JP2512145B2 - Method of joining cemented carbide and steel and joined body - Google Patents

Method of joining cemented carbide and steel and joined body

Info

Publication number
JP2512145B2
JP2512145B2 JP11963489A JP11963489A JP2512145B2 JP 2512145 B2 JP2512145 B2 JP 2512145B2 JP 11963489 A JP11963489 A JP 11963489A JP 11963489 A JP11963489 A JP 11963489A JP 2512145 B2 JP2512145 B2 JP 2512145B2
Authority
JP
Japan
Prior art keywords
steel
cemented carbide
stress relaxation
nickel
brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11963489A
Other languages
Japanese (ja)
Other versions
JPH02299772A (en
Inventor
善恒 要
陽一郎 米田
英司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11963489A priority Critical patent/JP2512145B2/en
Publication of JPH02299772A publication Critical patent/JPH02299772A/en
Application granted granted Critical
Publication of JP2512145B2 publication Critical patent/JP2512145B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超硬合金と鋼を接合する方法とその接合体に
関する。
Description: TECHNICAL FIELD The present invention relates to a method for joining a cemented carbide and steel and a joined body thereof.

(従来の技術) 従来から、超硬合金は切削チップ、引き抜きダイス、
破砕機などの耐摩耗、耐衝撃性工具部品等に広い用途が
あり、鋼と接合した接合部品として利用することがよく
行われている。
(Prior art) Cemented carbide has traditionally been used for cutting chips, drawing dies,
It has a wide range of uses for wear-resistant and impact-resistant tool parts such as a crusher, and is often used as a joined part joined to steel.

このような超硬合金と鋼の接合方法としては様々な方
法が知られており、例えば、ボルト締めなどにより機械
的な方法や、銀ろうや銅ろうを用いたろう付法がある。
Various methods are known as methods for joining the cemented carbide and the steel, for example, mechanical methods such as bolting and brazing methods using silver brazing or copper brazing.

しかし、後者のろう付法のように、超硬合金と鋼を加
熱して接合する場合、超硬合金と鋼は熱膨張係数の差が
大きいので、熱膨張差に起因する熱応力のために健全な
接合体を得ることは難しい。そこで、このような熱応力
を緩和するために、超硬合金と鋼との間に、両者の中間
の熱膨張係数を持つ材料や銅、ニッケルなどの延性材料
を応力緩和材として用いる方法が知られている。
However, when heating and joining cemented carbide and steel, as in the latter brazing method, the difference in thermal expansion coefficient between cemented carbide and steel is large, so the thermal stress due to the difference in thermal expansion causes It is difficult to obtain a healthy zygote. Therefore, in order to relieve such thermal stress, it is known to use a material having a thermal expansion coefficient intermediate between the cemented carbide and steel or a ductile material such as copper or nickel as a stress relaxation material. Has been.

これら接合体を破砕機のハンマとして使用する場合に
は、銅を応力緩和材として用い、銀ろうをインサートし
たフラックスろう付が行われている。また、「溶接学会
論文集」第6巻(1988)第4号p.499〜504には、銅を応
力緩和材として用い、銅ろうをインサートし、ろう付す
る方法が報告されており、更に「溶接学会論文集」第3
巻(1985)第1号p.105〜109には、ニッケル基合金を応
力緩和材として用い、固相拡散接合する方法が報告され
ている。
When these bonded bodies are used as a hammer for a crusher, copper is used as a stress relaxation material, and flux brazing in which silver solder is inserted is performed. Also, "Welding Society Papers" Vol. 6 (1988) No. 4, p. 499 to 504, a method of using copper as a stress relaxation material, inserting copper braze, and brazing is reported. "Welding Society Papers" No. 3
Volume (1985) No. 1, p.105-109, reports a method of solid phase diffusion bonding using a nickel-based alloy as a stress relaxation material.

