JP2531466B2 - Method for manufacturing printed wiring board - Google Patents

Method for manufacturing printed wiring board

Info

Publication number
JP2531466B2
JP2531466B2 JP6081592A JP8159294A JP2531466B2 JP 2531466 B2 JP2531466 B2 JP 2531466B2 JP 6081592 A JP6081592 A JP 6081592A JP 8159294 A JP8159294 A JP 8159294A JP 2531466 B2 JP2531466 B2 JP 2531466B2
Authority
JP
Japan
Prior art keywords
catalyst
wiring board
substrate
printed wiring
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6081592A
Other languages
Japanese (ja)
Other versions
JPH07297520A (en
Inventor
勤 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP6081592A priority Critical patent/JP2531466B2/en
Publication of JPH07297520A publication Critical patent/JPH07297520A/en
Application granted granted Critical
Publication of JP2531466B2 publication Critical patent/JP2531466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は印刷配線板の製造方法に
関し、特にアディティブ法を用いた印刷配線板の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a printed wiring board, and more particularly to a method of manufacturing a printed wiring board using an additive method.

【0002】[0002]

【従来の技術】一般的に印刷配線板は銅張積層板をベー
スにパネルめっきを施した後、この基板表面にフォトレ
ジストやインクレジスト等を用いて所望のパターンを印
刷し、これを硬化させて耐酸性樹脂層を形成した後、塩
化第二鉄水溶液や塩化第二銅水溶液等を用いて露出した
銅箔部分をエッチング除去して所望のパターンを形成し
てすることにより製造される。しかしこの方法では所望
回路以外の銅部分はエッチングにより除去されるために
資源の無駄であることの他に、サイドエッチングのため
に回路が細るので微細なパターンの形成が難しいという
問題点があった。このような問題点から、これらの欠点
を解決するためにアディティブ法が注目されている。ア
ディティブ法には無電解銅めっきのみで回路形成を行な
うフルアディティブ法と電気めっきを併用するセミアデ
ィティブ法とがあるが本発明は特に前者のフルアディテ
ィブ法の改良に関するものである。
2. Description of the Related Art Generally, a printed wiring board is panel-plated with a copper clad laminate as a base, and then a desired pattern is printed on the surface of the substrate by using a photoresist or an ink resist, and then cured. After forming the acid-resistant resin layer by etching, the exposed copper foil portion is removed by etching using an aqueous solution of ferric chloride or an aqueous solution of cupric chloride to form a desired pattern. However, in this method, copper parts other than the desired circuit are removed by etching, which is a waste of resources, and there is a problem that it is difficult to form a fine pattern because the circuit is thinned due to side etching. . Due to such problems, the additive method is drawing attention in order to solve these drawbacks. The additive method includes a full additive method in which a circuit is formed only by electroless copper plating and a semi-additive method in which electroplating is used in combination, but the present invention particularly relates to improvement of the former full additive method.

