JPH10149905A - Manufacturing method of varistor - Google Patents

Manufacturing method of varistor

Info

Publication number
JPH10149905A
JPH10149905A JP8310330A JP31033096A JPH10149905A JP H10149905 A JPH10149905 A JP H10149905A JP 8310330 A JP8310330 A JP 8310330A JP 31033096 A JP31033096 A JP 31033096A JP H10149905 A JPH10149905 A JP H10149905A
Authority
JP
Japan
Prior art keywords
varistor
mol
manufacturing
voltage
sno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8310330A
Other languages
Japanese (ja)
Inventor
Kazushige Koyama
一茂 小山
Yasuo Wakahata
康男 若畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8310330A priority Critical patent/JPH10149905A/en
Publication of JPH10149905A publication Critical patent/JPH10149905A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method which can bake a varistor element and an external electrode at the same time in the temperature range of 580-1100 deg.C. SOLUTION: A varistor element 1 is made in such composition that at least Bi2 O3 by 0.2-2.0mol%, Sb2 O3 by 0.01-1.5mol%, and SnO2 , 0.01-0.5mol% as sub components to ZnO as the main component, and electrode paste is applied, and then a varistor element 1 and external electrodes 2a and 2b are baked at the same time at 850-1100 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は各種電子機器を異常
高電圧から保護するバリスタの製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a varistor for protecting various electronic devices from abnormally high voltage.

【0002】[0002]

【従来の技術】酸化亜鉛バリスタは、ZnOを主成分と
して副成分としてBi23、Co23、MnO2、Al2
3等を添加したバリスタ材料でバリスタ素子を成形
し、この成形体を1150〜1350℃の温度で焼成し
た後、焼結体の両面に電極ペーストを塗布、焼付してい
た。
2. Description of the Related Art Zinc oxide varistors are mainly composed of ZnO and Bi 2 O 3 , Co 2 O 3 , MnO 2 , Al 2
A varistor element was formed from a varistor material to which O 3 or the like was added, and after firing the formed body at a temperature of 1150 to 1350 ° C., an electrode paste was applied and baked on both surfaces of the sintered body.

【0003】[0003]

【発明が解決しようとする課題】前記酸化亜鉛バリスタ
は、実用に適したバリスタ特性を得るためには、115
0℃以上の温度で焼成する必要がある。このためAg等
の電極ペーストを成形体に塗布し、成形体の焼結と同時
にバリスタの表面に外部電極を形成しようとすると電極
が溶融してしまうので、外部電極形成は別個に行わなけ
ればならないという問題があった。
In order to obtain varistor characteristics suitable for practical use, the above zinc oxide varistor must be used.
It is necessary to fire at a temperature of 0 ° C. or higher. For this reason, when an electrode paste such as Ag is applied to a molded body and an external electrode is formed on the surface of the varistor simultaneously with sintering of the molded body, the electrode is melted. Therefore, the external electrode must be formed separately. There was a problem.

【0004】本発明はこの問題点を解決するものであ
り、バリスタ素体の焼成と外部電極形成が同時に行える
バリスタの製造方法を提供することを目的とする。
An object of the present invention is to solve this problem, and it is an object of the present invention to provide a method of manufacturing a varistor in which the varistor element can be fired and an external electrode can be formed at the same time.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するた
め、本発明のバリスタはZnOを主成分とし、副成分と
して少なくともBiをBi23に換算して0.2〜2.
0mol%、SbをSb 23に換算して0.01〜1.
5mol%、SnをSnO2に換算して0.01〜0.
5mol%添加した組成で形成したバリスタ素子を85
0〜1100℃の温度で焼成したものである。本発明に
よると、焼成後のバリスタ素子内部のZnO結晶粒子の
大きさは均一となり、得られたバリスタのバリスタ電圧
の分布(標準偏差σ)は小さくなり特性歩留りが向上
し、また焼成温度が低いので外部電極形成も同時に行え
る。
In order to achieve the above object,
Therefore, the varistor of the present invention contains ZnO as a main component and
And at least Bi to BiTwoOThree0.2 to 2.
0 mol%, Sb to Sb TwoOThree0.01-1.
5mol%, Sn to SnOTwoConverted to 0.01 to 0.
A varistor element formed with a composition to which 5 mol% was added was 85
It was fired at a temperature of 0 to 1100 ° C. In the present invention
According to the results, the ZnO crystal particles inside the varistor element after firing
The size becomes uniform and the varistor voltage of the obtained varistor
Distribution (standard deviation σ) becomes smaller and the characteristic yield improves
Also, since the firing temperature is low, external electrodes can be formed at the same time.
You.