(発明が解決しようとする課題) しかしながら、前述のような応力緩和材を用い熱膨張
差に起因する熱応力を緩和する方法においては、超硬合
金と応力緩和材、鋼と応力緩和材との接合が健全でなけ
ればならない。また、応力緩和材を用いて接合体を得る
場合、その強度は応力緩和材に依存され、そのため、よ
り高強度が望まれるような場合は、従来よく用いられる
ニッケル及びニッケル合金が望ましい。
(Problems to be Solved by the Invention) However, in the method of relaxing the thermal stress caused by the difference in thermal expansion using the stress relaxation material as described above, there is a difference between the cemented carbide and the stress relaxation material, and the steel and the stress relaxation material. The bond must be sound. Further, when a joined body is obtained using a stress relaxation material, the strength depends on the stress relaxation material, and therefore, when higher strength is desired, conventionally used nickel and nickel alloys are desirable.

このような観点からすると、上記の接合法のうち、銅
を応力緩和材として用いる接合法は強度の点に問題があ
り、またニッケル基合金を応力緩和材として用いて固相
拡散により接合する方法は、接合温度が高いため熱応力
が大きく、健全な接合体を得ることができないという問
題がある。
From this point of view, among the above-mentioned joining methods, the joining method using copper as the stress relaxation material has a problem in strength, and the joining method by solid phase diffusion using the nickel-based alloy as the stress relaxation material. Has a problem that it is impossible to obtain a sound bonded body due to high thermal stress due to high bonding temperature.

本発明は、上記従来技術の欠点を解消し、超硬合金と
鋼を応力緩和材を介して接合するに際し、健全な接合界
面が得られると共に接合強度が高い接合体を得ることが
できる接合技術を提供することを目的とするものであ
る。
The present invention solves the above-mentioned drawbacks of the prior art, and when joining cemented carbide and steel via a stress relaxation material, a joining technique that can obtain a sound joining interface and a joined body with high joining strength. It is intended to provide.

(課題を解決するための手段) 本発明者は、まず、応力緩和材としてニッケル及びニ
ッケル基合金を用いた場合、超硬合金と応力緩和材、鋼
と応力緩和材の間にインサート材を用いて接合する方法
を試みた。
(Means for Solving the Problems) First, in the case of using nickel and a nickel-based alloy as the stress relaxation material, the present inventor uses an insert material between the cemented carbide and the stress relaxation material, and the steel and the stress relaxation material. I tried a method of joining.

本実験では、まず、最初に従来技術である第1表の比
較例に示す様々なインサート材を用いて接合したが、イ
ンサート材がニッケル基ろう材では接合界面は健全であ
るが、固相接合と同様、接合温度が高いため、熱応力に
より超硬合金に割れが生じた。一方、インサート材が銀
ろうでは応力緩和材であるニッケル及びニッケル合金へ
のろう材成分の拡散が大きく、健全な接合界面を得るこ
とができなかった。このように応力緩和材にニッケル及
びニッケル基合金を使用した場合、健全な接合体を得る
ことは非常に困難であることが判明した。
In this experiment, first, various conventional insert materials shown in Comparative Example of Table 1 were used for joining. When the insert material is nickel-based brazing filler metal, the joining interface is sound, but solid-phase joining is performed. Similarly to the above, since the joining temperature was high, the cemented carbide was cracked by the thermal stress. On the other hand, when the insert material was silver braze, the diffusion of the brazing material component into nickel and nickel alloy, which are stress relaxation materials, was large, and a sound joint interface could not be obtained. As described above, it has been found that it is extremely difficult to obtain a sound bonded body when nickel and a nickel-based alloy are used as the stress relaxation material.

そこで、インサート材として種々の材質のものを用い
て更に研究を重ねた結果、ここに本発明をなしたもので
ある。
Therefore, as a result of further research using various materials as the insert material, the present invention has been made here.

すなわち、本発明に係る超硬合金と鋼の接合方法は、
超硬合金と鋼を応力緩和材を介して加熱接合する方法に
おいて、応力緩和材としてニッケル又はニッケル基合金
を用いると共に、超硬合金と応力緩和材の間にNi基ろう
材をインサートし、かつ、鋼と応力緩和材の間にAg−Cu
−Pdろう材をインサートし、この積層構造材におけるイ
ンサート材を加熱溶融することを特徴とするものであ
る。
That is, the joining method of cemented carbide and steel according to the present invention,
In the method of heat-bonding cemented carbide and steel via a stress relaxation material, nickel or a nickel-based alloy is used as a stress relaxation material, and a Ni-based brazing material is inserted between the cemented carbide and the stress relaxation material, and , Between the steel and stress relaxation material, Ag-Cu
-A Pd brazing material is inserted, and the insert material in this laminated structure material is heated and melted.