【0003】フルアディティブ法の一般的な製造工程は
次のとおりである。めっきの密着推進用の接着剤を表面
に塗布した基板を粗化処理した後に触媒処理を行なって
めっき触媒核を基板表面に付着させる。次に必要回路部
を除く領域を耐めっき液性を有するレジストで覆う(こ
のレジストはこのまま基板中に絶縁層として残留するの
でパーマネントマスクと呼ばれている)。この後、この
基板全体を無電解銅めっき液中に浸漬することによりパ
ーマネントマスクで覆われない部分、即ち必要回路部分
にめっき銅を析出させる。しかし上述の方法はパーマネ
ントマスクと接着剤と、界面付近に触媒が存在するので
加湿時には絶縁劣化を起こす可能性が有する。特に近年
は機器の小型化、高性能化に対応して高密度配線化が求
められているが、前述の製造方法による配線板は絶縁劣
化のために配線密度を高くできず、低価格、低密度品に
限定して実用化されていた。この問題点を克服するため
に触媒を選択的に付着させる製造方法が特開昭58−1
99号公報で提案されている。図3に同公報の製造方法
を説明するための断面図を示す。まず図3(a)の如く
基板1上に接着剤2を塗布する。次いで図3(b)の如
くパンチング,ドリング等の方法により穴3を設ける。
次いで図3(c)の如く必要回路部以外の部分に耐酸性
レジスト7を形成する。次いで図3(d)の如く基板全
体を触媒処理液に浸漬して基板全面にパラジウム触媒5
を付着させた後に図3(e)の如く、耐酸性レジスト7
を剥離する。この時耐酸性レジスト7上に付着したパラ
ジウム触媒5も同時に脱落し必要回路部にのみ残留す
る。次いで図3(f)の如く必要回路部以外の部分、即
ち耐酸性レジスト7と同じ位置にフォト法を用いてパー
マネントマスク4を形成する。これによりパーマネント
マスク4以外の表面にパラジウム触媒5が付着した状態
となる。次いで図3(g)の如く基板全体を無電解めっ
き液に浸漬することにより、穴の内面と必要回路部にめ
っき銅6を析出させた所望の回路を有する配線板を製造
していた。
The general manufacturing process of the full additive method is as follows. A roughening treatment is applied to a substrate coated with an adhesive for promoting adhesion of plating, and then a catalytic treatment is performed to attach plating catalyst nuclei to the substrate surface. Next, the area excluding the necessary circuit portion is covered with a resist having a plating solution resistance (this resist remains as an insulating layer in the substrate as it is and is called a permanent mask). After that, the entire substrate is immersed in an electroless copper plating solution to deposit plated copper on a portion not covered with the permanent mask, that is, a necessary circuit portion. However, in the above-mentioned method, since the permanent mask, the adhesive, and the catalyst exist near the interface, there is a possibility that insulation deterioration may occur during humidification. In recent years, in particular, high density wiring has been demanded in response to downsizing and high performance of equipment, but the wiring board produced by the above-mentioned manufacturing method cannot reduce the wiring density due to insulation deterioration, resulting in low cost and low cost. It was put to practical use by limiting to density products. In order to overcome this problem, a method for selectively attaching a catalyst is disclosed in Japanese Patent Laid-Open No. 58-1.
It is proposed in Japanese Patent Publication No. 99. FIG. 3 shows a cross-sectional view for explaining the manufacturing method of the publication. First, as shown in FIG. 3A, the adhesive 2 is applied onto the substrate 1. Then, as shown in FIG. 3B, the holes 3 are provided by a method such as punching or dring.
Next, as shown in FIG. 3C, an acid resistant resist 7 is formed on a portion other than the necessary circuit portion. Next, as shown in FIG. 3D, the entire substrate is immersed in the catalyst treatment liquid to form a palladium catalyst 5 on the entire surface of the substrate.
After applying the acid resist 7 as shown in FIG.
Peel off. At this time, the palladium catalyst 5 attached on the acid-resistant resist 7 is also removed at the same time and remains only in the necessary circuit portion. Next, as shown in FIG. 3F, a permanent mask 4 is formed by a photo method at a portion other than the necessary circuit portion, that is, at the same position as the acid resistant resist 7. As a result, the palladium catalyst 5 is attached to the surface other than the permanent mask 4. Then, as shown in FIG. 3 (g), the whole substrate was immersed in an electroless plating solution to manufacture a wiring board having a desired circuit in which plated copper 6 was deposited on the inner surface of the hole and the necessary circuit portion.

【0004】[0004]

【発明が解決しようとする課題】この従来の印刷配線板
の製造方法では、耐酸性レジスト形成及び剥離の工程が
追加されたため前述した製造方法に比較して製造コスト
が高くなるという欠点がある。
This conventional method for manufacturing a printed wiring board has a drawback that the manufacturing cost is higher than that of the above-mentioned manufacturing method because the steps of forming an acid resistant resist and peeling are added.

【0005】第2に従来技術に於いては耐酸性レジスト
7と同じ位置にパーマネントマスク4を形成する必要が
あるが実際にはわずかにずれを生じる。この原因はフォ
ト法を用いる場合はフィルムの合わせずれが原因であり
0〜0.1mm程度のずれ量を生じ、スクリーン印刷法
の場合はスクリーンの合わせずれが原因であり0〜0.
4mmのずれ量を生じる。このため触媒とパーマネント
マスク4との境界部に於いて触媒にパーマネントマスク
がかぶるあるいはパーマネントマスクとの間に隙間がで
きる。これにより特に回路等の細いパターンではめっき
銅の析出不良を起こしひいては回路断線を起こすことが
あった。このため回路幅と回路間隙がフォト法の場合で
0.1mm、スクリーン印刷法で0.4mm以下の回路
は形成困難となっていた。このため高密度な印刷配線板
の製造は困難であった。
Secondly, in the prior art, it is necessary to form the permanent mask 4 at the same position as the acid resistant resist 7, but in reality, a slight deviation occurs. This is caused by a film misalignment when the photo method is used, which causes a misalignment amount of 0 to 0.1 mm, and when a screen printing method is used, the screen misalignment is caused by 0 to 0.1 mm.
A shift amount of 4 mm is generated. Therefore, at the boundary between the catalyst and the permanent mask 4, the catalyst is covered with a permanent mask or a gap is formed between the catalyst and the permanent mask. As a result, in particular, in the case of a thin pattern such as a circuit, a plated copper deposition defect may occur, which may cause a circuit disconnection. Therefore, it is difficult to form a circuit having a circuit width and a circuit gap of 0.1 mm in the photo method and 0.4 mm or less in the screen printing method. Therefore, it has been difficult to manufacture a high-density printed wiring board.

