JP2528067C - - Google Patents

Info

Publication number
JP2528067C
JP2528067C JP2528067C JP 2528067 C JP2528067 C JP 2528067C JP 2528067 C JP2528067 C JP 2528067C
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogenation reaction
stage
raw material
stage hydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Other languages
English (en)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Chemical Co
Original Assignee
Eastman Chemical Co
Publication date

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】 【0002】 本発明は、1,4−シクロヘキサンジメタノール(以下、1,4−CHDMと
云うことがある。)の製造方法に関する。 【0003】 【従来の技術】 【0004】 1,4−CHDMは、ポリエステル系塗料やポリエステル系の合成繊維、合成
樹脂等の原料として有用であり、特に、耐熱性、耐候性、物理的強度等の優れた
樹脂や繊維製造用の原料として用いられる。 【0005】 1,4−CHDMを製造する方法としては、工業用原料として製造されている
テレフタル酸ジアルキルエステルを用い、ベンゼン環及びエステル基を水素化し
て得る方法等が代表的であり、既にいくつかの方法が報告されている。 【0006】 例えば、米国特許第3,334,149号には、テレフタル酸ジアルキルエ
ステルを原料として用い、固定床式連続水素添加装置の上端から原料及び水素を
導入して、塔内に充填されているパラジウム水素添加触媒を用いてベンゼン環に
水素添加した後、反応塔の下端から反応生成物及び水素を抜きだし、第二段の固
定床式連続水素添加装置の上端から第一段の反応生成物及び水素を導入し、塔内
に充填されている銅クロマイト水素添加触媒を用いて第一段の反応生成物のエス
テル部分を水素化分解した後反応塔の下端から抜きだし、目的の1,4−CHD
Mを得る方法が紹介されている。 【0007】 また、米国特許第5,030,771号には、1,4−シクロヘキサンジカ
ルボン酸ジアルキルエステルを原料として用い、バリウム等のアルカリ金属を助
触媒として含有した亜クロム酸銅触媒を用いて、原料のエステル部分を水素化分
解した後、反応塔の下端から抜きだし、目的の1,4−CHDMを得る方法が紹
介されている。 【0008】 【発明が解決しようとする課題】 【0009】 しかし、何れの方法にも課題が残されていた。 【0010】 例えば、前記米国特許第3,334,149号の方法には、第一段の水素添
加反応及び第二段の水素添加反応共に、被反応物及び水素を反応塔の上端から導
入して反応塔の下端から抜きだすと云う、いわゆるダウンフロー方式を採用して
おり、且つ、第一段の水素添加反応の触媒としてパラジウム水素添加触媒を用い
ていることから、各種の制約や不都合を生じていた。 【0011】 つまり、採用している触媒の種類及び水素添加の方式から、反応条件として温
度100℃〜350℃、実施例の中では、150℃〜275℃、圧力50気圧〜
500気圧、実施例の中では385kg/cm2〜390kg/cm2にする必要があり、
しかも、被反応物と水素との導入割合が第一段目の水素添加反応時にモル比で1
:90〜1:180、第二段目の水素添加時にモル比で1:100〜1:300
と、比較的厳しい水素添加条件を選ぶ必要があったのである。 【0012】 この厳しい水素添加条件のために副反応の進行を充分に抑制することが困難に
なり、反応生成物中に沸点の高い不純物等を生じて、触媒の活性が損なわれる場
合が多いと云う課題が残されていた。 【0013】 また、このような連続水素添加反応の場合には、一般に、反応後の余剰水素は
回収され、再度反応に使用されることが多いが、この米国特許に紹介されている
技術では、反応生成物中に不純物を生じる結果、回収される水素中に不純物が多
く蓄積するので、再度使用する前に、吸着法等の方法によって水素を精製する必
要があると云う課題もあった。 【0014】 更に、この水素添加反応は発熱反応であり、反応温度を一定に保持するために
は発生した反応熱を効率良く除去する必要があるが、前記のように、ダウンフロ