また、本発明に係る超硬合金と鋼の接合体は、超硬合
金と鋼と間に応力緩和材としてニッケル又はニッケル基
合金が介在されていると共に、超硬合金と応力緩和材の
間にNi基ろう材がインサートされ、かつ、鋼と応力緩和
材の間にAg−Cu−Pdろう材がインサートされている積層
構造であることを特徴とするものである。
Further, the cemented carbide-steel joined body according to the present invention has nickel or a nickel-based alloy as a stress relaxation material interposed between the cemented carbide and steel, and between the cemented carbide and the stress relaxation material. It is characterized by a laminated structure in which a Ni-based brazing material is inserted and an Ag-Cu-Pd brazing material is inserted between the steel and the stress relaxation material.

(作用) 前述の如く、本発明において応力緩和材としてニッケ
ル又はニッケル基合金を用いるのは、超硬合金と鋼の熱
膨張差に起因する熱応力を緩和すると共に接合強度を高
めるためである。なお、ニッケル基合金の組成は特に制
限されず、パーマロイなどを使用できる。
(Function) As described above, the reason why nickel or a nickel-based alloy is used as the stress relaxation material in the present invention is to reduce the thermal stress due to the difference in thermal expansion between the cemented carbide and the steel and to increase the bonding strength. The composition of the nickel-based alloy is not particularly limited, and permalloy or the like can be used.

インサート材としては、従来の如く同一成分系のろう
材、すなわち、超硬合金と応力緩和材の間のインサート
と、鋼と応力緩和材の間のインサートとを同一成分系の
ろう材とすることは、健全な接合体が得られないことに
鑑みて、本発明では異なる特定の成分系のろう材を使用
することを特徴としている。
As the insert material, as in the past, the brazing material of the same composition system, that is, the insert between the cemented carbide and the stress relaxation material and the insert between the steel and the stress relaxation material should be the brazing material of the same composition system. In view of the fact that a sound joined body cannot be obtained, the present invention is characterized by using a brazing material having a different specific component system.

すなわち、超硬合金と応力緩和材の間にニッケル基ろ
う材を用いることにより、その接合界面を健全なものと
し、鋼と応力緩和材の間にAg−Cu−Pdろう材を用いるこ
とにより、応力緩和材であるニッケル及びニッケル合金
へのろう材の拡散を抑えた接合界面を得ることができ
る。また、ニッケル基ろう材は接合温度が高いが、Ag−
Cu−Pdろう材の固相線がニッケル基ろう材に比べて低い
ため、熱応力の発生開始温度が下がり、熱応力を軽減で
きる。
That is, by using a nickel-based brazing material between the cemented carbide and the stress relaxation material, the joint interface is made sound, and by using the Ag-Cu-Pd brazing material between the steel and the stress relaxation material, It is possible to obtain a bonding interface that suppresses the diffusion of the brazing material into nickel and the nickel alloy that are stress relaxation materials. In addition, nickel-based brazing filler metals have high joining temperatures, but Ag-
Since the solidus line of the Cu-Pd brazing material is lower than that of the nickel-based brazing material, the temperature at which thermal stress starts is lowered, and the thermal stress can be reduced.

なお、インサート材としてのニッケル基ろう材の成分
系及び組成、Ag−Cu−Pdろう材の組成は、特に制限され
るものではない。ニッケル基ろう材としては、例えば、
Ni−Si−B系、Ni−Cr−Si−Fe−B系などが挙げられ
る。
The component system and composition of the nickel-based brazing material as the insert material and the composition of the Ag-Cu-Pd brazing material are not particularly limited. As the nickel-based brazing material, for example,
Examples thereof include Ni-Si-B type and Ni-Cr-Si-Fe-B type.

以上の積層構造体において各インサート材を加熱溶融
することにより、超硬合金と鋼との接合体を得るが、そ
のためには、通常は、これら積層構造体を所望の温度に
加熱すればよい。勿論、他の加熱態様も可能であり、加
熱条件も適宜決めることができる。
By heating and melting each insert material in the above-mentioned laminated structure, a joined body of cemented carbide and steel is obtained. For that purpose, normally, these laminated structures may be heated to a desired temperature. Of course, other heating modes are possible, and the heating conditions can be appropriately determined.