【0006】[0006]

【課題を解決するための手段】本発明の印刷配線板の製
造方法は表面にめっき用接着剤を有する基板を粗化する
工程と、基板の回路形成予定部分以外に平滑な表面を有
するパーマネントマスクを塗布する工程と、基板の全表
面に触媒処理を施してめっき触媒を被着させる工程と、
基板を酸化剤に浸漬し前記パーマネントマスクの平滑な
表面に被着した触媒を除去する工程と、回路形成予定部
分に化学めっき金属層を形成する工程とを有する。
A method of manufacturing a printed wiring board according to the present invention comprises a step of roughening a substrate having an adhesive for plating on the surface, and a permanent mask having a smooth surface other than a portion where a circuit is to be formed on the substrate. And a step of applying a plating treatment by applying a catalyst treatment to the entire surface of the substrate,
The method includes the steps of immersing the substrate in an oxidizing agent to remove the catalyst deposited on the smooth surface of the permanent mask, and forming a chemical plating metal layer on a portion where a circuit is to be formed.

【0007】[0007]

【実施例】次に本発明を図面を参照して説明する。The present invention will be described below with reference to the drawings.

【0008】図1は本発明の一実施例を説明するための
断面図である。まず図1(a)の如く厚さ1.6mmの
ガラスエポキシ絶縁板を基材とし厚さ50μmのドライ
フィルム型の接着剤2をラミネータにより貼り合わせた
後、ピーク波長約400nmの紫外線を1〜3J/cm
2 で露光し硬化させた後、120〜140℃で1〜2時
間加熱し完全硬化させた。
FIG. 1 is a sectional view for explaining one embodiment of the present invention. First, as shown in FIG. 1 (a), a glass epoxy insulating plate having a thickness of 1.6 mm is used as a base material, and a dry film type adhesive 2 having a thickness of 50 μm is attached by a laminator, and then ultraviolet rays having a peak wavelength of about 400 nm are 3 J / cm
After being exposed and cured at 2 , it was heated at 120 to 140 ° C. for 1 to 2 hours to be completely cured.

