JPS6272187A - Josephson tunnel junction device - Google Patents

Josephson tunnel junction device

Info

Publication number
JPS6272187A
JPS6272187A JP60211185A JP21118585A JPS6272187A JP S6272187 A JPS6272187 A JP S6272187A JP 60211185 A JP60211185 A JP 60211185A JP 21118585 A JP21118585 A JP 21118585A JP S6272187 A JPS6272187 A JP S6272187A
Authority
JP
Japan
Prior art keywords
nbn
deposited
mgo
sputtering
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60211185A
Other languages
Japanese (ja)
Inventor
Tsutomu Yamashita
努 山下
Katsuyoshi Hamazaki
浜崎 勝義
Toranosuke Komata
小俣 虎之助
Kimihiro Ueda
公大 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP60211185A priority Critical patent/JPS6272187A/en
Publication of JPS6272187A publication Critical patent/JPS6272187A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/12Josephson-effect devices

Abstract

PURPOSE:To improve an energy voltage (Vg) and eliminate deviation of device characteristics by a method wherein a highly oriented magnesia thin film is employed as a foundation material and a tunnel barrier, composed of magnesia or aluminum oxide, and upper and lower electrodes, composed of niobium nitride, are made to grow by epitaxial growth to the same direction as the foundation material. CONSTITUTION:An MgO film 5 for epitaxial growth of NbN, which is to be a lower electrode 6 of a device, is formed. Successively, in the same vacuum, first the NbN 6 for the lower electrode of the device is deposited to the thickness of 100-150nm by reactive sputtering. Further, MgO 7 for a tunnel barrier is deposited to the thickness of 0.2-0.5mm which is several times of the coherence length of the NbN by sputtering. finally, NbN 8 for an upper electrode, is deposited to the thickness of 100-150nm. Then the upper electrode is processed by RIE after a resist stencil 9 is provided. Afther that, SiO2 10 for insulation is deposited by sputtering and the resist stencil 9 is lifted off. Finally, NbN 11 for wirings is deposited by sputtering and RIE and lifting-off are carried out to forme the device.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はジョセフソントンネル接合素子に関する。更に
詳しくは、高い臨界遷移温度を有し、絶縁障壁と電極材
との界面での特性劣化を改善すること釦より、エネルギ
ー電圧(Vg)を向上させ、かつ素子特性のバラつきを
なくシ、信頼性を向上することが可能なジョセフソント
ンネル接合素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to Josephson tunnel junction devices. More specifically, the button has a high critical transition temperature and improves characteristic deterioration at the interface between the insulation barrier and the electrode material, improves energy voltage (Vg), eliminates variations in device characteristics, and improves reliability. The present invention relates to a Josephson tunnel junction device capable of improving performance.

〔従来の技術〕[Conventional technology]

ジョセフソン接合素子は低消費電力で超高速スイッチン
グの論理回路素子として、マイクロ波。
Josephson junction devices are used as low-power, ultra-high-speed switching logic circuit elements in microwave applications.

ミリ波、サブミリ波などの検出器として、生体から発せ
られる微弱磁界の検出器として、または電圧標準として
使用することが提案され、その工業化に対する期待は非
常に大きいものがある。
It has been proposed to be used as a detector for millimeter waves, submillimeter waves, etc., as a detector for weak magnetic fields emitted from living organisms, or as a voltage standard, and there are great expectations for its industrialization.

従来までのジョセフソン接合素子は、主に作製が容易で
ある鉛合金系の材料と、高い遷移温度を     1有
し、熱サイクルにも強いニオブ系の材料で検討が進めら
れてきた。                    
Iその構造を図−3(a)および図−5(b)に示す。
Up until now, Josephson junction elements have mainly been studied using lead alloy-based materials, which are easy to fabricate, and niobium-based materials, which have a high transition temperature and are resistant to thermal cycles.
Its structure is shown in Figure 3(a) and Figure 5(b).

前者は論理回路素子として長年研究され、その技術は 
    1′□ 確立されたものとなっているが、材料の持つ本質□ 的な特徴すなわち温度サイクルに弱いという点で、現在
の研究開発は後者に移向している。
The former has been studied for many years as a logic circuit element, and its technology has
1'□ Although it has been established, current research and development is shifting towards the latter due to the essential characteristics of the material, namely its vulnerability to temperature cycles.