望ましくは、まず、超硬合金と応力緩和材をニッケル
基ろう材にて接合させ、その後、超硬合金/応力緩和材
接合体と鋼をAg−Cu−Pdろう材にて接合させる2回接合
を用いると、より強固な接合体を得ることができる。
Desirably, first, the cemented carbide and the stress relaxation material are bonded with a nickel-based brazing material, and then the cemented carbide / stress relaxation material bonded body and the steel are bonded with an Ag-Cu-Pd brazing material. By using, it is possible to obtain a stronger joined body.

なお、接合すべき一方の被接合材である超硬合金とし
ては、WC炭化物とCoの複合材などの種々のものが可能で
あり、また他方の鋼としても炭素鋼、合金鋼又は工具鋼
等々の種々のものが可能であることは云うまでもない。
As the cemented carbide which is one of the materials to be joined, various things such as a composite material of WC carbide and Co can be used, and as the other steel, carbon steel, alloy steel or tool steel etc. It goes without saying that various types of are possible.

(実施例) 次に本発明の実施例を示す。(Example) Next, the Example of this invention is shown.

実施例1 被接合材として、40mm×40mm寸法の超硬合金(JIS B
4053 V10相当材)と、40mm×40mm寸法の鋼(SKD11)を
準備し、応力緩和材としてパーマロイ(76Ni−14Fe−4M
o−6Cu)を準備した。
Example 1 As a material to be joined, a cemented carbide of 40 mm x 40 mm (JIS B
4053 V10 equivalent material) and 40 mm x 40 mm size steel (SKD11) are prepared, and permalloy (76Ni-14Fe-4M) is used as a stress relaxation material.
o-6Cu) was prepared.

そして、第1表における実験No.13(本発明例)に示
すように、まず、超硬合金と応力緩和材の間に82Ni−7C
r−5Si−3Fe−3Bろう材をインサートし、炉中にて1050
℃で10分間加熱し接合した。
Then, as shown in Experiment No. 13 (Example of the present invention) in Table 1, first, 82Ni-7C was formed between the cemented carbide and the stress relaxation material.
Insert r-5Si-3Fe-3B brazing filler metal and put it in a furnace
Bonding was performed by heating at 0 ° C for 10 minutes.

次いで、得られた接合体と40mm×40mm寸法の鋼の間に
59Ag−31Cu−10Pdろう材をインサートし、炉中にて850
℃で10分間加熱し、超硬合金と鋼の接合体を得た。
Then, between the obtained joined body and steel with dimensions of 40 mm × 40 mm
Insert 59Ag-31Cu-10Pd brazing filler metal and put it in the furnace for 850
It was heated at ℃ for 10 minutes to obtain a cemented carbide-steel bonded body.

その接合体について超音波探傷試験を行ったところ、
界面に欠陥エコーは観察されず、接合率(超音波探傷試
験で欠陥エコーが観察されない面積/全面積)が100%
の接合体であった。また接合体の剪断強さは25kgf/mm2
であった。
When an ultrasonic flaw detection test was conducted on the bonded body,
No defect echo was observed at the interface, and the bonding rate (area where no defect echo was observed in the ultrasonic flaw detection test / total area) was 100%.
It was a zygote. The shear strength of the bonded body is 25 kgf / mm 2
Met.

実施例2 実施例1と同様、被接合材として、40mm×40mm寸法の
超硬合金JIS B 4053 V10相当材と、40mm×40mm寸法の鋼
(SKD11)を準備し、応力緩和材としてパーマロイ(76N
i−14Fe−4Mo−6Cu)を準備した。
Example 2 Similar to Example 1, as a material to be joined, a cemented carbide JIS B 4053 V10 equivalent material having a size of 40 mm × 40 mm and a steel (SKD11) having a size of 40 mm × 40 mm were prepared, and permalloy (76N) was used as a stress relaxation material.
i-14Fe-4Mo-6Cu) was prepared.

