JP2024509414A - Continuous safe discharge method and device for waste lithium batteries - Google Patents

Continuous safe discharge method and device for waste lithium batteries Download PDF

Info

Publication number
JP2024509414A
JP2024509414A JP2023552303A JP2023552303A JP2024509414A JP 2024509414 A JP2024509414 A JP 2024509414A JP 2023552303 A JP2023552303 A JP 2023552303A JP 2023552303 A JP2023552303 A JP 2023552303A JP 2024509414 A JP2024509414 A JP 2024509414A
Authority
JP
Japan
Prior art keywords
conductive
conveyor belt
waste lithium
lithium battery
lithium batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2023552303A
Other languages
Japanese (ja)
Other versions
JP7493212B2 (en
Inventor
建軍 陳
勇 田
杰 閔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Qingyan Lithium Technology Co Ltd
Original Assignee
Shenzhen Qingyan Lithium Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Qingyan Lithium Technology Co Ltd filed Critical Shenzhen Qingyan Lithium Technology Co Ltd
Publication of JP2024509414A publication Critical patent/JP2024509414A/en
Application granted granted Critical
Publication of JP7493212B2 publication Critical patent/JP7493212B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

【課題】廃リチウム電池の連続安全放電方法及び装置を提供する。【解決手段】送り機構を用いて複数の廃リチウム電池を1つずつ導電搬送機構に送り、各廃リチウム電池を、導電搬送機構におけるそれぞれ閉合して設置された上導電搬送ベルトと下導電搬送ベルトとの間に等間隔で挟持し、上導電搬送ベルト及び下導電搬送ベルトを、それぞれ対向して設置された導電性黒鉛押さえローラ及び導電性黒鉛受けローラの駆動によって移動させ、且つ直列に接続された調整可能な抵抗、電流計及びスイッチに接続し、放電回路を形成し、廃リチウム電池は上導電搬送ベルト及び下導電搬送ベルトの搬送による移動過程において放電過程を完了する。本発明は、廃リチウム電池の量産化、連続化、自動化の放電処理を実現し、廃リチウム電池の放電効率を大幅に向上させ、各廃リチウム電池の完全且つ十分な放電を確保し、放電効果が良い。本発明は、プロセスが簡単で、コストが低く、主流市場の塩水放電による新たな不純物導入の欠陥を回避し、環境に優しい。【選択図】図1The present invention provides a continuous safe discharge method and device for waste lithium batteries. [Solution] A plurality of waste lithium batteries are sent one by one to a conductive transport mechanism using a feeding mechanism, and each waste lithium battery is transferred to an upper conductive transport belt and a lower conductive transport belt that are respectively installed in a closed manner in the conductive transport mechanism. The upper conductive conveyor belt and the lower conductive conveyor belt are moved by driving a conductive graphite pressing roller and a conductive graphite receiving roller, respectively, which are installed opposite to each other, and are connected in series. connected to an adjustable resistor, an ammeter and a switch to form a discharge circuit, and the waste lithium battery completes the discharge process during the movement process by the upper conductive conveyor belt and the lower conductive conveyor belt. The present invention realizes the mass production, continuous, and automated discharge processing of waste lithium batteries, greatly improves the discharge efficiency of waste lithium batteries, ensures complete and sufficient discharge of each waste lithium battery, and achieves the discharge effect. is good. The present invention is simple in process, low in cost, avoids the drawback of introducing new impurities due to salt water discharge in the mainstream market, and is environmentally friendly. [Selection diagram] Figure 1

Description

本発明は、廃リチウム電池の回収技術の分野に関し、特に廃リチウム電池の連続安全放電方法及び装置に関する。 The present invention relates to the field of waste lithium battery recovery technology, and more particularly to a continuous safe discharge method and apparatus for waste lithium batteries.

現在、リチウム電池は大量の廃棄回収の問題に直面している。しかしながら、廃棄された廃リチウム電池にはまだ一定の残留電力があり、適切に放電しないと、電池の積み重ねプロセスや処理プロセスで爆発的な燃焼事故が発生しやすくなっている。 Currently, lithium batteries are facing a large amount of waste collection problems. However, discarded waste lithium batteries still have a certain amount of residual power, and if they are not properly discharged, they are prone to explosive combustion accidents during the battery stacking and processing processes.

塩水溶液を用いて廃リチウム電池に安全な放電を実現することは、従来技術では広く採用されている方法の一つとなっている。しかしながら、塩水放電にも比較的深刻な環境汚染問題があり、例えば、大量のガスが発生すると周辺環境に二次汚染が発生する。塩水で複数回放電した後、塩水溶液は、廃リチウム電池中のスチールケース、アルミケース、正極アルミ箔、負極銅箔、電極シート活物質、タブなどに深刻な電気化学的腐食を生じ、しかも大量の不純物を導入し、これらの不純物は危険な廃棄物であり、二次汚染を生じることがある。同時に、複数回の放電後の塩水溶液には、多くの場合、茶色の綿状沈殿物が多く含まれており、これらの物質は廃リチウム電池で破壊および選別され、正極と負極の混合物、つまり黒色粉末は、その後の有価金属の不純物除去と精製に大きな影響を与え、プロセスフローは複雑であり、より多くの他の化学薬品の使用、廃水処理量の増加、不純物除去のコストが大幅に増加しまう。 Achieving safe discharge of waste lithium batteries using aqueous salt solutions has become one of the widely adopted methods in the prior art. However, salt water discharge also has relatively serious environmental pollution problems, for example, when a large amount of gas is generated, secondary pollution occurs in the surrounding environment. After multiple discharges with salt water, the salt water solution will cause serious electrochemical corrosion to the steel case, aluminum case, positive electrode aluminum foil, negative electrode copper foil, electrode sheet active material, tab, etc. in the waste lithium battery, and a large amount These impurities are hazardous wastes and can cause secondary pollution. At the same time, the salt aqueous solution after multiple discharges often contains a lot of brown flocculent precipitates, and these substances are destroyed and sorted out in the waste lithium battery, resulting in a mixture of positive and negative electrodes, i.e. Black powder has a great impact on the subsequent impurity removal and purification of valuable metals, the process flow is complicated, the use of more other chemicals, increased wastewater treatment volume, and the cost of impurity removal increases significantly Put it away.

中国特許文献にはリチウム電池のクリーン放電設備及び方法を開示している。当該設備及び方法は、二回の放電方式を採用し、複数の中間変換機構を必要とし、構造が複雑で、敷地面積が大きく、且つ二回目の放電は、外付けの導電剤の塗布によって実現する必要があるが、廃電池の正負極の短絡溝内に導電剤がスムーズに入るにくく、個々の単一セルの導通効果が十分に確保できず、放電効率が低く、長時間使用後の廃電池の正、負極表面には不明な有機、無機汚染物が大量に吸着し、導電剤の導通に大きな影響があり、効果的な放電を保証することは難しい。また、導電剤の使用量が多く、循環不可能であるとともに、新たな不純物化学成分を導入すると、後続の廃リチウム電池の有価化学成分の分離と選別が困難になっている。さらに、廃リチウム電池は、互いに積み重ねられている場合に材料供給及び放電を行うため、正負の衝突や接触が発生しやすく、燃焼や爆発の事故につながる可能性がある。 Chinese patent documents disclose clean discharge equipment and methods for lithium batteries. The equipment and method adopt a two-time discharge method, require multiple intermediate conversion mechanisms, have a complicated structure, and require a large site area, and the second discharge is realized by applying an external conductive agent. However, it is difficult for the conductive agent to enter the short-circuiting grooves of the positive and negative electrodes of waste batteries, making it impossible to ensure sufficient conduction for each single cell, resulting in low discharge efficiency and the possibility of discarding after long-term use. Large amounts of unknown organic and inorganic contaminants are adsorbed on the surfaces of the positive and negative electrodes of batteries, which greatly affects the conductivity of the conductive agent, making it difficult to guarantee effective discharge. In addition, the amount of conductive agent used is large, making it impossible to recycle, and the introduction of new impurity chemical components makes it difficult to separate and sort valuable chemical components from subsequent waste lithium batteries. Furthermore, since waste lithium batteries perform material supply and discharge when stacked on top of each other, positive and negative collisions and contact are likely to occur, which may lead to combustion or explosion accidents.

また、中国特許文献には、廃円筒型リチウムイオン電池放電装置及びその放電方法が開示されている。その中でも、特殊金属材料からなる複合ボードはコストが高く、放電あたりの電池の数が制限されており、廃電池の材料供給と材料排出が非常に不便であり、作業効率が低い。 Further, a Chinese patent document discloses a waste cylindrical lithium ion battery discharge device and a discharge method thereof. Among them, the composite board made of special metal materials has a high cost, the number of batteries per discharge is limited, the material supply and material discharge of waste batteries are very inconvenient, and the work efficiency is low.

電池の急速放電を達成するために放電媒体として導電性マイカ粉末を使用する廃リチウム電池急速放電装置もある。しかし、導電性マイカ粉末は微細で、比表面積が大きく、吸着性が非常に強く、単一セルの表面に吸着しやすく、放電後、大量の水で洗浄する必要がある。同時に、導電性マイカ粉末中の導電性成分は、単一セルの正極と負極の短絡溝に不純物としてしっかりと蓄えられ、後続の電池の選別と精製の難しさが増し、分離精製プロセス及び運行コストが大幅に増加する。 There are also waste lithium battery rapid discharge devices that use conductive mica powder as the discharge medium to achieve rapid discharge of the battery. However, conductive mica powder is fine, has a large specific surface area, has very strong adsorption properties, and is easily adsorbed to the surface of a single cell, so it needs to be washed with a large amount of water after discharge. At the same time, the conductive components in the conductive mica powder are firmly stored as impurities in the short circuit groove of the positive and negative electrodes of a single cell, which increases the difficulty of subsequent cell sorting and purification, and increases the separation and purification process and operation cost. will increase significantly.

本発明は、上記の従来技術の不足を克服するために、放電が十分で、完全で、一度に廃リチウム電池の放電過程を完了できて、量産化、連続化、自動化ができて、しかもプロセスが簡単で、コストが低くて、工業化生産を実現できる廃リチウム電池の連続安全放電方法を提供することを目的とする。 In order to overcome the deficiencies of the above-mentioned prior art, the present invention is capable of sufficient and complete discharging, can complete the discharging process of waste lithium batteries at once, and can be mass-produced, continuous, automated, and process The purpose of the present invention is to provide a method for continuous safe discharging of waste lithium batteries, which is simple, low-cost, and capable of realizing industrial production.