窒化ニオブはニオブよりも高い遷移温度(Tg’:16
K)を持つことから、ギヤ・プ電圧vg、および   
  :サブギャップ抵抗R8゜の高いものが得られ、デ
バイス応用上有利であるとともに温度変化に対する素子
特性の安定性の点でも優れている。さらに、ニオブより
も化学的に安定であることから加工擾乱による素子特性
の劣化、トンネル障壁面における相互拡散の抑制という
点でも優れ、素子特性及び作製プロセス土のマージンの
向上が期待されている。この点から、&ll ab喉に
よるデバイス開発が勢力的に進められており、例えばト
ンネル障壁としてNbOxやα−3i:H等を用い5N
KP法による素子作製技術により優れた特性のものを得
ている。しかし、NbN膜厚の減少に伴うギャップ電圧
vgの低下、サブギャップ領域におけるリーク電流の増
加等、まだ若干の問題点を残している。
Niobium nitride has a higher transition temperature (Tg': 16
K), the gap voltage vg, and
: A high sub-gap resistance R8° can be obtained, which is advantageous in terms of device application, and is also excellent in terms of stability of device characteristics against temperature changes. Furthermore, since it is chemically more stable than niobium, it is also superior in suppressing deterioration of device characteristics due to processing disturbances and interdiffusion at the tunnel barrier surface, and is expected to improve device characteristics and manufacturing process margins. From this point of view, the development of devices using &ll ab throats is being actively promoted, for example, using NbOx, α-3i:H, etc. as a tunnel barrier.
Excellent characteristics have been obtained using the element fabrication technology using the KP method. However, some problems still remain, such as a decrease in the gap voltage vg due to the decrease in the NbN film thickness and an increase in leakage current in the sub-gap region.

これは、NbN膜のコヒーレント長が2nll11程度
と短いためトンネル障壁の界面近傍、特に上部電極の界
面(図−3)+21に:おける超伝導特性の劣化が素子
特性K1m要な影響を及ぼすことを意味している。一般
に膜の成長初期過程においては、結晶成長が充分でない
ためKTaが低下する。従って、薄膜のTc向上のため
には成長初期過程における膜のTc向上を図れる新しい
薄膜形成技術の開発が重要となるが、従来の報告では膜
厚が薄くなると300℃程度の基板温度でスパッタ成膜
した場° 合でさえも12に程度がそれ以下の低い値し
か得られていなかった。
This is because the coherence length of the NbN film is short, about 2nll11, so deterioration of superconducting properties near the interface of the tunnel barrier, especially at the interface of the upper electrode (Figure 3) +21, has a significant effect on the device characteristics K1. It means. Generally, in the initial stage of film growth, KTa decreases because crystal growth is insufficient. Therefore, in order to improve the Tc of a thin film, it is important to develop a new thin film formation technology that can improve the Tc of the film during the initial growth process. Even in the case of a film, only a low value of about 12 or less was obtained.

この点を解決する方法としてNbN膜を単結晶薄膜又は
エピタキシャル薄膜化し、ジョセフソン素子の電極材料
として用いる方法が考えられる。後者の場合、NbNと
同じ結晶構造(Na(1!を型)を持つマグネシアl 
MgO)単結晶の伸開面上にNbN薄膜をエピタキシャ
ル成長させた報告はなされている。この場合、比較的特
性の良い膜が得られているが、MgO単結晶の伸開の方
法、および伸開面の平滑さに問題があり、ジョセフソン
デバイス用としては適当なものとはいえながった。
As a method to solve this problem, it is possible to form a NbN film into a single crystal thin film or an epitaxial thin film and use it as an electrode material of a Josephson element. In the latter case, magnesia l, which has the same crystal structure as NbN (Na (type 1!)
There have been reports of epitaxial growth of NbN thin films on stretched planes of MgO) single crystals. In this case, a film with relatively good properties has been obtained, but there are problems with the method of stretching the MgO single crystal and the smoothness of the stretched plane, making it unsuitable for use in Josephson devices. I got angry.