そして、第1表における実験No.14(本発明例)に示
すように、まず、超硬合金と応力緩和材の間に92Ni−7S
i−2Bろう材をインサートし、炉中にて1050℃で10分間
加熱して接合した。
Then, as shown in Experiment No. 14 (Example of the present invention) in Table 1, first, 92Ni-7S was formed between the cemented carbide and the stress relaxation material.
The i-2B brazing material was inserted and heated in a furnace at 1050 ° C. for 10 minutes to bond them.

次いで、得られた接合体と40mm×40mm寸法の鋼の間に
59Ag−31Cu10Pdろう材をインサートし、炉中にて850℃
で10分間加熱し、超硬合金と鋼の接合体を得た。
Then, between the obtained joined body and steel with dimensions of 40 mm × 40 mm
Inserted 59Ag-31Cu10Pd brazing filler metal and put it in a furnace at 850 ℃
After heating for 10 minutes, a cemented carbide-steel bonded body was obtained.

その接合体の超音波探傷試験を行ったところ、接合率
が95%の接合体であった。また接合体の剪断強さは25kg
f/mm2であった。
When an ultrasonic flaw detection test was conducted on the bonded body, the bonded body had a bonding rate of 95%. The shear strength of the bonded body is 25 kg.
It was f / mm 2 .

実施例3 実施例1と同様、被接合材として、40mm×40mm寸法の
超硬合金(JIS B 4053 V10相当材)と、40mm×40mm寸法
の鋼(SKD11)を準備し、応力緩和材としてパーマロイ
(76Ni−14Fe−4Mo−6Cu)を準備した。
Example 3 Similar to Example 1, a cemented carbide of 40 mm × 40 mm size (JIS B 4053 V10 equivalent material) and a steel of 40 mm × 40 mm size (SKD11) were prepared as materials to be joined, and permalloy was used as a stress relaxation material. (76Ni-14Fe-4Mo-6Cu) was prepared.

そして、第1表における実験No.15(本発明例)に示
すように超硬合金と応力緩和材の間に82Ni−7Cr−5Si−
3Fe−3Bろう材を、また応力緩和材と鋼の間に59Ag−31C
u−10Pdろう材をそれぞれ第1図に示すようにインサー
トして、炉中にて1050℃で10分間加熱し、接合した。
Then, as shown in Experiment No. 15 (Example of the present invention) in Table 1, between the cemented carbide and the stress relaxation material, 82Ni-7Cr-5Si-
3Fe-3B brazing material and 59Ag-31C between stress relaxation material and steel.
u-10Pd brazing filler metals were respectively inserted as shown in FIG. 1 and heated in a furnace at 1050 ° C. for 10 minutes to bond them.

その接合体の超音波探傷試験を行ったところ、界面に
欠陥エコーは観察されず、接合率100%の接合体であっ
た。まず接合体の剪断強さは15kgf/mm2であった。
When an ultrasonic flaw detection test was performed on the bonded body, no defect echo was observed at the interface, and the bonded body had a bonding rate of 100%. First, the shear strength of the joined body was 15 kgf / mm 2 .

実施例4 実施例1と同様、被接合材として、50mm×50mm寸法の
超硬合金(JIS B 4053 V10相当材)と50mm×50mm寸法の
鋼(S45C)を準備し、応力緩和材としてNiを準備した。
Example 4 As in Example 1, a cemented carbide of 50 mm × 50 mm size (JIS B 4053 V10 equivalent material) and a steel of 50 mm × 50 mm size (S45C) were prepared as materials to be joined, and Ni was used as a stress relaxation material. Got ready.

そして、第1表における実験No.16(本発明例)に示
すように、まず超硬合金と応力緩和材の間に82Ni−7Cr
−5Si−3Fe−3Bろう材をインサートし、炉中にて1050℃
で30分間加熱して接合した。
Then, as shown in Experiment No. 16 (Example of the present invention) in Table 1, first, 82Ni-7Cr was formed between the cemented carbide and the stress relaxation material.
Insert -5Si-3Fe-3B brazing filler metal and put it in a furnace at 1050 ℃
It was heated for 30 minutes and joined.

