JPS60169175A - Josephson junction element - Google Patents

Josephson junction element

Info

Publication number
JPS60169175A
JPS60169175A JP59024729A JP2472984A JPS60169175A JP S60169175 A JPS60169175 A JP S60169175A JP 59024729 A JP59024729 A JP 59024729A JP 2472984 A JP2472984 A JP 2472984A JP S60169175 A JPS60169175 A JP S60169175A
Authority
JP
Japan
Prior art keywords
layer
nbn
mgo
thin film
superconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59024729A
Other languages
Japanese (ja)
Other versions
JPH0481874B2 (en
Inventor
Tsutomu Yamashita
努 山下
Hiroshi Oota
浩 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP59024729A priority Critical patent/JPS60169175A/en
Publication of JPS60169175A publication Critical patent/JPS60169175A/en
Publication of JPH0481874B2 publication Critical patent/JPH0481874B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/12Josephson-effect devices

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To enhance the product of IcCRN of a critical current (IC) and a resistance (RN), by using an NbN thin film for a superconductive layer, using an MgO thin film for an insulating layer and constituting a quasi-plane type Josephson element (QPJJ). CONSTITUTION:An MgO film is formed on an Si substrate 1 by sputtering. A lower superconducting layer 2 of NbN is formed on the MgO film. An insulator layer 4 of MgO and an upper superconductive layer 3 of NbN are formed on the layer 2. A weak coupling part 5 is formed across the side surface of the thickness of the insulator layer of these laminated thin films. The upper and lower conducting layers are coupled. In this constitution, deterioration in superconductive characteristics of an interface layer between the superconductive layer and the insulator layer can be prevented.

Description

【発明の詳細な説明】 本発明はジョセフソン接合素子の改良に関し、詳しくは
電極材がNbN 、絶縁材がMgOから成る改良された
準平面型ジョセフソン接合素子(Quasl−Plan
ar Josephson Junetlon :以下
、l’QP J JJという)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a Josephson junction element, and more particularly to an improved quasi-planar Josephson junction element whose electrode material is NbN and whose insulating material is MgO.
ar Josephson Junetron: hereinafter referred to as l'QP J JJ).

QPJJは、第1図又は第2図に示すように、基板l上
に少なくとも一部が重って(第1図では部分的に向い合
って、第2図では又差して)形成された下部の超伝導体
層2−中間の絶縁体層4−上部の超伝導体層3の積層薄
膜と、この積層薄膜の絶縁体層4の厚み側面4′ヲ横切
って上下の超伝導体層1.2を結合する弱結合部5とか
ら成るジョセフソン接合素子である(特公昭k & −
77/2号。
As shown in FIG. 1 or 2, QPJJ is a lower part formed on the substrate l at least partially overlapping (partially facing each other in FIG. 1, and facing each other in FIG. 2). The superconductor layer 2 - the middle insulator layer 4 - the upper superconductor layer 3 are laminated thin films, and the upper and lower superconductor layers 1. It is a Josephson junction element consisting of a weak coupling part 5 that couples 2 (Tokuko Aki & -
77/2 issue.

特開昭j−7−7g/g7号、特開昭!; 7− IO
’12g2号参照)。
Tokukai Shoj-7-7g/g7, Tokukai Sho! ;7-IO
(See '12g2).

とのQPJJは、弱結合部(ツマリア)の長さ!か極め
て短かく、静電容量が小さく、しかも素子の臨界電流I
cと抵抗RNの槓ICRNか大きいなど優れた特性を備
えており、また機械的振動に強く、素子の幾何学的形状
が量産に適するなど多くの特長を有する。
QPJJ with is the length of the weak coupling part (Tsumaria)! It is extremely short, has a small capacitance, and has a critical current I of the element.
It has excellent characteristics such as a large resistance C and a large resistance RN ICRN, is resistant to mechanical vibration, and has many other features such as the geometrical shape of the element suitable for mass production.

ところで、とのQPJJでは、電極となる上下の超伝導
体層2.3の絶縁体層4との界面層の超伝導特性の劣化
、および電極材と絶縁材の相互拡散による特性の経時変
化等の問題がある。特に、上下の超伝導体層の絶縁体層
との界面近くの超伝導体のTcの低下は、素子特性に大
きな影4Fを与え、この問題の解決が望まれる。
By the way, in QPJJ with , deterioration of the superconducting properties of the interface layer between the upper and lower superconductor layers 2.3, which serve as electrodes, and the insulating layer 4, and changes in properties over time due to interdiffusion between the electrode material and the insulating material, etc. There is a problem. In particular, a decrease in Tc of the superconductor near the interface between the upper and lower superconductor layers and the insulator layer has a large impact on the device characteristics, and a solution to this problem is desired.