〔発明の目的〕[Purpose of the invention]

本発明者は上記の問題点を解決する方法を求めて研究を
行った結果、エピタキシャル成長させたNbN膜をジョ
セフソン素子の電極材料として、またMgOをトンネル
障壁材料として用いるという知見を得て本発明を完成し
たものである。すなわち、本発明は高配向したマグネク
ア薄膜を下地材料に用い、前記マグネシア(MgO)又
は酸化アルミニウム(A1.Ox )から成るトンネル
障壁と窒化ニオ ブ(NbN )から成る上部及び下部
電極を前記下地材料と同一方向にエピタキシャル成長さ
せてなるジョセフソントンネル接合素子を提供するもの
である。
As a result of conducting research in search of a method to solve the above problems, the present inventor obtained the knowledge that an epitaxially grown NbN film can be used as an electrode material of a Josephson element, and MgO can be used as a tunnel barrier material. This is the completed version. That is, in the present invention, a highly oriented Magnequa thin film is used as the base material, and the tunnel barrier made of magnesia (MgO) or aluminum oxide (A1.Ox) and the upper and lower electrodes made of niobium nitride (NbN) are used as the base material. The present invention provides a Josephson tunnel junction device which is epitaxially grown in the same direction as .

〔発明の技術的手段〕[Technical means of invention]

本発明のジ曹セフソントンネル接合素子の作製方法を図
−1に示す。MgO薄膜の作製にはArガスをまたIt
)N薄膜の作製にはArと賜の混合ガスをそれぞれ用い
てスパッタリングにより作製した。また、予形成は通常
の5NEP法を用いた。
The method for manufacturing the Sefson disodium tunnel junction device of the present invention is shown in FIG. To prepare the MgO thin film, Ar gas and It
) The N thin film was prepared by sputtering using Ar and a mixed gas, respectively. Further, the normal 5NEP method was used for preforming.

まず、素子の下部電極(6)となるNbNをエピタキシ
ャル成長させるためのMgO膜(5)を約80 mm作
製する。MgOの膜厚は厚くするほど結晶配向強度が強
くなる。従って、この上に積層する1ibN。
First, an MgO film (5) with a thickness of about 80 mm is formed for epitaxially growing NbN, which will become the lower electrode (6) of the device. The thicker the MgO film, the stronger the crystal orientation strength. Therefore, 1ibN is laminated on top of this.

膜厚が薄くなるほどNbNのTcのMgO膜厚依存性が
強くなる。そこで電極材料のNbNのToを高くするた
めにMgO膜厚は厚い程有利であるが、約801111
1以上であれば充分である。
As the film thickness becomes thinner, the dependence of Tc of NbN on the MgO film thickness becomes stronger. Therefore, in order to increase the To of NbN of the electrode material, it is advantageous to make the MgO film thicker, but approximately 801111
It is sufficient if it is 1 or more.

続いて同一真空中において、まず素子下部電極となるH
 b N +61を反応性スパッタリングにより100
 nmへ150 nm作製する。さらにトンネル障壁の
MgO単結晶をスパッタリングによりN1)Nコヒーレ
ンス長の数倍の厚さくL2〜15nm製膜する。最後に
上部電極のN b N +81を1Q O!11111
〜150 nm作製する。上下電極のIt)Nの膜厚は
、この構造の超伝導薄膜の特性評価という点でこの値を
選んだ。
Next, in the same vacuum, H
b N +61 to 100 by reactive sputtering
150 nm to 150 nm. Further, a MgO single crystal for the tunnel barrier is formed by sputtering to a thickness of L2 to 15 nm, which is several times the N1)N coherence length. Finally, N b N +81 of the upper electrode is 1Q O! 11111
~150 nm. The thickness of the It)N film of the upper and lower electrodes was selected from the viewpoint of evaluating the characteristics of the superconducting thin film of this structure.