次いで、得られた接合体と50mm×50mm寸法の鋼の間に
68Ag−27Cu−5Pdろう材をインサートし、炉中にて850℃
で15分間加熱し、超硬合金と鋼の接合体を得た。
Then, between the obtained joined body and steel with dimensions of 50 mm × 50 mm
68Ag-27Cu-5Pd brazing filler metal is inserted and 850 ℃ in the furnace
After heating for 15 minutes, a cemented carbide-steel bonded body was obtained.

その接合体の超音波探傷試験を行ったところ、接合率
96%の接合体であった。また接合体の剪断強さは23kgf/
mm2であった。
When the ultrasonic flaw detection test was performed on the bonded body, the bonding rate
It was 96% zygote. The shear strength of the bonded body is 23 kgf /
It was mm 2 .

実施例5 実施例1と同様、被接合材として、40mm×40mm寸法の
超硬合金(JIS B 4053 V20相当材)と40mm×40mm寸法の
鋼(SKD11)を準備し、応力緩和材としてNi基合金(79N
i−17Fe−4Mo)を準備した。
Example 5 As in Example 1, a cemented carbide of 40 mm × 40 mm size (JIS B 4053 V20 equivalent material) and a steel of 40 mm × 40 mm size (SKD11) were prepared as materials to be joined, and a Ni-based stress relaxation material was used. Alloy (79N
i-17Fe-4Mo) was prepared.

そして、第1表における実験No.17(本発明例)に示
すように、まず超硬合金と応力緩和材の間に82Ni−7Cr
−5Si−3Fe−3Bろう材をインサートし、炉中にて1050℃
で10分間加熱して接合した。
Then, as shown in Experiment No. 17 (Example of the present invention) in Table 1, first, 82Ni-7Cr was formed between the cemented carbide and the stress relaxation material.
Insert -5Si-3Fe-3B brazing filler metal and put it in a furnace at 1050 ℃
It was heated for 10 minutes and joined.

次いで、得られた接合体と40mm×40mm寸法の鋼の間に
65Ag−20Cu−15Pdろう材をインサートし、炉中にて900
℃で5分間加熱し、超硬合金と鋼の接合体を得た。
Then, between the obtained joined body and steel with dimensions of 40 mm × 40 mm
Inserted 65Ag-20Cu-15Pd brazing filler metal and put it in the furnace for 900
It was heated at 0 ° C for 5 minutes to obtain a joined body of cemented carbide and steel.

その接合体の超音波探傷試験を行ったところ、接合率
100%の接合体であった。また接合体の剪断強さは22kgf
/mm2であった。
When the ultrasonic flaw detection test was performed on the bonded body, the bonding rate
It was a 100% zygote. The shear strength of the bonded body is 22 kgf.
It was / mm 2 .

比較例1 まず、実施例1と同様、被接合材として、40mm×40mm
寸法の超硬合金(JIS B 4053 V10相当材)と、40mm×40
mm寸法の鋼(SKD11)を準備し、応力緩和材としてパー
マロイ(76Ni−14Fe−4Mo−6Cu)を準備した。
Comparative Example 1 First, as in Example 1, as a material to be bonded, 40 mm × 40 mm
Dimension of cemented carbide (JIS B 4053 V10 equivalent material), 40 mm x 40
mm-sized steel (SKD11) was prepared, and permalloy (76Ni-14Fe-4Mo-6Cu) was prepared as a stress relaxation material.

そして、第1表における実験No.1〜No.9(比較例)に
示す各種インサート材を第1図に示すようにインサート
し、炉中にて加熱し接合した。
Then, various insert materials shown in Experiment Nos. 1 to 9 (Comparative Examples) in Table 1 were inserted as shown in FIG. 1 and heated in a furnace to be joined.

その結果は、第1表に示すように、超硬合金に割れが
発生したり、界面で剥離したりした。また接合体が得ら
れた場合でも、超音波探傷試験を行ったところ、接合面
のほぼ全域に欠陥が認められた。
As a result, as shown in Table 1, the cemented carbide was cracked or peeled at the interface. Even when a bonded body was obtained, an ultrasonic flaw detection test revealed that defects were found in almost the entire bonded surface.

