JP2524827B2 - Laminated thin film body and manufacturing method thereof - Google Patents

Laminated thin film body and manufacturing method thereof

Info

Publication number
JP2524827B2
JP2524827B2 JP63302510A JP30251088A JP2524827B2 JP 2524827 B2 JP2524827 B2 JP 2524827B2 JP 63302510 A JP63302510 A JP 63302510A JP 30251088 A JP30251088 A JP 30251088A JP 2524827 B2 JP2524827 B2 JP 2524827B2
Authority
JP
Japan
Prior art keywords
thin film
film
mgo
plane
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63302510A
Other languages
Japanese (ja)
Other versions
JPH02149495A (en
Inventor
利夫 高田
孝仁 寺嶋
賢二 飯島
和貫 山本
和人 平田
尚周 坂東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seisan Kaihatsu Kagaku Kenkyusho
Original Assignee
Seisan Kaihatsu Kagaku Kenkyusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seisan Kaihatsu Kagaku Kenkyusho filed Critical Seisan Kaihatsu Kagaku Kenkyusho
Priority to JP63302510A priority Critical patent/JP2524827B2/en
Priority to US07/442,988 priority patent/US5061687A/en
Priority to EP89122007A priority patent/EP0371481B1/en
Priority to DE68925568T priority patent/DE68925568T2/en
Publication of JPH02149495A publication Critical patent/JPH02149495A/en
Application granted granted Critical
Publication of JP2524827B2 publication Critical patent/JP2524827B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0912Manufacture or treatment of Josephson-effect devices
    • H10N60/0941Manufacture or treatment of Josephson-effect devices comprising high-Tc ceramic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0381Processes for depositing or forming copper oxide superconductor layers by evaporation, e.g. MBE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/12Josephson-effect devices
    • H10N60/124Josephson-effect devices comprising high-Tc ceramic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9265Special properties
    • Y10S428/93Electric superconducting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/70High TC, above 30 k, superconducting device, article, or structured stock
    • Y10S505/701Coated or thin film device, i.e. active or passive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/70High TC, above 30 k, superconducting device, article, or structured stock
    • Y10S505/701Coated or thin film device, i.e. active or passive
    • Y10S505/702Josephson junction present
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/70High TC, above 30 k, superconducting device, article, or structured stock
    • Y10S505/701Coated or thin film device, i.e. active or passive
    • Y10S505/703Microelectronic device with superconducting conduction line
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/70High TC, above 30 k, superconducting device, article, or structured stock
    • Y10S505/704Wire, fiber, or cable

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、90K近傍で超電導を示すものとして注目さ
れているYBa2Cu3O7-X薄膜の面上に、MgOの超薄膜を形成
してなる積層薄膜体及びこの積層薄膜体の製造に適切な
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention forms an ultrathin film of MgO on the surface of a YBa 2 Cu 3 O 7-X thin film, which is attracting attention as showing superconductivity in the vicinity of 90K. And a method suitable for producing the laminated thin film body.

YBa2Cu3O7-Xに限らず超電導体は、ジョセフソントン
ネル型素子などとして、新しい応用が考えられている。
Not only YBa 2 Cu 3 O 7-X , but superconductors are expected to have new applications such as Josephson tunnel type devices.

ジョセフソントンネル型素子には、超電導体をトンネ
ル接合するために30Å以下の絶縁用超薄膜が必要とさ
れ、このような接合を形成するためには、表面の平滑性
の優れた超電導薄膜や接合のための絶縁用超薄膜の作製
が必要である。接合に使用する絶縁用超薄膜の厚さは超
電導薄膜のコヒーレンスの長さによって限界がある。
(001)面に垂直な方向のコヒーレンス長さは4〜7Å
程度、平行な方向のそれは15〜30Åといわれている。
The Josephson tunnel type device requires an ultrathin film for insulation of 30 Å or less in order to make a tunnel junction with a superconductor, and in order to form such a junction, a superconducting thin film or a junction with excellent surface smoothness is required. It is necessary to fabricate an ultra thin film for insulation. The thickness of the insulating ultrathin film used for bonding is limited by the length of the coherence of the superconducting thin film.
The coherence length in the direction perpendicular to the (001) plane is 4 to 7Å
It is said that it is 15 to 30Å in the parallel direction.

従って接合に使用する絶縁用超薄膜の厚さは、被接合
体となる超電導体としてどのようなものを使用するかに
よって異なることとなり、超電導体の(001)面に垂直
な方向が絶縁用超薄膜の厚み方向となる関係において
は、絶縁用超薄膜の厚さは10Å以下でなければならな
い。
Therefore, the thickness of the insulating ultra-thin film used for bonding depends on what kind of superconductor is used as the material to be bonded, and the direction perpendicular to the (001) plane of the superconductor is the insulating Regarding the relationship in the thickness direction of the thin film, the thickness of the ultra thin film for insulation must be 10Å or less.

これに対し、超伝導体の(001)面に平行な方向が絶
縁用超薄膜の厚み方向となる関係においては、絶縁用超
薄膜の厚さは数10Åでもよいこととなり、トンネル接合
を形成するには好都合である。
On the other hand, in the relationship that the direction parallel to the (001) plane of the superconductor is the thickness direction of the insulating ultra-thin film, the thickness of the insulating ultra-thin film may be several tens of liters, forming a tunnel junction. Is convenient for.