一方、従来、第3図に示すように、MgO単結単結晶面
開面31上極としてNbN単結晶薄膜32゜33でブリ
ッジ型のジョセフソン接合素子を製作し、良好な特性を
得たことか報告されている。
On the other hand, as shown in Fig. 3, a bridge-type Josephson junction device was fabricated using a NbN single crystal thin film 32° 33 as the upper electrode of the MgO single crystal facet 31, and good characteristics were obtained. It has been reported that

これは、MgOがNbNと同じ結晶構造をもち格子定数
も近いためエピタキシャル成長し易く、NbN膜を単結
晶化することKよって界面層の問題を解決していると考
えられるが、MgO単結晶臂開面上K NbN単結晶薄
膜から成る多数個の素子を製作することは困難であり、
基板のコストなど実用上問題がある。
This is because MgO has the same crystal structure as NbN and has a similar lattice constant, so it is easy to grow epitaxially, and it is thought that making the NbN film into a single crystal solves the problem of the interface layer. It is difficult to fabricate a large number of devices consisting of on-plane KNbN single crystal thin films;
There are practical problems such as the cost of the board.

本発明者等は、高周波ス・臂ツタ法により、SI基板上
にMgO薄膜を形成し、その上にNbN薄膜を形成して
その特性を検討した。その結果、Mgo #NbN薄膜
はいずれも単結晶ではないが、Mg0C200)面にN
bNo、95(10の面かエピタキシャル成長し、臨界
温度Tcの高いNbN薄膜が形成されることを見出した
。第を図(、)はMgO薄膜のX線回折パターンであり
、同図(b)はNbN / MgOを連続スパッタ成膜
した場合のX線回折ノやターンである。第3図はSt 
基板上にスi+ツタ形成したMgO、A/203 薄膜
上のNbN薄膜およびSt基板上に直接スパッタ形成し
たNbN薄膜について、それらの臨界温度Tcの膜厚依
存性を示す。同図からも明らかなように、(a) Nb
N / MgO/ 5I(D jjJ 合K t;j、
10oX程voriiい膜でも約/lIKの高いTcが
得られており、この値は(bl 、 (e)の場合1夛
も数に高い。
The present inventors formed an MgO thin film on an SI substrate by a high-frequency wave-to-edge method, formed an NbN thin film thereon, and examined the characteristics thereof. As a result, although none of the Mgo #NbN thin films were single crystal, it was found that N
It was found that an NbN thin film with a high critical temperature Tc was formed by epitaxial growth on the bNo. This is the X-ray diffraction pattern and turn when NbN/MgO is continuously formed by sputtering. Figure 3 shows St
The dependence of the critical temperature Tc on the film thickness is shown for an NbN thin film on an MgO and A/203 thin film formed with Si + ivy on a substrate, and an NbN thin film formed directly on a St substrate by sputtering. As is clear from the figure, (a) Nb
N / MgO / 5I (D jjJ combined K t;j,
A high Tc of about /lIK has been obtained even with a film as thick as 100X, and this value is much higher in the case of (bl, (e)).

このことは、MgOとNbN間のエピタキシャル成。This is due to the epitaxial formation between MgO and NbN.

長に関連したものであシ、MgO七NbNは単結晶では
ないかその界面には、結晶格子の乱れなどによって生ず
る遷移層が形成されず、境界は明確に分離された状態に
なっているものと考えられる。
This is related to the length. Isn't MgO7NbN a single crystal? At its interface, no transition layer is formed due to disorder of the crystal lattice, and the boundary is clearly separated. it is conceivable that.

本発明者等は上記実験結果とその考案の基に、上下の超
伝導体層にNbN薄膜、絶縁層にMgO薄膜を用いたQ
PJJを製作した結果、前記した界面層の問題が解決さ
れ、ICRN積の高い素子が得られることが判った。
Based on the above experimental results and their ideas, the present inventors have developed a Q
As a result of manufacturing PJJ, it was found that the above-mentioned problem of the interface layer was solved and a device with a high ICRN product could be obtained.