次に1上部電極パタニングのためのレジストステンシル
(9)をこのMgO/ NbN膜 MgO/ Nba上
に設けOFa+ Ox (5%)のエツチングガスな用
いてR工EKより上部電極を加工する。その後、絶縁用
の81鳴α(Iをスパッタリングし、レジストステンシ
ルをリフトオフする。最後に配線用のN b N Hを
スパッタし上部電極と同様にR工E及びリフトオフを行
って素子を完成させる。
Next, a resist stencil (9) for patterning the first upper electrode is provided on this MgO/NbN film (MgO/Nba), and the upper electrode is processed by R-EK using an etching gas of OFa+Ox (5%). After that, 81N α (I) for insulation is sputtered, and the resist stencil is lifted off.Finally, NbNH for wiring is sputtered, and the R process and lift-off are performed in the same manner as for the upper electrode to complete the device.

図−2(a)および図−2(b)は、それぞれこの方法
で作製したジョセフソントンネル接合素子の電流−電圧
特性とMgO/ NbN / MgO/ NbN四層膜
のX線回折パターンである。
Figures 2(a) and 2(b) show the current-voltage characteristics of the Josephson tunnel junction device fabricated by this method and the X-ray diffraction pattern of the MgO/NbN/MgO/NbN four-layer film, respectively.

〔本発明の効果〕[Effects of the present invention]

本発明の素子は、次の優れた特徴を持つ。すなわち、上
部及び下部電極をエピタキシャル成長させることが可能
となったことにより、電極材料のTc 、特に問題であ
った上部電極のTcを改善することができる。従って、
素子の安定性が向上し信頼性が増す利点となる。これは
、電流−電圧特性のギャップ電圧が高いこと(約4.5
m’V)からもわかる。これは従来報告されているもの
より高い値である。また、NbNのエピタキシャル薄膜
にしたことで膜の抵抗率が低下し、その結果、磁場侵入
長が従来発表されていた値よりも大幅に短かくできる。
The device of the present invention has the following excellent features. That is, since it has become possible to epitaxially grow the upper and lower electrodes, it is possible to improve the Tc of the electrode material, especially the Tc of the upper electrode, which has been a problem. Therefore,
This has the advantage of improving the stability and reliability of the element. This is because the gap voltage of the current-voltage characteristic is high (approximately 4.5
m'V). This is a higher value than previously reported. Furthermore, by forming an epitaxial thin film of NbN, the resistivity of the film is reduced, and as a result, the magnetic field penetration depth can be made much shorter than the previously announced value.

これにより従来、グランドプレーンや配線にNbを用い
らざるおえなかった欠点が解消され、デバイスに用いる
超伝導材料をMbNで全てまかなうことができるのでN
t)Nを用いる本来の目的が達成できる利点もある。
This eliminates the drawbacks that conventionally required the use of Nb for ground planes and wiring, and makes it possible to use MbN as the superconducting material used in devices.
t) There is also the advantage that the original purpose of using N can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

図−1は、本発明のジョセフソントンネル接合素子の一
製作例の各工程における断面図である。 図−2(a)は、本発明のジョセフンン接合素子の一例
のジョセフソントンネル接合素子の電流−電圧特性を示
すグラフであり、図−2(b)は、そのX、13回折パ
ターンである。図−5(a)は、従来のジシセフソン接
合素子の外観図であり、pA−3(b)は、その断面図
である。 1・・・下部電極     、2・・・トンネル障壁2
・・・上部電極とトンネル障壁界面のTc劣化領域5・
・・上部電極     、4・・・基板5・・・下地材
料+Mg0)   、6・・・下部電極(NbN)7・
・・トンネル障壁(MgO)、  B・・・上部電極(
NbN)?・・・レジストステンシル 、10・・・絶
a物(Sift)11・・・配線(NbN) 特許出願人 東洋曹達工業株式会社 図−1 図−2(a) 図−2(b) 図−3(a) 図−3(b) 手続補正書(刀剣 昭和61年2月14日
FIG. 1 is a cross-sectional view at each step of an example of manufacturing a Josephson tunnel junction element of the present invention. FIG. 2(a) is a graph showing the current-voltage characteristics of a Josephson tunnel junction device, which is an example of the Josephson tunnel junction device of the present invention, and FIG. 2(b) is its X, 13 diffraction pattern. FIG. 5(a) is an external view of a conventional dicycefson junction element, and pA-3(b) is a cross-sectional view thereof. 1... Lower electrode, 2... Tunnel barrier 2
...Tc deterioration region 5 at the interface between the upper electrode and the tunnel barrier.
...Top electrode, 4...Substrate 5...Base material + Mg0), 6...Bottom electrode (NbN) 7.
...Tunnel barrier (MgO), B...Top electrode (
NbN)? ...Resist stencil, 10...Sift 11...Wiring (NbN) Patent applicant Toyo Soda Kogyo Co., Ltd. Figure-1 Figure-2(a) Figure-2(b) Figure-3 (a) Figure 3 (b) Procedural amendment (Touken February 14, 1986)

