JP2024504618A - 独立した温度制御を用いたプラズマ処理 - Google Patents

独立した温度制御を用いたプラズマ処理 Download PDF

Info

Publication number
JP2024504618A
JP2024504618A JP2023542672A JP2023542672A JP2024504618A JP 2024504618 A JP2024504618 A JP 2024504618A JP 2023542672 A JP2023542672 A JP 2023542672A JP 2023542672 A JP2023542672 A JP 2023542672A JP 2024504618 A JP2024504618 A JP 2024504618A
Authority
JP
Japan
Prior art keywords
plasma
layer
gas
substrate
radicals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023542672A
Other languages
English (en)
Inventor
ウェイ リウ,
ウラジミール ナゴルニー,
レネ ジョージ,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2024504618A publication Critical patent/JP2024504618A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • H01J37/32724Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02247Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by nitridation, e.g. nitridation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02329Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen
    • H01L21/02332Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen into an oxide layer, e.g. changing SiO to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • H01L21/28562Selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32105Oxidation of silicon-containing layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3211Nitridation of silicon-containing layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本開示の実施形態は、広くは、誘導結合プラズマ源、プラズマ処理装置、及びプラズマ処理の独立した温度制御に関する。少なくとも1つの実施形態では、方法が、プロセスガスをガス注入チャネルの中に導入し、ガス注入チャネル内で誘導結合プラズマを生成することを含む。プラズマは、酸素、窒素、水素、NH、及びヘリウムから選択される少なくとも一種のラジカル種を含む。該方法は、プラズマ源と基板との間の分離グリッドを貫通してプラズマを流すことによって、プラズマ源からプラズマ源に結合されたプロセスチャンバにプラズマを供給することを含む。該方法は、基板を処理することを含む。基板を処理することは、少なくとも一種のラジカル種を含むプラズマを分離グリッドに面する基板の第1の側に接触させ、分離グリッドとは反対の基板の第2の側に位置付けられた複数のランプを使用して基板を加熱することを含む。【選択図】図8

Description

[0001] 本開示の実施形態は、広くは、誘導結合プラズマ源、プラズマ処理装置、及びこれらを使用する方法、ならびにプラズマ処理の独立した温度制御に関する。
[0002] プラズマ処理は、半導体基板や他の基板の堆積、エッチング、レジスト除去、及び関連する処理のために半導体産業において使用される。プラズマ源は、しばしば、基板を処理するための高密度プラズマ及び反応種を生成するために、プラズマ処理で使用される。
[0003] プラズマの生成は、分子をラジカルに分解する(及び/又はイオンを生成する)。これを使用して、チャンバ内で基板処理を実現することができる。典型的には、ガスの混合物が、誘導結合プラズマ(ICP)源のプラズマ生成領域(アクティブゾーン)の中に供給され、高電界領域において加速された電子が、この混合物をイオン化し及び解離させ、ラジカル及びイオンを有する新しいガス(プラズマ)を生成する。
[0004] 高プラズマ生成効率及び広い動作範囲のための従来のICP源は、ICPコイルに隣接した比較的小さいアクティブゾーンを有する。このようなアクティブゾーンは、コイルの周りのこのゾーンに電子を閉じ込めるように設計されているので、プラズマの生成は、主にこのゾーン内に閉じ込められる。しかし、プラズマが基板に向けて導かれるにつれて、核種の間で何らかの化学反応が生じ、ラジカルの数を低減させるが、結果として、幾つかの新しい核種を生成する。
[0005] したがって、改良された誘導結合プラズマ源やプラズマ処理装置、及びこれらを使用する方法が必要とされている。更に、プラズマ処理の正確で独立した温度制御が必要とされている。
[0006] 本開示の実施形態は、広くは、プラズマ処理方法に関する。