【0006】[0006]

【発明の実施の形態】本発明の請求項1に記載のバリス
タの製造方法は、ZnOを主成分とし、副成分として少
なくともBiをBi23に換算して0.2〜2.0mo
l%、SbをSb23に換算して0.01〜1.5mo
l%、SnをSnO2に換算して0.01〜0.5mo
l%添加して形成したバリスタ素子を、850〜110
0℃の温度で焼成するものである。これにより従来の焼
成温度より低い温度でバリスタ素子の焼成が可能で外部
電極形成も同時に行え、かつZnO結晶粒子の大きさは
均一となり、得られたバリスタのバリスタ電圧の分布
(標準偏差σ)は小さくなり特性歩留りを向上すること
もできる。
Production method of the varistor according to claim 1 of the embodiment of the present invention is a ZnO as a main component, at least Bi as an auxiliary component in terms of Bi 2 O 3 0.2~2.0mo
l%, 0.01~1.5mo in terms of Sb in Sb 2 O 3
1%, Sn is converted to SnO 2 and 0.01 to 0.5 mo
The varistor element formed by adding 1%
It is fired at a temperature of 0 ° C. As a result, the varistor element can be fired at a temperature lower than the conventional firing temperature, the external electrodes can be formed at the same time, the size of the ZnO crystal particles becomes uniform, and the varistor voltage distribution (standard deviation σ) of the obtained varistor becomes It becomes smaller and the characteristic yield can be improved.

【0007】本発明の請求項2に記載のバリスタの製造
方法は、組成の中の、SnとSbの組成比をSnO2
Sb23≦1.0とするものである。この組成により8
50〜1100℃の温度範囲で焼成が可能で、得られた
バリスタのZnO結晶粒子の大きさは均一となりバリス
タ電圧の分布(標準偏差σ)が小さくなる。
According to a method of manufacturing a varistor according to a second aspect of the present invention, the composition ratio of Sn and Sb in the composition is set to SnO 2 /
Sb 2 O 3 ≦ 1.0. With this composition, 8
The varistor can be fired in a temperature range of 50 to 1100 ° C., and the obtained varistors have a uniform size of ZnO crystal particles, and the varistor voltage distribution (standard deviation σ) decreases.

【0008】本発明の請求項3に記載のバリスタの製造
方法は、融点が850℃以上の外部電極ペーストを塗布
後焼成したものである。これによりバリスタ素体と、そ
の表面に形成した外部電極を同時に焼成することが可能
となる。
According to a third aspect of the present invention, there is provided a method for manufacturing a varistor, wherein an external electrode paste having a melting point of 850 ° C. or more is applied and then fired. This makes it possible to simultaneously fire the varistor element and the external electrode formed on the surface thereof.

【0009】本発明の請求項4に記載のバリスタの製造
方法は、バリスタ素子の内部電極を融点が850℃以上
の金属で形成するものである。これにより、850〜1
100℃の温度範囲で焼結が可能な積層型のバリスタを
得ることができる。
According to a method of manufacturing a varistor according to a fourth aspect of the present invention, the internal electrode of the varistor element is formed of a metal having a melting point of 850 ° C. or higher. Thereby, 850-1
A laminated varistor that can be sintered in a temperature range of 100 ° C. can be obtained.

【0010】本発明の請求項5に記載のバリスタの製造
方法は、内、外部電極がAgまたはAg−Pdとするも
のであり、バリスタ素子と850〜1100℃の温度範
囲で焼結と同時に電極形成をすることを可能とするもの
である。
According to a fifth aspect of the present invention, in the method for manufacturing a varistor, the external electrode is made of Ag or Ag-Pd, and the varistor element and the varistor element are sintered simultaneously in a temperature range of 850 to 1100 ° C. It is possible to form.

