JPS59147774A - Joining method of sintered hard alloy and steel - Google Patents

Joining method of sintered hard alloy and steel

Info

Publication number
JPS59147774A
JPS59147774A JP2125583A JP2125583A JPS59147774A JP S59147774 A JPS59147774 A JP S59147774A JP 2125583 A JP2125583 A JP 2125583A JP 2125583 A JP2125583 A JP 2125583A JP S59147774 A JPS59147774 A JP S59147774A
Authority
JP
Japan
Prior art keywords
steel
sintered hard
hard alloy
cemented carbide
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2125583A
Other languages
Japanese (ja)
Inventor
Masaya Miyake
雅也 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2125583A priority Critical patent/JPS59147774A/en
Publication of JPS59147774A publication Critical patent/JPS59147774A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/227Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded with ferrous layer

Abstract

PURPOSE:To obtain a composite tool having high joint strength without cracking by interposing a thin metallic sheet or plating layer on the joint surface between a sintered hard alloy and a steel, pressing the same, an irradiating a high energy beam to the sintered hard side to diffuse heat energy on the steel side. CONSTITUTION:A thin metallic sheet of <=0.5mm. is sandwiched between the joint surfaces of a sintered hard alloy and a steel or a plating layer is provided on both or either of the sintered hard alloy and the steel. The assembly is set in the state of pressing the above-mentioned joint surfaces into a vacuum vessel. The above-mentioned intermediate layer is constituted of Fe, Co, Ni, Cu or the alloy thereof. Such a high energy beams as an electron beam or laser beam is irradiated to the sintered hard side in proximity to the joint surfaces to increase the temp. of the sintered hard alloy and to diffuse the heat energy thereof to the steel side, thereby diffusion-joining the sintered hard alloy and the steel. The joint part of different materials having high strength is thus obtd. and the generation of a crack in the sintered hard alloy side arising from the joining is prevented.

Description

【発明の詳細な説明】 (イ)技術分野 本発明は、超硬合金と鋼部材からなる複合工具部材の製
造法に関するものである。特にバイスの先端に超硬材料
を接合したパンチ、エンドミル、ドリルあるいは超硬小
片を鋼部品材料に接合したアイススパイク、ゴルフスパ
イク、シールリング等の製造に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field The present invention relates to a method for manufacturing a composite tool member made of a cemented carbide and a steel member. In particular, it relates to the manufacture of punches, end mills, and drills in which a carbide material is bonded to the tip of a vise, or ice spikes, golf spikes, seal rings, etc. in which a small piece of carbide is bonded to a steel component material.

(ロ) 技術の背景 一般に超硬合金と鋼の接合はロー付け、焼嵌め等の手段
で固定されるが、ロー付は温度に鋼部材を加熱すると鋼
の硬度が低下し、工具とし°Cの必要特性を満足しない
。また超硬と鋼の熱膨張差から超硬合金に引張応力が働
き、割れの発生することが多い。したがって、ロー付け
ではAgロウ等の低融点ロー材が用いられている。低融
点ロー材は接合強度が弱(、高い接合強度が要求される
工具には不適当である。よってこのような工具では全て
を超硬合金で製作するソリッド合金が用いられている。
(b) Background of the technology Generally, cemented carbide and steel are joined by brazing, shrink fitting, etc., but in brazing, heating the steel member to a temperature lowers the hardness of the steel, making it difficult to use as a tool. does not satisfy the required characteristics. Additionally, the difference in thermal expansion between cemented carbide and steel causes tensile stress to act on the cemented carbide, often causing cracks. Therefore, in brazing, a low melting point brazing material such as Ag solder is used. Low-melting brazing materials have weak bonding strength (and are unsuitable for tools that require high bonding strength. Therefore, solid alloys made entirely of cemented carbide are used in such tools.

この手法によれば超硬合金の主原料である高価な〜Vの
使用fftが多く、必然的に高価な工具となるため強固
な接合技術の開発が急務であった。
According to this method, expensive ~V, which is the main raw material of cemented carbide, is often used, and the tool inevitably becomes expensive, so there was an urgent need to develop a strong joining technique.