[0007] 少なくとも1つの実施形態では、プラズマ処理方法が、プロセスガスをガス注入チャネルの中に導入し、ガス注入チャネル内で誘導結合プラズマを生成することを含む。プラズマは、酸素、窒素、水素、NH、及びヘリウムから選択される少なくとも一種のラジカル種を含む。該方法は、プラズマ源と基板との間の分離グリッドを貫通してプラズマを流すことによって、プラズマ源からプラズマ源に結合されたプロセスチャンバにプラズマを供給することを含む。該方法は、基板を処理することを含む。基板を処理することは、少なくとも一種のラジカル種を含むプラズマを分離グリッドに面する基板の第1の側に接触させ、分離グリッドとは反対の基板の第2の側に位置付けられた複数のランプを使用して基板を加熱することを含む。
[0008] 別の一実施形態では、プラズマ処理方法が、プロセスガスをガス注入インサートとプラズマ源の側壁との間で画定されたガス注入チャネルの中に導入し、側壁に近接して配置され、ガス注入チャネルに水平に重なる誘導コイルを用いて、ガス注入チャネル内でプラズマを生成することを含む。プラズマは、窒素ラジカル又はNHラジカルのうちの少なくとも一種を含む。該方法は、プラズマ源からプラズマ源に結合されたプロセスチャンバにプラズマを供給することを含む。プラズマは、プラズマ源と処理される基板との間に配置された分離グリッドを貫通して流れる。プロセスチャンバ内で基板を処理することは、プラズマを分離グリッドに面する基板の第1の側に接触させ、分離グリッドとは反対の基板の第2の側に位置付けられた複数のランプを使用して基板を加熱することを含む。
[0009] 更に別の一実施形態では、プラズマ処理方法が、プロセスガスをガス注入インサートとプラズマ源の側壁との間で画定されたガス注入チャネルの中に導入し、側壁に近接して配置され、ガス注入チャネルに水平に重なる誘導コイルを用いて、ガス注入チャネル内で水素プラズマを生成することを含む。水素プラズマは、水素ラジカルを含む。該方法は、プラズマ源からプラズマ源に結合されたプロセスチャンバに水素プラズマを供給することを含む。水素プラズマは、プラズマ源と処理される基板との間に配置された分離グリッドを貫通して流れる。プロセスチャンバ内で基板を処理することは、水素ラジカルを含む水素プラズマを分離グリッドに面する基板の第1の側に接触させ、分離グリッドとは反対の基板の第2の側に位置付けられた複数のランプを使用して基板を加熱することを含む。
[0010] 上述の本開示の特徴を詳細に理解し得るように、上記で簡単に要約された本開示のより具体的な説明が、実施形態を参照することによって得られ、一部の実施形態は、付随する図面に例示されている。しかし、添付図面は例示的な実施形態を示しているに過ぎず、したがって、本開示の範囲を限定すると見なすべきではなく、その他の等しく有効な実施形態も許容され得ることに留意されたい。
[0011] 少なくとも1つの実施形態による、プラズマ処理装置の概略図である。 [0012] 少なくとも1つの実施形態による、プラズマ処理装置の概略図である。 [0013] 少なくとも1つの実施形態による、プラズマ処理装置の概略図である。 [0014] 少なくとも1つの実施形態による、プラズマ処理装置の概略図である。 [0015] 少なくとも1つの実施形態による、プラズマ処理装置の概略図である。 [0016] 少なくとも1つの実施形態による、分離グリッドの等角図である。 [0017] 少なくとも1つの実施形態による、図6aの分離グリッドの断面図(線6Bに沿った)である。 [0018] 少なくとも1つの実施形態による、プラズマ源と共に使用され得る誘導コイルである。 [0019] 少なくとも1つの実施形態による、プロセスのフロー図である。
[0020] 理解し易くするために、可能な場合には、図に共通する同一の要素を指し示すのに同一の参照番号を使用した。一実施形態の要素及び特徴は、追加の記述がなくても、他の複数の実施形態に有益に組み込むことができると考えられている。
[0021] 本開示の実施形態は、広くは、高効率誘導結合プラズマ源やプラズマ処理装置、及びこれらを使用する方法に関する。本開示のソース及び装置は、基板への高密度中性プラズマ種(例えば、非従来型の核種)の効率的な供給に加えて、基板を処理するための改良されたプラズマ均一性を提供することができる。従来、プラズマ源のアクティブゾーン内での核種のより効率的な生成は、基板の近くでのそれらの核種の自動的な増加をもたらすと考えられてきたが、本発明者らは、これが真実ではない(少なくとも不完全な)仮定であることに気付いた。
[0022] 本開示の複数の態様は、例示及び説明の目的で、「基板」又は半導体ウエハに言及しながら説明される。当業者であれば、本明細書で提供される開示を使用して、本開示の例示的な複数の態様が、任意の適切な半導体基板又は他の適切な基板に関連付けられて使用され得ることを理解するだろう。「基板支持体」は、基板を支持するために使用され得る任意の構造を指す。
[0023] 次に図面を参照すると、本開示の例示的な実施形態が、今や説明されることになる。図1は、例示的なプラズマ処理装置100を描いている。プラズマ処理装置100は、処理チャンバ110、及び処理チャンバ110に結合されたプラズマ源120(例えば、遠隔プラズマ源)を含む。処理チャンバ110は、基板114を保持するために動作可能な基板支持体112を含む。幾つかの実施形態では、基板が、1mm未満の厚さを有する。基板支持体112は、1以上の熱源(例えば、複数のランプ176)の近傍にあり得る。それらは、プロセスチャンバ110内での基板の処理中に基板に熱を提供する。熱は、1以上の急速熱処理ランプなどの1以上のランプなどの任意の適切な熱源を使用して、又は加熱されたペデスタル(例えば、ペデスタル内に埋め込まれた若しくはペデスタルに結合された抵抗加熱要素を有するペデスタル)を介して提供され得る。動作では、熱源が、以下でより詳細に説明される基板の独立した温度制御を可能にする。