【0011】[0011]

【実施例】以下本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0012】図1は本発明の一実施例のバリスタの側面
図、図2は積層型バリスタの分解斜視図、図3は積層型
バリスタの断面図である。図1において1はバリスタ素
子、2a,2bは外部電極である。図2,図3の3はグ
リーンシート、4は内部電極、5は積層型バリスタ、6
は外部電極である。
FIG. 1 is a side view of a varistor according to an embodiment of the present invention, FIG. 2 is an exploded perspective view of the laminated varistor, and FIG. 3 is a sectional view of the laminated varistor. In FIG. 1, 1 is a varistor element, and 2a and 2b are external electrodes. 2 and 3 are green sheets, 4 is an internal electrode, 5 is a laminated varistor, 6
Is an external electrode.

【0013】(実施例1)主成分のZnOに、副成分と
してBi23を0.5mol%、Co23を0.5mo
l%、MnO2を0.5mol%、SnO2を0.1mo
l%、Alを硝酸アルミニウムの形で0.01at.%
添加し、更にSb23を0〜2.0mol%の範囲で秤
量、混合した後、ポリビニルアルコールを加えて造粒を
行う。次に造粒粉を800kg/cm2の成形圧力で、図1
に示す直径15mm、厚さ1.5mmの円板状のバリスタ素
子1を成形した後、この両面にAgを主成分とした電極
ペーストを塗布し、直径10mmの外部電極2a,2bを
形成する。次いで950℃の温度でバリスタ素子1と外
部電極2a,2bを同時に焼成した。得られたバリスタ
Example 1 0.5 mol% of Bi 2 O 3 and 0.5 mol of Co 2 O 3 were added as sub-components to ZnO as a main component.
l%, the MnO 2 0.5mol%, the SnO 2 0.1mo
1%, Al in the form of aluminum nitrate at 0.01 at. %
Was added, further weighed Sb 2 O 3 in the range of 0~2.0Mol%, after mixing, performs granulated with addition of polyvinyl alcohol. Next, the granulated powder was pressed at a molding pressure of 800 kg / cm 2 in FIG.
After forming a disk-shaped varistor element 1 having a diameter of 15 mm and a thickness of 1.5 mm, an electrode paste containing Ag as a main component is applied to both surfaces thereof to form external electrodes 2 a and 2 b having a diameter of 10 mm. Next, the varistor element 1 and the external electrodes 2a and 2b were simultaneously fired at a temperature of 950 ° C. Of the obtained barista

【0014】[0014]

【外1】 [Outside 1]

【0015】を測定し、バリスタ電圧(V1mA/mm)及
び電圧非直線係数αを算出し、その結果を(表1)に示
した。尚、電圧非直線係数αは(数1)より求めたもの
である。
The varistor voltage (V 1 mA / mm) and the voltage nonlinear coefficient α were calculated, and the results are shown in Table 1. The voltage non-linear coefficient α is obtained from (Equation 1).

【0016】[0016]

【数1】 (Equation 1)

【0017】[0017]

【表1】 [Table 1]

【0018】(表1)に示したように、Sb23の添加
量が0.01mol%より少ない場合、電圧非直線係数
αは小さく、1.5mol%より多い場合、バリスタ電
圧が高すぎ実用的でなくなる。従って電圧非直線係数α
及びバリスタ電圧が望ましい特性を得るためには、Sb
23の添加量を0.01〜1.5mol%とする必要が
あることが分かる。
As shown in Table 1, when the added amount of Sb 2 O 3 is less than 0.01 mol%, the voltage nonlinear coefficient α is small, and when it is more than 1.5 mol%, the varistor voltage is too high. It becomes impractical. Therefore, the voltage nonlinear coefficient α
And varistor voltage to obtain the desired characteristics, Sb
It can be seen that the amount of added 2 O 3 needs to be 0.01 to 1.5 mol%.