本発明による廃リチウム電池の連続安全放電方法は、送り機構を用いて複数の廃リチウム電池を1つずつ導電搬送機構に送り、各廃リチウム電池を等間隔で前記導電搬送機構におけるそれぞれ閉合してリング状ベルトをなす上導電搬送ベルトと下導電搬送ベルトとの間に挟持させ、前記上導電搬送ベルトの内輪及び前記下導電搬送ベルトの内輪にそれぞれ間隔を置いて配列された複数の導電性黒鉛押さえローラ及び導電性黒鉛受けローラが設けられ、且つ複数の導電性黒鉛押さえローラ及び導電性黒鉛受けローラをそれぞれ上駆動機構及び下駆動機構で駆動して同期に移動させ、且つ導電性黒鉛押さえローラ及び導電性黒鉛受けローラを介して直列に接続された調整可能な抵抗、電流計及びスイッチに接続し、放電回路を形成し、前記廃リチウム電池は、前記上導電搬送ベルト及び前記下導電搬送ベルトの搬送による移動過程において連続放電過程を完了する。 The continuous safe discharge method for waste lithium batteries according to the present invention includes sending a plurality of waste lithium batteries one by one to a conductive transport mechanism using a feeding mechanism, and closing each waste lithium battery in the conductive transport mechanism at equal intervals. A plurality of conductive graphites are sandwiched between an upper conductive conveyor belt and a lower conductive conveyor belt forming a ring-shaped belt, and arranged at intervals on the inner ring of the upper conductive conveyor belt and the inner ring of the lower conductive conveyor belt, respectively. A press roller and a conductive graphite receiving roller are provided, and a plurality of conductive graphite press rollers and a plurality of conductive graphite receiving rollers are respectively driven by an upper drive mechanism and a lower drive mechanism to move synchronously, and the conductive graphite press roller and a conductive graphite receiving roller connected to an adjustable resistor, an ammeter and a switch connected in series to form a discharge circuit, and the waste lithium battery is connected to the upper conductive conveyor belt and the lower conductive conveyor belt. The continuous discharge process is completed during the movement process due to the conveyance of the .

上記方法において、前記廃リチウム電池が前記送り機構で前記導電搬送機構に送入される入口部に、視覚認識システムを設置してもよく、これにより前記送り機構は、前記視覚認識システムの命令によって前記廃リチウム電池を電極の位置に従って前記上導電搬送ベルトと前記下導電搬送ベルトとの間に配置する。 In the above method, a visual recognition system may be installed at an entrance where the waste lithium battery is fed into the conductive transport mechanism by the feeding mechanism, so that the feeding mechanism can be controlled by the visual recognition system. The waste lithium battery is arranged between the upper conductive conveyor belt and the lower conductive conveyor belt according to the positions of the electrodes.

上記方法において、前記上導電搬送ベルト及び前記下導電搬送ベルトは、導電層を有し、前記導電層はゴム及び導電性粉末を含み、前記導電性粉末は、導電性炭素粉末及び黒鉛負極粉末のうちの1種または2種の混合物であり、前記ゴムはフッ素ゴム又はニトリルゴム又は加硫ゴムのうちの1種または2種を混合してなり、前記導電性粉末が前記導電層の全質量の20%~60%を占め、前記ゴムが前記導電層の全質量の30%~70%を占め、前記上導電搬送ベルト及び前記下導電搬送ベルトの抵抗率はいずれも(5.0~18.0)×10-6Ω.mである。 In the above method, the upper conductive conveyor belt and the lower conductive conveyor belt have a conductive layer, the conductive layer includes rubber and conductive powder, and the conductive powder includes conductive carbon powder and graphite negative electrode powder. The rubber is a mixture of one or two of fluororubber, nitrile rubber, or vulcanized rubber, and the conductive powder accounts for the total mass of the conductive layer. The rubber accounts for 30% to 70% of the total mass of the conductive layer, and the resistivity of both the upper conductive conveyor belt and the lower conductive conveyor belt is (5.0 to 18. 0)× 10-6 Ω. It is m.

上記方法において、前記上導電搬送ベルトの外輪と前記下導電搬送ベルトの外輪との対向する位置に、それぞれ廃リチウム電池の正負極に合う凹み又はストッパを間隔を置いて複数設置し、前記上導電搬送ベルトと前記下導電搬送ベルトとの間に挟まれた各廃リチウム電池を前記上導電搬送ベルト及び前記下導電搬送ベルトの凹み又はストッパ内に位置決めする。 In the above method, a plurality of recesses or stoppers that fit the positive and negative electrodes of the waste lithium battery are installed at intervals at opposing positions of the outer ring of the upper conductive conveyor belt and the outer ring of the lower conductive conveyor belt, and Each waste lithium battery sandwiched between the conveyor belt and the lower conductive conveyor belt is positioned in a recess or stopper of the upper conductive conveyor belt and the lower conductive conveyor belt.

上記方法において、廃リチウム電池の放電プロセス中に発生する熱を低減するために、放電プロセスでの各前記廃リチウム電池に冷気を吹き付る空冷システムをさらに設置してもよい。 In the above method, an air cooling system may be further installed to blow cold air onto each waste lithium battery during the discharge process to reduce the heat generated during the discharge process of the waste lithium battery.

本発明は上記廃リチウム電池の連続安全放電方法に基づいて設計された装置をさらに提供し、送り機構及び導電搬送機構を備え、前記導電搬送機構はそれぞれ閉合してリング状ベルトをなす上導電搬送ベルト及び下導電搬送ベルトを有し、放電対象である廃リチウム電池を前記送り機構によって前記導電搬送機構に送入し、1つずつ前記上導電搬送ベルトと前記下導電搬送ベルトとの間に等間隔で挟持し、前記上導電搬送ベルト及び前記下導電搬送ベルトを上下に間隔を置いて設置し、それぞれ上駆動機構及び下駆動機構で駆動して同期に移動させ、前記上導電搬送ベルトの内輪に間隔を置いて配列されて当該上導電搬送ベルトと組み合わせられた複数の導電性黒鉛押さえローラが設けられ、前記下導電搬送ベルトの内輪に間隔を置いて配列されて当該下導電搬送ベルトと組み合わせられた複数の導電性黒鉛受けローラが設けられ、前記導電性黒鉛押さえローラ及び導電性黒鉛受けローラは直列に接続された調整可能な抵抗、電流計及びスイッチに接続され、前記上導電搬送ベルトと前記下導電搬送ベルトとの間に挟持された各廃リチウム電池とともに放電回路を形成する。 The present invention further provides an apparatus designed based on the continuous safe discharge method of waste lithium batteries, comprising a feeding mechanism and a conductive conveying mechanism, each of which is closed to form a ring-shaped belt for conductive conveying. belt and a lower conductive conveyor belt, the waste lithium batteries to be discharged are fed into the conductive conveyor mechanism by the feed mechanism, and the batteries are placed one by one between the upper conductive conveyor belt and the lower conductive conveyor belt. The upper conductive conveyor belt and the lower conductive conveyor belt are placed vertically at intervals, and are driven by an upper drive mechanism and a lower drive mechanism to move synchronously, and the inner ring of the upper conductive conveyor belt is A plurality of conductive graphite pressing rollers are arranged at intervals and combined with the upper conductive conveyor belt, and a plurality of conductive graphite pressing rollers are arranged at intervals and combined with the lower conductive conveyor belt on the inner ring of the lower conductive conveyor belt. A plurality of conductive graphite receiving rollers are provided, and the conductive graphite holding roller and the conductive graphite receiving roller are connected to an adjustable resistor, an ammeter and a switch connected in series, and the conductive graphite holding roller and the conductive graphite receiving roller are connected to an adjustable resistor, an ammeter and a switch connected in series, and the conductive graphite holding roller and the conductive graphite receiving roller are connected to the upper conductive conveyor belt. A discharge circuit is formed together with each waste lithium battery sandwiched between the lower conductive conveyor belt and the lower conductive conveyor belt.

上記装置において、前記廃リチウム電池を前記導電搬送機構に送入する入口部に、前記送り機構によって前記廃リチウム電池を電極の位置に従って前記上導電搬送ベルトと前記下導電搬送ベルトとの間に配置させるための視覚認識システムが設けられてもよい。 In the above device, the waste lithium battery is placed between the upper conductive conveyor belt and the lower conductive conveyor belt according to the position of the electrodes by the feed mechanism at an entrance portion for feeding the waste lithium battery into the conductive conveyance mechanism. A visual recognition system may be provided to make the user aware of the situation.

上記装置において、前記上導電搬送ベルトの外輪及び前記下導電搬送ベルトの外輪との対向する位置に、それぞれ間隔を置いて廃リチウム電池の正負極に合う複数の凹み又はストッパが設けられてもよい。 In the above device, a plurality of recesses or stoppers that match the positive and negative electrodes of the waste lithium battery may be provided at intervals at positions facing the outer ring of the upper conductive conveyor belt and the outer ring of the lower conductive conveyor belt, respectively. .

上記装置において、前記導電搬送機構は、前記廃リチウム電池を送入する入口部に各前記廃リチウム電池を配置しやすい導入角が設けられ、前記廃リチウム電池の出口部に、放電を完了した各前記廃リチウム電池が落下しやすい導出角が設けられる。 In the above device, the conductive transport mechanism is provided with an introduction angle that makes it easy to arrange each of the waste lithium batteries at an inlet portion for feeding the waste lithium batteries, and has an introduction angle that allows each of the waste lithium batteries to be easily placed at the outlet portion of the waste lithium battery. A lead-out angle is provided at which the waste lithium battery easily falls.

上記装置において、空冷システムをさらに備え、前記空冷システムは、放電中の前記廃リチウム電池を急速に降温するために、冷気を前記導電搬送機構で移動している前記廃リチウム電池へ吹き付ける複数の送風口を有する。 The above device further includes an air cooling system, and the air cooling system includes a plurality of air blowers that blow cold air onto the waste lithium battery that is being moved by the conductive transport mechanism in order to rapidly lower the temperature of the waste lithium battery that is being discharged. have a mouth

本発明は以下の技術的効果を有する。
(1)本発明は、廃リチウム電池を閉合して等間隔を置いて設置された上導電搬送ベルトと下導電搬送ベルトとの間に挟持させ、これにより廃リチウム電池は、上導電搬送ベルト及び下導電搬送ベルトの搬送による移動過程において1つずつ放電過程を完了し、廃リチウム電池の量産化および連続放電処理を実現し、廃リチウム電池の放電を自動化し、廃リチウム電池の放電効率を大幅に向上させるだけでなく、各廃リチウム電池の放電が一度に完了し、放電が完全かつ十分であり、良好な放電効果がある。
(2)本発明は、廃リチウム電池を上導電搬送ベルトと下導電搬送ベルトとの間に移動する過程において廃リチウム電池が間隔を置いて設置されることにより、廃リチウム電池の放電過程の安全性を効果的に確保する。上導電搬送ベルト及び下導電搬送ベルトの長さと移動速度を必要に応じて設定することができ、廃電池の放電時間と速度を調整することができ、調整可能な抵抗によって放電時間及び放電速度を調整制御することによって、生産効率と安全性を向上させることができる。
(3)本発明は、導電搬送機構に利用された上導電搬送ベルト、下導電搬送ベルト、導電性黒鉛押さえローラ及び導電性黒鉛受けローラは、廃リチウム電池を搬送して放電させる移動部材としてもよいし、放電回路における導電素子としてもよい。また、各部材は安価で入手しやすい黒鉛導電性材料を採用しており、放電プロセスにおいて新しい不純物が導入されないため、放電の完全性が保証されるだけでなく、廃リチウム電池の回収コストも削減される。
(4)本発明は、放電過程全体において、物理的方法を採用して、放電設備の設計構造及び達成された導電性を最大限に活用し、任意の化学原料を必要としなくて、市場の主流技術である塩水放電において大量の廃ガスと液体などによる環境汚染現象の発生を回避し、二次汚染を引き起こさないため、放電過程は環境に優しい。
(5)本発明は、簡便な工程と低コストを有し、廃リチウム電池の放電工程の効率及び安全性を向上させ、工業的な大量生産に資するものである。
The present invention has the following technical effects.
(1) In the present invention, a waste lithium battery is closed and sandwiched between an upper conductive conveyor belt and a lower conductive conveyor belt that are installed at equal intervals. The discharge process is completed one by one during the movement process by the lower conductive conveyor belt, realizing mass production and continuous discharge processing of waste lithium batteries, automating the discharge of waste lithium batteries, and greatly increasing the discharge efficiency of waste lithium batteries. Not only can the discharge of each waste lithium battery be completed at once, but the discharge is complete and sufficient, and there is a good discharge effect.
(2) The present invention provides safety in the discharging process of waste lithium batteries by placing the waste lithium batteries at intervals during the process of moving the waste lithium batteries between the upper conductive conveyor belt and the lower conductive conveyor belt. Effectively ensure sex. The length and moving speed of the upper conductive conveyor belt and lower conductive conveyor belt can be set as required, and the discharging time and speed of waste batteries can be adjusted.The discharging time and discharging speed can be adjusted by the adjustable resistance. Adjustment control can improve production efficiency and safety.
(3) The present invention provides that the upper conductive conveyor belt, lower conductive conveyor belt, conductive graphite pressing roller, and conductive graphite receiving roller used in the conductive conveyance mechanism can also be used as moving members for conveying and discharging waste lithium batteries. Alternatively, it may be used as a conductive element in a discharge circuit. In addition, each component uses graphite conductive material that is inexpensive and easily available, and no new impurities are introduced during the discharge process, which not only ensures discharge integrity but also reduces the cost of recovering waste lithium batteries. be done.
(4) The present invention adopts physical methods in the whole discharge process, makes full use of the design structure of the discharge equipment and the achieved conductivity, does not require any chemical raw materials, and is the most popular on the market. In salt water discharge, which is the mainstream technology, environmental pollution caused by a large amount of waste gas and liquid is avoided, and secondary pollution is not caused, so the discharge process is environmentally friendly.
(5) The present invention has a simple process and low cost, improves the efficiency and safety of the discharging process of waste lithium batteries, and contributes to industrial mass production.