本発明は、上記のうち前者に関係のあるものであり、
詳しくは、(001)面が膜面に平行になした単結晶状のY
Ba2Cu3O7-X薄膜の面上に、途切れのない10Å以下のMgO
超薄膜をエピタキシャルに成長させてなる積層薄膜体及
びこの積層薄膜体の製造に適切な方法に関するものであ
る。
The present invention relates to the former of the above,
Specifically, a single crystal Y with the (001) plane parallel to the film plane.
Ba 2 Cu 3 O 7-X on the surface of the thin film, MgO less than 10 Å without interruption
The present invention relates to a laminated thin film body obtained by epitaxially growing an ultrathin film and a method suitable for manufacturing the laminated thin film body.

〔従来の技術〕[Conventional technology]

(001)面が膜面に平行をなした単結晶状のYBa2Cu3O
7-X薄膜自体の製造法は、既に本発明者等の成果として
出願済みである。
Single crystal YBa 2 Cu 3 O with (001) plane parallel to the film plane
The method for manufacturing the 7-X thin film itself has already been applied as a result of the present inventors.

一方、(110)NbBaCuO上への(110)MgOのスパッタリ
ングによるエピタキシャルな成長の研究成果は、昭和63
年秋季第49回応用物理学会学術講演会予稿集第1分冊第
106頁に発表されている。
On the other hand, the results of research on epitaxial growth of (110) MgO on (110) NbBaCuO by sputtering are as follows.
Autumn Meeting 49th Annual Meeting of the Japan Society of Applied Physics Proceedings 1st Volume No. 1
Published on page 106.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、高温超電導薄膜上への絶縁用超薄膜の
形成は極めて困難で、従来は数拾Åオーダーの絶縁用薄
膜であっても、これを完全に途切れのない膜として得る
ことはできなかった。
However, it is extremely difficult to form an ultrathin film for insulation on a high-temperature superconducting thin film, and conventionally, even a thin film for insulation of several pick-up order could not be obtained as a completely uninterrupted film.

これは、ひとつには、下地となる高温超電導薄膜自体
も実質的に単結晶といえるものを提供し難く、その上へ
の絶縁用超薄膜のエピタキシャルな成長は望みにくかっ
たという事情があったためであるが、高温超電導薄膜に
関するこの問題については、本発明者らの提案する方法
によって既にほぼ解決された。
This is partly because it was difficult to provide a high-temperature superconducting thin film as a base material that could be said to be substantially a single crystal, and epitaxial growth of an ultra-thin insulating film on it was difficult to achieve. However, this problem regarding the high temperature superconducting thin film has been almost solved by the method proposed by the present inventors.

ところが、その後も高温超電導薄膜上への絶縁用超薄
膜の形成については、幾多の研究がなされているにもか
かわらず、途切れのない絶縁用超薄膜の形成は成功に到
っていない。
However, even though many studies have been made on the formation of the insulating ultra-thin film on the high-temperature superconducting thin film thereafter, the continuous formation of the insulating ultra-thin film has not been successful.

即ち、前述した(110)NbBaCuO上への(110)MgOのス
パッタリングによるエピタキシャルな成長の例もそうで
あるが、従来は、絶縁用薄膜がエピタキシャルに成長し
ているとはいっても、それは微視的にみればのはなしで
あり、実際は結晶が島状に点在した状態で成長するにす
ぎないものであったために、薄膜が超薄膜となればなる
程、島状の成長した結晶の裾野の部分で膜の連続しない
部分が随所にできたのである。
That is, the same is true of the example of epitaxial growth of (110) MgO on (110) NbBaCuO described above, but in the past, even though the insulating thin film was grown epitaxially, it was microscopic. In reality, it is nothing but the fact that the crystals only grow in a state of scattered islands.Therefore, as the thin film becomes an ultra-thin film, In some parts, discontinuous parts of the film were formed everywhere.

本発明者等は以上に鑑み、(001)面が膜面に平行を
なした単結晶状のYBa2Cu3O7-X薄膜の上に、MgOからなる
絶縁用超薄膜を一原子層ずつ順に成長させ、これによっ
て途切れのない超薄膜をも提供できるようにすることを
目標にして、鋭意研究の結果本発明に到達したものであ
る。
In view of the above, the inventors of the present invention have formed a single crystal YBa 2 Cu 3 O 7-X thin film whose (001) plane is parallel to the film surface, and an ultrathin insulating film made of MgO for each atomic layer. The present invention has been achieved as a result of earnest research with the goal of making it possible to provide an ultra-thin film without interruption by sequentially growing the films.

〔課題を解決するための手段〕と〔作用〕 即ち本発明は、 (001)面が膜面に平行をなした単結晶状のYBa2Cu3O
7-X薄膜の面上に、(001)面が膜面に平行をなした、途
切れのない10Å以下の厚さのMgO超薄膜が形成されてい
ることを特徴とする積層薄膜体。
[Means for Solving the Problem] and [Action] That is, the present invention is directed to a single crystal YBa 2 Cu 3 O having a (001) plane parallel to the film surface.
A laminated thin film body characterized in that an ultra-thin MgO thin film having a thickness of 10 Å or less is formed on the surface of a 7-X thin film, the (001) plane being parallel to the film surface.

MgO超薄膜が単結晶状のものとして形成されているこ
とを特徴とする上記記載の積層薄膜体。
The laminated thin film body as described above, wherein the ultrathin MgO film is formed as a single crystal.

真空蒸着槽内の蒸着基板上に形成した、(001)面が
膜面に平行をなした単結晶状のYBa2Cu3O7-X薄膜の面上
に、微量酸素の存在下、蒸着基板の温度を500℃未満と
して、2Å/sec以下のの速度でMgを蒸発させ、MgO薄膜
を形成させることを特徴とする積層薄膜体の製造法。
On the surface of a single crystal YBa 2 Cu 3 O 7-X thin film with the (001) plane parallel to the film surface formed on the evaporation substrate in the vacuum evaporation tank, in the presence of a trace amount of oxygen, the evaporation substrate At a temperature of less than 500 ° C. to evaporate Mg at a rate of 2Å / sec or less to form a MgO thin film, which is a method for producing a laminated thin film body.