(ハ)発明の開示 本発明は超硬合金と鋼の溶接において、超硬と鋼の当接
面の間に0.5闘以下の金属薄板を挿入するか、あるい
は超硬合金と鋼の双方あるいはいずれか一方にメッキ層
を設けた後、超硬合金と鋼の当接面を加圧し、該当接面
近傍の超硬合金側に高エネルギービームを照射すること
により、超硬合金の温度を−L昇させ、該エネルギーを
網側に拡散させることによって超硬合金と鋼を拡散接合
する接合法にある。ここて超硬合金と鋼の当接面に挿入
される金属薄板あるいはメッキ層はFe 、Ni 。
(C) Disclosure of the Invention The present invention involves the welding of cemented carbide and steel by inserting a metal thin plate of 0.5 to Alternatively, after providing a plating layer on either side, pressurize the contact surface between the cemented carbide and steel and irradiate a high-energy beam to the cemented carbide side near the contact surface to reduce the temperature of the cemented carbide. This is a joining method in which cemented carbide and steel are diffusion bonded by elevating -L and diffusing the energy to the mesh side. Here, the thin metal plate or plating layer inserted into the contact surface between the cemented carbide and the steel is made of Fe or Ni.

Go 、Cuおよびこれを含む合金であることが望まし
い。また高エネルギービームが電子ビームあるい式 はレーザービームのように、局部加熱できる方が以下に
述べる理由で望ましい。
Go, Cu, and alloys containing these are desirable. Further, it is preferable that the high-energy beam be an electron beam or a laser beam, which can locally heat the beam, for the reasons described below.

本発明の効果について以下詳細に説明する。The effects of the present invention will be explained in detail below.

超硬と鋼の溶接は、鋼が溶融、凝固する際に超硬合金の
融接部近傍に大きな引張応力が動き、超硬合金に割れを
発生する。−力演接部の割れを防止するために、超硬合
金と鋼の両者を溶接温度にまで加熱して接合する場合に
は、鋼の硬度が低下し、−「具としての性能を満足しな
い。
When welding cemented carbide and steel, when the steel melts and solidifies, large tensile stress moves near the fusion weld of the cemented carbide, causing cracks in the cemented carbide. - When bonding cemented carbide and steel by heating them to welding temperature in order to prevent cracks in the force welding part, the hardness of the steel decreases and - the performance as a tool is not satisfied. .

本発明では、電子ビームあるいはレーザービームのビー
ム焦点を絞ることなく、広い面積にビーム径を広げ、超
硬と鋼の当接面近傍の超硬合金側を加熱する。加熱によ
り熱エネルギーは網側に流れ、当接面の超硬と鋼を拡散
接合すること、がてきる。このような方法の特徴は、熱
膨張係数が鋼に比較して小さい、超硬合金側の当接面近
傍に、比較的広いビーム径を持つ高エネルギービームを
当てることにより超硬合金と鋼の間に温度差が発生し溶
接完了までこの状態は保持される。また超硬合金は熱伝
導率の高い材料であり、高エネルギービームを超硬合金
の局部に当てたとしても全体に加熱される。従って溶接
完T後の熱膨張係数の相異により発生する残留応力は、
先に述べた温度勾配により小さくすることができるため
割れの防止が可能となる。
In the present invention, the beam diameter of the electron beam or laser beam is expanded over a wide area without narrowing the beam focus, and the cemented carbide side near the contact surface between the cemented carbide and the steel is heated. Due to heating, thermal energy flows to the mesh side, resulting in diffusion bonding between the cemented carbide and steel on the contact surface. The feature of this method is that a high-energy beam with a relatively wide beam diameter is applied to the contact surface of the cemented carbide side, which has a smaller coefficient of thermal expansion than steel. A temperature difference occurs between the two, and this state is maintained until welding is completed. Furthermore, cemented carbide is a material with high thermal conductivity, so even if a high-energy beam is applied to a local part of the cemented carbide, the entire part of the material will be heated. Therefore, the residual stress generated due to the difference in thermal expansion coefficient after welding is completed is
Since the temperature gradient described above can be made smaller, cracking can be prevented.