【0019】(実施例2)主成分のZnOに、副成分と
してBi23を0.5mol%、Co23を0.5mo
l%、MnO2を0.5mol%、Sb23を0.5m
ol%、Alを硝酸アルミニウムの形で0.01at.
%、更にSnO2を0〜1.0mol%の範囲で秤量、
混合し、以降の工程は実施例1と同じ方法でバリスタを
作製した。作製したバリスタのバリスタ電圧(V1mA
を測定、その標準偏差σを算出した。その結果を(表
2)に示した。
(Example 2) 0.5 mol% of Bi 2 O 3 and 0.5 mol of Co 2 O 3 were added as sub-components to ZnO as a main component.
1%, MnO 2 0.5 mol%, Sb 2 O 3 0.5 m
ol%, Al in the form of aluminum nitrate at 0.01 at.
%, And SnO 2 in the range of 0 to 1.0 mol%.
After mixing, a varistor was manufactured in the same manner as in Example 1 in the subsequent steps. Varistor voltage of the varistor ( V1mA )
Was measured and its standard deviation σ was calculated. The results are shown in (Table 2).

【0020】[0020]

【表2】 [Table 2]

【0021】(表2)に示したように、SnO2を添加
することによりバリスタ電圧の標準偏差σ値は小さくな
ることがわかる。しかしながら添加量が0.5mol%
を越えると、外部電極2a,2b金属中のAg成分が焼
結過程でバリスタ成分中のSnと反応してバリスタ素子
1内部に拡散し、外部電極2a,2bが消失するととも
に、バリスタ電圧のバラツキが大きくなるため好ましく
ない。
As shown in Table 2, it can be seen that the standard deviation σ value of the varistor voltage is reduced by adding SnO 2 . However, the addition amount is 0.5mol%
Is exceeded, the Ag component in the external electrodes 2a and 2b reacts with Sn in the varistor component in the sintering process and diffuses into the varistor element 1, the external electrodes 2a and 2b disappear, and the varistor voltage varies. Undesirably increases.

【0022】(実施例3)主成分のZnOに、副成分と
してBi23を0.5mol%、Co23を0.5mo
l%、MnO2を0.5mol%、Sb23を0.25
mol%、Alを硝酸アルミニウムの形で0.01a
t.%、更にSnO2とSb23の成分比をSnO2/S
23が0〜2.0の比率になるように秤量、混合し、
以降の工程は実施例1と同じ方法でバリスタを作製し
た。得られたバリスタのバリスタ電圧(V1mA)を測
定、標準偏差σを算出し、その結果を(表3)に示し
た。
Example 3 0.5 mol% of Bi 2 O 3 and 0.5 mol of Co 2 O 3 were added as sub-components to ZnO as a main component.
1%, MnO 2 0.5 mol%, Sb 2 O 3 0.25
mol%, Al is 0.01a in the form of aluminum nitrate
t. %, Further SnO 2 / S ratio of components of SnO 2 and Sb 2 O 3
b 2 O 3 is weighed and mixed so as to have a ratio of 0 to 2.0,
In the subsequent steps, a varistor was manufactured in the same manner as in Example 1. The varistor voltage (V 1 mA ) of the obtained varistor was measured, and the standard deviation σ was calculated. The results are shown in Table 3.

【0023】[0023]

【表3】 [Table 3]

【0024】(表3)に示したように、SnO2/Sb2
3の成分比が1.0以下では、得られたバリスタ電圧
の標準偏差σは小さく、SnO2/Sb23の比率が
1.0以上では急激にバリスタ電圧の標準偏差σが大き
くなることがわかる。従ってSnO2/Sb23≦1.
0の範囲ではバリスタ電圧の標準偏差σが小さく特性歩
留りが向上することが分かる。
As shown in (Table 3), SnO 2 / Sb 2
When the component ratio of O 3 is 1.0 or less, the standard deviation σ of the obtained varistor voltage is small, and when the ratio of SnO 2 / Sb 2 O 3 is 1.0 or more, the standard deviation σ of the varistor voltage rapidly increases. You can see that. Therefore, SnO 2 / Sb 2 O 3 ≦ 1.
It can be seen that in the range of 0, the standard deviation σ of the varistor voltage is small and the characteristic yield is improved.