上記の乃至の発明の関係は、簡単に述べると次の
とおりである。
The relations of the above-mentioned inventions are briefly as follows.

即ち、及びの発明は、前述したジョセフソントン
ネル型素子としての利用に際し、前段階として必要と考
えられる積層薄膜体に関するものであり、の発明は、
YBa2Cu3O7-X面上へMgOを原子層単位で徐々に成長させる
ことを可能とし、ひいては、途切れのないMgO超薄膜
や、表面の平滑性に優れたMgO薄膜の形成をも可能とす
る方法発明に関するものである。
That is, the inventions of and are related to the laminated thin film body which is considered to be necessary as a pre-stage when used as the above-mentioned Josephson tunnel type element, and the invention of
It is possible to gradually grow MgO on the YBa 2 Cu 3 O 7-X plane in atomic layer units, and it is also possible to form an uninterrupted MgO ultra-thin film and a MgO thin film with excellent surface smoothness. The present invention relates to a method invention.

ここにおいて上記総ての発明に共通する、(001)面
が膜面に平行をなした単結晶状のYBa2Cu3O7-X薄膜の製
造法は、先に出願したとおりであり、基本的には次の
(イ)又は(ロ)の方法によっている。
Here, the manufacturing method of the single crystal YBa 2 Cu 3 O 7-X thin film in which the (001) plane is parallel to the film surface, which is common to all the above-mentioned inventions, is as previously filed. Specifically, the following method (a) or (b) is used.

(イ)真空蒸着槽内の蒸着基板の表面に、その近傍から
酸素ガスを噴射し、蒸着基板付近にだけ比較的高い圧力
の酸素雰囲気をつくり、Y,Ba,Cuの各金属を別々の蒸発
源からY:Ba:Cuの原子比がおよそ1:2:3となるように制御
しつつ基板上へ同時に蒸発させる方法。
(B) Oxygen gas is injected from the vicinity of the surface of the vapor deposition substrate in the vacuum vapor deposition tank to create an oxygen atmosphere with a relatively high pressure only near the vapor deposition substrate, and each of the Y, Ba, and Cu metals is vaporized separately. A method in which the atomic ratio of Y: Ba: Cu from the source is controlled to be approximately 1: 2: 3 and vaporized simultaneously onto the substrate.

(ロ)真空蒸着槽内の蒸着基板の表面に、その近傍から
酸素ガスを噴射し、蒸着基板付近にだけ比較的高い圧力
の酸素雰囲気をつくる一方、真空蒸着槽内にプラズマを
発生させ、Y,Ba,Cuの各金属を別々の蒸発源からY:Ba:Cu
の原子比がおよそ1:2:3となるように制御しつつ基板上
へ同時に蒸発させる方法。
(B) Oxygen gas is injected from the vicinity of the surface of the vapor deposition substrate in the vacuum vapor deposition tank to create an oxygen atmosphere of relatively high pressure only near the vapor deposition substrate, while plasma is generated in the vacuum vapor deposition tank. , Ba, Cu metals from different evaporation sources Y: Ba: Cu
A method of simultaneously evaporating onto the substrate while controlling so that the atomic ratio of is about 1: 2: 3.

上記した(イ)又は(ロ)の方法で生成するYBa2Cu3O
7-X薄膜を、(001)面が膜面に平行をなした単結晶とし
て得るには、蒸着基板として既知のSrTiO3,MgO,C0O,NiO
等の単結晶を用い、且つこの単結晶をその(001)面が
基板表面となるように用いる。
YBa 2 Cu 3 O produced by the above method (a) or (b)
To obtain a 7-X thin film as a single crystal whose (001) plane is parallel to the film plane, SrTiO 3 , MgO, C 0 O, NiO
Etc., and the (001) plane is used as the substrate surface.

この様に、YBa2Cu3O7-Xの単結晶薄膜を、その(001)
面が膜面に平行をなすものとして得るには、少なくとも
蒸着基板として、その表面が(001)面となっている単
結晶を用いる必要があるが、その外、YBa2Cu3O7-X薄膜
を全体として実質的に単結晶のものとして得るために
は、500℃以上、更に望ましくは520℃以上に加熱した蒸
着基板上に金属を蒸発させることが必要である。
Thus, the YBa 2 Cu 3 O 7-X single crystal thin film is
In order to obtain a plane parallel to the film plane, it is necessary to use a single crystal whose surface is a (001) plane at least as a vapor deposition substrate. In addition to that, YBa 2 Cu 3 O 7-X In order to obtain the thin film as a substantially single crystal as a whole, it is necessary to evaporate the metal on the vapor deposition substrate heated to 500 ° C. or higher, more preferably 520 ° C. or higher.

更に、YBa2Cu3O7-Xの単結晶薄膜の製造にあたって
は、次の様な操作をなす。
Furthermore, the following operations are performed in the production of the YBa 2 Cu 3 O 7-X single crystal thin film.