本発明の方法は、現在の産業のニーズを満たし、非常に広範囲の応用見通しを有する。 The method of the invention meets the needs of current industry and has very wide application prospects.

本発明の装置構造の実施例の模式図である。FIG. 1 is a schematic diagram of an embodiment of the device structure of the present invention.

本発明の目的、技術的手段及び利点をより明確にするために、以下、実施例を参照して、本発明をさらに詳しく説明する。ここで記載の実施例は本発明を解釈するためのものだけで、本発明を限定するためのものではないことを理解されたい。 In order to make the objects, technical means and advantages of the present invention clearer, the present invention will be described in more detail with reference to Examples below. It is to be understood that the examples described herein are for the purpose of illustrating the invention only and are not intended to limit the invention.

本発明の実施例は、まず、廃リチウム電池の連続安全放電方法を提供し、送り機構を採用して複数の放電対象である廃リチウム電池を1つずつ導電搬送機構に送入し、前記導電搬送機構は上導電搬送ベルト及び下導電搬送ベルトを備え、前記上導電搬送ベルト及び下導電搬送ベルトは、いずれも閉合したリング状ベルトであり、上下に間隔を置いて設置し、その間隔により、複数の放電対象である廃リチウム電池が上導電搬送ベルトと下導電搬送ベルトとの間に挟持され、前記上導電搬送ベルト及び下導電搬送ベルトをそれぞれ上駆動機構及び下駆動機構で駆動して同期に移動させ、上導電搬送ベルトの内輪に、間隔を置いて配列された複数の導電性黒鉛押さえローラが設けられ、同時に、下導電搬送ベルトの内輪に、それぞれ間隔を置いて配列された複数の導電性黒鉛受けローラが設けられ、導電性黒鉛押さえローラと導電性黒鉛受けローラとは対向して設置され、両者の中心は同一の直線上にあり、導電性黒鉛押さえローラの周辺と導電性黒鉛受けローラの周辺とはそれぞれ上導電搬送ベルト及び下導電搬送ベルトに接するとともに、上導電搬送ベルト及び下導電搬送ベルトと組み合わせて回転する。同時に、導電性黒鉛受けローラ及び導電性黒鉛押さえローラがそれぞれ直列に接続された調整可能な抵抗、電流計及びスイッチに接続されることにより、下導電搬送ベルト、各廃リチウム電池、上導電搬送ベルトとともに放電回路を形成する。好ましい態様としては、放電対象である廃リチウム電池は、上導電搬送ベルトと下導電搬送ベルトとの間に搬送されるとき、その軸方向中心と導電性黒鉛受けローラ及び導電性黒鉛押さえローラの中心とは同一の直線にあり、その間隔が導電性黒鉛受けローラ及び導電性黒鉛押さえローラの間隔を置いて配列された間隔と一致することにより、各廃リチウム電池が上導電搬送ベルトと下導電搬送ベルトとの間にある場合、その底端が導電性黒鉛受けローラによって支持され、頂端が導電性黒鉛押さえローラによって挟圧され、移動している過程において始終に上導電搬送ベルトと下導電搬送ベルトとの間に挟持され、且つ、同一の直線に設置された導電性黒鉛押さえローラ及び導電性黒鉛受けローラは、最小の押さえ力で廃リチウム電池をしっかりと押さえ、廃リチウム電池が移動中に転倒しないようにすることができる。このように、放電対象である廃リチウム電池が送り機構によって導電搬送機構に送入されるとき、1つずつ間隔を置いて導電性黒鉛受けローラと導電性黒鉛押さえローラとで上導電搬送ベルトと下導電搬送ベルトとの間に挟持され、且つ上導電搬送ベルト及び下導電搬送ベルトの連動により、絶えず移動しているうちに放電過程を次第に完了する。本発明の上記方法は、廃リチウム電池の自動化、量産化、連続の放電処理を実現し、移動中に一度に放電を完了することができる。同時に、廃リチウム電池を連動して移動させる部材である、上導電搬送ベルト、下導電搬送ベルト、導電性黒鉛押さえローラ及び導電性黒鉛受けローラはいずれも導電素子であり、つまり、上導電搬送ベルト、下導電搬送ベルト、導電性黒鉛押さえローラ及び導電性黒鉛受けローラは、廃リチウム電池を放電過程において連動して移動させる部材としてもよいし、導電部材としてもよい。これにより放電設備全体はいずれも導電性能を有し、廃リチウム電池の放電を確実に確保する。そして、リチウム電池の正負極と上導電搬送ベルト及び下導電搬送ベルトとの接触面積が大きく、且つ導電性黒鉛押さえローラと導電性黒鉛受けローラとの対向設置によって各廃リチウム電池を上導電搬送ベルトと下導電搬送ベルトとの間にしっかりと挟持し、廃リチウム電池が移動中に転倒しないようにすることができるとともに、放電回路は放電プロセス中にスムーズであり、各廃リチウム電池の放電が確実かつ十分に保障されているとともに、優れた放電効果がある。また、各廃リチウム電池は上導電搬送ベルトと下導電搬送ベルトとの間に配置され、これにより各単一リチウムセルの間に有効な間隔を形成することにより、各リチウム電池が互いに衝突することによる安全上の懸念を回避し、持続的な放電時間を確保することができ、一般的には2~4時間で、電池の残留電圧は1.0ボルトの安全電圧を下回り、安全性が高く、放電効率が高いなどの特徴がある。且つ、上導電搬送ベルト及び下導電搬送ベルトの長さと移動速度は、放電の必要に応じて設定されることができ、廃リチウム電池の放電時間と速度を調整することができ、調整可能な抵抗によって放電時間及び放電速度を調整することもできる。同時に、本発明の方法は、プロセスが簡単で、低コストで、上記各部材からなる連続放電設備は、化学工業原料を一切必要とせず、塩水放電による大量の排気廃液の発生などの環境汚染現象を回避し、二次汚染を発生せず、環境に配慮し、廃リチウム電池の放電過程の効率と安全性を高め、現在の廃リチウム電池回収産業の需要を満たし、工業化・大規模生産に有利である。 Embodiments of the present invention first provide a method for continuous safe discharging of waste lithium batteries, and adopt a feeding mechanism to feed a plurality of waste lithium batteries to be discharged one by one into a conductive conveying mechanism. The conveyance mechanism includes an upper conductive conveyor belt and a lower conductive conveyor belt, and the upper conductive conveyor belt and the lower conductive conveyor belt are both closed ring-shaped belts, and are installed vertically at intervals, and depending on the interval, A plurality of waste lithium batteries to be discharged are sandwiched between an upper conductive conveyor belt and a lower conductive conveyor belt, and the upper conductive conveyor belt and the lower conductive conveyor belt are driven by an upper drive mechanism and a lower drive mechanism, respectively, and are synchronized. A plurality of conductive graphite pressure rollers arranged at intervals are provided on the inner ring of the upper conductive conveyance belt, and at the same time, a plurality of conductive graphite pressure rollers arranged at intervals are provided on the inner ring of the lower conductive conveyance belt. A conductive graphite receiving roller is provided, and the conductive graphite pressing roller and the conductive graphite receiving roller are installed facing each other, their centers are on the same straight line, and the conductive graphite pressing roller and the conductive graphite The periphery of the receiving roller contacts the upper conductive conveyor belt and the lower conductive conveyor belt, respectively, and rotates in combination with the upper conductive conveyor belt and the lower conductive conveyor belt. At the same time, the conductive graphite receiving roller and the conductive graphite holding roller are connected to adjustable resistors, ammeters and switches connected in series, respectively, thereby connecting the lower conductive conveyor belt, each waste lithium battery, and the upper conductive conveyor belt. Together, they form a discharge circuit. In a preferred embodiment, when the waste lithium battery to be discharged is conveyed between the upper conductive conveyor belt and the lower conductive conveyor belt, its axial center and the center of the conductive graphite receiving roller and the conductive graphite pressing roller are on the same straight line, and the interval matches the interval between the conductive graphite receiving roller and the conductive graphite pressing roller, so that each waste lithium battery is connected to the upper conductive conveyor belt and the lower conductive conveyor belt. When it is between the belt, its bottom end is supported by a conductive graphite receiving roller, and its top end is pinched by a conductive graphite pressing roller, and the top conductive conveyor belt and lower conductive conveyor belt The conductive graphite holding roller and conductive graphite receiving roller, which are sandwiched between the You can prevent it from happening. In this way, when the waste lithium battery to be discharged is sent to the conductive conveyance mechanism by the feed mechanism, the conductive graphite receiving roller and the conductive graphite presser roller are connected to the upper conductive conveyance belt at intervals one by one. It is held between the lower conductive conveyor belt and the upper conductive conveyor belt and the lower conductive conveyor belt are interlocked to gradually complete the discharge process while constantly moving. The above method of the present invention realizes automation, mass production, and continuous discharging treatment of waste lithium batteries, and can complete discharging at once during transportation. At the same time, the upper conductive conveyor belt, the lower conductive conveyor belt, the conductive graphite pressing roller, and the conductive graphite receiving roller, which are the members that move the waste lithium battery in conjunction with each other, are all conductive elements, that is, the upper conductive conveyor belt , the lower conductive conveyance belt, the conductive graphite pressing roller, and the conductive graphite receiving roller may be members that move the waste lithium battery in conjunction with each other during the discharging process, or may be electrically conductive members. As a result, the entire discharge equipment has electrical conductivity, ensuring reliable discharge of waste lithium batteries. The contact area between the positive and negative electrodes of the lithium battery and the upper conductive conveyor belt and the lower conductive conveyor belt is large, and the conductive graphite pressing roller and conductive graphite receiving roller are installed opposite each other, so that each waste lithium battery is transferred to the upper conductive conveyor belt. and the lower conductive conveyor belt, which can prevent the waste lithium battery from falling over during movement, and the discharge circuit is smooth during the discharge process, ensuring the discharge of each waste lithium battery. In addition to being fully guaranteed, it also has an excellent discharge effect. Additionally, each waste lithium battery is placed between an upper conductive conveyor belt and a lower conductive conveyor belt, thereby forming an effective spacing between each single lithium cell to prevent each lithium battery from colliding with each other. It can avoid safety concerns caused by battery discharge and ensure a sustained discharge time, generally within 2 to 4 hours, the residual voltage of the battery will be below the safety voltage of 1.0 volts, which is highly safe. It has characteristics such as high discharge efficiency. And the length and moving speed of the upper conductive conveyor belt and the lower conductive conveyor belt can be set according to the needs of discharging, and the discharging time and speed of waste lithium batteries can be adjusted, and the adjustable resistance It is also possible to adjust the discharge time and discharge rate. At the same time, the method of the present invention has a simple process and low cost, and the continuous discharge equipment made of the above components does not require any chemical industrial raw materials, and does not cause environmental pollution such as the generation of a large amount of exhaust liquid due to salt water discharge. avoids secondary pollution, does not generate secondary pollution, is environmentally friendly, improves the efficiency and safety of the waste lithium battery discharge process, meets the demands of the current waste lithium battery recovery industry, and is advantageous for industrialization and large-scale production. It is.