本発明は上記知見に基づくものであって、基板上に少な
くとも一部が重って形成されたNbN超伝導体層−Mg
O絶縁体層−NbN超伝導体層の積層薄膜と、このfj
TtN薄膜の絶縁体層の厚み側面を横切って上下の超伝
導体層を結合する弱結合部とから成ることを特徴とする
ジョセフソン接合素子である。
The present invention is based on the above findings, and provides an NbN superconductor layer formed on a substrate at least partially overlapping the Mg
The laminated thin film of O insulator layer-NbN superconductor layer and this fj
This is a Josephson junction device characterized by comprising a weak coupling portion that connects upper and lower superconductor layers across the thickness side of a TtN thin film insulator layer.

以下、実施例によp本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

高周波スノやツタ装置、フォトリソグラフィ技術、およ
び電子ビームリングラフィ技術を用いて、第1図に示す
構造のQPJJを製作した。SS基板1上に厚み約10
00 Aのスパッタ成膜したMgO膜の上に、NbNの
下部超伝導体層2を厚み約/グθoAで@−0μm、M
gOの絶縁体層4を厚み約コ00A。
A QPJJ having the structure shown in FIG. 1 was fabricated using a high-frequency snowflake device, photolithography technology, and electron beam phosphorography technology. Approximately 10mm thick on SS board 1
A lower superconductor layer 2 of NbN is deposited on the sputter-deposited MgO film of 00 A to a thickness of approximately /g θoA @ -0 μm, M
The thickness of the gO insulator layer 4 is about 00A.

NbNの上部超伝導体層3を厚み約コθoohで幅−〇
μm、NbNの弱結合部5′fr:厚み約1OoAで幅
λμm、上下の超伝導体層の重なり合った部分の長さb
=コOμmでそれぞれ製作した。なお、成膜条件はMg
Oの場合;放電Arガス圧!;OmTorr。
The upper superconductor layer 3 of NbN has a thickness of about θooh and a width of -0 μm, a weak coupling part 5′fr of NbN: a thickness of about 1 OoA and a width of λ μm, and the length of the overlapping portion of the upper and lower superconductor layers b.
= 0 μm. Note that the film forming conditions are Mg
In the case of O; discharge Ar gas pressure! ;OmTorr.

成膜速度約Jnm/m1ns基板温度3θOoC,Nb
Nの場合は;放電ガス圧P (Ar十N2 ) :s 
J Om Torr 。
Film formation rate: Approximately Jnm/m1ns Substrate temperature: 3θOoC, Nb
In the case of N; discharge gas pressure P (Ar + N2): s
J Om Torr.

成膜速度的/ Q nm/m l n %基板温度30
0°Cである。
Film formation rate/Q nm/ml n%Substrate temperature 30
It is 0°C.

上記で得られたQPJJのICRN&とマイク四波特性
を調べた。ダ0.2Kにおける典型的なりC−8QUI
D のI−V特性′li−第6図に、/ OGHzのマ
イクロ波を照射したときの特性を第7図に示す。
The ICRN& and microphone four-wave characteristics of QPJJ obtained above were investigated. Typical C-8QUI in 0.2K
The IV characteristics of D are shown in FIG. 6, and the characteristics when irradiated with /OGHz microwaves are shown in FIG.

この素子のICRN : / mVであシ、はyこの値
まで明確なシャピロステップ構造が観測された。また、
NbN/MgO/NbNの積層薄膜の絶縁抵抗は41.
2 Kでも数十にΩであシ、これは弱結合部5の形成前
に全ての素子について測定した。
The ICRN of this device was: /mV, and a clear Shapiro step structure was observed up to this value. Also,
The insulation resistance of the NbN/MgO/NbN laminated thin film is 41.
Even at 2 K, the resistance was several tens of Ω, and this was measured for all elements before forming the weak coupling portion 5.

表1に、得られた70個の素子のIC,RN およびI
CRN積を示す。
Table 1 shows the IC, RN and I of the 70 devices obtained.
Shows the CRN product.