[0024] 図1で示されているように、処理チャンバ110は、ドームなどのウインドウ162、及び複数のランプ176を含む。複数のランプ176は、ウインドウ162とチャンバ110の下壁との間に配置されている。複数のランプ176は、アレイ内に配置されている。複数のランプ176は、処理チャンバ110の中心を取り囲む複数の同心リング状に配置され得る。複数のランプ176は、100個以上のランプ、200個以上のランプなど、200個のランプから500個のランプなど、200個のランプから300個のランプなど、240個のランプなど、300個のランプから400個のランプなど、400個のランプから500個のランプなど、400個のランプなどを含み得る。複数のランプ176の各々の電力は、400Wから1000W、500Wから800Wなど、500Wから600Wなど、600Wから700Wなど、645Wなど、700Wから800Wなどである。複数のランプ176から基板までの距離は、約50mm以下、約5mmから約50mmなど、約5mmから約20mmなど、約12.5mmなど、約20mmから約50mmなど、約36.5mmなどである。
[0025] コントローラ(図示せず)が、チャンバ110に結合され、複数のランプ176を制御することを含む本明細書で説明されるチャンバプロセスを制御するために使用されてよい。基板支持体112は、分離グリッド116とウインドウ162との間に配置されている。複数のセンサ(図示せず)が、チャンバ110内の温度を測定するために、ランプ176及び/又は基板支持体112のうちの1以上に近接して配置され得る。複数のセンサは、1以上の赤外線高温計又は小型高温計を含み得る。特定の複数の実施形態では、1以上の高温計が、2つ、3つ、又は4つの高温計を含む。特定の複数の実施形態では、高温計が、3.3μmの波長を有するが、一般に、市販の高温計の波長は、典型的には、約0.5μmから約14μmまでの範囲内で異なっている。幾つかの実施形態では、高温計が下部高温計であり、それは、高温計が複数のランプ176に近接するなど基板の下方に配置されることを意味する。
[0026] 基板支持体112は、シャフト165に結合されている。シャフトは、アクチュエータ178に接続されている。アクチュエータ178は、シャフト及び基板支持体の回転動作(軸Aの周りでの)を提供する。アクチュエータ178は、更に又は代替的に、処理中にシャフト165の高さの調整を提供してよい。
[0027] 基板支持体112は、基板支持体112内に配置されたリフトピン孔166を含む。リフトピン孔166は、堆積プロセスが実行される前又は後のいずれにおいても、基板支持体112から基板114を持ち上げるためのリフトピン164を収容するようにサイズ決定されている。リフトピン164は、基板114が処理位置から移送位置に下げられたときに、リフトピンストップ168上に載置されてよい。
[0028] プラズマは、誘導コイル130によってプラズマ源120において(例えば、プラズマ生成領域において)生成され得る。所望の粒子が、プラズマ源120から分離グリッド116内に設けられた孔126を貫通して基板114の表面に流れる。分離グリッド116は、プラズマ源120を処理チャンバ110(下流領域)から分離する。
[0029] プラズマ源120は、誘電体の側壁122を含む。プラズマ源120は、上部カバー124(例えば、上部プレート)を含む。インサート140に統合された誘電体の側壁122及び上部カバー124が、プラズマ源内部125(例えば、チャンバ内部)を画定する。誘電体の側壁122は、石英などの任意の適切な誘電材料を含み得る。誘導コイル130が、プラズマ源120の周りの誘電体の側壁122に近接して(例えば、隣接して)配置されている。誘導コイル130は、任意の適切な整合ネットワーク132を介して、RF電力生成器134に結合されている。供給ガスは、ガス供給源150からプラズマ源内部125に導入される。誘導コイル130が、RF電力生成器134からのRF電力で通電されたときに、プラズマがプラズマ源120において生成される。幾つかの実施形態では、RF電力が、約1kWから約15kW、約3kWから約10kWなどで、コイル130に提供される。誘導コイル130は、広い圧力及び流量の範囲でプラズマを点火し、維持してよい。幾つかの実施形態では、プラズマ処理装置100が、プラズマへの誘導コイル130の容量結合を低減させるために、接地されたファラデーシールド128を含む。
[0030] 効率を高めるために、プラズマ処理装置100は、プラズマ源内部125に配置されたガス注入インサート140を含む。ガス注入チャネル151が、アクティブゾーン172(例えば、アクティブ領域)を通してプロセスガスをプラズマ源内部125に提供する。アクティブゾーン172では、高温電子の閉じ込めが強化されるため、高温電子と供給ガスとの間で反応が生じる。強化された電子閉じ込め領域又はアクティブゾーン172は、径方向においてガス注入インサートの側壁及び減圧チューブによって画定され、垂直方向において下からインサートの下面180の縁部によって画定される。アクティブゾーン172は、効率的なプラズマの生成及び維持のために、プラズマ源内部125の範囲内で電子閉じ込め領域を提供する。狭いガス注入チャネル151は、プラズマがチャンバ内部からガスチャネル151の中に広がることを防止する。チャネル151は、約1mm以上、約10mm以上など、約1mmから約10mmなどの直径であり得る。ガス注入インサート140は、プラズマが生成されるアクティブゾーン172をプロセスガスが通過するように強制する。
[0031] プラズマ処理装置100(例えば、プラズマリアクタ)の効率を向上させるガス注入インサート140の能力は、ラジカルに直接接触する壁が、低いラジカルの再結合率を有する材料で作製されている限り、ガス注入インサート140の材料に依存しない。例えば、幾つかの実施形態では、ガス注入インサート140が、表面の再結合を低減させるように構成されたコーティングを有する、アルミニウム材料などの金属から作製され得る。代替的に、ガス注入インサート140は、石英材料などの誘電材料であり得るか、又は絶縁材料であり得る。