ー方式を採用しているので、触媒表面で発生した熱を外部に伝える媒体の大部分
が水素であって、熱伝導効率が低く、熱除去のためには反応塔内の水素の流量を
非常に多くする必要があると云う課題もあった。 【0015】 また、ダウンフロー式の水素添加反応を採用した場合には、一般に、触媒表面
に被反応物が薄い膜を造って流下する方式になり、被反応物が積極的に攪拌され
ず触媒表面での物質移動が速やかに行われないので、水素添加の効率を高めるた
めには触媒表面の被反応物の膜を薄い状態に保持する必要があるが、そのために
も反応塔内の水素の流量を被反応物の供給量の90倍〜300倍モル程度と、大
きくする必要があると云う課題も残されていた。 【0016】 前記のような理由で、反応系で発生した熱を除去することに困難を伴うために
パラジウム触媒に較べて安価ではあるが熱に弱いルテニウム触媒を採用すること
ができず、また、反応生成物を被反応物に混合して被反応物の濃度を、通常は4
〜16%程度、最大でも60%程度に抑制する必要があること、等の工業的に不
利な様々な課題が残されていたのである。 【0017】 一方、米国特許第5,030,771号に紹介されている方法には、第一段
目の水素添加の課題について改善の記載が無く、且つ、反応方式としてダウンフ
ロー方式が採用されていることから、前記の場合と同様に各種の工業的に不利
な課題が残されている他に、前記の方法に較べて原料の入手が困難であると云
う課題も残されていた。 【0018】 以上のような状況から、反応条件を少しでも緩やかにできるような各種反応条
件の改善や副反応の抑制とその結果得られる製品の純度向上、更に、使用する原
料や水素等の資材が節約できるような改善等が望まれていた。 【0019】 【課題を解決するための手段】 【0020】 本発明の課題を解決するための手段は、下記の通りである。 【0021】 本発明者等は、前記のような様々な課題を改善するために、鋭意研究を重ねた 結果、テレフタル酸ジアルキルエステルの第一段目の水素添加、即ち、高温での
核飽和にはあまり適切でないとされていたルテニウム系の触媒の採用を可能にし
、更に、比較的温和な水素添加条件を見出し、前記のような従来方法の様々な課
題を改善することに成功して、本発明を完成するに至った。 【0022】 第一の本発明は、1,4−シクロヘキサンジメタノールを製造するに際し、 (1)ルテニウム金属の担持割合が0.05〜10重量%のルテニウム金属を
、シリカ、アルミナ、珪藻土又は活性炭に担持させてなるルテニウム水素化触媒
が充填された固定床連続式水素添加装置の上端に、水素を導入し、同時に、第一
原料としてテレフタル酸ジアルキルエステルと第一段水素添加反応生成物の一部
とを、SV(触媒容積を1としたときの1時間あたりの空間速度)=1〜10で
導入し、第一段水素添加反応の未反応成分の初期濃度を5重量%以上として、温
度90〜170℃、水素圧力5〜150kgf /cm2の条件で第一段の水素添加反
応を行い、反応生成物及び余剰の水素を該装置の下端から排出する第一工程、 (2)銅クロマイト水素化触媒が充填された固定床連続式水素添加装置の上端
又は下端に水素を導入し、同時に、第二原料として式(I)で表される化合物、
式(II)で表される化合物、及び式(III)で表される化合物から成る群から選
ばれる2種以上が相互に任意の組み合わせでエステル交換により1〜10個結合
した化合物の混合物と第一段水素添加反応生成物とを、SV=0.1〜1で導入
し、第二段水素添加反応の未反応成分の初期濃度を10重量%以上として、温度
200〜300℃、水素圧50〜180kfg /cm2の条件で第二段の水素添加反
応を行い、反応生成物及び余剰の水素を該装置の下端又は上端から排出する第二
工程、 の二工程を逐次的に経由することを特徴とする1,4−シクロヘキサンジメタノ
ールの製造方法である。 【0023】 【化7】 【0024】 【化8】 【0025】 【化9】 【0026】 第二の本発明は、1,4−シクロヘキサンジメタノールを製造するに際し、 (1)ルテニウム金属の担持割合が0.05〜10重量%のルテニウム水素化
触媒が充填され、かつ、装置の下部に目皿板を備えた固定床連続式水素添加装置
の下端から、水素を導入し、同時に、第一原料としてテレフタル酸ジアルキルエ
ステル又はテレフタル酸ジアルキルエステルと第一段水素添加反応生成物の一部
とを、SV(触媒容積を1としたときの1時間あたりの空間速度)=1〜10で
導入し、第一段水素添加反応の未反応成分の初期濃度を5重量%以上として、温
度90〜170℃、水素圧力5〜150kg/cm2の条件で第一段の水素添加反応
を行い、反応生成物及び余剰の水素を該装置の上端から排出する第一工程、 (2)銅クロマイト水素化触媒が充填され、かつ、塔内の下部に目皿板を備え