表 7 素子間のバラツキは少しあるが、大体/mV程度の高い
IcRN積が得られていることが判る。この値は、ΔN
bN (F、、2 K) : 、2.値rn V (T
C: 16 K)から計算される弱結合トンネル接合の
場合の値、J、gmVよシ低いが/f67の素子ではI
cRN: ’1.gmVが得られておシ、この値けDl
rty Llmjtの値(NbNの平均自由行程か弱結
合部の長さより短かh場合の値)、!r、−OmV に
近く、極めて優れた素子であることが理解される。
Table 7 It can be seen that although there is some variation between devices, a high IcRN product of approximately /mV is obtained. This value is ΔN
bN (F,,2K): ,2. The value rn V (T
C: The value for a weakly coupled tunnel junction calculated from 16 K) is lower than J, gmV, but I
cRN: '1. If gmV is obtained, this value Dl
rty Llmjt value (value when the mean free path of NbN is shorter than the length of the weak coupling part or h),! r, close to -OmV, and is understood to be an extremely excellent device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図と第2図はQPJJの構造を拡大して示す斜視図
、 第3図は従来のMgO単結単結晶面開面上bN単結晶薄
膜で形成したブリッジ屋素子の拡大平面図、第4図(a
) 、 (b)は本発明の実験例で得られたMgO。 NbN薄膜のX線回折パターンを示すグラフ、第5図は
本発明の実験例で得られたNbN薄膜の臨界温度Tcの
膜厚依存性を示すグラフ、!s6図と第7図は本発明の
実施例で得られた素子のI−V特性とマイクロ波特性を
それぞれ示すグラフ。 (図中の符号) 1・・・・・・・・・基板 2.3・・・・・・・・・超伝導体層 4・・・・・・・・・絶縁体層 5・・・・・・・・・弱結合部 !・・・・・・・・・弱結合部の長さ b・・・・・・・・・超伝導体層の重なシ合った部分の
長さ 特許出願人 理化学研究所 児4図 県5図
Figures 1 and 2 are enlarged perspective views showing the structure of QPJJ, Figure 3 is an enlarged plan view of a conventional bridging element formed of a bN single crystal thin film on a open plane of a single MgO single crystal, and Figure 4 (a
) and (b) are MgO obtained in experimental examples of the present invention. A graph showing the X-ray diffraction pattern of a NbN thin film. FIG. 5 is a graph showing the film thickness dependence of the critical temperature Tc of the NbN thin film obtained in an experimental example of the present invention. Fig. s6 and Fig. 7 are graphs respectively showing the IV characteristics and microwave characteristics of the elements obtained in the examples of the present invention. (Symbols in the figure) 1...Substrate 2.3...Superconductor layer 4...Insulator layer 5...・・・・・・Weak coupling part!・・・・・・・・・Length of the weak coupling part b ・・・・・・・・・Length of the overlapping part of the superconductor layer Patent applicant RIKEN Child 4 Figure Prefecture 5 figure

Claims (1)

【特許請求の範囲】 l)基板上に少なくとも一部が重って形成された超伝導
体−絶縁体−超伝導体の積層薄膜と、この積層薄膜の絶
縁体層の厚み側面を横切って上下の超伝導体層を結合す
る弱結合部とから成るジョセフソン接合素子において、 前記の絶縁体層かMgO薄膜で、前記の超伝導体層がN
bN薄膜で構成されていることを特徴とするジョセフソ
ン接合素子。 コ)前記の下の超伝導体層がSt基板上に形成されたM
gO薄膜上に形成されている特許請求の範囲第1項に記
載のジョセフソン接合素子。
[Scope of Claims] l) A laminated thin film of superconductor-insulator-superconductor formed at least partially overlappingly on a substrate; In the Josephson junction device, the superconductor layer is composed of the insulator layer or the MgO thin film, and the superconductor layer is the N-type superconductor layer.
A Josephson junction device comprising a bN thin film. h) M in which the lower superconductor layer is formed on a St substrate.
The Josephson junction device according to claim 1, which is formed on a gO thin film.
JP59024729A 1984-02-13 1984-02-13 Josephson junction element Granted JPS60169175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59024729A JPS60169175A (en) 1984-02-13 1984-02-13 Josephson junction element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59024729A JPS60169175A (en) 1984-02-13 1984-02-13 Josephson junction element

Publications (2)

Publication Number Publication Date
JPS60169175A true JPS60169175A (en) 1985-09-02
JPH0481874B2 JPH0481874B2 (en) 1992-12-25

Family

ID=12146237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59024729A Granted JPS60169175A (en) 1984-02-13 1984-02-13 Josephson junction element

Country Status (1)