【0009】次に図1(b)の如くドリリングにより直
径1.0mmの穴3を形成した後接着剤2の粗化を行な
う。ここで粗化液には接着剤2に対し最適なものが選ば
れ過マンガン酸塩水溶液、クロム酸水溶液、濃硫酸等が
あるが本実施例では無水クロム酸75g,98%硫酸3
00ml、水700nlのクロムー硫酸水溶液を用い
た。この水溶液中に50℃で7分間浸漬した後、中和液
例えば亜硫酸ナトリウム5〜20%水溶液中に室温で2
〜5分間浸漬して基板表面に残留しているクロム酸残渣
を中和除去して接着剤2の表面に最大粗面度(Rma
x)が2〜5μmの粗化面を形成した。次いで図1
(c)の如くアクリル系樹脂のドライフィルム型のパー
マネントマスクをラミネートした後、200〜300m
J/cm2 の紫外線で感光後スプレー現像を行なって基
板上に回路幅/回路間隔(L/S)=100μmの回路
パターンを形成した。さらに1000〜2000mJ/
cm2 の紫外線を照射しパーマネントマスク4を硬化さ
せた。次いで基板全体に触媒処理を行なった。ここで用
いる触媒は銅・触媒であり、ゼラチン10gとポリエチ
レングリュール5g及び60%硫酸15mlを約700
mlの水に溶解した後NaOHでpH2程度に調整し五
含水硫酸銅を25g溶解し最後に濃度100g/lのジ
メチルアミンボラン120mlを徐々に添加して金属銅
を核としたコロイド触媒を作製した。この触媒溶液に基
板1を室温で2分間浸漬することにより基板全面に銅触
媒5を付着させた。(この状態を図1(d)に示した)
次いで基板を過マンガン酸カリウム5g/l、水酸化ナ
トリウム5g/lの水溶液中に室温で1〜2分間浸漬す
ることにより図1(e)の如くパーマネントマスク4に
付着していた銅触媒5を除去する。この時パーマネント
マスク4の表面に付着した銅触媒5はパーマネントマス
ク4の表面が平滑であるため過マンガン酸処理により容
易に除去されるが、接着剤2に付着した銅触媒5の一部
は粗化面の微細な穴にトラップされて残留する。通常の
パーマネントマスクは、粗化処理等の特別な処理をしな
いかぎり、その表面は平滑となっているので周知のパー
マネントマスクであればほとんど本発明に採用できる。
又、穴3の壁面はガラスクロスの切断面のため荒れてお
り、粗化面と同様に触媒の一部が残留する。
Next, as shown in FIG. 1B, a hole 3 having a diameter of 1.0 mm is formed by drilling, and then the adhesive 2 is roughened. Here, as the roughening solution, the most suitable one is selected for the adhesive 2, and there are an aqueous solution of permanganate, an aqueous solution of chromic acid, concentrated sulfuric acid and the like, but in the present embodiment, 75 g of chromic anhydride, 98% sulfuric acid of 3%.
A chromium-sulfuric acid aqueous solution of 00 ml and 700 nl of water was used. After soaking in this aqueous solution for 7 minutes at 50 ° C., a neutralizing solution such as 5-20% sodium sulfite aqueous solution is added at room temperature for 2 minutes.
The chromic acid residue remaining on the substrate surface is neutralized and removed by immersing for ~ 5 minutes to remove the maximum roughness (Rma) on the surface of the adhesive 2.
x) formed a roughened surface of 2 to 5 μm. Then Fig. 1
After laminating a dry film type permanent mask of acrylic resin as shown in (c), 200 to 300 m
A circuit pattern having a circuit width / circuit interval (L / S) of 100 μm was formed on the substrate by performing spray development after exposure to ultraviolet rays of J / cm 2 . 1000-2000mJ /
The permanent mask 4 was cured by irradiating it with ultraviolet rays of cm 2 . Then, the whole substrate was subjected to catalytic treatment. The catalyst used here is copper / catalyst, and 10 g of gelatin, 5 g of polyethylene gurul and 15 ml of 60% sulfuric acid are added to about 700
After dissolving in ml of water, the pH was adjusted to about 2 with NaOH, 25 g of copper pentahydrate was dissolved, and finally 120 ml of dimethylamine borane having a concentration of 100 g / l was gradually added to prepare a colloidal catalyst having metallic copper as a nucleus. . By immersing the substrate 1 in this catalyst solution at room temperature for 2 minutes, the copper catalyst 5 was attached to the entire surface of the substrate. (This state is shown in FIG. 1 (d))
Then, the substrate is immersed in an aqueous solution of potassium permanganate 5 g / l and sodium hydroxide 5 g / l at room temperature for 1 to 2 minutes to remove the copper catalyst 5 attached to the permanent mask 4 as shown in FIG. 1 (e). Remove. At this time, the copper catalyst 5 attached to the surface of the permanent mask 4 is easily removed by the permanganate treatment because the surface of the permanent mask 4 is smooth, but part of the copper catalyst 5 attached to the adhesive 2 is coarse. It is trapped and remains in the minute holes on the surface. The surface of a normal permanent mask is smooth unless special treatment such as roughening treatment is performed, so that almost any known permanent mask can be used in the present invention.
Further, the wall surface of the hole 3 is rough due to the cut surface of the glass cloth, and like the roughened surface, part of the catalyst remains.

【0010】尚、本実施例の過マンガン酸カリウム水溶
液中の過マンガン酸カリウムの濃度は5g/lとした
が、過マンガン酸イオンとして1〜20g/lが適当で
ある。これは、過マンガン酸イオン濃度が1g/lより
少ないと触媒の除去が不十分になり、一方20g/lを
超えると触媒の除去が増加し接着剤2に付着した銅触媒
が残留しくくなるためである。又、銅触媒5を一般的に
用いられているパラジウム触媒を用い同様に実施した場
合は付着力が強過ぎパーマネントマスク4上の触媒は完
全に除去されず一部残留し結果として回路のショートを
生じる。
The concentration of potassium permanganate in the aqueous potassium permanganate solution of this example was 5 g / l, but 1 to 20 g / l is suitable as the permanganate ion. This is because when the permanganate ion concentration is less than 1 g / l, the removal of the catalyst becomes insufficient, while when it exceeds 20 g / l, the removal of the catalyst increases and the copper catalyst attached to the adhesive 2 becomes less likely to remain. This is because. Further, when the copper catalyst 5 is similarly carried out by using a commonly used palladium catalyst, the adhesion is too strong, and the catalyst on the permanent mask 4 is not completely removed but remains partially, resulting in a short circuit. Occurs.