さらに、超硬合金側を加熱する別の理由は、網側に高エ
ネルギービームを当てると鋼の温度が上昇し、鋼の硬度
、強度が低1゛シまたは変質してしまうからである。
Furthermore, another reason for heating the cemented carbide side is that if a high-energy beam is applied to the net side, the temperature of the steel will rise, and the hardness and strength of the steel will decrease or change in quality.

超硬合金と鋼の当接面の間に挿入される金属薄板、また
はメッキ層は0.5闘以下が望ましい。0.5112以
」二になると照射ビームエネルギーを太き(する必要が
あり、同時に網側か温度上昇して前記した理由により好
ましくない。挿入される金属は、引張強度が高くかつ鋼
と同等温度以下の融点を持っているFe+ Go、 N
i 、 Cuあるいは、これを含む合金が望ましい。こ
れらの金属が挿入されると溶接面の急冷による硬度」1
昇、脆化を防ぐことができる。
The metal thin plate or plating layer inserted between the contact surfaces of the cemented carbide and the steel preferably has a thickness of 0.5 mm or less. If it is 0.5112 or more, it is necessary to increase the irradiation beam energy, and at the same time, the temperature on the mesh side increases, which is undesirable for the reasons mentioned above.The metal to be inserted has a high tensile strength and a temperature equivalent to that of steel. Fe+ Go, N which has the following melting point
i, Cu, or an alloy containing it is desirable. When these metals are inserted, the hardness of the welding surface decreases by 1.
It can prevent corrosion and embrittlement.

またメッキ層と金属薄板を組み合わせ℃利用しても何ら
問題は起らない。
Further, no problem occurs even if the plated layer and the thin metal plate are used in combination at ℃.

実施例 胴部外径8朋長さ60龍のSK、l−19の打ち抜きパ
ンチの先端部に径6朋、長さ10−Mの超硬部分を溶接
した複合パンチの製造において、超硬合金と5KL(9
種の当接面に6φXO,?IIのNi板を挿入し、加圧
した状態で真空容器にセットした。電子ビームの焦点を
ぼかした状態で、当接面の超硬側の端面より2朋の位置
にビームを約30秒照射した。
Example In manufacturing a composite punch in which a carbide part with a diameter of 6 mm and a length of 10 mm is welded to the tip of a SK, l-19 punch with an outer diameter of 8 mm and a length of 60 mm, a cemented carbide and 5KL (9
6φXO on the contact surface of the seed? A Ni plate II was inserted and set in a vacuum container under pressure. With the electron beam out of focus, the beam was irradiated for about 30 seconds at a position 2 mm from the end face on the carbide side of the contact surface.

ビームの条件は電圧150KV、電流Q 、 5 mA
であった。
Beam conditions are voltage 150KV, current Q, 5mA
Met.

ビーム照射により超硬が赤熱され、熱が網側に拡断強度
は40kl//−であり、従来のロー付けに対し約2倍
の接合強度が得られた。また鋼部の硬度を調へたが、H
RC62以北あり、硬度の低下も見られなかった。
The cemented carbide was red-hot by the beam irradiation, and the heat spread to the net side.The shear strength was 40 kl//-, which was about twice the joining strength of conventional brazing. We also checked the hardness of the steel part, but H
It was located north of RC62, and no decrease in hardness was observed.

本接合品を研削加工し、↑J抜きパンチとし、06闘の
ケイ素鋼板の打抜きテストを行ったところ、ハイスの倍
以上の寿命を示した。また超硬より、破損率が低く安定
して使用しうることがわかった。
When this bonded product was ground and made into a ↑J punch, a punching test was conducted on a 2006 silicon steel plate, and the life was more than twice that of high speed steel. It was also found that it has a lower breakage rate than carbide and can be used stably.