た固定式連続式水素添加装置の下端から水素を導入し、同時に、第二原料として
第一段水素添加反応生成物又は、式(I)で表される化合物、式(II)で表され
る化合物、及び式(III)で表される化合物から成る群から選ばれる2種以上が
相互に任意の組合せでエステル交換により1〜10個結合した化合物の混合物と
第一段水素添加化合物とを、SV=0.1〜1で導入し、第二段水素添加反応の
未 反応成分の初期濃度を10重量%以上として、温度200〜300℃、水素圧5
0〜180kfg /cm2の条件で第二段の水素添加反応を行い、反応生成物及び余
剰の水素を該装置の上端から排出する第二工程、 の二工程を逐次的に経由することを特徴とする1,4−シクロヘキサンジメタノ
ールの製造方法である。 【化10】 【化11】 【化12】 【0027】 第三の本発明は、第一原料の未反応成分の濃度を5〜20重量%の範囲に調整
して第一段の水素添加反応を実施し、第二原料の未反応成分の濃度を20〜10
0重量%の範囲に調整して第二段の水素添加反応を実施することを特徴とする前
記第一〜第二の何れかに記載の1,4−シクロヘキサンジメタノールの製造方法
である。 【0028】 第四の本発明は、第一原料と水素との導入割合をモル比で1:6〜1:33の
範囲で実施し、第二原料と水素との導入割合をモル比で1:14〜1:84の範
囲で実施することを特徴とする前記第一〜第三の何れかに記載の1,4−シクロ
ヘキサンジメタノールの製造方法である。 【0029】 第五の本発明は、目皿板により、原料と水素が目皿板の開孔部を通過するとき
の速度がそれぞれ線速度で0.01m/秒〜1.0m/秒及び0.1m/秒〜1
2.0m/秒の範囲になるように調節することを特徴とする前記第二〜第四の何
れかに記載の1,4−シクロヘキサンジメタノールの製造方法である。 【0030】 本発明の原料として用いるテレフタル酸ジアルキルエステルの品質は、工業用
原料として販売されている程度の品質で充分であり、種類は、最終的に副成する
アルコール類が分離し易い等の理由から、アルキル部分の長さが炭素4個までの
ものが好ましいが、それらの中でも炭素1個のテレフタル酸ジメチルエステルが
最も有利に使用できる。 【0031】 本発明の第一段目の水素添加反応、即ち、ベンゼン環の飽和に用いる原料の濃
度は、反応率を高める意味や、反応熱を程度に抑制する意味等から、好ましくは
5重量%以上、更に好ましくは5〜20重量%であるが、この濃度を調節するた
めにテレフタル酸ジアルキルエステルに加えるものとしては、第一段目の水素添
加反応を終えた反応物が、第一段階での水素添加反応に対して不活性であること
や、その後の分離操作で回収できること、更に、反応系内に余計な成分を混入さ
せないほうが良いこと等の理由から最も好ましい。 【0032】 本発明の第一段目の水素添加反応に用いる水素の品質は、工業用に市販されて
いるもので十分であるが、その他に、本発明を実施して回収された余剰水素もそ
のままで、又は必要に応じて精製した後に、使用することができる。 【0033】 本発明の第一段目の反応の触媒として用いるルテニウム水素添加触媒は、ベン
ゼン核に水素を添加する能力のあるルテニウム触媒ならば概ね使用可能であるが
、担体の種類としては、例えば、シリカ、アルミナ、珪藻土、活性炭などがあり
、本発明の第一の態様ではシリカ、アルミナ、珪藻土又は活性炭にルテニウム金
属を0.05〜10重量%担持したルテニウム水素化触媒を用いる必要がある。
本発明において、比重や強度などの点から最も好ましいのはアルミナであり、好 ましいルテニウム金属の担持量としては、0.05〜10重量%が挙げられる。 【0034】 このルテニウム金属の担持量が0.05重量%未満の場合には、触媒の扱い量
が必要以上に大きくなって装置が大型化してしまうので経済的に不利なことや未
還元物が生成しやすいこと等から好ましくなく、10重量%を超えた場合には、
担体からのルテニウムの剥離等による金属の損失が起こりがちなことや担持量が
多い割りには還元能率が高まらないこと等から好ましくない。 【0035】 本発明を実施するうえで、本発明の第一段目の水素添加に用いる固定床連続式
水素添加装置は、装置の上端に又は上端もしくは下端に水素及び原料の導入口を
備え、他端に水素及び第一段目の水素添加反応生成物の排出口を備えた、温度制
御の可能な構造にする必要がある。 【0036】 その装置の形状は、水素添加反応が充分に進行するものであれば特に制約を受
けないが、一般に、直径の長さ1に対して縦の長さが1以上の、縦に長い円筒状
のものが、水素添加反応を実施したり、触媒の再生や、触媒の交換、その他の各