本発明による方法の具体的な実施形態において、廃リチウム電池が送り機構で導電搬送機構に送入される廃リチウム電池の入口部に、視覚認識システムを設置することができ、視覚認識システムにおける画像取得装置CCDによって、送り機構でピックアップされた廃リチウム電池を画像信号に変換して、画像処理システムに伝送し、画像処理システムは画像信号に基づいてリチウム電池の外観及びサイズ特徴をすばやく識別し、サイズに基づいてリチウム電池の正極と負極を区別し、そして、送り機構に制御命令を送信することにより、送り機構は材料取得クランプによって廃リチウム電池を電極の位置に従って上導電搬送ベルトと下導電搬送ベルトとの間に配置する。視覚認識システムを採用して、送り機構による自動供給により、手動を必要とせずに、廃リチウム電池の正極と負極を迅速かつ効率的に識別でき、手動配置誤差によって引き起こされる潜在的な安全上の問題を回避し、高精度、高安全性、優れた操作性の特性を備えている。生産効率と廃リチウム電池の放電自動化の程度を大幅に向上させることができ、電池放電移動プロセスの安全性と安定性の向上に役立つ。 In a specific embodiment of the method according to the invention, a visual recognition system can be installed at the inlet of the waste lithium battery, where the waste lithium battery is fed into the conductive transport mechanism by the feeding mechanism, and the visual recognition system The acquisition device CCD converts the waste lithium battery picked up by the feeding mechanism into an image signal and transmits it to an image processing system, which quickly identifies the appearance and size characteristics of the lithium battery based on the image signal, By distinguishing the positive and negative electrodes of lithium batteries based on size, and then sending control commands to the feeding mechanism, the feeding mechanism transfers the waste lithium batteries by the material acquisition clamp to the upper conductive conveyor belt and the lower conductive conveyor according to the electrode position. Place it between the belt and the belt. Adopting a visual recognition system, the automatic feeding by the feeding mechanism can quickly and efficiently identify the positive and negative electrodes of waste lithium batteries without the need for manual intervention, eliminating potential safety hazards caused by manual placement errors. It avoids problems and has the characteristics of high precision, high safety and good operability. It can greatly improve the production efficiency and the degree of waste lithium battery discharge automation, and help improve the safety and stability of the battery discharge transfer process.

本発明による方法の具体的な実施形態において、前記上導電搬送ベルト及び下導電搬送ベルトは、ベルトコアと導電層とから構成されてもよく、前記ベルトコアは、単層で縦方向に配置された鋼線ロープから構成され、前記導電層は、ゴム及び導電性粉末を含み、前記導電層は、ゴム、導電性粉末及び添加剤をプレス又は混合することにより構成されていてもよい。前記導電性粉末は導電性炭素粉末及び黒鉛負極粉末のうちの1種または2種の混合物であり、前記ゴムはフッ素ゴム又はニトリルゴム又は加硫ゴムのうちの1種または2種を混合してなり、前記導電性粉末が前記導電層の全質量の20%~60%を占め、前記ゴムが前記導電層の全質量の30%~70%を占め、残りの添加剤は、フタル酸ジブチル、3~5mmの短炭素繊維などを採用することができる。前記上導電搬送ベルト及び下導電搬送ベルトの抵抗率はいずれも(5.0~18.0)×10-6Ω.mであり、良い導電性を有し、導電性黒鉛の導電性能と同様である。前記導電性黒鉛押さえローラ及び導電性黒鉛受けローラは、黒鉛材料をプレスし高温処理してなり、廃リチウム電池から回収された負極黒鉛粉末を採用することができ、製造コストを削減し、リソースを節約できる。導電性黒鉛押さえローラ及び導電性黒鉛受けローラは高導電性を有するとともに、耐食性、高温耐性、高強度、軽量などの特徴を有する。 In a specific embodiment of the method according to the invention, the upper conductive conveyor belt and the lower conductive conveyor belt may be composed of a belt core and a conductive layer, the belt core being a single layer of longitudinally arranged steel. It is composed of a wire rope, and the conductive layer includes rubber and conductive powder, and the conductive layer may be constructed by pressing or mixing rubber, conductive powder, and additives. The conductive powder is a mixture of one or two of conductive carbon powder and graphite negative electrode powder, and the rubber is a mixture of one or two of fluororubber, nitrile rubber, or vulcanized rubber. The conductive powder accounts for 20% to 60% of the total mass of the conductive layer, the rubber accounts for 30% to 70% of the total mass of the conductive layer, and the remaining additives include dibutyl phthalate, Short carbon fibers of 3 to 5 mm can be used. The resistivity of both the upper conductive conveyor belt and the lower conductive conveyor belt is (5.0 to 18.0)×10 −6 Ω. m, and has good conductivity, which is similar to that of conductive graphite. The conductive graphite holding roller and conductive graphite receiving roller are made by pressing graphite material and treating it at high temperature, and can use negative electrode graphite powder recovered from waste lithium batteries, which reduces manufacturing costs and saves resources. You can save money. The conductive graphite holding roller and the conductive graphite receiving roller have high conductivity, as well as characteristics such as corrosion resistance, high temperature resistance, high strength, and light weight.

本発明による方法の具体的な実施形態において、前記上導電搬送ベルトの外輪及び前記下導電搬送ベルトの外輪との対向する位置に、つまり上導電搬送ベルト及び下導電搬送ベルトの、各廃リチウム電池と接触する外側に、それぞれ規則的に配列された複数の凹み又はストッパが間隔を置いて設置され、凹み又はストッパの周辺サイズは、円筒形タイプ18650、円筒形タイプ26650、正方形リチウム電池などの廃リチウム電池のモデルに合わせることができ、且つ互いに位置合わせすることにより、前記上導電搬送ベルトと前記下導電搬送ベルトとの間に挟まれた各廃リチウム電池は嵌め込まれ、前記上導電搬送ベルト及び下導電搬送ベルトの凹み又はストッパ内に位置決めされ、これにより、各廃リチウム電池は、搬送中に始終に上導電搬送ベルトと下導電搬送ベルトとの間に安定的に挟まれ、垂直状態を保ち、転倒現象を起こさないことで、このように廃リチウム電池は始終に上導電搬送ベルトと下導電搬送ベルトとの接触を保つことができ、放電プロセスの円滑な進行を確保すると同時に、搬送中の安全も保証する。 In a specific embodiment of the method according to the invention, each waste lithium battery is located at a position opposite to the outer ring of the upper conductive conveyor belt and the outer ring of the lower conductive conveyor belt, that is to say of the upper conductive conveyor belt and the lower conductive conveyor belt. A plurality of regularly arranged recesses or stoppers are installed at intervals on the outside in contact with the cylindrical type 18650, cylindrical type 26650, square lithium battery, etc. Each waste lithium battery sandwiched between the upper conductive conveyor belt and the lower conductive conveyor belt can be fitted into the upper conductive conveyor belt and the lower conductive conveyor belt by being matched with the model of the lithium battery and aligned with each other. The waste lithium batteries are positioned within the recesses or stoppers of the lower conductive conveyor belt, so that each waste lithium battery is stably sandwiched between the upper conductive conveyor belt and the lower conductive conveyor belt and maintained in a vertical state throughout the conveyance. By not causing the falling phenomenon, the waste lithium battery can maintain contact between the upper conductive conveyor belt and the lower conductive conveyor belt from beginning to end, ensuring the smooth progress of the discharging process, and at the same time ensuring that the waste lithium battery remains in contact with the upper and lower conductive conveyor belts during transportation. It also guarantees safety.

本発明による方法の具体的な実施形態において、空冷システムをさらに設置してもよく、空冷システムによって、廃リチウム電池の放電熱管理を効果的に制御することができる。具体的には、前記空冷システムには、廃リチウム電池の放電プロセス中に発生する熱を低減するために、搬送中の各廃リチウム電池に位置合わせて、冷気を放電過程における廃リチウム電池に吹き付けることにより、放電過程における安全性をさらに確保するための複数の送風口が設置されている。 In a specific embodiment of the method according to the invention, an air cooling system may be further installed, and the air cooling system can effectively control the discharge heat management of the waste lithium battery. Specifically, the air cooling system includes a device that is aligned with each waste lithium battery in transit and blows cold air onto the waste lithium battery during the discharge process, in order to reduce the heat generated during the discharge process of the waste lithium battery. Accordingly, a plurality of ventilation ports are installed to further ensure safety during the discharge process.