比較例2 まず、実施例1と同様、被接合材として、40mm×40mm
寸法の超硬合金(JIS B 4053 V10相当材)と、40mm×40
mm寸法の鋼(SKD11)を準備し、応力緩和材としてパー
マロイ(76Ni−14Fe−4Mo−6Cu)を準備した。
Comparative Example 2 First, as in Example 1, as a material to be bonded, 40 mm × 40 mm
Dimension of cemented carbide (JIS B 4053 V10 equivalent material), 40 mm x 40
mm-sized steel (SKD11) was prepared, and permalloy (76Ni-14Fe-4Mo-6Cu) was prepared as a stress relaxation material.

そして、第1表における実験No.10〜No.12(比較例)
に示すように、まず、超硬合金と応力緩和材の間にニッ
ケル基ろう材をインサートし、炉中にて加熱し接合し
た。
And the experiments No. 10 to No. 12 in Table 1 (comparative example)
As shown in Fig. 1, first, a nickel-based brazing material was inserted between the cemented carbide and the stress relaxation material, and heated in a furnace to bond them.

次いで、得られた接合体と鋼の間にAg−Cuろう材又は
Ag−Cu−Tiろう材をインサートし、炉中に加熱して、超
硬合金と鋼の接合体を得た。
Then, Ag-Cu brazing filler metal or
An Ag-Cu-Ti brazing material was inserted and heated in a furnace to obtain a joined body of cemented carbide and steel.

その接合体の超音波探傷試験を行ったところ、いずれ
も接合率が90%以上の接合体を得ることはできなかっ
た。また、Ag−Cu−Tiろう材をインサートした場合(N
o.10〜No.11)、接合部の剪断強さは5kgf/mm2でしかな
かった。
When an ultrasonic flaw detection test was performed on the bonded body, it was not possible to obtain a bonded body with a bonding rate of 90% or more. When Ag-Cu-Ti brazing filler metal is inserted (N
o.10 ~ No.11), the shear strength of the joint was only 5 kgf / mm 2 .

(発明の効果) 以上詳述したように、本発明によれば、超硬合金と鋼
を応力緩和材を介して接合するに際し、応力緩和材とし
てニッケル又はニッケル基合金を使用しても、特定材質
のインサート材を使用するので、接合界面が健全であ
り、接合強度の高い強固な接合体が得られる。
(Effects of the Invention) As described in detail above, according to the present invention, even when nickel or a nickel-based alloy is used as the stress relaxation material when joining cemented carbide and steel via the stress relaxation material, Since the insert material is used, the bonding interface is sound and a strong bonded body with high bonding strength can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は積層構造の構成を示す説明図である。 1……超硬合金、2……超硬合金/応力緩和材側インサ
ート、3……応力緩和材、4……鋼/応力緩和材側イン
サート、5……鋼。
FIG. 1 is an explanatory diagram showing the structure of a laminated structure. 1 ... Cemented carbide, 2 ... Cemented carbide / stress relaxation material side insert, 3 ... Stress relaxation material, 4 ... Steel / stress relaxation material side insert, 5 ... Steel.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−282167(JP,A) 特開 平1−249668(JP,A) 特開 平1−224280(JP,A) 特開 平1−205053(JP,A) 特開 平1−119571(JP,A) 特開 昭61−127675(JP,A) 特開 昭59−35075(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A 1-282167 (JP, A) JP-A 1-249668 (JP, A) JP-A 1-224280 (JP, A) JP-A 1- 205053 (JP, A) JP-A 1-1119571 (JP, A) JP-A 61-127675 (JP, A) JP-A 59-35075 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超硬合金と鋼を応力緩和材を介して加熱接
合する方法において、応力緩和材としてニッケル又はニ
ッケル基合金を用いると共に、超硬合金と応力緩和材の
間にNi基ろう材をインサートし、かつ、鋼と応力緩和材
の間にAg−Cu−Pdろう材をインサートし、この積層構造
材におけるインサート材を加熱溶融することを特徴とす
る超硬合金と鋼の接合方法。
1. A method of heat-bonding cemented carbide and steel via a stress relaxation material, wherein nickel or a nickel-based alloy is used as the stress relaxation material, and a Ni-based brazing material is provided between the cemented carbide and the stress relaxation material. And a Ag-Cu-Pd brazing filler metal is inserted between the steel and the stress relaxation material, and the insert material in the laminated structural material is heated and melted, and a method for joining cemented carbide and steel.
【請求項2】超硬合金と鋼との間に応力緩和材としてニ
ッケル又はニッケル基合金が介在されていると共に、超
硬合金と応力緩和材の間にNi基ろう材がインサートさ
れ、かつ、鋼と応力緩和材の間にAg−Cu−Pdろう材がイ
ンサートされている積層構造であることを特徴とする超
硬合金と鋼の接合体。
2. Nickel or a nickel-based alloy is interposed as a stress relaxation material between the cemented carbide and the steel, and a Ni-based brazing material is inserted between the cemented carbide and the stress relaxation material, and A joined body of cemented carbide and steel having a laminated structure in which an Ag-Cu-Pd brazing material is inserted between the steel and the stress relaxation material.
JP11963489A 1989-05-12 1989-05-12 Method of joining cemented carbide and steel and joined body Expired - Lifetime JP2512145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11963489A JP2512145B2 (en) 1989-05-12 1989-05-12 Method of joining cemented carbide and steel and joined body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11963489A JP2512145B2 (en) 1989-05-12 1989-05-12 Method of joining cemented carbide and steel and joined body