種補修をしたりするうえで最も好ましい。 【0037】 本発明を実施する反応の方式には、(1)水素及び原料が装置の下端から供給
されて上端から排出される、いわゆるアッパーフロー方式、(2)水素及び原料
が装置の上端から供給されて下端から排出される、いわゆるダウンフロー方式、
(3)原料が装置の上端から供給されて下端から排出され、水素が装置の下端か
ら供給されて上端から排出される、いわゆるカウンターフロー方式の何れも採用
可能であるが、発明者の確認したところによれば、(1)及び(2)の方式が最
も優れた方式である。 【0038】 (1)の方式には、水素及び原料を供給する際に、塔内よりもやや高い圧力が
要求されたり、塔下部に拡散板又はディストリビューター又は目皿板のような、
水素及び原料を充分に混合・分散する機能や部品が要求されるものの、反応装置 内の温度制御が容易であることや反応装置内に原料等が滞留する時間を制御し易
い等の優れた特徴がある。 【0039】 また、(2)の方式の場合には、ディストリビューターのような、主に原料を
触媒の上に充分に分散させる機能や部品が要求されるものの、装置のL/D(長
さ/直径)の割合を大きくすることができることや装置の肉厚が薄くできること
等の優れた特徴がある。 【0040】 本発明の更に好ましい実施態様に於いては、装置の下端に目皿板を備えること
が好ましいが、その目皿板は、装置の下端から導入される原料と水素とが、層流
状態を理想として少しでもその状態に近づける性能を有するものであれば良く、
その材質は、本発明に用いる原料や溶媒、反応生成物に浸されないことや反応時
の熱に耐えること等の要求はあるが、それ以上の材質上の制約も孔の形状や数等
の制約も無い。 【0041】 その目皿板としての性能を発揮するためには、例えば、装置の下端に取り付け
たときに、その縁辺部分に不必要な隙間がなくある程度の開孔率を有するものが
好ましいが、その開孔率は、例えば、原料と水素とが目皿板の開孔部分を通過す
るときの速度が、それぞれ線速度で、0.01m/秒〜1.0m/秒及び0.1
m/秒〜12.0m/秒の範囲になるように開孔面積を調節することが好ましい
。 【0042】 目皿板の開孔面積が大き過ぎて原料と水素との線速度がそれぞれ0.01m/
秒未満、又は0.1m/秒未満の場合には、反応系の入り口に到達した水素と原
料とがよく混合されないことや反応塔内に分散されにくいこと、それによって、
塔内の流れ方に偏りが発生しやすいこと等の不都合があるので好ましくなく、一
方、開孔面積が小さ過ぎて原料と水素との目皿板通過時の線速度がそれぞれ1.
0m/秒及び12.0m/秒を越える場合には、反応塔への供給口と反応塔内の
圧力に大きな差が生じることや目皿板を通過した流れにあたる部分の触媒が動き 出して触媒が破損すること、更には、反応にムラが生ずる等の理由から好ましく
ない。 【0043】 本発明の第一段目の水素添加反応の実施条件として適切な原料の導入速度は、
装置の形状や触媒の量、触媒の残存活性、反応温度、圧力等によって様々な影響
を受けるために、一義的に表現することが困難であるが、通常は、SV(触媒容
積を1としたときの1時間あたりの空間速度)で表現した場合に、SV=1〜1
0とすることが好ましい。 【0044】 この原料の導入速度がそれぞれ1未満の場合には、原料や反応生成物の分解を
招くことが多いので好ましくなく、10を超えた場合には、装置から未反応物質
が排出されたりして歩留まりの低下を招くことが多いので好ましくない。 【0045】 第一段目の水素添加反応の原料と水素との導入割合は、モル比で、好ましくは
1:6〜1:84、更に好ましくは1:6〜1:33程度であるが、その割合が
1:6未満の場合には水素が反応塔内に行き渡らないことがあったり、反応の進
行が遅くなったりすることがある等の理由から好ましくなく、その割合が1:8
4を越える場合には、反応塔内の原料が過度に攪拌されてしまい、未反応の成分
が反応塔上端から排出されることがあったり、触媒が破損することがある等の理
由から、好ましくない。 【0046】 また、第一段目の水素添加反応時の温度は90〜240℃が好ましいが、この
温度範囲を外れた場合には、低い場合には未反応物の生成があり、高い場合には
分解物の生成があって、何れの場合も収率の低下を招くことが多いので好ましく
ない。 【0047】 さらに、第一段目の水素添加反応時の水素圧力は5〜150kgf/cm2程度が好
ましいが、その圧力が5kgf/cm2未満の場合には、水素添加反応の速度が遅くな
ること等の理由から、また、150kgf/cm2を越える場合には圧力を高く してもそれにつれて水素添加反応の反応速度が高くならないので、経済的な意味