第1に、真空蒸着槽は、当初、例えば10-6Torr程度の
高真空となし、次いで蒸着基板の近傍から同基板の表面
に向けて微量の酸素ガスを継続的に噴射させ、同基板の
表面近傍のみ酸素ガス圧力を10-2〜10-1Torrと高くする
一方,真空蒸着槽の適宜箇所から同槽内の気体を継続的
に排気し、蒸着基板の近傍を除く大部分の真空蒸着槽内
の酸素ガス圧力を10-5〜10-3Torrにする。
First, the vacuum vapor deposition tank was initially set to a high vacuum of, for example, about 10 -6 Torr, and then a small amount of oxygen gas was continuously jetted from the vicinity of the vapor deposition substrate toward the surface of the substrate, The oxygen gas pressure is increased to 10 -2 to 10 -1 Torr only in the vicinity of the surface, while the gas in the vacuum deposition tank is continuously exhausted from the appropriate location in the vacuum deposition tank, and most of the vacuum deposition except the vicinity of the deposition substrate is performed. The oxygen gas pressure in the tank is set to 10 -5 to 10 -3 Torr.

この第1の手段で真空蒸着槽内の蒸着基板近傍以外の
部分の酸素ガス圧力の上限を10-3Torrとしたのは、同槽
内にある蒸発源中のY,Ba,Cuを劣化させることなく、そ
の蒸発をスムーズにおこなわせる為である。一方、下限
の10-5Torrは、プラズマを発生させる場合に必要なガス
圧力の下限であり、プラズマを利用しない場合には、特
に技術的な意味はない。
By the first means, the upper limit of the oxygen gas pressure in the portion other than the vicinity of the vapor deposition substrate in the vacuum vapor deposition tank is set to 10 -3 Torr, which deteriorates Y, Ba, Cu in the evaporation source in the same vapor deposition tank. This is because the evaporation can be carried out smoothly. On the other hand, the lower limit of 10 -5 Torr is the lower limit of the gas pressure required when plasma is generated, and has no particular technical meaning when plasma is not used.

また第1の手段で、蒸着基板付近のみ酸素ガス圧力を
高くしたのは、CuをCu2+〜Cu3+にまで酸化するためであ
り、10-3Torr以下の酸素ガス圧力では、CuをCu2〜Cu3
まで酸化できないからである。
Further, the reason for increasing the oxygen gas pressure only near the vapor deposition substrate by the first means is to oxidize Cu to Cu 2+ to Cu 3+. At the oxygen gas pressure of 10 -3 Torr or less, Cu is This is because Cu 2 to Cu 3 cannot be oxidized.

尚、プラズマは、蒸発源と蒸着基板との間に高周波コ
イルを置き、真空蒸着槽の器壁との間で高周波発振させ
ることにより発生させることができるが、このプラズマ
の発生は、蒸発金属の反応活性を向上させる意味で望ま
しい反面、その発生が強いと、生成中の目的物を攻撃す
る等して弊害が生ずるので、プラズマ発生に使用する電
力は、50W〜500W、望ましくは100W前後とする。
The plasma can be generated by placing a high frequency coil between the evaporation source and the vapor deposition substrate and causing high frequency oscillation between the plasma deposition chamber and the chamber wall of the vacuum vapor deposition tank. On the other hand, it is desirable in terms of improving reaction activity, but if the generation is strong, it will cause adverse effects such as attacking the target object during generation, so the power used for plasma generation is 50 W to 500 W, preferably around 100 W. .

第2にY,Ba,Cuの蒸発には、Y及びBaの場合は電子ビ
ーム、Cuの場合は電気抵抗加熱を採用すればよい。
Secondly, for the evaporation of Y, Ba and Cu, an electron beam may be used for Y and Ba, and electric resistance heating may be used for Cu.

そして、これら蒸発手段による金属の蒸発に際して
は、実施に先だっておこなう前記真空蒸着槽内での予備
実験によって決定した電力によって、Y:Ba:Cuの蒸発量
を、およそ1:2:3となるように設定すればよい。
Then, in the evaporation of the metal by these evaporation means, by the electric power determined by the preliminary experiment in the vacuum deposition tank performed prior to the implementation, the evaporation amount of Y: Ba: Cu becomes about 1: 2: 3. You can set it to.

即ち、実施に先だっておこなう予備実験により、Y,B
a,Cuの各金属が、蒸発源に加えた電力量条件下において
単位時間当たりにどの程度蒸発してY2O3,BaO,CuOの蒸着
膜を形成するかを、真空蒸着槽内の蒸着基板付近に設置
した膜厚計によって金属毎に測定し、実施時の蒸発量を
蒸発源に加える電力量によって決定すればよい。
In other words, Y, B
The degree of evaporation of each metal of a and Cu to form a vapor-deposited film of Y 2 O 3 , BaO, and CuO per unit time under the electric power condition applied to the vaporization source It is possible to measure each metal with a film thickness meter installed near the substrate and determine the evaporation amount at the time of implementation by the amount of electric power applied to the evaporation source.

以上の様にして製造した、(001)面が膜面に平行を
なした単結晶状のYBa2Cu3O7-X薄膜の面上に、MgOをエピ
タキシャルに形成するには、YBa2Cu3O7-Xと同一の条件
下でMgを蒸発させることが考えられる。
In order to epitaxially form MgO on the surface of the single crystal YBa 2 Cu 3 O 7-X thin film having the (001) plane parallel to the film surface produced as described above, YBa 2 Cu It is possible to evaporate Mg under the same conditions as 3 O 7-X .

しかしながら、本発明者等の実験によれば、MgO薄膜
の形成に当たり、蒸着基板温度を500℃以上、更に好ま
しくは520℃以上としてYBa2Cu3O7-Xがエピタキシャルに
成長し易い蒸着基板温度と同様にしたのでは、原子層単
位でのMgOの均一な成長は望めないことが判明したので
あり、上記条件下ではMgOは従来の場合と同様に島状に
成長しやすく、せいぜい30Å前後の薄膜にしなければ膜
に途切れた部分が生じることが判った。
However, according to the experiments by the present inventors, in forming the MgO thin film, the deposition substrate temperature is 500 ° C. or higher, more preferably 520 ° C. or higher, and YBa 2 Cu 3 O 7-X is a deposition substrate temperature at which it is easy to grow epitaxially. It was found that uniform growth of MgO in atomic layer units could not be expected under the same conditions as above, and under the above conditions, MgO easily grows like islands as in the conventional case, and at most 30 Å It was found that if the film was not formed into a thin film, a discontinuous portion would occur in the film.