[0032] コイル130は、コイルの上側のターンがインサート140の下面180の上方にあり、実質的に内側空間のアクティブ領域において動作し、一方で、コイルの下側のターンが下面180の下方にあり、実質的にアクティブ領域の外側で動作するようなやり方で、アクティブ領域に位置合わせされている。コイルの中心は、下面180と実質的に整列している。これらの境界の範囲内で、コイルの位置を所望の性能のために調整することができる。下面180(例えば、表面縁部)とのコイルの整列は、改良されたソース効率、すなわち、プラズマプロセス用の所望の化学種の制御された生成、及びそれらを低減された又は排除された損失でウエハに供給することをもたらす。例えば、プラズマ維持条件(イオンの局所的な生成と損失との間のバランス)は、プラズマプロセス用の核種を生成するために最適ではないかもしれない。基板への核種の供給に関しては、効率が、これらの特定の核種の量及び壁の再結合に依存し得る。したがって、下面180とのコイルの位置合わせの制御は、プラズマプロセス用のソース効率の制御を提供する。
[0033] 幾つかの実施形態では、コイルがリードの近くで短い遷移領域を有し、コイルの残りのターンは下面180と平行であり、他の複数の実施形態では、コイルが螺旋状であるが、常にコイルの上側のターンと下側のターンを規定することができる。幾つかの実施形態では、コイルが2~5ターンを有し得る。
[0034] 幾つかの実施形態では、プラズマ源120を形成するために適切なサイズのインサート140(及びインサート140の予め形成された一部であってよい上部カバー124)を利用することによって、表面180が、軸184(例えば、整列レベル)に沿って、誘導コイル130の一部分(例えば、コイルループ182)と整列する。代替的に、コイル130の一部分との表面180の整列を提供するために、表面180は、プラズマ源120に対して垂直方向V1に沿って移動可能であり得る。一方で、インサート140の残りの部分は、プラズマ源120の一部として静的である(例えば、固定されている)。例えば、機構170が、表面180の位置を調整するために、インサート140の任意の適切な部分に結合され得る。それによって、第1の長さ(L1)を有するインサート140の一部分は、第2の長さ(L2)に調整される。機構170は、アクチュエータ(例えば、モータ、電気モータ、ステッピングモータ、又はガス圧アクチュエータ)などの、任意の適切な機構であり得る。幾つかの実施形態では、L1からL2までの長さの差(Δ)が、約0.1cmから約4cm、約1cmから約2cmなどである。
[0035] 更に又は代替的に、表面180をコイル130の一部分と整列させるために、インサート140が、機構(機構170など)に結合され得る。機構170は、インサート140の全体を垂直に(例えば、プラズマ源120に対して垂直方向V1に沿って)移動させるように構成されている。スペーサ(図示せず)を使用して、インサートを垂直に移動させることによって形成されたインサート140とプラズマ源120の別の一部分との間(上部カバー124と誘電体の側壁122との間など)の(1以上の)間隙を充填することができる。スペーサは、例えば、石英などのセラミック材料から形成されてよい。
[0036] 一般に、コイル130の中心を表面180の上方に配置することによって、イオン化及び解離の効率は向上するが、基板へのこれらの核種の輸送効率が減少する。というのも、核種の多くが、狭いアクティブ領域の壁で再結合する可能性があるからである。コイル130を表面180の下方に配置することによって、プラズマ供給効率が向上し得るが、プラズマ生成効率が減少する可能性がある。
[0037] 分離グリッド116は、処理チャンバ110のエリアをプラズマ荷電粒子(イオン及び電子)から分離するように構成されている。プラズマ荷電粒子は、グリッド上で再結合する。それによって、中性プラズマ種のみが、グリッドを通過して処理チャンバ110の中に入ることができる。分離グリッド116の下部セクション内の孔は、異なるパターン、例えば、図6a、図6bで示されているような均一性600を有してよい。幾つかの実施形態では、分離グリッド600が、アルミニウム、陽極酸化アルミニウム、石英、窒化アルミニウム、酸化アルミニウム、タンタル、窒化タンタル、チタン、窒化チタン、又はこれらの(1以上の)組み合わせで形成される。例えば、AlNは、窒素ラジカルのフラックス用に有用であり得るが、一方で、従来の分離グリッドは、窒化ラジカルの再結合を起こし易い。同様に、酸化アルミニウムは、酸素ラジカル又は水素ラジカルのフラックスを提供し得るが、一方で、従来の分離グリッドは、それらの再結合を起こし易い。幾つかの実施形態では、分離グリッド600が、複数の孔602を有する。図6bで示されているように、孔602は、分離グリッドを貫通して配置される(例えば、孔602は、分離グリッドの厚さを横断する)。孔602は、約4mmから約6mmの平均直径を有してよい。幾つかの実施形態では、複数の孔602の各孔が、約4mmから約6mmの直径(D1)を有する。幾つかの実施形態では、図6a、図6bの分離グリッド600が、約5mmから約10mmの厚さを有する。それは、孔の長さ(L1)を規定する。複数の孔の平均直径に対するグリッドの厚さ(長さ(L1))の比は、約1より上、約1から約3などであってよい。
[0038] 排気口192が、プロセスチャンバ110の側壁に結合されている。幾つかの実施形態(例えば、ペデスタルを回転させない場合)では、排気口192が、方位角の独立性を提供するために、プロセスチャンバ110の下壁に結合されてよい。ランプが回転している場合、排気口192は側壁に結合され得る。というのも、回転は方位角の依存性を軽減するからである。
[0039] 次に、ICP源及びプラズマ処理装置の様々なフィーチャが、図2、図3、図4、及び図5を参照しながら説明されることになる。図2、図3、図4、及び図5は、本開示の幾つかの実施形態による、プラズマ処理装置の概略図である。図2、図3、図4、及び図5のプラズマ処理装置は、プラズマ処理装置100(図1)と同様なやり方で構築されてよく、処理装置100について上述されたやり方で動作してよい。図2、図3、図4、及び図5のプラズマ処理装置の構成要素はまた、代替的で例示的な複数の実施形態における任意の他の適切なプラズマ処理装置の中に組み込まれてもよいことが理解されよう。