Country Link
JP (1) JPS60169175A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63283175A (en) * 1987-05-15 1988-11-21 Rikagaku Kenkyusho Tunnel type josephson-junction device
EP0371481A2 (en) * 1988-11-29 1990-06-06 Ube Industries, Ltd. Laminated film and method for producing the same
US5099294A (en) * 1989-08-01 1992-03-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Edge geometry superconducting tunnel junctions utilizing an NbN/MgO/NbN thin film structure
US5100694A (en) * 1989-08-01 1992-03-31 The United States Of America As Represented By The Administrator National Aeronautics And Space Administration Method for producing edge geometry superconducting tunnel junctions utilizing an NbN/MgO/NbN thin film structure
US5104848A (en) * 1988-04-21 1992-04-14 U.S. Philips Corporation Device and method of manufacturing a device
JP2023514369A (en) * 2020-02-21 2023-04-05 アプライド マテリアルズ インコーポレイテッド High critical temperature metal nitride layer with oxide or oxynitride seed layer
US12052935B2 (en) 2020-02-21 2024-07-30 Applied Materials, Inc. Method of making high critical temperature metal nitride layer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59103390A (en) * 1982-12-04 1984-06-14 Nippon Telegr & Teleph Corp <Ntt> Tunnel junction type josephson element and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59103390A (en) * 1982-12-04 1984-06-14 Nippon Telegr & Teleph Corp <Ntt> Tunnel junction type josephson element and manufacture thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63283175A (en) * 1987-05-15 1988-11-21 Rikagaku Kenkyusho Tunnel type josephson-junction device
JPH0565070B2 (en) * 1987-05-15 1993-09-16 Rikagaku Kenkyusho
US5104848A (en) * 1988-04-21 1992-04-14 U.S. Philips Corporation Device and method of manufacturing a device
EP0371481A2 (en) * 1988-11-29 1990-06-06 Ube Industries, Ltd. Laminated film and method for producing the same
US5099294A (en) * 1989-08-01 1992-03-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Edge geometry superconducting tunnel junctions utilizing an NbN/MgO/NbN thin film structure
US5100694A (en) * 1989-08-01 1992-03-31 The United States Of America As Represented By The Administrator National Aeronautics And Space Administration Method for producing edge geometry superconducting tunnel junctions utilizing an NbN/MgO/NbN thin film structure
JP2023514369A (en) * 2020-02-21 2023-04-05 アプライド マテリアルズ インコーポレイテッド High critical temperature metal nitride layer with oxide or oxynitride seed layer
US12052935B2 (en) 2020-02-21 2024-07-30 Applied Materials, Inc. Method of making high critical temperature metal nitride layer

Also Published As

Publication number Publication date
JPH0481874B2 (en) 1992-12-25

Similar Documents

Publication Publication Date Title
US4366494A (en) Josephson junction and a method of making the same
JPS60169175A (en) Josephson junction element
Shoji et al. Temperature-dependent properties of niobium nitride Josephson tunnel junctions
JPH098368A (en) High temperature superconducting jesephson element and fabrication thereof
JPH05335638A (en) Josephson junction structure body and manufacture thereof
EP0446146B1 (en) Stacked Josephson junction device composed of oxide superconductor material
JP3568547B2 (en) Josephson junction structure
JP2963614B2 (en) Method for manufacturing oxide superconductor junction element
US4430790A (en) Method of making a Josephson junction
JP3189403B2 (en) Element having superconducting junction and method of manufacturing the same
US5488030A (en) Superconductor junction structure including two oxide superconductor layers separated by a non-superconducting layer
JPH0278282A (en) Josephson element
JPS5846197B2 (en) Josephson junction device and its manufacturing method
JP2730368B2 (en) Superconducting field effect element and method for producing the same
JP2861235B2 (en) Superconducting element
JP2680960B2 (en) Superconducting field effect device and method of manufacturing the same
JPS62248272A (en) Superconducting microbridge
Savvides Niobium step-edge superconducting junctions
JPH04206667A (en) Superconducting element
JPH04152684A (en) Superconductive junction
JP2835203B2 (en) Superconducting element manufacturing method
JPH04335583A (en) Plane-type microbridge josephson junction element
JPH04152683A (en) Superconducting element
JPS6272187A (en) Josephson tunnel junction device
JPS62274680A (en) Superconductor semiconductor junction device