【0025】(実施例4)主成分のZnOに、副成分と
してBi23を0.5mol%、Co23を0.5mo
l%、MnO2を0.5mol%、SnO2を0.1mo
l%、Alを硝酸アルミニウムの形で0.01at.%
添加し、更にSb23を0.5mol%秤量、混合した
後、実施例1と同じ方法でバリスタ素子1を成形した
後、この両面に(表4)に示す組成の電極ペーストを用
い、直径10mmの外部電極2a,2bを塗布し、850
〜1100℃の温度範囲でバリスタ素子1と外部電極2
a,2bを同時に焼成し、バリスタを作製した。得られ
たバリスタの電極2a,2bの形成状態を評価し、その
結果を(表4)に示した。
Example 4 0.5 mol% of Bi 2 O 3 and 0.5 mol of Co 2 O 3 were added as sub-components to ZnO as a main component.
l%, the MnO 2 0.5mol%, the SnO 2 0.1mo
1%, Al in the form of aluminum nitrate at 0.01 at. %
After adding and further weighing and mixing 0.5 mol% of Sb 2 O 3 , a varistor element 1 was formed in the same manner as in Example 1, and an electrode paste having a composition shown in (Table 4) was used on both surfaces thereof. The external electrodes 2a and 2b having a diameter of 10 mm are applied, and 850
Varistor element 1 and external electrode 2 in a temperature range of ~ 1100 ° C
A and 2b were simultaneously fired to produce a varistor. The state of formation of the electrodes 2a and 2b of the obtained varistor was evaluated, and the results are shown in (Table 4).

【0026】[0026]

【表4】 [Table 4]

【0027】(表4)に示したように、電極金属がAg
のみの場合、焼成温度がAgの融点の960℃を越える
と電極金属か溶融してしまい外部電極2a,2bとして
の働きがなくなるため、Agのみの場合は850〜95
0℃の温度範囲で焼成する必要がある。またPdの添加
量を多くした場合でも1100℃を越える焼成温度では
バリスタ成分中のBiと電極成分のPdが反応して好ま
しくない。更に850℃より低い焼成温度ではバリスタ
素子1が十分に焼結せず、形成された外部電極2a,2
bの状態は良好であるが、バリスタ電圧が高くなりすぎ
実用的でない。なお、本実施例では電極金属をAgまた
はAg−Pdを用いたが、本発明のバリスタの焼成温度
範囲で溶融しない、またはバリスタ成分中の元素と反応
しない金属であれば、その他の金属を使用しても良い。
As shown in Table 4, the electrode metal was Ag.
In the case of only Ag, if the firing temperature exceeds the melting point of Ag of 960 ° C., the electrode metal is melted and the function as the external electrodes 2a and 2b is lost.
It is necessary to fire at a temperature range of 0 ° C. Also, even when the addition amount of Pd is increased, Bi in the varistor component reacts with Pd of the electrode component at a firing temperature exceeding 1100 ° C., which is not preferable. Further, at a firing temperature lower than 850 ° C., the varistor element 1 is not sufficiently sintered, and the formed external electrodes 2a, 2
Although the state of b is good, the varistor voltage becomes too high and is not practical. In this example, Ag or Ag-Pd was used as the electrode metal. However, any other metal that does not melt in the varistor firing temperature range of the present invention or does not react with the elements in the varistor component is used. You may.

【0028】(実施例5)主成分のZnOに、副成分と
してBi23を0.5mol%、Co23を0.5mo
l%、MnO2を0.5mol%、SnO2を0.1mo
l%、Alを0.01at.%、更にSb23を0〜
2.0mol%の範囲で秤量、混合した後、ジブチルフ
タレート、酢酸ブチルを加えてスラリーを作製する。こ
のスラリーをドクターブレード法で図2のグリーンシー
ト3を作製した。次に、図2に示すようにグリーンシー
ト3上にAg−Pdペーストを用い内部電極4を形成
し、図3に示す積層型バリスタ5を作製した。次いで積
層型バリスタ5を950℃の温度で焼成した後、外部電
極6として銀ペーストを端面に塗布し、800℃で焼き
付けを行った。得られた積層型バリスタ5の
(Example 5) 0.5 mol% of Bi 2 O 3 and 0.5 mol of Co 2 O 3 were added as sub-components to ZnO as a main component.
l%, the MnO 2 0.5mol%, the SnO 2 0.1mo
1%, Al at 0.01 at. % And Sb 2 O 3 from 0 to
After weighing and mixing in a range of 2.0 mol%, dibutyl phthalate and butyl acetate are added to prepare a slurry. The green sheet 3 of FIG. 2 was produced from this slurry by a doctor blade method. Next, as shown in FIG. 2, an internal electrode 4 was formed on the green sheet 3 using an Ag-Pd paste, and a multilayer varistor 5 shown in FIG. 3 was produced. Next, after firing the multilayer varistor 5 at a temperature of 950 ° C., a silver paste was applied as an external electrode 6 to the end face and baked at 800 ° C. Of the obtained laminated varistor 5