図1を参照されたい。本発明は、上記方法に基づいて廃リチウム電池の連続安全放電装置を設計し、前記廃リチウム電池の連続安全放電装置は送り機構2及び導電搬送機構4を備え、前記送り機構2の具体的な実施例において、ベース23、回動アーム22及び材料取得クランプ21を備え、ベース23は、送り機構2全体を支持することに用いられ、回動アーム22の一端がベース23にヒンジ接続され、ベース23の周りを回転することができ、他端は材料取得クランプ21の一端にヒンジ接続され、且つ材料取得クランプ21を連動して回転させることができる。材料取得クランプ21は、回動アーム22の周りを回転することができ、これにより材料取得クランプ21は複数の自由度を有し、廃リチウム電池3の送り要件を満たすことができる。材料取得クランプ21の他端は、廃リチウム電池3を導電搬送機構4における等間隔で設置された配置位置に1つずつ自動的に送入することができるロボットアームを有する。前記導電搬送機構4は上下に間隔を置いて設置された上導電搬送ベルト421及び下導電搬送ベルト411を備え、前記上導電搬送ベルト421及び下導電搬送ベルト411はそれぞれ閉合して設置されたリング状ベルトであり、2つのリング状ベルトの間の対向する表面の間隔により廃リチウム電池を上導電搬送ベルト421と下導電搬送ベルト411との間に挟持する。前記上導電搬送ベルト421及び下導電搬送ベルト411は具体的に前記方法に記載のベルトコア及び導電層から構成されてもよく、ベルトコアは単層で縦方向に配列された鋼線ロープから構成され、導電層はベルトコアに被覆されてもよいし、又はベルトコアと混合してもよい。導電層は、ゴム、導電性粉末及び添加剤を上記に記載の配合割合で混合してなり、上導電搬送ベルト421及び下導電搬送ベルト411の抵抗率は(5.0~18.0)×10-6Ω.mである。前記上導電搬送ベルト421及び下導電搬送ベルト411をそれぞれ上駆動機構及び下駆動機構で駆動して同期に移動させ、前記上駆動機構はそれぞれ上導電搬送ベルト421の前、後端(廃リチウム電池の入口部及び出口部)に設けられた上駆動輪426及び上従動輪425を含み、下駆動機構はそれぞれ下導電搬送ベルト411の前、後端に設けられた下駆動輪416及び下従動輪418を含む。上駆動輪426及び下駆動輪416を動力機構の連動によって同期回転させることができ、その動力機構はガバナステッピングモータ415を含み、ガバナステッピングモータ415は伝動機構(未図示)によってそれぞれ上駆動輪426及び下駆動輪416に連結され、動力を上駆動輪426及び下駆動輪416に伝達することができ、上駆動輪426及び下駆動輪416を同期回転させることにより、さらに上導電搬送ベルト421及び下導電搬送ベルト411を連動して同期移動させ、同時に上導電搬送ベルト421内の各導電性黒鉛押さえローラ422及び下導電搬送ベルト411内の導電性黒鉛受けローラ412と組み合わせて回転させる。本発明の上記構造の設置において、上導電搬送ベルト421及び下導電搬送ベルト411のリング状長さ、上導電搬送ベルト421と下導電搬送ベルト411との間の間隔及び導電性黒鉛押さえローラ421、導電性黒鉛受けローラ412の数量及び配列は実際の生産中の需要と放電要求に基づいて確定されることができ、10~35個の単一廃リチウムセルを収容することができる。且つ、動力機構はガバナモータを採用することにより、上導電搬送ベルト421及び下導電搬送ベルト411の移動速度は放電の必要に基づいて調整されてもよく、これにより廃リチウム電池3が移動中に一度で十分に放電できるようになり、放電の要求を満たすだけでなく、非常に便利である。 Please refer to FIG. The present invention designs a continuous safe discharging device for waste lithium batteries based on the above method, and the continuous safe discharging device for waste lithium batteries is equipped with a feeding mechanism 2 and a conductive conveyance mechanism 4, and a specific configuration of the feeding mechanism 2 is provided. In the embodiment, it comprises a base 23, a pivot arm 22 and a material acquisition clamp 21, the base 23 is used to support the entire feed mechanism 2, one end of the pivot arm 22 is hinged to the base 23, and the base 23, and the other end is hinged to one end of the material acquisition clamp 21, and the material acquisition clamp 21 can be rotated in conjunction. The material acquisition clamp 21 can rotate around the pivot arm 22, so that the material acquisition clamp 21 has multiple degrees of freedom and can meet the feeding requirements of the waste lithium battery 3. The other end of the material acquisition clamp 21 has a robot arm that can automatically feed the waste lithium batteries 3 one by one to equally spaced placement positions in the conductive transport mechanism 4 . The conductive conveyance mechanism 4 includes an upper conductive conveyor belt 421 and a lower conductive conveyor belt 411 that are vertically spaced apart from each other, and the upper conductive conveyor belt 421 and the lower conductive conveyor belt 411 each have a ring that is installed in a closed manner. The waste lithium battery is sandwiched between the upper conductive conveyor belt 421 and the lower conductive conveyor belt 411 by the distance between the opposing surfaces of the two ring-shaped belts. The upper conductive conveyor belt 421 and the lower conductive conveyor belt 411 may be specifically composed of the belt core and conductive layer described in the method, and the belt core is composed of a single layer of longitudinally arranged steel wire rope, The conductive layer may be coated on or mixed with the belt core. The conductive layer is made by mixing rubber, conductive powder, and additives in the proportions described above, and the resistivity of the upper conductive conveyor belt 421 and the lower conductive conveyor belt 411 is (5.0 to 18.0) × 10-6 Ω. It is m. The upper conductive conveyor belt 421 and the lower conductive conveyor belt 411 are driven by an upper drive mechanism and a lower drive mechanism, respectively, and are moved synchronously. The lower drive mechanism includes a lower drive wheel 416 and a lower driven wheel 425 provided at the front and rear ends of the lower conductive conveyor belt 411, respectively. 418 included. The upper drive wheel 426 and the lower drive wheel 416 can be rotated synchronously by interlocking a power mechanism, the power mechanism includes a governor stepping motor 415, and the governor stepping motor 415 rotates the upper drive wheel 426 by a transmission mechanism (not shown). and the lower drive wheel 416, and can transmit power to the upper drive wheel 426 and the lower drive wheel 416. By synchronously rotating the upper drive wheel 426 and the lower drive wheel 416, the upper conductive conveyor belt 421 and The lower conductive conveyance belt 411 is interlocked and synchronously moved, and simultaneously rotated in combination with each conductive graphite pressing roller 422 in the upper conductive conveyance belt 421 and the conductive graphite receiving roller 412 in the lower conductive conveyance belt 411. In the installation of the above structure of the present invention, the ring-shaped lengths of the upper conductive conveyor belt 421 and the lower conductive conveyor belt 411, the distance between the upper conductive conveyor belt 421 and the lower conductive conveyor belt 411, the conductive graphite pressing roller 421, The quantity and arrangement of the conductive graphite receiving rollers 412 can be determined based on actual production demands and discharge requirements, and can accommodate 10 to 35 single waste lithium cells. In addition, the power mechanism adopts a governor motor, so that the moving speed of the upper conductive conveyor belt 421 and the lower conductive conveyor belt 411 may be adjusted based on the need for discharging, so that the waste lithium battery 3 is discharged once during the movement. It not only meets the requirements of discharging, but also is very convenient.

本発明の装置の好ましい態様として、各前記導電性黒鉛押さえローラ422と各導電性黒鉛受けローラ412とは対向して設置され、中心が同一の直線上にあり、廃リチウム電池3は、導電性黒鉛押さえローラ422と各導電性黒鉛受けローラ412との間の上導電搬送ベルト421と下導電搬送ベルト411との間に挟まれる場合、同一の直線に設置された導電性黒鉛押さえローラ422及び導電性黒鉛受けローラ412は、最小の押さえ力で廃リチウム電池3をしっかりと押さえることができ、廃リチウム電池3が移動中に転倒することを回避する。操作者の安全を保護するために、各導電性黒鉛押さえローラ422及び導電性黒鉛受けローラ412の外への両側端に、それぞれ押さえローラ絶縁保護スリーブ423及び受けローラ絶縁保護スリーブ413が嵌設される。導電性黒鉛押さえローラ422及び導電性黒鉛受けローラ412の軸方向中心に、それぞれ導電可能な上バインディングポスト424及び下バインディングポスト414が設けられ、前記上バインディングポスト424及び下バインディングポスト414はリード線を介してスイッチS1、電流計A及び調整可能な抵抗Rと直列に接続され、各廃リチウム電池3が1つずつ上導電搬送ベルト421と下導電搬送ベルト411との間に間隔を置いて挟まれるとき、スイッチS1、電流計A、調整可能な抵抗Rは上バインディングポスト424及び下バインディングポスト414によって導電性黒鉛押さえローラ422、導電性黒鉛受けローラ412、上導電搬送ベルト421、下導電搬送ベルト411及び各廃リチウム電池と直列に接続され、放電回路を形成する。上記放電回路は調整可能な抵抗を採用して、放電時間及び放電速度を調整することができ、廃リチウム電池3の放電が十分で完全であることをできるだけ保証する。 In a preferred embodiment of the device of the present invention, each of the conductive graphite pressing rollers 422 and each of the conductive graphite receiving rollers 412 are installed facing each other, and their centers are on the same straight line, and the waste lithium battery 3 is When sandwiched between the upper conductive conveyance belt 421 and the lower conductive conveyance belt 411 between the graphite press roller 422 and each conductive graphite receiving roller 412, the conductive graphite press roller 422 and the conductive The graphite receiving roller 412 can firmly hold the waste lithium battery 3 with a minimum pressing force, and prevents the waste lithium battery 3 from falling over during movement. In order to protect the safety of the operator, a presser roller insulating protection sleeve 423 and a receiving roller insulating protection sleeve 413 are fitted on both ends of the conductive graphite press roller 422 and conductive graphite receiving roller 412, respectively. Ru. An upper binding post 424 and a lower binding post 414 that are conductive are provided at the axial center of the conductive graphite pressing roller 422 and the conductive graphite receiving roller 412, respectively, and the upper binding post 424 and the lower binding post 414 have a lead wire. The waste lithium battery 3 is connected in series with the switch S1, the ammeter A, and the adjustable resistor R through the battery, and each waste lithium battery 3 is sandwiched between the upper conductive conveyor belt 421 and the lower conductive conveyor belt 411 at intervals. At this time, the switch S1, the ammeter A, and the adjustable resistance R are connected by the upper binding post 424 and the lower binding post 414 to the conductive graphite pressing roller 422, the conductive graphite receiving roller 412, the upper conductive conveyor belt 421, and the lower conductive conveyor belt 411. and are connected in series with each waste lithium battery to form a discharge circuit. The discharge circuit adopts adjustable resistance to adjust the discharge time and discharge rate, so as to ensure that the discharge of the waste lithium battery 3 is sufficient and complete.

図1を参照されたい。本発明による装置の具体的な実施形態において、送り機構2と導電搬送機構4との間に、材料箱9が設けられ、複数の放電対象であるリチウム電池は材料箱9内に均一に配置され、送り機構2のピックアップが易くなり、導電搬送機構4の後端に、排出キャビティ6が設けられ、放電し終わった廃リチウム電池3は当該排出キャビティ6内に自動に落下することができる。前記導電搬送機構4は導電性黒鉛固定床8に設置され、導電搬送機構4、動力機構、駆動機構及び他の部材などを支持することに用いられ、導電性黒鉛固定床8も導電性および熱伝導性の黒鉛をプレスしてなり、放電性を高めるための補助導電素子として用いることができるとともに、廃リチウム電池3の放熱を助長する。導電性黒鉛固定床8を機械ベースとし、地面に接触する支持脚の底部に絶縁保護パッド7が設けられ、放電過程の安全性を確保し、作業者への傷害を避ける。 Please refer to FIG. In a specific embodiment of the device according to the invention, a material box 9 is provided between the feeding mechanism 2 and the conductive transport mechanism 4, and a plurality of lithium batteries to be discharged are uniformly arranged in the material box 9. , the transport mechanism 2 can be easily picked up, and a discharge cavity 6 is provided at the rear end of the conductive transport mechanism 4, and the discharged waste lithium battery 3 can automatically fall into the discharge cavity 6. The conductive transport mechanism 4 is installed on a conductive graphite fixed bed 8 and is used to support the conductive transport mechanism 4, the power mechanism, the drive mechanism, and other members, and the conductive graphite fixed bed 8 is also conductive and thermal. It is made by pressing conductive graphite, and can be used as an auxiliary conductive element to improve discharge performance, and also promotes heat dissipation of the waste lithium battery 3. The machine base is a conductive graphite fixed bed 8, and an insulating protection pad 7 is provided at the bottom of the support leg in contact with the ground to ensure the safety of the discharge process and avoid injury to workers.