[0040] 図2で示されているように、プラズマ処理装置200は、内部に配置された分離グリッド(図示せず)を有する処理チャンバ220を含む。
プラズマ処理装置200は、垂直方向Vに沿ってプラズマ源222を含む。基板は、グリッドの直下でグリッドから幾らか距離を置いて処理チャンバ内に配置されてよい。プラズマ源内部230からの中性粒子が、分離グリッドを貫通して、処理チャンバ220内の基板に向けて下向きに流れてよい。中性粒子は、例えば、プロセス(例えば、基板処理プロセス)を実行するために、基板に接触してよい。
[0041] 複数の誘導コイル250が、プラズマ源222の垂直方向Vに沿った異なる位置に配置されている。例えば、それによって、誘導コイル(例えば、252及び254)は、プラズマ源222に沿った垂直方向Vに沿って互いから離隔している。例えば、誘導コイル250は、第1の誘導コイル252及び第2の誘導コイル254を含んでよい。第1の誘導コイル252は、誘電体の側壁232の垂直な表面に沿った第1の垂直位置に配置されてよい。第2の誘導コイル254は、誘電体の側壁232の垂直な表面に沿った第2の垂直位置に配置されてよい。第1の垂直位置は、第2の垂直位置と異なる。例えば、第1の垂直位置は、第2の垂直位置の上方であってよい。幾つかの実施形態では、上述されたように、第1の誘導コイル252の一部分が、インサートの表面180と実質的に整列している。第2の誘導コイル254は、プラズマ源200の下(例えば、下側)部分に配置されている。第2の誘導コイルは、図2で示されているように、(1以上の)磁界集中器280を含み、コイルがプラズマ源の下部に配置されることを可能にする。磁界集中器280を使用することによって、ソースの下部におけるプラズマ生成の効率が向上し、基板の近くの径方向の制御を著しく増大させる(磁界集中器がない場合と比較して)。幾つかの実施形態では、誘導コイル254が、プラズマ源222の下から1/3の高さ、下から1/4の高さなどに配置される。
[0042] 誘導コイル250(252、254)は、プラズマ源内部230の範囲内で誘導プラズマを生成(又は修正)するように動作可能であってよい。例えば、プラズマ処理装置200は、コイル252に結合された高周波電力生成器262(例えば、RF生成器及び整合ネットワーク)を含んでよい。誘導コイル254は、第2のRF生成器264(例えば、RF生成器及び整合ネットワーク)に結合されている。第1のRF生成器262によって第1の誘導コイル252に印加されるRFエネルギーの周波数及び/又は電力と、第2のRF生成器264によって第2の誘導コイル254に印加されるRFエネルギーの周波数及び/又は電力とは、それぞれ、表面処理プロセスのプロセスパラメータをより良く制御するために独立し得る。
[0043] 例えば、第2のRF生成器264によって印加されるRFエネルギーの周波数及び/又は電力は、第1のRF生成器262によって印加されるRFエネルギーの周波数及び/又は電力よりも小さくなり得る。高周波電力生成器262は、プラズマ源内部230において誘導プラズマを生成するために、誘導コイル252を通電させるように動作可能である。特に、高周波電力生成器262は、高周波(RF)の交流(AC)で誘導コイル252を通電させてよい。それによって、ACは、誘導プラズマを生成するために、電子を加熱する誘導コイル252の近くの空間の内側の交流磁界及び電界を誘導する。幾つかの実施形態では、RF電力が、約1kWから約15kW、約3kWから約15kWなどで、コイル252に提供される。誘導コイル252は、広い圧力及び流量の範囲でプラズマを点火し、維持してよい。
[0044] 高周波電力生成器264は、プラズマ源内部230においてプラズマを生成及び/又は修正するために、誘導コイル254を通電させるように動作可能である。特に、高周波電力生成器264は、高周波(RF)の交流(AC)で誘導コイル254を通電させてよい。それによって、誘導コイル254に隣接した空間の内側の誘導性RF電界が、プラズマを生成するために電子を加速する。幾つかの実施形態では、RF電力が、約0.5kWから約6kW、約0.5kWから約3kWなどで、コイル254に提供される。誘導コイル254は、プラズマ処理装置200におけるプラズマ密度を修正してよい。例えば、誘導コイル254は、チャンバ220内で基板に向けて移動する更なるプラズマの均一性を促進するために、プラズマの径方向プロファイルを調整し得る。使用中にコイル252はコイル254よりも基板から更に離れているので、コイル252によって生成されるプラズマ及びラジカルは、基板の近くのドーム形状のプロファイルを促進し得る。コイル254は、プラズマが基板に接近するときに、ドーム形状のプラズマプロファイルを平坦にすることが(又は縁部を上昇させることさえ)できる。
[0045] 誘電体の側壁232は、誘導コイル250とプラズマ源222との間に配置されている。誘電体の側壁232は、概して円筒形状を有する。電気的に接地されたファラデーシールド234が、金属で作製されてよく、及び/又は誘導コイル250と誘電体の側壁232との間に配置される。ファラデーシールド234は、円筒形状を有し、誘電体の側壁232の周りに配置されている。接地されたファラデーシールド234は、プラズマ源222の長さだけ延在する。誘電体の側壁232は、プラズマ源内部230の範囲内にプラズマを含み、誘導コイル250からのRF場がプラズマ源内部230まで通過することを可能にする。接地されたファラデーシールド234は、プラズマ源内部230の範囲内のプラズマへのコイル250の容量結合を低減させる。幾つかの実施形態では、ファラデーシールド234が、コイルの方向に垂直なスロットを有する金属の円筒であり得る。垂直なスロットは、コイルのエリアにある(例えば、コイルに隣接している)。一方で、コイルの少なくとも一方の上下端(コイルの上方又は下方)が、円筒の周りに完全な電流経路を有する。ファラデーシールドは、任意の適切な厚さを有してよく、及び/又は、スロットは、任意の適切な形状を有してよい。螺旋コイルを利用するときでさえ、(1以上の)コイルの近くでスロットは比較的細く(例えば、約0.5cmから約2cm)、実質的に垂直であり得る。