【0011】一方、銅触媒な付着力が弱いため方面状態
の差により触媒のパターニング可能となる。次いで無電
解銅めっきを施して接着剤2にトラップされた触媒5を
核としてめっき銅6を析出させ厚さ40μmの回路を形
成した。
On the other hand, since the adhesion force of the copper catalyst is weak, the patterning of the catalyst becomes possible due to the difference in the orientation. Next, electroless copper plating was performed to deposit plated copper 6 using the catalyst 5 trapped in the adhesive 2 as a nucleus to form a circuit having a thickness of 40 μm.

【0012】この時穴3の壁面にもめっき銅6が析出し
スルーホールが形成される。以上のように実施して所望
のスルーホールを有する印刷配線板を得た。
At this time, plated copper 6 is also deposited on the wall surface of the hole 3 to form a through hole. By carrying out as described above, a printed wiring board having a desired through hole was obtained.

【0013】この印刷配線板の回路を検査した所回路間
のブリッジは無く、又回路の断面形状は図1(f)の如
く矩形状であった。
When the circuit of this printed wiring board was inspected, there was no bridge between the circuits, and the cross-sectional shape of the circuit was rectangular as shown in FIG. 1 (f).

【0014】さらにこの印刷配線板の回路間に電圧を印
加しつつ加湿試験を実施したが回路間のショートは発生
しなかった。
Further, a humidification test was conducted while applying a voltage between the circuits of this printed wiring board, but no short circuit occurred between the circuits.

【0015】図2は本発明の第2の実施例を説明するた
めの断面図である。
FIG. 2 is a sectional view for explaining the second embodiment of the present invention.

【0016】まず図2(a)の如く厚さ1.6mmのガ
ラスエポキシ絶縁板を基材1とし厚さ50μmのドライ
フィルム型の接着剤2をラミネータにより貼り合わせた
後ピーク波長約400nmの紫外線を1〜3J/cm2
で露光し硬化させた後、120〜140℃で1〜2時間
加熱し完全硬化させた。
First, as shown in FIG. 2 (a), a glass epoxy insulating plate having a thickness of 1.6 mm is used as a base material 1 and a dry film type adhesive agent 2 having a thickness of 50 μm is bonded by a laminator, and then an ultraviolet ray having a peak wavelength of about 400 nm is applied. 1-3 J / cm 2
After exposure and curing at 120 ° C., it was completely cured by heating at 120 to 140 ° C. for 1 to 2 hours.

【0017】次に図1(b)の如くドリリングにより直
径1.0mmの穴3を形成した後接着剤2の粗化を行な
う。ここで粗化液には接着剤2に対し最適なものが選ば
れ過マンガン酸塩水溶液、クロム酸水溶液,濃硫酸等が
あるが本実施例では無水クロム酸75g,硫酸300m
l,水700mlのクロム硫酸水溶液を用いた。この水
溶液中に50℃で7分間浸漬した後、中和液例えば亜硫
酸ナトリウム5〜20%水溶液中に室温で2〜5分間浸
漬して基板表面に残留しているクロム酸残渣を中和除去
して接着剤2表面にRmax=2〜5μmの粗化面を形
成した。
Next, as shown in FIG. 1B, a hole 3 having a diameter of 1.0 mm is formed by drilling, and then the adhesive 2 is roughened. Here, as the roughening liquid, the most suitable one for the adhesive 2 is selected, and an aqueous solution of permanganate, an aqueous solution of chromic acid, concentrated sulfuric acid or the like is used. In this embodiment, 75 g of chromic anhydride and 300 m of sulfuric acid are used.
1, an aqueous solution of 700 ml of chromium sulphate was used. After being immersed in this aqueous solution at 50 ° C. for 7 minutes, it is immersed in a neutralizing solution such as a 5-20% aqueous solution of sodium sulfite for 2 to 5 minutes at room temperature to neutralize and remove the chromic acid residue remaining on the substrate surface. To form a roughened surface with Rmax = 2 to 5 μm on the surface of the adhesive 2.