が無い等の理由から何れも好ましくない。 【0048】 このようにして第一段目の水素添加反応を実施することにより、純度98〜9
9.5重量%程度で、ヘキサヒドロ安息香酸メチルエステル、メチルシクロヘキ
サン、テレフタル酸ジメチルエステル等のような不純物含有量が合計2〜0.5
重量%程度の第一段目の水素添加反応生成物、即ち、テレフタル酸ジアルキルエ
ステルの核飽和物を製造することができる。 【0049】 次に、本発明の第二段目の水素添加反応について説明する。 【0050】 本発明の第二段目の水素添加反応に使用する原料、即ち第二原料としては、第
一段目の水素添加反応生成物又は、前記式(I)で表される化合物、前記式(II
)で表される化合物及び前記式(III)で表される化合物から成る群から選ばれ
る2種以上が相互に任意の組み合わせでエステル交換により1〜10個結合した
化合物の混合物と第一段目の水素添加反応生成物が用いられる。 【0051】 具体的には、第一段目の水素添加反応生成物は、そのままの形で用いることも
できるが、第二段目の水素添加反応生成物や蒸留後の釜残や粗製品1,4−CH
DM等の1,4−CHDM含有物を装置の入り口の手前又は後で加えることによ
って、第二段目の水素添加反応の未反応物質の濃度を調節して用いることもでき
る。 【0052】 本発明の第二原料の未反応物質の濃度は、第二段目の水素添加反応率を高める
意味や、反応熱を適度に抑制する意味等から20〜100%程度が好ましく、必
要に応じてこの濃度を調節するには、前記1,4−CHDM及び/又はその誘導
体含有物を加え、この範囲に濃度を調整することが好ましい。 【0053】 また、本発明の第二段目の水素添加反応に用いる水素の品質も第一段目の水素 添加反応に用いる程度の品質で十分であり、本発明を実施して回収された余剰水
素もそのままで、又は必要に応じて精製した後に、使用することができる。 【0054】 本発明の第二段目の反応の触媒として用いる銅クロマイト水素添加触媒は、第
二原料に含まれるエステル基部分を水素化分解できる性能を備えているものであ
れば良く、市販の水素添加触媒を採用することができるが、その銅やクロムの比
率や担体についても格別の制約は無い。 【0055】 また、本発明の第二段目の水素添加反応に用いる装置も、第一段目の水素添加
に用いる装置と同様の構造及び形状が要求されるが、その他の要求される格別の
制約は無い。 【0056】 更に、本発明の好ましい態様で採用される第二段目の装置下部に備える目皿板
も、第一段目の装置に用いる目皿板と同様の性能、材質、開孔面積であればよく
、その他に要求されるべき制約は無い。 【0057】 次に、第二段目の水素添加反応の条件について説明する。 【0058】 まず、本発明の第二段目の水素添加反応の実施条件として適切な原料の導入速
度は、装置の形状や触媒の量、触媒の残存活性、反応温度、圧力等によって様々
な影響を受けるために、一義的に表現することが困難であるが、通常は、SV=
0.1〜1とすることが好ましい。 【0059】 第二原料の導入速度がそれぞれ0.1未満の場合には、第二原料の構成成分や
水素添加反応生成物が分解することがあり、1を超えた場合には未反応物質が装
置から排出されることがあって、何れの場合にも歩留まりの低下を招くことが多
いので好ましくない。 【0060】 第二原料及び水素の導入割合は、モル比で1:14〜1:84の範囲が好まし いが、その割合が1:14未満の場合には水素が反応塔内に行き渡らないことが
あったり、反応の進行が遅くなったりすることがある等の理由から好ましくなく
、その割合が1:84を越える場合には、反応塔内の原料が過度に攪拌されてし
まい、未反応の成分が反応塔から排出されることがあったり、触媒が破損するこ
とがある等の理由から、これも好ましくない。 【0061】 第二段目の水素添加反応時の温度は200〜300℃が好ましいが、この温度
範囲を外れた場合には、未反応物の生成や分解物の生成等により何れの場合も歩
留まりの低下を招くことが多いので好ましくない。 【0062】 さらに、第二段目の水素添加反応時の水素圧力は50〜180kgf /cm2の範
囲が好ましいが、その圧力が50kgf /cm2未満の場合には、水素添加反応の速
度が遅くなること等の理由から、また、180kgf /cm2を越える場合には圧力
を高くしてもそれにつれて水素添加反応の反応速度が高くならないので、経済的
な意味が無い等の理由から何れも好ましくない。 【0063】 このようにして第二段目の水素添加反応を実施することにより、その後の気液
分離器等によるメタノール除去後の純度が93〜96重量%程度で、4−メチル
シクロヘキサンメタノール、4−ヒドロキシメチルシクロヘキサンカルボン酸メ
チル、ヘキサヒドロジメチルテレフタレート、メタノール及び式(I)等で表さ