Claims (1)

【特許請求の範囲】[Claims] 高配向したマグネシア薄膜を下地材料に用い、前記マグ
ネシア(MgO)又は酸化アルミニウム(AlOx)か
ら成るトンネル障壁と窒化ニオブから成る上部及び下部
電極を前記下地材料と同一方向にエピタキシャル成長さ
せてなるジョセフソントンネル接合素子。
A Josephson tunnel formed by using a highly oriented magnesia thin film as the base material, and epitaxially growing the tunnel barrier made of magnesia (MgO) or aluminum oxide (AlOx) and the upper and lower electrodes made of niobium nitride in the same direction as the base material. Junction element.
JP60211185A 1985-09-26 1985-09-26 Josephson tunnel junction device Pending JPS6272187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60211185A JPS6272187A (en) 1985-09-26 1985-09-26 Josephson tunnel junction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60211185A JPS6272187A (en) 1985-09-26 1985-09-26 Josephson tunnel junction device

Publications (1)

Publication Number Publication Date
JPS6272187A true JPS6272187A (en) 1987-04-02

Family

ID=16601816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60211185A Pending JPS6272187A (en) 1985-09-26 1985-09-26 Josephson tunnel junction device

Country Status (1)

Country Link
JP (1) JPS6272187A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5099294A (en) * 1989-08-01 1992-03-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Edge geometry superconducting tunnel junctions utilizing an NbN/MgO/NbN thin film structure
US5477061A (en) * 1990-09-20 1995-12-19 Fujitsu Limited Josephson device having an overlayer structure with improved thermal stability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5099294A (en) * 1989-08-01 1992-03-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Edge geometry superconducting tunnel junctions utilizing an NbN/MgO/NbN thin film structure
US5477061A (en) * 1990-09-20 1995-12-19 Fujitsu Limited Josephson device having an overlayer structure with improved thermal stability

Similar Documents

Publication Publication Date Title
US5750474A (en) Method for manufacturing a superconductor-insulator-superconductor Josephson tunnel junction
JPH05335638A (en) Josephson junction structure body and manufacture thereof
JPS6272187A (en) Josephson tunnel junction device
JP3568547B2 (en) Josephson junction structure
US5304817A (en) Superconductive circuit with film-layered josephson junction and process of fabrication thereof
US5247189A (en) Superconducting device composed of oxide superconductor material
JPH03166776A (en) Tunnel junction element and manufacture thereof
KR20030005600A (en) Josephson junction device and manufacturing method for using the same
JP2641966B2 (en) Superconducting element and fabrication method
JPS6329592A (en) Superconducting element
JP2909455B1 (en) Superconducting element
JP2768276B2 (en) Oxide superconducting junction element
JPS6332974A (en) Superconducting semiconductor junction element and its manufacture
JP3249370B2 (en) Superconducting device
KR20030039564A (en) Manufacturing method for divice junction Josephson superconductor temperature high
JP3270317B2 (en) Method for manufacturing superconducting device
JP2950958B2 (en) Superconducting element manufacturing method
JP2680959B2 (en) Superconducting field effect device and method of manufacturing the same
JP2597747B2 (en) Superconducting element and fabrication method
JPS6489571A (en) Semiconductor device and manufacture thereof
JPH0555649A (en) Manufacture of superconducting electric field effect element
JPH06350149A (en) Superconducting weak coupling type junction and its manufacture
JPS6279682A (en) Josephson bridge device provided with micro-short
JPH08222774A (en) Superconducting element
JPH05211353A (en) Superconducting field-effect element