【0018】次いで図1(c)の如くドライフィルム型
のパーマネントマスクをラミネートした後、200〜3
00mJ/cm2 の紫外線で感光後スプルー現像を行な
って基板上にL/S=100μmの回路パターンを形成
した。さらに1000〜2000mJ/cm2 の紫外線
を照射しパーマネントマスク4を硬化させた。次いで基
板全体に触媒処理を行なった。ここで用いる触媒は銅触
媒であり、ゼラチン10gとポリエチレングリコール5
g及び60%硫酸15mlを約700mlの水に溶解し
た後NaOHで約pH2に調整し五含水硫酸銅を25g
溶解し最後に濃度100g/lのジメチルPミンボラン
120mlを徐々に添加して金属銅を核としたコロイド
触媒を作製した。この触媒溶液に基板1を室温で2分間
浸漬することにより基板全体に銅触媒5を付着させた。
(この状態を図1(d)に示した)次いで基板を過マン
ガン酸カリウム5g/l,水酸化ナトリウム5g/lの
水溶液中に室温で1〜2分間浸漬することにより図1
(e)の如くパーマネントマスク4に付着していた銅触
媒5を除去する。
Then, after laminating a dry film type permanent mask as shown in FIG.
After exposure to ultraviolet light of 00 mJ / cm 2 , sprue development was performed to form a circuit pattern of L / S = 100 μm on the substrate. Further, the permanent mask 4 was cured by irradiating with an ultraviolet ray of 1000 to 2000 mJ / cm 2 . Then, the whole substrate was subjected to catalytic treatment. The catalyst used here is a copper catalyst, 10 g of gelatin and 5 of polyethylene glycol.
g and 60 ml of 60% sulfuric acid are dissolved in about 700 ml of water, then adjusted to about pH 2 with NaOH, and 25 g of pentahydrated copper sulfate is added.
After the dissolution, finally 120 ml of dimethyl P-minborane having a concentration of 100 g / l was gradually added to prepare a colloid catalyst having metallic copper as a nucleus. The copper catalyst 5 was attached to the entire substrate by immersing the substrate 1 in this catalyst solution at room temperature for 2 minutes.
(This state is shown in FIG. 1 (d)) Then, the substrate is immersed in an aqueous solution of potassium permanganate 5 g / l and sodium hydroxide 5 g / l at room temperature for 1 to 2 minutes to obtain the substrate shown in FIG.
As shown in (e), the copper catalyst 5 attached to the permanent mask 4 is removed.

【0019】次いで図2(f)の如く塩化パラジウム
0.1〜0.5g/lを塩酸でpHを0.5〜2程度に
調整した水溶液中に室温で1〜2分間浸漬することによ
りCu+Pd2+→Cu2++Pdの反応が起こり銅触媒は
金属パラジウムに置換され触媒核になる。銅触媒は核の
金属銅が液中に溶存した酸素により酸化され易いため触
媒処理寿命が短いが、パラジウム触媒に置換することに
より長寿命化できるため実用的なプロセスを構成でき
る。又銅触媒は付着力が弱いため基板取扱い時の接触に
より脱落するがパラジウム触媒に置換することにより触
媒の脱落を防止でき高い歩留りを維持できる。
Then, as shown in FIG. 2 (f), 0.1 to 0.5 g / l of palladium chloride is immersed in an aqueous solution whose pH is adjusted to about 0.5 to 2 with hydrochloric acid at room temperature for 1 to 2 minutes to form Cu + Pd. The reaction of 2+ → Cu 2+ + Pd occurs and the copper catalyst is replaced with metallic palladium to become a catalyst nucleus. The copper catalyst has a short catalyst treatment life because the core metal copper is easily oxidized by oxygen dissolved in the liquid, but a palladium catalyst can be substituted for a longer life to form a practical process. Further, since the copper catalyst has a weak adhesive force, it falls off due to contact when handling the substrate, but by replacing it with a palladium catalyst, it is possible to prevent the catalyst from falling off and maintain a high yield.

【0020】次いで図2(g)の如く無電解銅めっきを
施して接着剤2の粗化面に付着しているパラジウム触媒
5を核としてめっき銅6を折出させ厚さ40μmの回路
を形成した。
Next, as shown in FIG. 2 (g), electroless copper plating is performed to form plated copper 6 by using the palladium catalyst 5 adhering to the roughened surface of the adhesive 2 as a nucleus to form a circuit having a thickness of 40 μm. did.