本発明でMgO薄膜の形成に当たり蒸着基板温度を500℃
未満としたのは、上記理由によるものであり、後記実施
例からも明らかなように、蒸着基板温度が適切であれ
は、2乃至3原子層という驚くべき薄さにおいても途切
れのないMgOの薄膜の形成ができるのである。しかも、
このMgOの超薄膜は、その(001)面が膜面に平行を成し
ているだけでなく、全体として単結晶をなしたものに近
いため、更にこのMgO超薄膜の面上に、(001)面が膜面
に平行をなした良質のYBa2Cu3O7-Xをエピタキシャルに
成長させるにも極めて都合の良いものである。
In forming the MgO thin film according to the present invention, the deposition substrate temperature is 500 ° C.
The reason why the amount is less than the above is due to the above-mentioned reason, and as will be apparent from the examples described below, even if the deposition substrate temperature is appropriate, a thin film of MgO having a surprising thinness of 2 to 3 atomic layers is not interrupted. Can be formed. Moreover,
This ultrathin MgO film has not only the (001) plane that is parallel to the film plane but also a single crystal as a whole. It is also very convenient for epitaxially growing good quality YBa 2 Cu 3 O 7-X whose plane is parallel to the film surface.

尚、MgO薄膜の形成に当たって、Mgを蒸着基板に向か
って2Å/sec以下の速度で蒸発させることとしたのは、
蒸発速度が速すぎるとMgOが島状に結晶成長し易いから
であり、MgO薄膜を超薄膜とした場合には膜に途切れを
生じやすいからである。
In forming the MgO thin film, it was decided to evaporate Mg toward the vapor deposition substrate at a rate of 2 Å / sec or less.
This is because if the evaporation rate is too fast, MgO easily crystallizes in the form of islands, and if the MgO thin film is an ultra-thin film, the film tends to break.

蒸発したMgは、真空蒸着槽内の酸素と結合しMgOとし
て蒸着基板に蒸着するが、Mgの酸化に当たっては、先の
Cuの酸化の場合の如く部分的に高い酸素濃度を必要とし
ないため、真空蒸着内全体を10-4Torr程度の酸素圧とす
ればよい。
The evaporated Mg is combined with oxygen in the vacuum deposition tank and deposited as MgO on the deposition substrate.
Since a high oxygen concentration is not required locally as in the case of Cu oxidation, the oxygen pressure in the entire vacuum deposition may be about 10 −4 Torr.

〔実施例〕〔Example〕

真空蒸着槽(750φ×1000h)を10-6Torrまで油拡散ポ
ンプによって排気する。
Evacuate the vacuum evaporation tank (750φ x 1000h) to 10 -6 Torr with an oil diffusion pump.

薄膜を成長させる蒸着基板として、表面を研磨したSr
TiO3単結晶を、その表面が(001)面(10mm×10mm)と
なるようにして用い、これをW線ヒーターにより650℃
まで加熱しこの温度に保持する。
Sr with a polished surface is used as a vapor deposition substrate for growing thin films.
TiO 3 single crystal was used with its surface being (001) plane (10 mm × 10 mm ), which was heated to 650 ° C by a W-ray heater.
Heat up to and hold at this temperature.

蒸着基板の外周縁をとり囲むドーナツ状の酸素拡散室
に酸素ガスを噴射ノズルを差し込み、酸素ノズルからの
噴出酸素が、酸素拡散室で一旦拡散し、その後、酸素拡
散室の内周面に設けた間隙から蒸着基板表面に沿って薄
層状に噴出するようにする。この際ガス圧は蒸着基板付
近だけ10-2〜10-1Torrにまで上昇するが、蒸着基板から
離れた蒸発源付近では10-4Torrまでにしかなっていな
い。
Insert the oxygen gas injection nozzle into the donut-shaped oxygen diffusion chamber that surrounds the outer peripheral edge of the vapor deposition substrate, and the oxygen ejected from the oxygen nozzle once diffuses in the oxygen diffusion chamber, and then is provided on the inner peripheral surface of the oxygen diffusion chamber. The thin layer is ejected from the gap along the surface of the vapor deposition substrate. At this time, the gas pressure rises to 10 -2 to 10 -1 Torr only near the vapor deposition substrate, but only reaches 10 -4 Torr near the evaporation source away from the vapor deposition substrate.

金属Y,Ba,Cuをそれぞれ独立した蒸発源から蒸着基板
上で原子比で1:2:3になるような蒸発速度(例えば、Y
・・・1Å/sec,Ba・・・2.3Å/sec,Cu・・・1.7Å/se
c)で蒸発させる。さらに蒸発源と蒸着基板の間に高周
波コイルを置いて100Wで高周波発振させ酸素プラズマを
発生させて蒸発金属を活性化させることにより蒸着基板
上での反応を促進させる。
Evaporation rates of metal Y, Ba and Cu from independent evaporation sources such that the atomic ratio becomes 1: 2: 3 on the deposition substrate (for example, Y
・ ・ ・ 1Å / sec, Ba ・ ・ ・ 2.3Å / sec, Cu ・ ・ ・ 1.7Å / se
Evaporate in c). Further, a high frequency coil is placed between the evaporation source and the vapor deposition substrate to generate high frequency oscillation at 100 W to generate oxygen plasma and activate the vaporized metal to accelerate the reaction on the vapor deposition substrate.