Claims (2)

【特許請求の範囲】[Claims] (1)超硬合金と鋼の溶接において、超硬と鋼の当接面
の間に0.5朋以下の金属薄板を挿入するか、あるいは
超硬合金、鋼の双方あるいは、いずれか一方lこメッキ
層を設けた後、超硬合金と鋼の当接面を加圧し、該当接
面近傍の超硬合金側に、高エネルギービームを照射する
ことにより超硬合金の温度を」1昇させ、該熱エネルギ
ーを網側に拡散さの せることによって、超硬合金と鋼漏益益慕為」4接合法
(1) When welding cemented carbide and steel, insert a thin metal plate of 0.5 mm or less between the contact surfaces of the cemented carbide and steel, or After this plating layer is provided, the contact surface between the cemented carbide and the steel is pressurized, and the temperature of the cemented carbide is raised by 1 by irradiating a high-energy beam to the cemented carbide side near the contact surface. , by diffusing the thermal energy to the mesh side, the cemented carbide and steel 4 bonding method is used.
(2)挿入される金属薄板またはメッキ層が、Fe+(
6)高エネルギービームが、電子ビームあるいはレーザ
ービームであることを特徴とする特許請求
(2) The metal thin plate or plating layer to be inserted is Fe+(
6) A patent claim characterized in that the high-energy beam is an electron beam or a laser beam.
JP2125583A 1983-02-10 1983-02-10 Joining method of sintered hard alloy and steel Pending JPS59147774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2125583A JPS59147774A (en) 1983-02-10 1983-02-10 Joining method of sintered hard alloy and steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2125583A JPS59147774A (en) 1983-02-10 1983-02-10 Joining method of sintered hard alloy and steel

Publications (1)

Publication Number Publication Date
JPS59147774A true JPS59147774A (en) 1984-08-24

Family

ID=12049970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2125583A Pending JPS59147774A (en) 1983-02-10 1983-02-10 Joining method of sintered hard alloy and steel

Country Status (1)

Country Link
JP (1) JPS59147774A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170585A (en) * 1984-02-15 1985-09-04 Sumitomo Electric Ind Ltd Joining member for sintered hard alloy and steel and its production
US4642446A (en) * 1985-10-03 1987-02-10 General Motors Corporation Laser welding of galvanized steel
JPS6487164A (en) * 1987-09-25 1989-03-31 Hitachi Koki Kk Drive bit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170585A (en) * 1984-02-15 1985-09-04 Sumitomo Electric Ind Ltd Joining member for sintered hard alloy and steel and its production
JPH0558837B2 (en) * 1984-02-15 1993-08-27 Sumitomo Electric Industries
US4642446A (en) * 1985-10-03 1987-02-10 General Motors Corporation Laser welding of galvanized steel
JPS6487164A (en) * 1987-09-25 1989-03-31 Hitachi Koki Kk Drive bit

Similar Documents

Publication Publication Date Title
KR101291022B1 (en) Material composite with explosion-welded intermediate piece
US4340650A (en) Multi-layer composite brazing alloy
Fukumoto et al. Effects of electrode degradation on electrode life in resistance spot welding of aluminum alloy 5182
US3444613A (en) Method of joining carbide to steel
KR100734794B1 (en) Method for making a joint between copper and stainless steel
JPH11501254A (en) Metal bonding using amorphous intermediate bulk layers
JPS6029593B2 (en) Manufacturing method of Ti-clad steel
US4492846A (en) Process for the production of bonded hard alloys
US3436805A (en) Method of joining aluminum and ferrous members
KR100787929B1 (en) Method of low temperature joining between ti-cu dissimilar metals using amorphous filler material
JP4962752B2 (en) Method of joining dissimilar metals with high energy beam
JPS59147774A (en) Joining method of sintered hard alloy and steel
JP3272787B2 (en) Manufacturing method of bonded clad plate
JPS60170585A (en) Joining member for sintered hard alloy and steel and its production
JP2609328B2 (en) Method of joining cemented carbide and steel and joined body
JP3798219B2 (en) Joined body and joining method of iron-based alloy members
Chernenko Friction welding AD1 aluminium to 12Kh18N10T steel
Mishra et al. Review of Advanced Joining Technique for Aluminium Alloys and its Properties
JPS5890385A (en) Manufacture of composite wear resistance member
JPS5870985A (en) Joining method for different metals
JP2512145B2 (en) Method of joining cemented carbide and steel and joined body
Pereira et al. Pulsed Laser Welding between DP1000 Steel and Aluminum Alloy 1050
JPS5819028Y2 (en) Electrode tip for spot welding
JPS61129287A (en) Diffusion jointing method
Lancaster Solid-phase welding