さらに、図1を参照されたい。本発明による装置の具体的な実施形態において、廃リチウム電池3を導電搬送機構4に送入する入口部に、視覚認識システム1が設けられてもよい。視覚認識システム1における画像取得装置CCDにより、送り機構2の材料取得クランプ21は材料箱9から廃リチウム電池3をピックアップするとき、材料取得クランプ21での電池の正極と負極を認識することができ、そして、中央コントローラ(未図示)により送り機構2に制御命令を送信することにより、材料取得クランプ21はピックアップされた廃リチウム電池3を1つずつ電極の位置に従って上導電搬送ベルト421と下導電搬送ベルト411との間に配置し、配置誤差による安全上の懸念を避ける。 Further, please refer to FIG. In a specific embodiment of the device according to the invention, a visual recognition system 1 may be provided at the entrance of the waste lithium battery 3 into the conductive transport mechanism 4 . The image acquisition device CCD in the visual recognition system 1 allows the material acquisition clamp 21 of the feeding mechanism 2 to recognize the positive and negative electrodes of the battery at the material acquisition clamp 21 when picking up the waste lithium battery 3 from the material box 9. , and by sending a control command to the feeding mechanism 2 by the central controller (not shown), the material acquisition clamp 21 transfers the picked up waste lithium batteries 3 one by one to the upper conductive conveyor belt 421 and the lower conductive according to the position of the electrodes. It is placed between the conveyor belt 411 to avoid safety concerns due to placement errors.

図1を参照されたい。本発明による装置の具体的な実施形態において、前記上導電搬送ベルト421の外輪と下導電搬送ベルト411の外輪との対向する位置に、つまり上導電搬送ベルト421と下導電搬送ベルト411との廃リチウム電池3を挟持する外側に、それぞれ規則的に配列された複数の凹み又はストッパ(図1の実施例に示されるものは凹みである)が間隔を置いて設置され、その凹みは上導電搬送ベルト421及び下導電搬送ベルト411の外側から内へ凹んでいる。上導電搬送ベルト421に廃リチウム電池3の正極と合わせる上凹み420又は上ストッパが設置され、下導電搬送ベルト411に廃リチウム電池3の負極と合わせる下凹み417又は下ストッパが設置され、上凹み420又は上ストッパ及び下凹み417又は上ストッパが廃リチウム電池3の型番と一致しており、且つ互いに位置合わせし、廃リチウム電池3が移動するとき上凹み420又は下ストッパ及び下凹み417又は上ストッパ内に嵌め込まれて位置決めされる。好ましい手段として、上凹み420又は上ストッパ及び下凹み417又は下ストッパの設置位置はそれぞれ導電性黒鉛押さえローラ422及び導電性黒鉛受けローラ412に位置合わせられ、つまり上凹み420又は上ストッパ及び下凹み417又は下ストッパの設置中心と導電性黒鉛押さえローラ422及び導電性黒鉛受けローラ412の中心とは同一の直線にあり、これにより導電性黒鉛押さえローラ422及び導電性黒鉛受けローラ412は上導電搬送ベルト421及び下導電搬送ベルト411によって移動している廃リチウム電池3に押し付けられることができ、挟持効果が良い。廃リチウム電池3の移動中の有効な間隔を実現することができ、廃リチウム電池を積み重ねた際に正負極の衝突や接触による燃焼、爆発事故を起こしやすいことを避けるだけでなく、廃リチウム電池3の移動放電中の転倒を防止することができ、これにより廃リチウム電池3の放電過程の信頼性及び安定性を確保することができる。さらに導電性黒鉛押さえローラ422と導電性黒鉛受けローラ412との間の挟持力により、各廃リチウム電池3が移動過程において始終に上導電搬送ベルト421及び下導電搬送ベルト411との接触を保持し、電流がスムーズな放電閉回路を形成し、各廃リチウム電池3の放電の完全、確実性を保証する。前記上凹み420及び下凹み417は、図1に示される上導電搬送ベルト421及び下導電搬送ベルト411の外側に内へ開口する凹溝、又は弧状溝であってもよいし、他の凹み構造であってもよい。前記ストッパは上導電搬送ベルト421と下導電搬送ベルト411との外側に外方に突出する少なくとも2つのストッパであり、ストッパは固定設置または調節設置が可能で、高さは廃リチウム電池3の高さの1/10~1/5であり、接続具により上導電搬送ベルト421及び下導電搬送ベルト411の外側に固定され、廃リチウム電池の様々な異なる仕様に適合させ、本発明の装置の使用の汎用性を向上させることができるように、廃リチウム電池3の型番に基づいて固定位置を調整することができる。廃リチウム電池3が上導電搬送ベルト421と下導電搬送ベルト411との間に安定的に挟まれることを確保することができる限り、凹み又はストッパの他の構造と類似する設計は、いずれも本発明の保護範囲に属することが理解される。 Please refer to FIG. In a specific embodiment of the device according to the invention, the outer ring of the upper conductive conveyor belt 421 and the outer ring of the lower conductive conveyor belt 411 are located opposite to each other, that is, the upper conductive conveyor belt 421 and the lower conductive conveyor belt 411 are disposed of. A plurality of regularly arranged recesses or stoppers (the ones shown in the embodiment of FIG. 1 are recesses) are installed at intervals on the outside holding the lithium battery 3, and the recesses are arranged at intervals. It is recessed inward from the outside of the belt 421 and the lower conductive conveyor belt 411. The upper conductive conveyor belt 421 is provided with an upper recess 420 or an upper stopper that matches the positive electrode of the waste lithium battery 3, and the lower conductive transport belt 411 is provided with a lower recess 417 or a lower stopper that matches the negative electrode of the waste lithium battery 3. 420 or the upper stopper and the lower recess 417 or the upper stopper match the model number of the waste lithium battery 3 and are aligned with each other, and when the waste lithium battery 3 moves, the upper recess 420 or the lower stopper and the lower recess 417 or the upper stopper It is fitted into the stopper and positioned. As a preferred means, the installation positions of the upper recess 420 or the upper stopper and the lower recess 417 or the lower stopper are aligned with the conductive graphite holding roller 422 and the conductive graphite receiving roller 412, respectively, that is, the upper recess 420 or the upper stopper and the lower recess 417 or the installation center of the lower stopper and the centers of the conductive graphite pressing roller 422 and the conductive graphite receiving roller 412 are on the same straight line. It can be pressed against the moving waste lithium battery 3 by the belt 421 and the lower conductive conveyor belt 411, and has a good clamping effect. It is possible to realize effective spacing during the movement of waste lithium batteries 3, which not only avoids the possibility of combustion and explosion accidents due to collision and contact between the positive and negative electrodes when stacking waste lithium batteries, but also prevents waste lithium batteries from colliding and contacting each other. It is possible to prevent the waste lithium battery 3 from falling during the moving discharge, thereby ensuring the reliability and stability of the discharging process of the waste lithium battery 3. Furthermore, due to the clamping force between the conductive graphite pressing roller 422 and the conductive graphite receiving roller 412, each waste lithium battery 3 maintains contact with the upper conductive conveyor belt 421 and the lower conductive conveyor belt 411 throughout the movement process. , forming a closed discharge circuit with smooth current flow, ensuring completeness and reliability of discharge of each waste lithium battery 3. The upper recess 420 and the lower recess 417 may be grooves opening inward on the outside of the upper conductive conveyance belt 421 and the lower conductive conveyance belt 411 shown in FIG. 1, or arcuate grooves, or may have other concave structures. It may be. The stoppers are at least two stoppers protruding outward from the upper conductive conveyor belt 421 and the lower conductive conveyor belt 411, and the stoppers can be fixedly installed or adjustable, and the height is determined according to the height of the waste lithium battery 3. It is fixed to the outside of the upper conductive conveyor belt 421 and the lower conductive conveyor belt 411 by connecting fittings, and is adapted to various different specifications of waste lithium batteries, and is suitable for use of the device of the present invention. The fixing position can be adjusted based on the model number of the waste lithium battery 3 so that the versatility of the battery can be improved. As long as it can ensure that the waste lithium battery 3 is stably sandwiched between the upper conductive conveyor belt 421 and the lower conductive conveyor belt 411, any design similar to the recess or other structure of the stopper is acceptable. It is understood that it falls within the scope of protection of the invention.

図1を参照されたい。本発明による装置の具体的な実施形態において、廃リチウム電池3が上導電搬送ベルト421と下導電搬送ベルト411との間に送入される入口部に、導入角αが設けられ、各廃リチウム電池3の配置を容易にする。廃リチウム電池3の出口部に導出角βが設けられ、放電を完了した各廃リチウム電池3の落下を容易にし、前記導入角α及び導出角βがいずれも75°よりも小さい。具体的な構造の実施例において、廃リチウム電池3の入口部、上導電搬送ベルト421のリング状ベルトの内輪の前端にフロントテンショナ427が設置されてもよく、フロントテンショナ427は入口部の第1の導電性黒鉛押さえローラ422に近接して設置され、且つ上駆動輪426と第1の導電性黒鉛押さえローラ422との間に位置し、同時に、上駆動輪426の設置高さをフロントテンショナ427よりも高くし、上導電搬送ベルト421の前端に導入角αを形成する。フロントテンショナ427と上駆動輪426との組み合わせ設置により、上導電搬送ベルト421の前端での移動方向(斜め移動が水平移動に変換される)を改変することができ、同時にテンション機構を構成することができることにより、上導電搬送ベルト421の前端全体が崩壊することなくまっすぐになり、締め付けられ、これにより上導電搬送ベルト421が前端で異なる角度の方向転換を生成し、下導電搬送ベルト411とともに廃リチウム電池3の入口部に導入角αを形成し、送り機構2の材料取得クランプ21が廃リチウム電池3を下導電搬送ベルト411に送入することに有利であり、上導電搬送ベルト421に対する衝突を避ける。同様に、廃リチウム電池3の出口部において、上導電搬送ベルト421のリング状ベルトの内輪の後端に、リアテンショナ428が設置され、リアテンショナ428が上導電搬送ベルト421のリング状ベルトの後端の上従動輪425と最後の導電性黒鉛押さえローラ422との間に設けられ、同時に、上従動輪425の設置高さがリアテンショナ428よりも高いようにする。このように、リアテンショナ428と上従動輪425との組み合わせ設置により、上導電搬送ベルト421の後端での移動方向を改変することができ、同時にフロントテンショナ427とともに締め付けられ、フロントテンション機構及びリアテンション機構を形成し、リング状の上導電搬送ベルト421全体が崩壊することなくまっすぐになり、締め付けられ、挟持された各廃リチウム電池3とともに電流がスムーズである閉回路を形成することを確保し、且つ上導電搬送ベルト421が後端で異なる角度の方向転換を生成し、下導電搬送ベルト411とともに廃リチウム電池3の出口部に導出角βを形成する。放電し終わった後、導出角βにより、上導電搬送ベルト421が出口部の廃リチウム電池3に対する挟圧を解除し、これにより廃リチウム電池3の頂部に押圧された圧力が突然解放され、廃リチウム電池3は、自重により、下導電搬送ベルト411から排出キャビティ6内に自動に脱落する。 Please refer to FIG. In a specific embodiment of the device according to the invention, an introduction angle α is provided at the inlet section where the waste lithium batteries 3 are introduced between the upper conductive conveyor belt 421 and the lower conductive conveyor belt 411, and each waste lithium To facilitate the arrangement of the battery 3. A lead-out angle β is provided at the outlet of the waste lithium battery 3 to facilitate the dropping of each waste lithium battery 3 after discharge, and both the lead-in angle α and the lead-out angle β are smaller than 75°. In an embodiment of a specific structure, a front tensioner 427 may be installed at the inlet of the waste lithium battery 3, at the front end of the inner ring of the ring-shaped belt of the upper conductive conveyor belt 421, and the front tensioner 427 is installed at the first end of the inlet of the waste lithium battery 3. The front tensioner 427 is installed close to the conductive graphite pressing roller 422 of the first conductive graphite pressing roller 422 and is located between the upper driving wheel 426 and the first conductive graphite pressing roller 422. to form an introduction angle α at the front end of the upper conductive conveyor belt 421. By installing the front tensioner 427 and the upper drive wheel 426 in combination, the direction of movement at the front end of the upper conductive conveyor belt 421 (diagonal movement is converted to horizontal movement) can be changed, and at the same time a tensioning mechanism is configured. By being able to do so, the entire front end of the upper conductive conveyor belt 421 is straightened and tightened without collapsing, which causes the upper conductive conveyor belt 421 to generate a different angle of direction change at the front end, and to waste together with the lower conductive conveyor belt 411. Forming an introduction angle α at the inlet of the lithium battery 3 is advantageous for the material acquisition clamp 21 of the feeding mechanism 2 to feed the waste lithium battery 3 into the lower conductive conveyor belt 411, and avoids collision against the upper conductive conveyor belt 421. Avoid. Similarly, at the outlet of the waste lithium battery 3, a rear tensioner 428 is installed at the rear end of the inner ring of the ring-shaped belt of the upper conductive conveyor belt 421; It is provided between the upper driven wheel 425 at the end and the last conductive graphite pressing roller 422, and at the same time, the installed height of the upper driven wheel 425 is higher than the rear tensioner 428. In this way, by installing the rear tensioner 428 and the upper driven wheel 425 in combination, the moving direction at the rear end of the upper conductive conveyor belt 421 can be changed, and at the same time, it is tightened together with the front tensioner 427, and the front tension mechanism and the rear Forms a tension mechanism to ensure that the entire ring-shaped upper conductive conveyor belt 421 is straightened without collapsing, and is tightened and forms a closed circuit with smooth current flow together with each clamped waste lithium battery 3. , and the upper conductive conveyor belt 421 creates a different angle of direction change at the rear end, and together with the lower conductive conveyor belt 411 forms a lead-out angle β at the outlet part of the waste lithium battery 3. After the discharge is completed, the upper conductive conveyor belt 421 releases the clamping pressure on the waste lithium battery 3 at the exit part due to the lead-out angle β, and as a result, the pressure pressed against the top of the waste lithium battery 3 is suddenly released, and the waste lithium battery 3 is released. The lithium battery 3 automatically drops from the lower conductive conveyor belt 411 into the discharge cavity 6 due to its own weight.