[0046] 上述されたように、各誘導コイル250は、プラズマ源222の誘電体の側壁の垂直な部分に隣接してプラズマ源222の垂直方向Vに沿った異なる位置に配置されている。このやり方では、各誘導コイル250が、プラズマ源222の誘電体の側壁232の垂直な表面に沿ったコイルに隣接した領域においてプラズマを生成(又は修正する)ように動作可能であり得る。
[0047] 幾つかの実施形態では、プラズマ処理装置200が、プラズマ源222の注入インサート240の径方向外向きにガス注入インサート240を通して配置された1以上のガス注入ポート270を含む。ガス注入ポート270及びインサートの側面形状は、プラズマ源内部230の周縁において、誘電体の側壁232の垂直な表面に隣接したアクティブプラズマ生成領域の中に直接的に、プロセスガスを注入するように動作可能である。例えば、インサート240を通して配置された20個より多い(例えば、70個~200個の)垂直注入孔が存在してよい。例えば、第1の誘導コイル252は、誘電体の側壁232の垂直な表面に近接した領域272においてプラズマを生成するように動作可能であり得る。第2の誘導コイル254は、誘電体の側壁232の垂直な表面に近接した領域275において存在するプラズマを生成又は修正するように動作可能であり得る。ガス注入インサート240は、幾つかの実施形態では、誘電体の側壁232の垂直な表面に隣接したプラズマ源内部230においてプラズマを生成するためのアクティブ領域を更に画定し得る。本開示のガス注入インサートの上部は、約10cmから約15cmの直径を有し得る。本開示のガス注入インサートの下部は、約7cmから10cmの直径を有し得る。
[0048] プラズマ処理装置200は、ガス注入ポート270がプラズマ源内部230に提供するのと、同じ又は異なるガスを空間210に導入するように構成された下縁部ガス注入ポート290を有し得る。縁部ガス注入ポート290は、プロセスチャンバ220に結合され、プロセスチャンバ220の上部プレートである。縁部ガス注入ポート290は、ガスが入口294を貫通して導入される円形のプレナム292を含む。ガスは、プレナム292から1以上の開口部296を貫通して空間210に流れる。縁部ガス注入ポート290は、基板の縁部の近くのプラズマ化学の微調整を提供し、及び/又は基板におけるプラズマの均一性を向上させ得る。例えば、縁部ガス注入ポート290は、流れ(同じガス)の修正を提供し、及び/又は化学(プラズマラジカルと新しい供給ガス又は異なるガスとの間の化学反応)の修正を提供し得る。
[0049] プラズマ処理装置200は、既知のプラズマ処理装置に対して、改善されたソース調整能力を有する。例えば、誘導コイル250は、誘電体の側壁232の垂直な表面に沿った2つの位置に配置され得る。それによって、アクティブプラズマ生成領域に近接した上部コイル252の機能は、プラズマ源内部230におけるプラズマの点火及び維持であり、ソースの下部に配置された第2のコイル254の機能は、有利なソース調整能力を可能にする。第2のコイルの下側の配置は、磁界集中器280の使用により可能である。これにより、周囲の金属(例えば、290)に対してよりもむしろプラズマに対するコイルの結合がもたらされる。このようなやり方では、プラズマ処理装置200を用いて実行される基板に対する処理プロセスが、より均一であってよい。
[0050] 図3は、プラズマ処理装置300の概略図である。処理装置300は、プラズマ源322及び処理チャネル220を含む。プラズマ源322は、周縁ガス注入ポート270及び中央ガス注入ポート310を有するインサート302を含む。中央ガス注入ポート310は、プレナム316を形成する上部プレート318及び下部プレート340によって形成されている。下部プレート340は、複数の孔(貫通孔)312を有し、中央ガス注入ポート310/インサート302が、プロセスガスを中央プロセス領域314の中に提供するための複数の孔(貫通孔)312を有することを可能にする。中央プロセス領域314の寸法は、インサート302の部分、すなわち、中央ガス注入ポート310及び側壁320によって提供される。側壁320は、円筒形状を有し、誘電材料である。例えば、側壁320は、石英又はアルミナから形成されている。周縁プロセス領域272の寸法は、誘電体の側壁232、並びにインサート302(すなわち、ガス注入ポート270及び側壁324)によって提供される。側壁324(及び概してインサート302)は、円筒形状を有し得る。側壁324の表面の材料は、誘電材料又は金属であり得る。例えば、側壁324は、アルミニウムから形成され、石英若しくはアルミナでカバーされてよく、又はベアアルミニウム若しくは陽極酸化アルミニウムを有してよい。加えて、第1のファラデーシールド(図示せず)が、コイル252と誘電体の側壁232との間に配置され得る。同様に、第2のファラデーシールド(図示せず)が、コイル254と側壁320との間に配置され得る。幾つかの実施形態では、側壁320が、石英若しくはセラミックであり、及び/又は約2.5mmから約5mmの厚さを有する。
[0051] 導管326を介した周縁プロセス領域272への周縁ガス注入ポート270によって提供されるプロセスガスの流量は、中央ガス注入ポート310によって中央プロセス領域314に提供されるプロセスガスの流量よりも大きくなり得る。幾つかの実施形態では、中央ガス注入ポート310によって提供されるプロセスガスの流量に対する、周縁ガス注入ポート270によって提供されるプロセスガスの流量の比が、約2:1から約20:1、約5:1から約10:1などである。中央プロセス領域314への流量よりも高い周縁プロセス領域272への流量の提供は、処理チャンバ220内に存在する基板の基板表面におけるプラズマの改良された中央から縁部への均一性を提供する。