【0029】[0029]

【外2】 [Outside 2]

【0030】を測定し、および電圧非直線係数αを測定
し、その結果を(表5)に示した。
Was measured, and the voltage nonlinear coefficient α was measured. The results are shown in Table 5.

【0031】[0031]

【表5】 [Table 5]

【0032】(表5)に示すようにSb23の添加量が
0.01より少ない場合は電圧非直線係数αが小さくな
り、1.5より多いとバリスタ電圧が高くなりすぎ、実
施例1での円板状バリスタと同様な結果となった。従っ
て積層型バリスタ5においても、望ましいバリスタ特性
を得るにはSb23の添加量を0.01〜1.5mol
%の範囲にする必要がある。
As shown in Table 5, when the addition amount of Sb 2 O 3 is less than 0.01, the voltage nonlinear coefficient α becomes small, and when it is more than 1.5, the varistor voltage becomes too high. The result was similar to that of the disc-shaped varistor of No. 1. Thus even in the multilayer varistor 5, the amount of Sb 2 O 3 to obtain the desired varistor characteristics 0.01~1.5mol
It must be in the range of%.

【0033】尚、本実施例1〜5においてBi23の添
加量を0.5mol%としたが、Bi23の添加量は
0.2〜2.0mol%の範囲であれば特性的に満足で
きるバリスタが得られる。
[0033] Although in the embodiment 1-5 and the addition amount of Bi 2 O 3 was 0.5 mol%, the addition amount of Bi 2 O 3 is be in the range of 0.2 to 2.0 mol% Characteristics A varistor satisfying the requirements can be obtained.

【0034】[0034]

【発明の効果】以上のごとく本発明によれば、バリスタ
素体を成形した後、その表面に850℃以上の融点を有
する外部電極ペーストを塗布し、850〜1100℃の
温度範囲でバリスタ素子と同時に焼成することが可能と
なる。得られたバリスタはZnO結晶粒子の大きさが均
一となりバリスタ電圧の標準偏差σが小さく、特性歩留
まりの向上が期待できる。
As described above, according to the present invention, after a varistor element is formed, an external electrode paste having a melting point of 850 ° C. or more is applied to the surface of the varistor element, and the varistor element is formed in a temperature range of 850 to 1100 ° C. Simultaneous firing is possible. In the obtained varistor, the size of the ZnO crystal particles is uniform, the standard deviation σ of the varistor voltage is small, and an improvement in the characteristic yield can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例におけるバリスタの側面図FIG. 1 is a side view of a varistor according to an embodiment of the present invention.

【図2】本発明の他の実施例における積層型バリスタの
分解斜視図
FIG. 2 is an exploded perspective view of a multilayer varistor according to another embodiment of the present invention.

【図3】同積層型バリスタの断面図FIG. 3 is a sectional view of the laminated varistor.

【符号の説明】[Explanation of symbols]