以上の様にして膜厚1000ÅのYBa2Cu3O7-Xの薄膜を得
た。
As described above, a thin film of YBa 2 Cu 3 O 7-X having a film thickness of 1000 Å was obtained.

次いで、蒸着基板の温度を305℃に下げ、蒸着基板表
面への酸素を供給を止めて真空蒸着槽内を10-4Torr台の
酸素圧となした後、上記で得たYBa2Cu3O7-Xの薄膜の上
に、Mgを蒸発速度1Å/secで蒸発させ、膜厚を増加させ
ていった。
Next, the temperature of the vapor deposition substrate was lowered to 305 ° C., the supply of oxygen to the surface of the vapor deposition substrate was stopped, and the oxygen pressure in the vacuum vapor deposition tank was adjusted to the level of 10 −4 Torr, and then YBa 2 Cu 3 O obtained above was obtained. Mg was evaporated on the 7-X thin film at an evaporation rate of 1Å / sec to increase the film thickness.

上記実施に当っては膜厚1000ÅのYBa2Cu3O7-X薄膜の
反射電子回折像及びその上に形成されていくMgO薄膜の
反射電子回折像を、膜厚3Å,6Å,9Å,21Åの時点でと
り、YBa2Cu3O7-Xの(001)面が膜面に平行をなしてエピ
タキシャルに成長し、実質的に単結晶となっているこ
と、及びMgOが10Å以下の膜厚においても島状に成長す
ることなく均一に、しかも(001)面が膜面に平行をな
してエピタキシャルに成長し、単結晶に近いものとなっ
ていることを確認した。
In the above implementation, a backscattered electron diffraction image of a YBa 2 Cu 3 O 7-X thin film with a film thickness of 1000 Å and a backscattered electron diffraction image of an MgO thin film formed on the YBa 2 Cu 3 O 7-X thin film were obtained. At the time of, the (001) plane of YBa 2 Cu 3 O 7-X was grown epitaxially with the film plane parallel to the film plane, and was essentially a single crystal, and the MgO film thickness was 10 Å or less. It was confirmed that even in the case of (1), it grew evenly without growing in an island shape, and epitaxially grew with the (001) plane parallel to the film surface, and was close to a single crystal.

また、上記MgO薄膜の上へのYBa2Cu3O7-X薄膜の形成を
前述した同薄膜と同様の条件で試み、当該薄膜が、その
(001)面を膜面に平行をなしてエピタキシャルに成長
し、実質的に単結晶膜となることも確認した。
Moreover, the formation of a YBa 2 Cu 3 O 7-X thin film on the above MgO thin film was tried under the same conditions as the above-mentioned thin film, and the thin film was epitaxially formed with its (001) plane parallel to the film plane. It was also confirmed that the film grew to a substantially single crystal film.

尚、蒸発源としてはY,Baについては電子ビーム蒸発、Cu
については抵抗加熱蒸発をそれぞれ用いた。また、Mgに
ついては電子ビーム蒸発を用いた。
As evaporation sources, electron beam evaporation and Cu
For each, resistance heating evaporation was used. For Mg, electron beam evaporation was used.

次に各々について蒸発方法を述べる。Next, the evaporation method will be described for each.

Y :50gの金属インゴット(99.9%)を用い、これを水
冷したルツボに入れ電子線を加速電圧5KV,フィラメント
電流400mAとして、金属にあて蒸発させた。
Y: 50 g of a metal ingot (99.9%) was used, and this was put in a water-cooled crucible and an electron beam was applied to the metal at an accelerating voltage of 5 KV and a filament current of 400 mA to evaporate.

Ba:Yと同様に50gの金属インゴット(99.9%)を用い、
加速電圧5KV,フィラメント電流100mAとして蒸発させ
た。
As with Ba: Y, 50g of metal ingot (99.9%) is used,
It was evaporated at an accelerating voltage of 5 KV and a filament current of 100 mA.

Cu:抵抗加熱蒸発源としてアルミナルツボをタングステ
ンフィラメントで巻いたものを用い、アルミナルツボの
中に金属Cuの粒(2〜3mm,99.9999%)を10g入れ、フィ
ラメントに10V,30Aの電流を流して蒸発させた。
Cu: Alumina crucible wound with a tungsten filament was used as a resistance heating evaporation source, 10 g of metal Cu particles (2 to 3 mm, 99.9999%) were placed in the alumina crucible, and a current of 10 V and 30 A was applied to the filament. Evaporated.

Mg:30gの金属Mg(99.9%)を用い、これを水冷したルツ
ボに入れ電子線を加速電圧5KV,フィラメント電流10mAと
して、金属にあて蒸発させた。
Mg: 30 g of metal Mg (99.9%) was used, and this was put in a water-cooled crucible, and an electron beam was applied to the metal at an accelerating voltage of 5 KV and a filament current of 10 mA to evaporate.

〔発明の効果〕〔The invention's effect〕

本発明方法によれば、(001)面が膜面に平行をなし
た単結晶状のYBa2Cu3O7-X薄膜の表面を、従来殆ど不可
能に近いとされていた僅か数Å程度のMgOの超薄膜で均
一に覆うことが可能である。しかも、この方法を適用し
て製造したMgO超薄膜は(001)面が膜面に平行をなして
エピタキシャルに成長しているものであるため、その表
面に再度、(001)面が膜面に平行をなした超電導性に
も優れた単結晶状YBa2Cu3O7-X薄膜をエピタキシャルに
形成し、ジョセフソントンネル型素子としての利用が期
待できるものである。
According to the method of the present invention, the surface of a single crystal YBa 2 Cu 3 O 7-X thin film in which the (001) plane is parallel to the film surface is only a few Å, which has been considered to be almost impossible in the past. It is possible to uniformly coat with an ultra thin film of MgO. Moreover, since the MgO ultra-thin film produced by applying this method is epitaxially grown with the (001) plane parallel to the film plane, the (001) plane becomes the film plane again. It is expected that a single crystal YBa 2 Cu 3 O 7-X thin film with excellent superconductivity will be epitaxially formed and used as a Josephson tunnel type device.