[0052] 処理装置300は、周縁コイル252及び中央コイル254を更に含む。周縁コイル252によって提供されるRF電力は、中央コイル254によって提供されるRF電力よりも大きくなり得る。幾つかの実施形態では、中央コイル254によって提供されるRF電力に対する、周縁コイル252によって提供されるRF電力の比が、約2:1から約20:1、約3:1から約10:1など、約5:1などである。中央コイルが通電していない場合、従たるプラズマ源は、主たるコイル252によって生成されたラジカル及びイオン/電子の基板の中心に向かうフラックスを低減させる補助的なガス注入として働く。プラズマ密度は、典型的には、従来のプラズマプロセス中に基板の中心においてより高いので、中央誘導コイル252に提供されるRF電力よりも大きいRF電力を周縁誘導コイル254に提供することによって、基板の(1以上の)縁部における増加されたプラズマ密度が促進され、プラズマの均一性が向上する。中央エリアと縁部エリアとの間のプラズマ分離器304(円筒形状の突出)は、独立した中央と縁部のプラズマ制御の能力を改善する。
[0053] 周縁コイル252及び中央コイル254は、プラズマ源内部330の範囲内で誘導プラズマを生成(又は修正)するように動作可能であってよい。例えば、プラズマ処理装置300は、周縁コイル252に結合された高周波電力生成器262(例えば、RF生成器及び整合ネットワーク)を含んでよい。中央コイル254は、第2のRF生成器264(例えば、RF生成器及び整合ネットワーク)に結合されている。第1のRF生成器262によって周縁コイル252に印加されるRFエネルギーの周波数及び/又は電力と、第2のRF生成器264によって中央コイル254に印加されるRFエネルギーの周波数及び/又は電力とは、それぞれ、基板処理プロセスのプロセスパラメータを制御するために同じに又は異なるように調整され得る。
[0054] 例えば、第2のRF生成器264によって印加されるRFエネルギーの周波数及び/又は電力は、第1のRF生成器262によって印加されるRFエネルギーの周波数及び/又は電力よりも小さくなり得る。高周波電力生成器262は、プラズマ源内部330において誘導プラズマを生成するために、周縁コイル252を通電させるように動作可能である。特に、高周波電力生成器262は、高周波(RF)の交流(AC)で周縁コイル252を通電させてよい。それによって、ACは、誘導プラズマを生成するために、ガスを加熱する周縁コイル252の内側の交流磁界を誘導する。幾つかの実施形態では、RF電力が、約1kWから約15kW、約3kWから約10kWなどで、周縁コイル252に提供される。
[0055] 高周波電力生成器264は、プラズマ源322の中央領域314において誘導プラズマを生成及び/又は修正するために、中央コイル254を通電させるように動作可能である。特に、高周波電力生成器264は、高周波(RF)の交流(AC)で周縁コイル254を通電させてよい。それによって、ACは、誘導プラズマを生成及び/又は修正するために、ガスを加熱する周縁コイル254の内側の交流磁界を誘導する。幾つかの実施形態では、RF電力が、約0.3kWから約3kW、約0.5kWから約2kWなどで、中心コイル254に提供される。中央コイル254は、プラズマ処理装置300内のプラズマを修正してよく、例えば、中央コイル254は、チャンバ220内の基板に向けて移動する更なるプラズマの均一性を促進するために、プラズマの径方向プロファイルを調整し得る。
[0056] 幾つかの実施形態では、プラズマ処理装置300が、誘電体の側壁232の垂直な表面に沿った領域272の周縁においてプロセスガスを注入するように動作可能なガス注入ポート270を含み、誘電体の側壁232の垂直な表面に隣接した(1以上の)アクティブプラズマ生成領域を画定する。例えば、周縁コイル252は、誘電体の側壁232の垂直な表面に近接した領域272においてプラズマを生成するように動作可能であり得る。中央コイル254は、側壁320の垂直な表面に近接して中央領域314において存在するプラズマを生成及び/又は修正するように動作可能であり得る。ガス注入インサート302は、幾つかの実施形態では、誘電体の側壁232の垂直な表面及び側壁320の垂直な表面に隣接したプラズマ源内部におけるプラズマの生成用のアクティブ領域を更に画定し得る。
[0057] 実際には、基板に、領域314において生成されたプロセスプラズマの、領域272において生成されたプロセスプラズマとの幾らかの重なりが提供され得る。全体として、周縁及び中央プロセスガス注入ポート(270、310)並びに誘導コイル(252、254)は、基板をプラズマで処理するために、改善されたプラズマ及びプロセスの均一性(中心から縁部へのプラズマ制御)を提供し得る。中心から縁部へのプロセス制御を強化するために、インサート302が分離器304を含む。分離器304は、不活性下面180に結合された(例えば沿って配置された)均一な円筒形状の分離器であってよい。
[0058] 加えて、中央ガス注入ポート310によって提供されるプロセスガスが、周縁ガス注入ポート270によって提供されるプロセスガスとは異なる複数の実施形態では、従来のプラズマ源を使用する従来のプラズマプロセスと比較して、新しいプラズマ化学が得られてよい。例えば、有利な基板の処理が提供されてよい。これは、従来のプラズマ処理では得ることができない。例えば、ラジカル及び励起種のプラズマ生成流(例えば、領域272の幾つかの実施形態)を、異なる種類のプラズマ種(例えば、異なるラジカル)に富む異なるプラズマ流と混合する場合、プラズマのユニークな混合物が生成され得る。加えて、これらのユニークなプラズマ化学の生成は、例えば、上述されたように、コイル252の一部分との表面180の整列を利用する複数の実施形態において得られ得る。
