the composition for thick film resistor and 40 parts by mass of the organic vehicle were kneaded in a three-roll mill to obtain a paste for thick film resistor. The same ruthenium oxide powder and organic vehicle as in Example 1 were used.

得られた厚膜抵抗体用ペーストを用いた点以外は実施例1と同様にして厚膜抵抗体、XRD測定用厚膜抵抗体を製造した。また、実施例1と同様に評価を行った。評価結果を表1に示す。
[参考例1]
ガラス粉末Dを44.6質量部と、酸化ルテニウム粉末を15.4質量部との割合で含む厚膜抵抗体用組成物を用意した。
A thick film resistor and a thick film resistor for XRD measurement were manufactured in the same manner as in Example 1 except that the obtained thick film resistor paste was used. Moreover, evaluation was performed in the same manner as in Example 1. Table 1 shows the evaluation results.
[Reference example 1]
A composition for a thick film resistor containing 44.6 parts by mass of glass powder D and 15.4 parts by mass of ruthenium oxide powder was prepared.

そして、係る厚膜抵抗体用組成物60質量部と、有機ビヒクル40質量部とをスリーロールミルで混練し、厚膜抵抗体用ペーストを得た。 Then, 60 parts by mass of the composition for thick film resistor and 40 parts by mass of the organic vehicle were kneaded in a three-roll mill to obtain a paste for thick film resistor.

なお、ガラス粉末Dの組成、ガラス転移点、平均粒径は表2に示す。 Table 2 shows the composition, glass transition point, and average particle size of the glass powder D.

酸化ルテニウム粉末と、有機ビヒクルは実施例1と同じものを用いた。 The same ruthenium oxide powder and organic vehicle as in Example 1 were used.

得られた厚膜抵抗体用ペーストを用いた点以外は実施例1と同様にして厚膜抵抗体、XRD測定用厚膜抵抗体を製造した。また、実施例1と同様に評価を行った。評価結果を表1に示す。
[参考例2]
ガラス粉末Dを46.9質量部と、酸化ルテニウム粉末を13.1質量部との割合で含む厚膜抵抗体用組成物を用意した。
A thick film resistor and a thick film resistor for XRD measurement were manufactured in the same manner as in Example 1 except that the obtained thick film resistor paste was used. Moreover, evaluation was performed in the same manner as in Example 1. Table 1 shows the evaluation results.
[Reference example 2]
A composition for a thick film resistor containing 46.9 parts by mass of glass powder D and 13.1 parts by mass of ruthenium oxide powder was prepared.

そして、係る厚膜抵抗体用組成物60質量部と、有機ビヒクル40質量部とをスリーロールミルで混練し、厚膜抵抗体用ペーストを得た。なお、酸化ルテニウム粉末と、有機ビヒクルは実施例1と同じものを用いた。 Then, 60 parts by mass of the composition for thick film resistor and 40 parts by mass of the organic vehicle were kneaded in a three-roll mill to obtain a paste for thick film resistor. The same ruthenium oxide powder and organic vehicle as in Example 1 were used.

得られた厚膜抵抗体用ペーストを用いた点以外は実施例1と同様にして厚膜抵抗体、XRD測定用厚膜抵抗体を製造した。また、実施例1と同様に評価を行った。評価結果を表1に示す。
[比較例1]
ガラス粉末Dを49.1質量部と、酸化ルテニウム粉末を10.9質量部との割合で含む厚膜抵抗体用組成物を用意した。
A thick film resistor and a thick film resistor for XRD measurement were manufactured in the same manner as in Example 1 except that the obtained thick film resistor paste was used. Moreover, evaluation was performed in the same manner as in Example 1. Table 1 shows the evaluation results.
[Comparative Example 1]
A composition for a thick film resistor containing 49.1 parts by mass of glass powder D and 10.9 parts by mass of ruthenium oxide powder was prepared.

そして、係る厚膜抵抗体用組成物60質量部と、有機ビヒクル40質量部とをスリーロールミルで混練し、厚膜抵抗体用ペーストを得た。なお、酸化ルテニウム粉末と、有機ビヒクルは実施例1と同じものを用いた。 Then, 60 parts by mass of the composition for thick film resistor and 40 parts by mass of the organic vehicle were kneaded in a three-roll mill to obtain a paste for thick film resistor. The same ruthenium oxide powder and organic vehicle as in Example 1 were used.