図1を参照されたい。本発明による装置の具体的な実施形態において、空冷システム5をさらに備え、前記空冷システム5はコンプレッサに接続され、搬送中の各廃リチウム電池3の方向に向かって複数の送風口52が開口された送風ダクト51を備えており、送風口52が放電中の各廃リチウム電池3に冷気を吹き付けることができ、放電中の廃リチウム電池3を急速に降温し、廃リチウム電池3の放電中に発生する熱を低減し、放電中の安全を確保するために用いられる。 Please refer to FIG. In a specific embodiment of the device according to the present invention, it further comprises an air cooling system 5, the air cooling system 5 being connected to a compressor, and having a plurality of air outlets 52 opened in the direction of each waste lithium battery 3 being transported. The air outlet 52 can blow cold air onto each waste lithium battery 3 during discharge, rapidly lowering the temperature of the waste lithium battery 3 during discharge, and cooling the waste lithium battery 3 during discharge. It is used to reduce the heat generated and ensure safety during discharge.

本発明の上記実施例は、本発明の好ましい実施例の一部に過ぎず、本発明を限定するためのものではなく、本発明の本質から逸脱することなく、当業者によってなされたいかなる修正、同等の置換および改良なども、本発明の保護の範囲内にある。 The above embodiments of the invention are only some of the preferred embodiments of the invention and are not intended to limit the invention, and any modifications made by those skilled in the art without departing from the essence of the invention Equivalent substitutions and modifications, etc. also fall within the scope of protection of the present invention.

Claims (10)

廃リチウム電池の連続安全放電方法であって、送り機構を用いて複数の廃リチウム電池を1つずつ導電搬送機構に送り、各廃リチウム電池を、前記導電搬送機構におけるそれぞれ閉合してリング状ベルトをなす上導電搬送ベルトと下導電搬送ベルトとの間に等間隔で挟持し、前記上導電搬送ベルトの内輪及び前記下導電搬送ベルトの内輪にそれぞれ間隔を置いて配列された複数の導電性黒鉛押さえローラ及び導電性黒鉛受けローラが設けられ、前記複数の導電性黒鉛押さえローラ及び導電性黒鉛受けローラをそれぞれ上駆動機構及び下駆動機構で駆動して同期に移動させ、且つ導電性黒鉛押さえローラ及び導電性黒鉛受けローラを介して直列に接続された調整可能な抵抗、電流計及びスイッチに接続し、放電回路を形成し、これにより前記廃リチウム電池は前記上導電搬送ベルト及び前記下導電搬送ベルトの搬送による移動過程において連続放電過程を完了する、ことを特徴とする廃リチウム電池の連続安全放電方法。 A continuous safe discharge method for waste lithium batteries, wherein a plurality of waste lithium batteries are sent one by one to a conductive transport mechanism using a feeding mechanism, and each waste lithium battery is closed and connected to a ring-shaped belt in the conductive transport mechanism. A plurality of conductive graphites are sandwiched at equal intervals between an upper conductive conveyor belt and a lower conductive conveyor belt, and arranged at intervals on the inner ring of the upper conductive conveyor belt and the inner ring of the lower conductive conveyor belt, respectively. A press roller and a conductive graphite receiving roller are provided, and the plurality of conductive graphite press rollers and the conductive graphite receiving roller are respectively driven by an upper drive mechanism and a lower drive mechanism to move synchronously, and the conductive graphite press roller is provided with a conductive graphite press roller. and an adjustable resistor, an ammeter and a switch connected in series through a conductive graphite receiving roller to form a discharge circuit, whereby the waste lithium battery is connected to the upper conductive conveyor belt and the lower conductive conveyor. A continuous safe discharge method for waste lithium batteries, characterized in that the continuous discharge process is completed during the movement process by belt conveyance. 前記廃リチウム電池が前記送り機構で前記導電搬送機構に送入される入口部に、視覚認識システムが設置され、前記送り機構は前記視覚認識システムの命令によって前記廃リチウム電池を電極の位置に従って前記上導電搬送ベルトと前記下導電搬送ベルトとの間に配置する、ことを特徴とする請求項1に記載の廃リチウム電池の連続安全放電方法。 A visual recognition system is installed at an entrance where the waste lithium battery is fed into the conductive transport mechanism by the feed mechanism, and the feed mechanism is configured to move the waste lithium battery according to the position of the electrode according to the command of the visual recognition system. 2. The continuous safe discharge method for a waste lithium battery according to claim 1, wherein the method is arranged between an upper conductive conveyor belt and the lower conductive conveyor belt. 前記上導電搬送ベルト及び前記下導電搬送ベルトは、導電層を有し、前記導電層はゴム及び導電性粉末を含み、前記導電性粉末は、導電性炭素粉末及び黒鉛負極粉末のうちの1種または2種の混合物であり、前記ゴムはフッ素ゴム又はニトリルゴム又は加硫ゴムのうちの1種または2種を混合してなり、前記導電性粉末が前記導電層の全質量の20%~60%を占め、前記ゴムが前記導電層の全質量の30%~70%を占め、前記上導電搬送ベルト及び前記下導電搬送ベルトの抵抗率はいずれも(5.0~18.0)×10-6Ω.mである、ことを特徴とする請求項1に記載の廃リチウム電池の連続安全放電方法。 The upper conductive conveyor belt and the lower conductive conveyor belt have a conductive layer, the conductive layer includes rubber and conductive powder, and the conductive powder is one of conductive carbon powder and graphite negative electrode powder. or a mixture of two types, wherein the rubber is a mixture of one or two of fluororubber, nitrile rubber, or vulcanized rubber, and the conductive powder accounts for 20% to 60% of the total mass of the conductive layer. %, the rubber accounts for 30% to 70% of the total mass of the conductive layer, and the resistivity of both the upper conductive conveyor belt and the lower conductive conveyor belt is (5.0 to 18.0)×10 -6 Ω. The continuous safe discharge method of a waste lithium battery according to claim 1, characterized in that: m. 前記上導電搬送ベルトの外輪と前記下導電搬送ベルトの外輪との対向する位置に、それぞれ廃リチウム電池の正負極に合う複数の凹み又はストッパが間隔を置いて設置され、これにより前記上導電搬送ベルトと前記下導電搬送ベルトとの間に挟まれた各廃リチウム電池を前記上導電搬送ベルト及び前記下導電搬送ベルトの凹み又はストッパ内に位置決めする、ことを特徴とする請求項1~3のいずれか一項に記載の廃リチウム電池の連続安全放電方法。 A plurality of recesses or stoppers each matching the positive and negative electrodes of the waste lithium battery are installed at intervals at opposing positions of the outer ring of the upper conductive conveyor belt and the outer ring of the lower conductive conveyor belt. Each waste lithium battery sandwiched between the belt and the lower conductive conveyor belt is positioned in a recess or a stopper of the upper conductive conveyor belt and the lower conductive conveyor belt. A continuous safe discharge method for a waste lithium battery according to any one of the items. 廃リチウム電池の放電プロセス中に発生する熱を低減するために、放電プロセスでの各前記廃リチウム電池に冷気を吹き付るための空冷システムが設置される、ことを特徴とする請求項1~3のいずれか一項に記載の廃リチウム電池の連続安全放電方法。 In order to reduce the heat generated during the discharging process of the waste lithium battery, an air cooling system is installed for blowing cold air onto each waste lithium battery during the discharging process. 3. The continuous safe discharge method of a waste lithium battery according to any one of 3. 請求項1~5のいずれか一項に記載の廃リチウム電池の連続安全放電方法に基づいて設計された廃リチウム電池の連続安全放電装置であって、送り機構及び導電搬送機構を備え、前記導電搬送機構はそれぞれ閉合してリング状ベルトをなす上導電搬送ベルト及び下導電搬送ベルトを有し、放電対象である廃リチウム電池を前記送り機構によって前記導電搬送機構に送入し、1つずつ前記上導電搬送ベルトと前記下導電搬送ベルトとの間に等間隔で挟持し、前記上導電搬送ベルト及び前記下導電搬送ベルトを上下に間隔を置いて設置し、それぞれ上駆動機構及び下駆動機構で駆動して同期に移動させ、前記上導電搬送ベルトの内輪に間隔を置いて配列されて当該上導電搬送ベルトと組み合わせられた複数の導電性黒鉛押さえローラが設けられ、前記下導電搬送ベルトの内輪に間隔を置いて配列されて当該下導電搬送ベルトと組み合わせられた複数の導電性黒鉛受けローラが設けられ、前記導電性黒鉛押さえローラ及び導電性黒鉛受けローラは、直列に接続された調整可能な抵抗、電流計及びスイッチに接続され、前記上導電搬送ベルトと前記下導電搬送ベルトとの間に挟持された各廃リチウム電池とともに放電回路を形成する、ことを特徴とする廃リチウム電池の連続安全放電装置。 A continuous safe discharge device for waste lithium batteries designed based on the continuous safe discharge method for waste lithium batteries according to any one of claims 1 to 5, comprising a feeding mechanism and a conductive transport mechanism, The conveyance mechanism has an upper conductive conveyor belt and a lower conductive conveyor belt that are closed to form a ring-shaped belt, and the waste lithium batteries to be discharged are fed into the conductive conveyance mechanism by the feed mechanism, and the waste lithium batteries to be discharged are fed into the conductive conveyance mechanism one by one. The upper conductive conveyor belt and the lower conductive conveyor belt are sandwiched at equal intervals, and the upper conductive conveyor belt and the lower conductive conveyor belt are vertically installed at intervals, and are driven by an upper drive mechanism and a lower drive mechanism, respectively. A plurality of conductive graphite pressing rollers are provided which are driven and moved synchronously and are arranged at intervals on the inner ring of the upper conductive conveyor belt and combined with the upper conductive conveyor belt, and which are connected to the inner ring of the lower conductive conveyor belt. A plurality of conductive graphite receiving rollers are arranged at intervals and combined with the lower conductive conveyor belt, and the conductive graphite holding roller and the conductive graphite receiving roller are connected in series and are adjustable. Continuous safety of waste lithium batteries, characterized in that the waste lithium batteries are connected to a resistor, an ammeter and a switch, and form a discharge circuit together with each waste lithium battery sandwiched between the upper conductive conveyor belt and the lower conductive conveyor belt. Discharge device. 前記廃リチウム電池が前記導電搬送機構に送入される入口部に、前記送り機構によって前記廃リチウム電池を電極の位置に従って前記上導電搬送ベルトと前記下導電搬送ベルトとの間に配置する視覚認識システムが設けられる、ことを特徴とする請求項6に記載の廃リチウム電池の連続安全放電装置。 visual recognition of arranging the waste lithium battery between the upper conductive conveyor belt and the lower conductive conveyor belt according to the position of the electrodes by the feed mechanism at an inlet portion where the waste lithium battery is fed into the conductive conveyance mechanism; The continuous safe discharge device for waste lithium batteries according to claim 6, characterized in that a system is provided. 前記上導電搬送ベルトの外輪と前記下導電搬送ベルトの外輪との対向する位置に、それぞれ廃リチウム電池の正負極に合う複数の凹み又はストッパが間隔を置いて設けられる、ことを特徴とする請求項6に記載の廃リチウム電池の連続安全放電装置。 A claim characterized in that a plurality of recesses or stoppers each matching the positive and negative electrodes of the waste lithium battery are provided at intervals at opposing positions of the outer ring of the upper conductive conveyor belt and the outer ring of the lower conductive conveyor belt. The continuous safe discharge device for waste lithium batteries according to item 6. 前記導電搬送機構は、前記廃リチウム電池を送入する入口部に各前記廃リチウム電池を配置しやすい導入角が設けられ、前記廃リチウム電池の出口部に、放電を完了した各前記廃リチウム電池が落下しやすい導出角が設けられる、ことを特徴とする請求項6に記載の廃リチウム電池の連続安全放電装置。 The conductive transport mechanism is provided with an introduction angle that makes it easy to arrange each of the waste lithium batteries at an inlet portion for feeding the waste lithium batteries, and has an introduction angle that facilitates placement of each of the waste lithium batteries at an outlet portion of the waste lithium batteries. 7. The continuous safe discharge device for waste lithium batteries according to claim 6, wherein a lead-out angle is provided at which the battery easily falls. 空冷システムをさらに備え、前記空冷システムは、放電中の前記廃リチウム電池を急速に降温するために、冷気を前記導電搬送機構で移動している前記廃リチウム電池へ吹き付けるための複数の送風口を有する、ことを特徴とする請求項6に記載の廃リチウム電池の連続安全放電装置。 The air cooling system further includes a plurality of air outlets for blowing cold air onto the waste lithium battery that is being moved by the conductive transport mechanism in order to rapidly lower the temperature of the waste lithium battery during discharge. 7. The continuous safe discharge device for waste lithium batteries according to claim 6, comprising:
JP2023552303A 2021-03-19 2022-01-09 Method and device for safe continuous discharge of used lithium batteries Active JP7493212B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202110294016.8 2021-03-19
CN202110294016.8A CN113097584B (en) 2021-03-19 2021-03-19 Continuous safe discharge method and device for waste lithium battery
PCT/CN2022/070868 WO2022193803A1 (en) 2021-03-19 2022-01-09 Method and apparatus for continuous safe discharge of waste lithium batteries