【0021】この時穴3の壁面にめっき銅6が折出しス
レーホールが形成される。以上のように実施して所望の
スルーホールを有する印刷配線板を得た。この印刷配線
板の回路を検査した所回路間のブリッジは無く又回路の
断面形状は図2(g)の如く矩形上であった。さらにこ
の印刷配線板の回路間に電圧を印加しつつ加湿試験を実
施したが回路間のショートは発生しなかった。
At this time, plated copper 6 is projected on the wall surface of the hole 3 to form a sley hole. By carrying out as described above, a printed wiring board having a desired through hole was obtained. When the circuit of this printed wiring board was inspected, there was no bridge between the circuits, and the sectional shape of the circuit was rectangular as shown in FIG. 2 (g). Furthermore, a humidification test was conducted while applying a voltage between the circuits of this printed wiring board, but no short circuit occurred between the circuits.

【0022】[0022]

【発明の効果】以上説明した通り本発明の印刷配線板の
製造方法によれば従来の製造方法での絶縁抵抗劣化の問
題もなく、さらに上記特開昭58−199号公報に記載
された製造方法のように耐酸性レジストの形成工程が不
要であり従来工程に過マンガン酸処理工程を追加するの
みで実施可能であるので製造工程が簡略であるので安価
な印刷配線板が製造可能となる。
As described above, according to the method of manufacturing a printed wiring board of the present invention, there is no problem of deterioration of insulation resistance in the conventional manufacturing method, and the manufacturing method described in JP-A-58-199. Unlike the method, the step of forming an acid-resistant resist is unnecessary, and the method can be carried out only by adding a permanganate treatment step to the conventional step. Therefore, the manufacturing process is simple and an inexpensive printed wiring board can be manufactured.

【0023】さらに同公報に記載された製造方法で問題
となった耐酸性レジストパーマネントマスクの合わせず
れによる回路のオープンあるいはショートは発生しない
ため回路の高密度化も可能である。
Furthermore, since circuit opening or short circuit due to misalignment of the acid resistant resist permanent mask, which is a problem in the manufacturing method described in the above publication, does not occur, it is possible to increase the circuit density.

【0024】なお、パーマネントマスクの材料は実施例
に限定されるものでなし、粗化処理等の特別な処理を施
さない限り表面が平滑となる通常用いられているパーマ
ネントマスクであれば差し支えないことは言うまでもな
い。
The material of the permanent mask is not limited to that of the embodiment, and may be a normally used permanent mask having a smooth surface unless special treatment such as roughening treatment is performed. Needless to say.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の製造工程を説明する断
面図。
FIG. 1 is a sectional view illustrating a manufacturing process according to a first embodiment of the present invention.

【図2】本発明の第2の実施例の製造工程を説明する断
面図。
FIG. 2 is a sectional view illustrating a manufacturing process according to a second embodiment of the present invention.

【図3】従来の印刷配線板の製造工程を説明する断面
図。
FIG. 3 is a cross-sectional view illustrating a manufacturing process of a conventional printed wiring board.

【符号の説明】[Explanation of symbols]

1 基材 2 接着剤 3 穴 4 パーマネントマスク 5 銅触媒 6 めっき銅 7 耐酸性レジスト 8 パラジウム触媒 1 Base Material 2 Adhesive 3 Hole 4 Permanent Mask 5 Copper Catalyst 6 Plated Copper 7 Acid Resistant 8 Palladium Catalyst