れる化合物等のような不純物含有量が4〜7重量%程度の1,4−CHDM含有
物を高い歩留まりで製造することができるが、この後は、蒸留や分画等の通常の
手段によって、1,4−CHDM含有物から、更に純度の高い1,4−CHDM
を容易に回収することができる。 【0064】 【実施例】 【0065】 以下に、実施例を掲げて本発明の内容を更に具体的に説明するが、本発明はそ
の要旨を越えない限り以下の例に限定されるものでは無い。 【0066】 また、例の中では、特に断らない限り%は重量%を表すものとする。 【0067】 実施例−1(第一工程及び第二工程) 【0068】 アルミナ担持0.5%ルテニウム水素添加用触媒ペレット(3φ×3mm)[エ
ヌ・イー・ケムキャット社製]0.21m3が充填され、120℃に温度を保持
したステンレス製連続水素添加反応装置(SUS316L製)に、第一原料と
して、核飽和されたテレフタル酸ジメチルエステル80%とテレフタル酸ジメチ
ルエステル20%との混合物を120℃で加熱溶解したものをSV(触媒容積を
1としたときの1時間あたりの空間速度)=6で、同時に、水素を原料の未還
元物総量の18倍モルに相当する速度で、予め配管中で気液混合し、予熱器で1
20℃まで加熱した後に該装置の上端から連続的に供給した。 【0069】 この時、装置内水素圧力を100kgf /cm2に保持して第一段の水素添加反応
を行い、反応生成物及び余剰の水素を該装置の下端から排出し、余剰の水素を気
液分離器で分離して、核飽和されたテレフタル酸ジメチルエステルの純度が98
.98%の第一段水素添加反応生成物を得た。 【0070】 次に、銅クロム水素添加用触媒[エヌ・イー・ケムキャット社製、Cu−11
64T]0.28m3が充填され、温度250℃に保持したステンレス製連続水
素添加反応装置(SUS316L製)の上端から、第二原料として第一段の水素
添加反応生成物を250℃に加熱したものを1時間あたりSV=0.45で、同
時に、水素を第二段水素添加反応の未反応物総量の44倍モルに相当する速度で
、予め配管中で気液混合し、予熱器で250℃まで加熱した後に概装置の上端か
ら連続的に供給した。 【0071】 この時、装置内水素圧力を150kgf /cm2に保持して第二段の水素添加反応
を行い、反応生成物及び余剰の水素を該装置の下端から排出し、水素添加反応生 成物を得た。 【0072】 得られた反応生成物を反応時と同一温度及び同一圧力の下で気液分離して余剰
水素及びメタノールを除去した後、ガスクロマトグラフ法により組成を分析した
結果、生成物中の1,4−シクロヘキサンジメタノール純度は94.0%であり
、生成物中に含まれる不純物としては、4−ヒドロキシメチルシクロヘキサンカ
ルボン酸メチル、1,4−シクロヘキサンジカルボン酸ジメチル等があった。 【0073】 実施例−2(第一工程) 【0074】 実施例−1のアルミナ担持0.5%ルテニウム水素添加用触媒ペレットに代え
て同一会社製、同一サイズのアルミナ担持0.1%ルテニウム水素添加用触媒を
使用し、原料余熱温度、装置加熱温度及び反応温度を170℃とし、反応時の水
素圧力を150kgf /cm2とし、原料供給速度をSV=3、水素供給速度を33
倍モルとした他は実施例−1と同様にして第一段の水素添加反応を行った結果、
純度95.50%の第一段水素添加反応生成物を得た。 【0075】 実施例−3(第一工程) 【0076】 原料及び水素を、下部に目皿板を備えた水素添加装置の下端からそれぞれ線速
度0.53m/秒及び3.1m/秒で導入し、上端から生成物及び余剰の水素を
排出した他は実施例−1と同様にして第一段の水素添加反応を行った結果、純度
99.12%の第一段水素添加反応生成物を得た。 【0077】 実施例−4(第一工程) 【0078】 アルミナ担持1.0%ルテニウム水素添加用触媒(エヌ・イー・ケムキャット
社製、3φ×3mm)を使用し、原料余熱温度、装置加熱温度及び反応温度を17
0℃とし、反応時の水素圧力を9kgf /cm2とし、第一原料として、核飽和され たテレフタル酸ジメチルエステル95%とテレフタル酸ジメチルエステル5%と
の混合物を加熱溶解したものを用い、原料供給速度をSV=2とし、水素供給速
度を84倍モルとした他は実施例−3と同様にして第一段の水素添加反応を行っ
た結果、純度99.17%の第一段水素添加反応生成物を得た。 【0079】 実施例−5(第一工程) 【0080】 原料余熱温度、装置加熱温度及び反応温度を170℃とし、反応時の水素圧力
を9kgf /cm2とし、原料供給速度をSV=1、水素供給速度を33倍モルとし
た他は実施例−3と同様にして第一段の水素添加反応を行った結果、純度92.