Publications (2)

Publication Number Publication Date
JPH02299772A JPH02299772A (en) 1990-12-12
JP2512145B2 true JP2512145B2 (en) 1996-07-03

Family

ID=14766305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11963489A Expired - Lifetime JP2512145B2 (en) 1989-05-12 1989-05-12 Method of joining cemented carbide and steel and joined body

Country Status (1)

Country Link
JP (1) JP2512145B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106862694A (en) * 2017-04-06 2017-06-20 爱迪森自动化科技(昆山)有限公司 A kind of method of functionally gradient material (FGM) method soldering stainless steel and hard alloy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115519229B (en) * 2022-11-24 2023-03-14 长沙威尔保新材料有限公司 Preparation method of hard alloy and carbon steel wear-resistant composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106862694A (en) * 2017-04-06 2017-06-20 爱迪森自动化科技(昆山)有限公司 A kind of method of functionally gradient material (FGM) method soldering stainless steel and hard alloy
CN106862694B (en) * 2017-04-06 2019-05-24 哈尔滨工大华策科技有限公司 A kind of method of the soldering of functionally gradient material (FGM) method stainless steel and hard alloy

Also Published As

Publication number Publication date
JPH02299772A (en) 1990-12-12

Similar Documents

Publication Publication Date Title
US6732914B2 (en) Braze system and method for reducing strain in a braze joint
US4340650A (en) Multi-layer composite brazing alloy
EP1257383B1 (en) Method for making a joint between copper and stainless steel
CN1011808B (en) Pocketed stud for polycrystalline diamond cutting blanks
CN105458547B (en) A kind of active solder of cast aluminium based composites strengthened suitable for high-volume fractional SiC and preparation method thereof
JP2003305586A (en) Bonded joint consisting of different kind of metallic material and its manufacturing method
JP2512145B2 (en) Method of joining cemented carbide and steel and joined body
JP2825249B2 (en) Multi-layer brazing foil
US4492846A (en) Process for the production of bonded hard alloys
JPH0811302B2 (en) Dissimilar metal joining method
JP2609328B2 (en) Method of joining cemented carbide and steel and joined body
Ghahferokhi et al. Role of interlayer composition in microstructure and mechanical properties during TLP bonding of GTD-111/IN-718 superalloys
JPS5924592A (en) Joining method of sintered hard alloy and metal
CN111151864B (en) Welding material and process for connecting tungsten-based powder alloy and low-expansion high-temperature alloy
US4895292A (en) Method of brazing tungsten carbide
Xian Joining of sialon ceramics by Sn-5 at% Ti based ternary active solders
Yeh et al. Transient liquid phase metallic bonding of an Inconel 718SPF superalloy
JP2001121288A (en) Silver brazing filler metal for joining cemented carbide
JPS60259306A (en) Composite tool and preparation thereof
US4941892A (en) Tool component
JPH0768386A (en) Joining method for ni-ti-base alloy
JPS59147774A (en) Joining method of sintered hard alloy and steel
JPH11294058A (en) Brazed cutting tool excellent in bonding strength
JP2001012202A (en) Different kind materials welded turbine rotor and manufacture thereof
JPH0156865B2 (en)