1 バリスタ素子 2a 外部電極 2b 外部電極 3 グリーンシート 4 内部電極 5 積層型バリスタ 6 外部電極 DESCRIPTION OF SYMBOLS 1 Varistor element 2a External electrode 2b External electrode 3 Green sheet 4 Internal electrode 5 Stacked varistor 6 External electrode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ZnOを主成分とし、副成分として少な
くともBiをBi23に換算して0.2〜2.0mol
%、SbをSb23に換算して0.01〜1.5mol
%、SnをSnO2に換算して0.01〜0.5mol
%添加した組成で形成したバリスタ素子を、850〜1
100℃の温度で焼成するバリスタの製造方法。
[Claim 1] as a main component ZnO, 0.2 to 2.0 mol of at least Bi as an auxiliary component in terms of Bi 2 O 3
%, In terms of Sb in Sb 2 O 3 0.01~1.5mol
%, Sn is converted to SnO 2 , and is 0.01 to 0.5 mol.
% Of a varistor element formed with a composition of 850 to 1
A method for manufacturing a varistor that is fired at a temperature of 100 ° C.
【請求項2】 SnとSbの成分比がSnO2/Sb2
3≦1.0とする請求項1記載のバリスタの製造方法。
2. The composition ratio of Sn and Sb is SnO 2 / Sb 2 O.
2. The method for manufacturing a varistor according to claim 1, wherein 3 ≦ 1.0.
【請求項3】 バリスタ素子の両面に融点が850℃以
上の外部電極ペーストを塗布後焼成した請求項1または
請求項2に記載のバリスタの製造方法。
3. The method for manufacturing a varistor according to claim 1, wherein an external electrode paste having a melting point of 850 ° C. or more is applied to both surfaces of the varistor element and fired.
【請求項4】 バリスタ素子の内部電極を、融点が85
0℃以上の金属で形成した請求項1〜3のいずれか一つ
に記載のバリスタの製造方法。
4. An internal electrode of a varistor element having a melting point of 85
The method for manufacturing a varistor according to claim 1, wherein the varistor is formed of a metal having a temperature of 0 ° C. or higher.
【請求項5】 内、外部電極がAgまたはAg−Pdで
ある請求項1〜4のいずれか一つに記載のバリスタの製
造方法。
5. The method for manufacturing a varistor according to claim 1, wherein the external electrode is made of Ag or Ag-Pd.
JP8310330A 1996-11-21 1996-11-21 Manufacturing method of varistor Pending JPH10149905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8310330A JPH10149905A (en) 1996-11-21 1996-11-21 Manufacturing method of varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8310330A JPH10149905A (en) 1996-11-21 1996-11-21 Manufacturing method of varistor

Publications (1)

Publication Number Publication Date
JPH10149905A true JPH10149905A (en) 1998-06-02

Family

ID=18003943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8310330A Pending JPH10149905A (en) 1996-11-21 1996-11-21 Manufacturing method of varistor

Country Status (1)

Country Link
JP (1) JPH10149905A (en)

Similar Documents

Publication Publication Date Title
JPH0799105A (en) Varistor and its manufacture
JP3399349B2 (en) Laminated varistor and method of manufacturing the same
JPH10149905A (en) Manufacturing method of varistor
JPH10149904A (en) Manufacturing method of varistor
JP2008205384A (en) Thermistor composition and thermistor element
JP2614228B2 (en) Ceramic forming composition, semiconductor porcelain base and dielectric porcelain base using the same, and capacitor
JP2558722B2 (en) Electrode forming method for voltage non-linear resistor
JP2000044333A (en) Production of zinc oxide varistor
JP2576973B2 (en) Ceramic forming composition and semiconductor and dielectric ceramic substrates and capacitors using the same
JP3213647B2 (en) Negative thermistor composition and negative thermistor
JPH10308302A (en) Zinc oxide-based porcelain composition and its production and zinc oxide varistor
JP3223462B2 (en) Method for producing reduction-reoxidation type varistor
JPH04299802A (en) Positive temperature coefficient thermistor
JP3232850B2 (en) Varistor manufacturing method
JP3089370B2 (en) Voltage non-linear resistance composition
JPH07211519A (en) Voltage non-linear resistor
JP2532493B2 (en) Electrode forming method for voltage non-linear resistor
JP3089371B2 (en) Voltage non-linear resistance composition
JPH07114162B2 (en) Porcelain composition for voltage non-linear resistor
JPH09320815A (en) Manufacture of zno varistor
JPH04206803A (en) Positive characteristic thermistor and its manufacture
JPH0522361B2 (en)
JPS6325912A (en) Ceramic capacitor
JPH05144611A (en) Manufacture of zno varistor
JPH04299803A (en) Positive temperature coefficient thermistor and manufacture thereof