Publications (2)

Publication Number Publication Date
JP2024509414A true JP2024509414A (en) 2024-03-01
JP7493212B2 JP7493212B2 (en) 2024-05-31

Family

ID=76668798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023552303A Active JP7493212B2 (en) 2021-03-19 2022-01-09 Method and device for safe continuous discharge of used lithium batteries

Country Status (4)

Country Link
JP (1) JP7493212B2 (en)
CN (1) CN113097584B (en)
DE (1) DE112022000859T5 (en)
WO (1) WO2022193803A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097584B (en) * 2021-03-19 2022-06-17 深圳清研装备科技有限公司 Continuous safe discharge method and device for waste lithium battery
CN113479516B (en) * 2021-07-15 2023-03-28 荆门动力电池再生技术有限公司 Battery piece transportation line
CN115189056A (en) * 2022-07-25 2022-10-14 广州工业智能研究院 Control method, device and system for safe discharge of retired battery
CN115625132B (en) * 2022-12-19 2023-03-10 深圳市杰成镍钴新能源科技有限公司 Method and system for rapidly grading retired batteries
KR102674547B1 (en) * 2023-05-31 2024-06-13 주식회사 디스닉스 Discharge Module for Waste Secondary Battery Treatment
KR102674546B1 (en) * 2023-05-31 2024-06-13 주식회사 디스닉스 Waste Secondary Battery treatment System and Method Thereof
CN116759687B (en) * 2023-08-17 2023-12-15 深圳市杰成镍钴新能源科技有限公司 Discharging device of retired battery based on discharging particles
CN117427724B (en) * 2023-12-06 2024-03-08 河南省新乡生态环境监测中心 Waste battery crushing and sorting device and process

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306394A (en) * 1995-04-28 1996-11-22 Ricoh Co Ltd Processing method for used battery
JPH11191434A (en) * 1997-12-26 1999-07-13 Seiko Precision Inc Device for charging battery for regeneration
JP2013225410A (en) * 2012-04-20 2013-10-31 Mitsubishi Motors Corp Secondary battery
US9484606B1 (en) * 2013-03-15 2016-11-01 Hulico LLC Recycling and reconditioning of battery electrode materials
CN106229571A (en) 2016-08-12 2016-12-14 上海交通大学 Batch reclaims the semi-enclosed electric discharge device of waste and old lithium ion battery
CN108270029B (en) * 2017-12-28 2019-11-19 合肥国轩高科动力能源有限公司 A kind of waste and old ternary lithium battery discharge processing method and system
CN207868336U (en) * 2018-01-12 2018-09-14 深圳市比克电池有限公司 A kind of waste and old lithium ion battery Quick discharger
CN108321453B (en) * 2018-03-12 2024-04-19 毅康科技有限公司 Waste lithium battery recovery system equipment
CN108417924B (en) * 2018-03-12 2020-10-30 哈尔滨巴特瑞资源再生科技有限公司 Lithium battery and lithium battery module crushing method
CN108550943A (en) * 2018-05-30 2018-09-18 安徽南都华铂新材料科技有限公司 A kind of waste and old cylindrical lithium ion battery electric discharge device and its charging method
KR101999677B1 (en) * 2018-12-28 2019-07-15 한국지질자원연구원 Apparatus for disassembling wasted battery and method for disassembling wasted battery
CN112216893A (en) * 2019-07-11 2021-01-12 中国科学院过程工程研究所 Lithium battery cleaning and discharging equipment and method
CN210403964U (en) * 2019-07-11 2020-04-24 中国科学院过程工程研究所 Clean discharge apparatus of lithium cell
CN110838602A (en) * 2019-11-04 2020-02-25 湖南邦普循环科技有限公司 Integrated unit block resistor discharging tray and discharging device with same
CN211929660U (en) * 2020-03-06 2020-11-13 河北中化锂电科技有限公司 Battery processing system and battery recycling system
CN212033181U (en) 2020-05-26 2020-11-27 南京容成环境科技有限公司 Discharging equipment for waste battery recovery
CN111816948A (en) 2020-07-14 2020-10-23 张胜威 New energy automobile battery recycling and discharging device and using method thereof
CN214988904U (en) * 2021-03-19 2021-12-03 深圳清研装备科技有限公司 Continuous discharge is with electrically conductive conveying mechanism and continuous safe discharge device of old and useless lithium cell
CN113097584B (en) * 2021-03-19 2022-06-17 深圳清研装备科技有限公司 Continuous safe discharge method and device for waste lithium battery

Also Published As

Publication number Publication date
CN113097584B (en) 2022-06-17
DE112022000859T5 (en) 2023-11-23
CN113097584A (en) 2021-07-09
WO2022193803A1 (en) 2022-09-22
JP7493212B2 (en) 2024-05-31

Similar Documents

Publication Publication Date Title
JP2024509414A (en) Continuous safe discharge method and device for waste lithium batteries
WO2019114638A1 (en) Battery pretreatment device and pretreatment method
CN207781839U (en) A kind of waste and old cylindrical lithium battery device for disassembling
CN105304928A (en) Automatic casing machine of power type cylindrical battery
CN214988904U (en) Continuous discharge is with electrically conductive conveying mechanism and continuous safe discharge device of old and useless lithium cell
CN210333402U (en) Categorised row's of case device after cylindrical lithium cell box hat detects
CN112397761A (en) Lithium cell processing is with equipment workstation
CN209804839U (en) Device of electromagnetic pyrolysis retired lithium battery
CN112216893A (en) Lithium battery cleaning and discharging equipment and method
CN208111604U (en) A kind of fixed device of soft bag lithium ionic cell chemical conversion
CN208570762U (en) A kind of storage battery acidification formation device
CN2925654Y (en) Vertical shell breaking machine for waste battery
CN207652749U (en) A kind of electrical cabinet production anti-static device
CN103594676A (en) Welding apparatus for junction pieces of lithium battery
CN211929660U (en) Battery processing system and battery recycling system
CN209452481U (en) Cylindrical battery insulated hull removal device
CN209217151U (en) A kind of cylindrical battery electric discharge device
CN208208908U (en) It is a kind of for manufacturing the transmission device of spooled laminations type battery core
CN208182101U (en) Battery core feed mechanism
CN208643764U (en) A kind of sorting unit of battery case punch line
CN210403964U (en) Clean discharge apparatus of lithium cell
CN113161620A (en) Battery cover cap assembling machine
CN202720973U (en) Dry-type copper meter production line
CN109305503A (en) A kind of automated warehousing transportation system
CN203607480U (en) Busbar welding device of lithium battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230829

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240513

R150 Certificate of patent or registration of utility model

Ref document number: 7493212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150