得られた厚膜抵抗体用ペーストを用いた点以外は実施例1と同様にして厚膜抵抗体、XRD測定用厚膜抵抗体を製造した。また、実施例1と同様に評価を行った。評価結果を表1に示す。 A thick film resistor and a thick film resistor for XRD measurement were manufactured in the same manner as in Example 1 except that the obtained thick film resistor paste was used. Moreover, evaluation was performed in the same manner as in Example 1. Table 1 shows the evaluation results.

なお、厚膜抵抗体内に析出した結晶は、BaSiAlであることをX線回折パターンで確認した。
[比較例2]
ガラス粉末Dを55.7質量部と、酸化ルテニウム粉末を6.3質量部との割合で含む厚膜抵抗体用組成物を用意した。
It was confirmed from the X-ray diffraction pattern that the crystals deposited in the thick film resistor were BaSi 2 Al 2 O 8 .
[Comparative Example 2]
A composition for a thick film resistor containing 55.7 parts by mass of glass powder D and 6.3 parts by mass of ruthenium oxide powder was prepared.

そして、係る厚膜抵抗体用組成物60質量部と、有機ビヒクル40質量部とをスリーロールミルで混練し、厚膜抵抗体用ペーストを得た。なお、酸化ルテニウム粉末と、有機ビヒクルは実施例1と同じものを用いた。 Then, 60 parts by mass of the composition for thick film resistors and 40 parts by mass of the organic vehicle were kneaded in a three-roll mill to obtain a paste for thick film resistors. The same ruthenium oxide powder and organic vehicle as in Example 1 were used.

得られた厚膜抵抗体用ペーストを用いた点以外は実施例1と同様にして厚膜抵抗体、XRD測定用厚膜抵抗体を製造した。また、実施例1と同様に評価を行った。評価結果を表1に示す。 A thick film resistor and a thick film resistor for XRD measurement were manufactured in the same manner as in Example 1 except that the obtained thick film resistor paste was used. Moreover, evaluation was performed in the same manner as in Example 1. Table 1 shows the evaluation results.

なお、厚膜抵抗体内に析出した結晶は、BaSiAlであることをX線回折パターンで確認した。 It was confirmed from the X-ray diffraction pattern that the crystals deposited in the thick film resistor were BaSi 2 Al 2 O 8 .

Figure 0007297409000001
Figure 0007297409000001

Figure 0007297409000002
以上の結果によると、実施例1~実施例12ではいずれも単位面積当あたりの抵抗値が約10kΩを超える厚膜抵抗体が得られていることを確認できた。そして、同じ程度の抵抗値を有する実施例と、比較例とを比較すると、すなわち例えば実施例1、4、5、8、9、12と、比較例2とを比較すると、実施例はいずれも比較例2よりもノイズを抑制でき、ノイズ特性に優れた厚膜抵抗体を得られていることを確認できた。これは、厚膜抵抗体内にアルミノケイ酸塩結晶相が生じることを抑制できているためと考えられる。
Figure 0007297409000002
From the above results, it was confirmed that thick film resistors having a resistance value per unit area exceeding about 10 kΩ were obtained in all of Examples 1 to 12. Then, when comparing Examples having the same resistance value with Comparative Example, that is, when comparing Examples 1, 4, 5, 8, 9, and 12 with Comparative Example 2, all of Examples are It was confirmed that noise could be suppressed more than in Comparative Example 2, and that a thick film resistor with excellent noise characteristics was obtained. It is considered that this is because the formation of an aluminosilicate crystal phase in the thick film resistor can be suppressed.

Claims (5)