67%の第一段水素添加反応生成物を得た。 【0081】 実施例−6(第二工程) 【0082】 下部に目皿板を備えた第二段連続水素添加装置の下端から第二原料及び水素を
それぞれ線速度0.14m/秒及び8.7m/秒で供給し、上端から反応生成物
及び余剰の水素を排出した他は実施例−1の第二工程と同様にして水素添加反応
を行い、得られた反応生成物をガスクロマトグラフ法により分析した結果、生成
物中の1,4−シクロヘキサンジメタノール純度は95.5%であった。 【0083】 実施例−7(第二工程) 【0084】 第二原料として実施例−2で得た生成を使用し、その供給速度をSV=0.9
0とした他は実施例−1の第二工程と同様にして水素添加反応を行い、得られた
反応生成物を分析した結果、生成物中の1,4−シクロヘキサンジメタノール純
度は93.2%であった。 【0085】 実施例−8(第二工程) 【0086】 第二原料として実施例−5で得た生成物を用い、第二段水素添加反応温度及び
第二原料加熱温度、予熱温度を270℃とし、第二原料の供給速度をSV=0.
30とし、水素供給速度を64倍モル、水素圧力を100kgf /cm2とした他は
実施例−1の第二工程と同様にして水素添加反応を行い、得られた反応生成物を
分析した結果、生成物中の1,4−シクロヘキサンジメタノール純度は91.1
%であった。 【0087】 実施例−9(第二工程) 【0088】 水素圧力を150kgf /cm2とした他は実施例−8と同様にして水素添加反応
を行い、得られた反応生成物を分析した結果、生成物中の1,4−シクロヘキサ
ンジメタノール純度は92.0%であった。 【0089】 実施例−10(第二工程) 【0090】 触媒として、エヌ・イー・ケムキャット社製、のCu−1132−Tを用い、
第二原料として実施例−3で得た生成物を用い、第二段水素添加反応温度及び第
二原料加熱温度、予熱温度を230℃として、水素供給速度を84倍モル、とし
た他は実施例−1の第二工程と同様にして水素添加反応を行い、得られた反応生
成物を分析した結果、生成物中の1,4−シクロヘキサンジメタノール純度は9
6.0%であった。 【0091】 実施例−11(第二工程) 【0092】 第二段水素添加反応温度及び第二原料加熱温度、予熱温度を250℃とし、水
素供給速度を44倍モル、とした他は実施例−10と同様にして水素添加反応を
行い、得られた反応生成物を分析した結果、生成物中の1,4−シクロヘキサン
ジメタノール純度は96.3%であった。 【0093】 実施例−12(第二工程) 【0094】 第二原料として、実施例−1の第一段水素添加反応生成物に第二段水素添加反
応生成物の蒸留残渣を混合して第二段水素添加反応の未還元物濃度を77.1%
に調整したものを用いた他は、実施例−6と同様にして水素添加反応を行い、得
られた反応生成物を分析した結果、生成物中の1,4−シクロヘキサンジメタノ
ール純度は96.0%であった。 【0095】 【発明の効果】 【0096】 以上に述べたように、本発明を実施することにより、パラジウムよりも安価な
ルテニウム触媒の採用が可能になり、且つ、従来に較べて温和な条件での第一段
目の水素添加反応を実現することが可能になり、全工程で生じる不純物の生成量
を少なくすることが可能になり、経済的に有利に1,4−シクロヘキサンジメタ
ノールを製造することができる。

Claims (1)

  1. 【特許請求の範囲】 【請求項1】 1,4−シクロヘキサンジメタノールを製造するに際し、 (1)ルテニウム金属の担持割合が0.05〜10重量%のルテニウム金属を
    、シリカ、アルミナ、珪藻土又は活性炭に担持させてなるルテニウム水素化触媒
    が充填された固定床連続式水素添加装置の上端に、水素を導入し、同時に、第一
    原料としてテレフタル酸ジアルキルエステルと第一段水素添加反応生成物の一部
    とを、SV(触媒容積を1としたときの1時間あたりの空間速度)=1〜10で
    導入し、第一段水素添加反応の未反応成分の初期濃度を5重量%以上として、温
    度90〜170℃、水素圧力5〜150kgf /cm2の条件で第一段の水素添加反
    応を行い、反応生成物及び余剰の水素を該装置の下端から排出する第一工程、 (2)銅クロマイト水素化触媒が充填された固定床連続式水素添加装置の上端
    又は下端に水素を導入し、同時に、第二原料として式(I)で表される化合物、
    式(II)で表される化合物、及び式(III)で表される化合物から成る群から選
    ばれる2種以上が相互に任意の組み合わせでエステル交換により1〜10個結合
    した化合物の混合物と第一段水素添加反応生成物とを、SV=0.1〜1で導入
    し、第二段水素添加反応の未反応成分の初期濃度を10重量%以上として、温度
    200〜300℃、水素圧50〜180kfg /cm2の条件で第二段の水素添加反
    応を行い、反応生成物及び余剰の水素を該装置の下端又は上端から排出する第二
    工程、 の二工程を逐次的に経由することを特徴とする1,4−シクロヘキサンジメタノ
    ールの製造方法。 【化1】 【化2】 【化3】 【請求項2】 1,4−シクロヘキサンジメタノールを製造するに際し、 (1)ルテニウム金属の担持割合が0.05〜10%のルテニウム水素化触媒