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 表面にめっき用接着剤を有する基板を粗
化する工程と、前記基板の回路形成予定部分以外に平滑
な表面を有するパーマネントマスクを塗布する工程と
前記基板の全表面に触媒処理を施してめっき触媒として
の銅触媒を被着させる工程と前記基板を酸化剤に浸漬
し前記パーマネントマスクの平滑な表面に被着した前記
触媒を除去する工程と回路形成予定部分に化学めっ
き金属層を形成する工程とを有することを特徴とする印
刷配線板の製造方法。
1. A step of roughening a substrate having an adhesive for plating on the surface thereof , and a step of applying a permanent mask having a smooth surface other than a portion where a circuit is to be formed on the substrate .
As a plating catalyst is subjected to catalytic treatment to the entire surface of the substrate
A step of a copper catalyst depositing in the which immersed the substrate to an oxidizing agent was applied to the smooth surface of the permanent mask
A method of manufacturing a printed wiring board, comprising: a step of removing a copper catalyst; and a step of forming a chemical plating metal layer on a portion where a circuit is to be formed.
【請求項2】 前記触媒を除去する工程の後でかつ前
記化学めっき金属層を形成する工程の前に、前記銅触媒
をパラジウム触媒に置換する工程を有することを特徴と
する請求項1記載の印刷配線板の製造方法。
2. After and before the step of removing the copper catalyst
Before the step of forming the chemical plating metal layer, the copper catalyst
2. The method for manufacturing a printed wiring board according to claim 1, further comprising the step of substituting palladium catalyst for palladium .
【請求項3】 前記酸化剤としてアルカリ性過マンガン
酸塩水溶液を用いることを特徴とする請求項1記載の印
刷配線板の製造方法。
3. The method for manufacturing a printed wiring board according to claim 1, wherein an alkaline permanganate aqueous solution is used as the oxidizing agent.
【請求項4】 前記アルカリ性過マンガン酸塩水溶液の
過マンガン酸イオン濃度が1〜20g/lであることを
特徴とする請求項3記載の印刷配線板の製造方法。
4. The method for manufacturing a printed wiring board according to claim 3, wherein the alkaline permanganate aqueous solution has a permanganate ion concentration of 1 to 20 g / l.
JP6081592A 1994-04-20 1994-04-20 Method for manufacturing printed wiring board Expired - Fee Related JP2531466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6081592A JP2531466B2 (en) 1994-04-20 1994-04-20 Method for manufacturing printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6081592A JP2531466B2 (en) 1994-04-20 1994-04-20 Method for manufacturing printed wiring board

Publications (2)

Publication Number Publication Date
JPH07297520A JPH07297520A (en) 1995-11-10
JP2531466B2 true JP2531466B2 (en) 1996-09-04

Family

ID=13750595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6081592A Expired - Fee Related JP2531466B2 (en) 1994-04-20 1994-04-20 Method for manufacturing printed wiring board

Country Status (1)

Country Link
JP (1) JP2531466B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100351923B1 (en) * 1999-12-29 2002-09-12 앰코 테크놀로지 코리아 주식회사 method for fabricating PCB
JP2002252445A (en) 2001-02-26 2002-09-06 Nec Toyama Ltd Manufacturing method of printed wiring board

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923514B2 (en) * 1978-07-31 1984-06-02 ケイディディ株式会社 Two-dimensional sequential encoding method
JPS6269696A (en) * 1985-09-24 1987-03-30 太田 敏行 Electrolessly plating method for printed circuit board
JPH0449796A (en) * 1990-06-18 1992-02-19 Nec Corp Moving body radio telephone system
JPH04179191A (en) * 1990-11-09 1992-06-25 Hitachi Chem Co Ltd Manufacture of wiring board

Also Published As

Publication number Publication date
JPH07297520A (en) 1995-11-10

Similar Documents

Publication Publication Date Title
EP1699278B1 (en) Multilayer printed wiring board and method for producing the same
JP4520392B2 (en) Printed circuit board manufacturing method
JP2003008199A (en) Method for roughening copper surface of printed wiring board and printed wiring board and its producing method
JPH0465558B2 (en)
US6264851B1 (en) Selective seed and plate using permanent resist
TW200407057A (en) Method for the manufacture of printed circuit boards with integral plated resistors
JP2531466B2 (en) Method for manufacturing printed wiring board
JP3500977B2 (en) Manufacturing method of double-sided circuit board
JPH10215072A (en) Manufacture of multilayer printed wiring board
JP4137279B2 (en) Printed wiring board and manufacturing method thereof
JP3928392B2 (en) Method for manufacturing printed wiring board
JP2003204138A (en) Manufacturing method for printed wiring board
JP2713037B2 (en) Printed wiring board and manufacturing method thereof
JP3951938B2 (en) Etching method and printed wiring board manufacturing method using the same
JP2003183857A (en) Etchant and method for manufacturing circuit board therewith
JP4555998B2 (en) Printed wiring board
JP2644951B2 (en) Method of forming conductor circuit
JPH077264A (en) Manufacture of printed wiring board
JPS60124891A (en) Method of producing printed circuit board
JP2877110B2 (en) Manufacturing method of printed wiring board
US5210006A (en) Process for preparing mounting tapes for automatic mounting of electronic components
JPH11266069A (en) Transfer member and manufacture thereof
JP4453703B2 (en) Printed wiring board
JP2595917B2 (en) Manufacturing method of printed wiring board
JPH06310856A (en) Manufacture of multilayer wiring board

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960507

LAPS Cancellation because of no payment of annual fees