更に、上記MgO超薄膜を実質的に単結晶のものとして
提供するこも可能であり、その場合には表面により良質
な超電導性薄膜が形成できるため、ジョセフソントンネ
ル型素子としての利用がより大きく期待できる。
Furthermore, it is also possible to provide the above MgO ultrathin film as a substantially single-crystal one, in which case a high-quality superconducting thin film can be formed on the surface, so that it is expected to be used more as a Josephson tunnel type device. it can.

【図面の簡単な説明】[Brief description of drawings]

第1図は、実施例で得た膜厚1000ÅのYBa2Cu3O7-Xの薄
膜の反射電子回折像を、また第2図、第3図、第4図、
第5図は、同薄膜の上に形成したMgO薄膜の反射電子回
折像を、膜厚3Å,6Å,9Å,21Åの時点でとったものを
順に表すものであり、いずれも薄膜の結晶構造を表す図
面代用写真である。
FIG. 1 is a backscattered electron diffraction image of a thin film of YBa 2 Cu 3 O 7-X having a film thickness of 1000 Å obtained in Examples, and FIG. 2, FIG. 3, FIG.
Fig. 5 shows the backscattered electron diffraction images of the MgO thin film formed on the same thin film at the film thicknesses of 3Å, 6Å, 9Å and 21Å in order. It is a drawing substitute photograph to represent.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 39/02 ZAA H01L 39/02 ZAAD 39/24 ZAA 39/24 ZAAJ // C04B 41/87 ZAA C04B 41/87 ZAAF (72)発明者 平田 和人 京都府京都市北区上賀茂桜井町103―3 第一メゾンナカジマ406号 (72)発明者 坂東 尚周 滋賀県大津市向陽町8―15 (56)参考文献 特開 昭64−54770(JP,A) 特開 平1−205577(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H01L 39/02 ZAA H01L 39/02 ZAAD 39/24 ZAA 39/24 ZAAJ // C04B 41/87 ZAA C04B 41/87 ZAAF (72) Inventor Kazuhito Hirata 103-3 Kamigamo Sakurai-cho, Kita-ku, Kyoto City, Kyoto Prefecture No.406 Maison Nakajima No. 406 (72) Inventor Naoshu Bando 8-15, Koyo-cho, Otsu City, Shiga Prefecture ( 56) References JP-A 64-54770 (JP, A) JP-A 1-205577 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(001)面が膜面に平行をなした単結晶状
のYBa2Cu3O7-X薄膜の面上に、(001)面が膜面に平行を
なした、途切れのない10Å以下の厚さのMgO超薄膜が形
成されていることを特徴とする積層薄膜体。
1. A single crystal YBa 2 Cu 3 O 7-X thin film having a (001) plane parallel to the film surface, and a (001) plane parallel to the film surface A laminated thin film body characterized in that an ultrathin MgO film having a thickness of 10 Å or less is formed.
【請求項2】MgO超薄膜が単結晶状のものとして形成さ
れていることを特徴とする請求項記載の積層薄膜体。
2. The laminated thin film body according to claim 1, wherein the ultrathin MgO film is formed as a single crystal.
【請求項3】真空蒸着槽内の蒸着基板上に形成した、
(001)面が膜面に平行をなした単結晶状のYBa2Cu3O7-X
薄膜の面上に、微量酸素の存在下、蒸着基板の温度を50
0℃未満として、2Å/sec以下のの速度でMgを蒸発さ
せ、MgO薄膜を形成させることを特徴とする積層薄膜体
の製造法。
3. Formed on a vapor deposition substrate in a vacuum vapor deposition tank,
Single crystal YBa 2 Cu 3 O 7-X with (001) plane parallel to the film plane
On the surface of the thin film, in the presence of a trace amount of oxygen, raise the temperature of the deposition substrate to 50
A method for producing a laminated thin film body, which comprises forming an MgO thin film by evaporating Mg at a rate of 2Å / sec or less at a temperature lower than 0 ° C.
JP63302510A 1988-11-29 1988-11-29 Laminated thin film body and manufacturing method thereof Expired - Lifetime JP2524827B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63302510A JP2524827B2 (en) 1988-11-29 1988-11-29 Laminated thin film body and manufacturing method thereof
US07/442,988 US5061687A (en) 1988-11-29 1989-11-29 Laminated film and method for producing the same
EP89122007A EP0371481B1 (en) 1988-11-29 1989-11-29 Laminated film and method for producing the same
DE68925568T DE68925568T2 (en) 1988-11-29 1989-11-29 Laminated film and method of making it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63302510A JP2524827B2 (en) 1988-11-29 1988-11-29 Laminated thin film body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH02149495A JPH02149495A (en) 1990-06-08
JP2524827B2 true JP2524827B2 (en) 1996-08-14

Family

ID=17909831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63302510A Expired - Lifetime JP2524827B2 (en) 1988-11-29 1988-11-29 Laminated thin film body and manufacturing method thereof

Country Status (4)