    が充填され、かつ、装置の下部に目皿板を備えた固定床連続式水素添加装置の下
    端から、水素を導入し、同時に、第一原料としてテレフタル酸ジアルキルエステ
    ル又はテレフタル酸ジアルキルエステルと第一段水素添加反応生成物の一部とを
    、SV(触媒容積を1としたときの1時間あたりの空間速度)=1〜10で導入
    し、第一段水素添加反応の未反応成分の初期濃度を5重量%以上として、温度9
    0〜170℃、水素圧力5〜150kg/cm2の条件で第一段の水素添加反応を行
    い、反応生成物及び余剰の水素を該装置の上端から排出する第一工程、 (2)銅クロマイト水素化触媒が充填され、かつ、塔内の下部に目皿板を備え
    た固定式連続式水素添加装置の下端から水素を導入し、同時に、第二原料として
    第一段水素添加反応生成物又は、式(I)で表される化合物、式(II)で表され
    る化合物、及び式(III)で表される化合物から成る群から選ばれる2種以上が
    相互に任意の組合せでエステル交換により1〜10個結合した化合物の混合物と
    第一段水素添加化合物とを、SV=0.1〜1で導入し、第二段水素添加反応の
    未反応成分の初期濃度を10重量%以上として、温度200〜300℃、水素圧
    50〜180kfg /cm2の条件で第二段の水素添加反応を行い、反応生成物及び
    余剰の水素を該装置の上端から排出する第二工程、 の二工程を逐次的に経由することを特徴とする1,4−シクロヘキサンジメタノ
    ールの製造方法。 【化4】 【化5】 【化6】 【請求項3】 第一原料の未反応成分の濃度を5〜20重量%の範囲に調整し
    て第一段の水素添加反応を実施し、第二原料の未反応成分の濃度を20〜100
    重量%の範囲に調整して第二段の水素添加反応を実施することを特徴とする請求
    項1〜2の何れかに記載の1,4−シクロヘキサンジメタノールの製造方法。 【請求項4】 第一原料と水素との導入割合をモル比で1:6〜1:33の範
    囲で実施し、第二原料と水素との導入割合をモル比で1:14〜1:84の範囲
    で実施することを特徴とする請求項1〜3の何れかに記載の1,4−シクロヘキ
    サンジメタノールの製造方法。 【請求項5】 目皿板により、原料と水素が目皿板の開孔部を通過するときの
    速度がそれぞれ線速度で0.01m/秒〜1.0m/秒及び0.1m/秒〜12
    .0m/秒の範囲になるように調節することを特徴とする請求項2〜4の何れか
    に記載の1,4−シクロヘキサンジメタノールの製造方法。

Family

ID=

Similar Documents

Publication Publication Date Title
KR20000048993A (ko) 1,4-부틴디올의 촉매 수소화에 의한 1,4-부탄디올의 제조 방법
EP0703896B1 (en) Low pressure process for the manufacture of cyclohexanedicarboxylate esters
JPS5919931B2 (ja) ジアセトキシブテンの水素化方法
JP2009507058A (ja) 1,4−ブチンジオールからのポリマーの副生成物の分離方法
JPS6284031A (ja) 化学平衡反応を行う方法
JP2528067B2 (ja) 1,4−シクロヘキサンジメタノ―ルの製造方法
US4225729A (en) Process for hydrogenation of diacetoxybutene
JP2001181223A (ja) 1,4−シクロヘキサンジメタノールの製造方法
EP2398754B1 (en) Continuous process to produce hexafluoroisopropanol
JP2880060B2 (ja) メタノールのカルボニル化による酢酸、酢酸メチルおよび無水酢酸の製造方法
JP4970696B2 (ja) 芳香族アミンの製造方法
JPH06321823A (ja) 1,3−シクロヘキサンジメタノールの製造方法
JP2528067C (ja)
JPH1045645A (ja) 1,4−シクロヘキサンジメタノールの製造方法
CA2492261C (en) Method for continuous hydrogenation of citronellal to form citronellol
US4178295A (en) Method of preparing phthalide
JP3336644B2 (ja) ジアセトキシブテンの水素化方法
JP3896742B2 (ja) アルコール類の製造方法
JPH0931011A (ja) コハク酸の製造方法
JP6372765B2 (ja) 1,4‐シクロヘキサンジカルボン酸ビス(2‐ヒドロキシエチル)の製造方法
JP3915152B2 (ja) 酢酸ベンジルの製造方法
JP2005509015A (ja) アセトンの水素化方法
JPH0331696B2 (ja)
JP4531915B2 (ja) 芳香族エポキシ化合物の連続核水素化方法
JPH0576932B2 (ja)