鉛成分を含まない酸化ルテニウム粉末と、鉛成分を含まないガラスとを含有する抵抗体用組成物であって、厚膜抵抗体とした場合にX線回折パターンにおいてアルミノケイ酸塩結晶相が検出されず、
前記ガラスが、SiO を4mol%以上52mol%以下、Alを1mol%以上6mol%以下含む厚膜抵抗体用組成物。
A composition for a resistor containing ruthenium oxide powder containing no lead component and glass containing no lead component, wherein an aluminosilicate crystal phase is detected in an X-ray diffraction pattern when used as a thick film resistor. figure,
A composition for a thick film resistor, wherein the glass contains 4 mol % or more and 52 mol % or less of SiO 2 and 1 mol % or more and 6 mol % or less of Al 2 O 3 .
前記ガラスのガラス転移点が580℃以上630℃以下である請求項1に記載の厚膜抵抗体用組成物。 2. The composition for a thick film resistor according to claim 1, wherein said glass has a glass transition point of 580[deg.] C. or more and 630[deg.] C. or less. 前記ガラスが、B と、RO(RはCa、Sr、Baから選択された1種類以上の元素)と、を含む請求項1または2に記載の厚膜抵抗体用組成物。 3. The composition for a thick film resistor according to claim 1, wherein said glass contains B2O3 and RO (R is one or more elements selected from Ca, Sr and Ba). 請求項1から請求項3のいずれか一項に記載の厚膜抵抗体用組成物と、有機ビヒクルとを含む厚膜抵抗体用ペースト。 A paste for thick film resistors, comprising the composition for thick film resistors according to claim 1 and an organic vehicle. 請求項1から請求項3のいずれか一項に記載の厚膜抵抗体用組成物を含有する厚膜抵抗体。 A thick film resistor comprising the composition for a thick film resistor according to claim 1 .
JP2018066144A 2018-03-29 2018-03-29 Composition for thick film resistor, paste for thick film resistor, and thick film resistor Active JP7297409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018066144A JP7297409B2 (en) 2018-03-29 2018-03-29 Composition for thick film resistor, paste for thick film resistor, and thick film resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018066144A JP7297409B2 (en) 2018-03-29 2018-03-29 Composition for thick film resistor, paste for thick film resistor, and thick film resistor

Publications (2)

Publication Number Publication Date
JP2019176112A JP2019176112A (en) 2019-10-10
JP7297409B2 true JP7297409B2 (en) 2023-06-26

Family

ID=68167365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018066144A Active JP7297409B2 (en) 2018-03-29 2018-03-29 Composition for thick film resistor, paste for thick film resistor, and thick film resistor

Country Status (1)

Country Link
JP (1) JP7297409B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039108A1 (en) 2014-09-12 2016-03-17 昭栄化学工業株式会社 Thin film resistive body and production method for same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4221417B2 (en) * 2004-09-01 2009-02-12 Tdk株式会社 Thick film resistor paste, thick film resistor and electronic component
TW200639880A (en) * 2005-02-21 2006-11-16 Tdk Corp Thick-film resistor and its production process
JP2006261350A (en) * 2005-03-16 2006-09-28 Tdk Corp Resistor paste and resistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039108A1 (en) 2014-09-12 2016-03-17 昭栄化学工業株式会社 Thin film resistive body and production method for same

Also Published As

Publication number Publication date
JP2019176112A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
CN110291599B (en) Composition for resistor, paste for resistor, and thick film resistor
KR20190072540A (en) Resistance paste and a resistor made by firing thereof
WO2021221173A1 (en) Thick film resistor paste, thick film resistor, and electronic component
WO2021221172A1 (en) Thick film resistor paste, thick film resistor, and electronic component
KR100686533B1 (en) Glass composition for thick film resistor paste, thick film resistor paste, thick-film resistor, and electronic device
JP7297409B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP7251068B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP2018067640A (en) Composition for positive temperature coefficient resistor, paste for positive temperature coefficient resistor, positive temperature coefficient resistor, and method for manufacturing positive temperature coefficient resistor
JP6804044B2 (en) A composition for a resistor, a resistor paste containing the same, and a thick film resistor using the same.
JP2006279043A (en) Thick film resistor paste, thick film resistor, and electronic component
WO2019059290A1 (en) Composition for thick film resistor, thick film resistance paste, and thick film resistor
JP7279492B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP7183507B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP7273266B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
WO2021221175A1 (en) Thick film resistor paste, thick film resistor, and electronic component
JP2005129806A (en) Resistor paste and thick film resistor
WO2024024751A1 (en) Ruthenium oxide powder, composition for thick-film resistor, paste for thick-film resistor, and thick-film resistor
JP7390103B2 (en) Resistor compositions, resistance pastes, thick film resistors
JP7110780B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP7279551B2 (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
WO2021221174A1 (en) Thick film resistor paste, thick film resistor, and electronic component
JP2023064822A (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP2023135971A (en) Thick film resistor paste, thick film resistor, and electronic component
JP2023144072A (en) Thick film resistor composition, thick film resistor paste, and thick film resistor
JP2023077053A (en) Composition for thick film resistor, paste for the thick film resistor, and the thick film resistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220526

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220526

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220603

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220607

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220708

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220712

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230221

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230322

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230614

R150 Certificate of patent or registration of utility model

Ref document number: 7297409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150