Country Link
US (1) US5061687A (en)
EP (1) EP0371481B1 (en)
JP (1) JP2524827B2 (en)
DE (1) DE68925568T2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0459906B1 (en) * 1990-05-30 1997-09-24 Sumitomo Electric Industries, Ltd. Process for preparing superconducting junction of oxide superconductor
US5292718A (en) * 1990-05-30 1994-03-08 Sumitomo Electric Industries, Ltd. Process for preparing superconducting junction of oxide superconductor
JP2580859B2 (en) * 1990-09-10 1997-02-12 財団法人国際超電導産業技術研究センター Method for producing Bi-Sr-Ca-Cu-O-based superconducting ultrathin film
CA2051778C (en) * 1990-09-19 1997-05-06 Takao Nakamura Method for manufacturing superconducting device having a reduced thickness of oxide superconducting layer and superconducting device manufactured thereby
EP0494830B1 (en) * 1991-01-10 1997-06-18 Sumitomo Electric Industries, Ltd. Method for manufacturing tunnel junction type josephson device composed of compound oxide superconductor material
EP0502787B1 (en) * 1991-03-04 1996-08-14 Sumitomo Electric Industries, Ltd. A thin film of oxide superconductor possessing locally different crystal orientations and a processes for preparing the same
EP0506573B1 (en) * 1991-03-28 1997-10-08 Sumitomo Electric Industries, Ltd. Process for cleaning a surface of thin film of oxide superconductor
CA2064428A1 (en) * 1991-03-28 1992-09-29 So Tanaka Process for preparing layered thin films
DE69219192T2 (en) * 1991-03-28 1997-09-11 Sumitomo Electric Industries Process for producing a layer structure with at least one thin layer of superconductor oxide
US5514484A (en) * 1992-11-05 1996-05-07 Fuji Xerox Co., Ltd. Oriented ferroelectric thin film
JPH06302872A (en) * 1993-04-14 1994-10-28 Sumitomo Electric Ind Ltd Method for depositing thin film on superconductive thin oxide
US6221563B1 (en) 1999-08-12 2001-04-24 Eastman Kodak Company Method of making an organic electroluminescent device
JP4727029B2 (en) 1999-11-29 2011-07-20 株式会社半導体エネルギー研究所 EL display device, electric appliance, and semiconductor element substrate for EL display device
EP1640946A3 (en) * 2004-09-24 2008-05-14 Pioneer Corporation Plasma display apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169175A (en) * 1984-02-13 1985-09-02 Rikagaku Kenkyusho Josephson junction element
SG26394G (en) * 1987-07-17 1995-09-01 Sumitomo Electric Industries A superconducting thin film and a method for preparing the same
FR2626715B1 (en) * 1988-02-02 1990-05-18 Thomson Csf THIN FILM DEVICE OF SUPERCONDUCTING MATERIAL AND METHOD FOR PRODUCING THE SAME

Also Published As

Publication number Publication date
DE68925568T2 (en) 1996-06-05
EP0371481A3 (en) 1990-08-22
EP0371481A2 (en) 1990-06-06
DE68925568D1 (en) 1996-03-14
EP0371481B1 (en) 1996-01-31
JPH02149495A (en) 1990-06-08
US5061687A (en) 1991-10-29

Similar Documents

Publication Publication Date Title
JP2524827B2 (en) Laminated thin film body and manufacturing method thereof
US5872080A (en) High temperature superconducting thick films
JP2829221B2 (en) Method of forming oxide film on metal substrate by thermal plasma evaporation method
CA1322514C (en) Thin film of single crystal of lna_cu_o___ having three-layered perovskite structure and process for producing the same
JPH01161881A (en) Josephson element and its manufacture
JPH0354116A (en) Compound oxide superconducting thin film and production thereof
JP2767298B2 (en) LAMINATED THIN FILM AND PROCESS FOR PRODUCING THE SAME
JP3144104B2 (en) Preparation method of high quality oxide superconducting thin film
JP2747173B2 (en) Oxide high temperature superconductor single crystal thin film forming method
JP2639544B2 (en) Single crystal thin film of LaA Lower 2 Cu 3 Lower O 7 Lower 3 x with three-layer perovskite structure and LaA Lower 2 Cu Lower 3 O Lower 7 Lower 7 x thin film manufacturing method
US5362711A (en) Method for producing single crystal superconducting LnA2 Cu3 O7-x films
US4981839A (en) Method of forming superconducting oxide films using zone annealing
JP3897550B2 (en) Preparation method of boride superconductor thin film
JP2704625B2 (en) Method for producing LnA lower 2 Cu lower 3 O-low 7-x single crystal thin film and LnA lower 2 Cu lower 3 O lower 7-x thin film having three-layer perovskite structure
JP3741816B2 (en) Manufacturing method of oxide superconducting tape wire
JP3240686B2 (en) Method for producing high-quality oxide superconducting thin film and superconducting junction
JP2733693B2 (en) Ln ▲ lower 2 ▲ lower-▼ lower x ▼ Ce ▲ lower x ▼ CuO ▲ lower 4 ▲ lower-▼ ▲ lower y ▼ Single crystal and Ln ▲ lower 2 ▲ lower-▼ lower x ▼ Ce ▲ lower x ▼ CuO Lower 4 ▼ Lower-▼ Lower y
JP2919954B2 (en) Superconducting member manufacturing method
JP2919956B2 (en) Superconducting member manufacturing method
JPH04149008A (en) Production of superconducting material
JPH0196015A (en) Formation of superconducting thin film
JPH01100816A (en) High temperature superconducting material
JPH01183176A (en) Manufacture of thin superconducting film
JPH10190077A (en) Manufacture of a-axis high temperature superconductive thin film
JPH04104411A (en) Manufacture of oxide superconducting tape conductor