[0059] 図4は、プラズマ処理装置400の概略図である。プラズマ処理装置400は、プラズマ源422を含む。プラズマ源422は、ガス注入インサート402を含む。これは上部カバー、周縁ガス注入ポート270、及び中央ガス注入ポート410と統合され得る。中央ガス注入ポート410は、ガス注入インサート402のガス供給プレナム416に中央ガス注入ポート410を流体結合するように、ガス注入インサート402内に配置されている。ガス供給プレナム416は、インサート402の下部と供給プラットフォーム414との間の排気領域にガスが入る前に、プロセスガスが均一に供給されるように(ポート410の直径と比較して)増大した直径を提供する。ガスが孔412を貫通して提供されると、プラットフォーム414は、第2のガス供給プレナム418(例えば、領域)を提供し、プラズマ源422の周縁への(例えば、領域272の中への)ガスの外向きの流れを促進する。本開示の幾つかの実施形態では、孔412を形成するための材料が存在せず、より大きなプレナムが形成される。プラットフォーム414は、複数のネジ又はボルト(図示せず)を介して、インサート402に結合され得る。プラットフォーム414は、石英又はセラミックで作製され得る。プラットフォーム414は、任意の適切な設計を有し得る。これは、異なる材料を可能にする。プラットフォーム414によって促進されるガスの外向き/横向きの流れは、処理中の基板へのガス/プラズマの流れプロファイルに影響を与え、従来のプラズマプロセス装置と比較して、中心から縁部への均一性を向上させ得る。加えて、プラズマ源400のプラズマ生成領域(例えば、272)に隣接した領域へのガスのこの外向きの流れは、利点を提供する。コイル130の上部に隣接した領域272において高いプラズマ密度が生成され得るので、電界はコイルから遠く離れて貫通しない。したがって、中央注入410~416~414からのガスは、多くのイオン化又は解離を経験しないが、ガスは、アクティブ領域272において生成された高密度のラジカル及びイオンと化学的に相互作用する。ラジカルとイオンの両方が化学的に活性化し、中央注入410~416~414からの新しい供給ガスと相互作用する。新しい供給ガス、ラジカル、及びイオンは、プラズマプロセスチャンバを使用する従来のプラズマ源と比較して、新しいプラズマ化学を生成してよい。例えば、ラジカル及び励起種のプラズマ生成流(例えば、領域272の幾つかの実施形態)を、高温電子を有するプラズマ生成領域272を通過しなかったガスの新しい流れ(例えば、注入ポート410及びプラットフォーム414/第2のガス供給プレナム418によって提供されるプロセスガス)と混合した場合、プラズマのユニークな混合物が生成され得る。例えば、H2供給ガスからの(例えば、注入ポート270によって提供されるガスからの)プラズマ中で得られるH及びH-ラジカルの流れを、酸素O2の流れ(例えば、注入ポート410によって供給されるガスからの)と混合することができる。その場合、誘導コイル130に関連するアクティブ領域272に隣接した領域において、HO2、HO、H2O2、及び他の非平衡分子などの分画を著しく増加させることができる。加えて、これらのユニークなプラズマ化学の生成は、例えば、上述されたように、コイル130の一部分との表面180縁部の整列を利用する複数の実施形態において得られ得る。
[0060] 幾つかの実施形態では、中央ガス注入ポート410によって提供されるプロセスガスの流量に対する、周縁ガス注入ポート270によって提供されるプロセスガスの流量の比が、約20:1から約1:20、約10:1から約1:10など、約2:1から約1:2など、約1.2:1から約1:1.2など、約1.1などである。このような流量は、領域272において生成されるプラズマ中の化学種の所望の密度を提供するために、異なるプロセスガスの化学量論(例えば、実質的に等モル量)を提供してよい。
[0061] 加えて、中央ガス注入ポート410及びプラットフォーム414/第2のガス供給プレナム418によって提供される外向き/横向きの流れは、プラズマ源400の範囲内の流れパターンを修正し、基板へのラジカルの供給プロファイルに影響を与え得る。例えば、中央ガス注入ポート410によって提供されるプロセスガスが、周縁ガス注入ポート270によって提供されるプロセスガスと実質的に同じである複数の実施形態では、基板の縁部に向けてより多くのプラズマ流が促進され、中心から縁部へのプラズマプロファイル(例えば、基板に提供されるプラズマの均一性)が改善される。
[0062] 加えて、中央ガス注入ポート410によって提供されるプロセスガスが、周縁ガス注入ポート270によって提供されるプロセスガスとは異なる複数の実施形態では、従来のプラズマ源を使用する従来のプラズマプロセスと比較して、新しいプラズマ化学が得られてよい。例えば、有利な基板の処理が提供されてよい。これは、従来のプラズマ処理では得ることができない。例えば、ラジカル及び励起種のプラズマ生成流(例えば、領域272の幾つかの実施形態)を、高温電子を有するプラズマ領域を通過しなかったガスの新しい流れと混合する場合、プラズマのユニークな混合物が生成され得る。例えば、H2供給ガスからのプラズマ中で得られるH+及びH-の流れを、酸素O2の流れと混合することができる。その場合、領域272の下流にあるプラズマ処理装置400の領域において、HO2、H2O2分子などのような多数の異なるラジカルを生成することができる。加えて、これらのユニークなプラズマ化学の生成は、例えば、上述されたように、コイル252の一部分との表面180の整列を利用する複数の実施形態において得られ得る。
[0063] 図5は、プラズマ処理装置500の概略図である。処理装置500は、プラズマ源522及び処理チャンバ220を含む。プラズマ源522は、ガス注入インサート240、周縁ガス注入ポート270、中央ガス注入ポート510、及び上部カバー124を含む。中央ガス注入ポート510は、壁550に近接して(例えば、隣接して)配置され得る。中央ガス注入は、概して円筒形状のプレナム/マニホールドを有するポート510、及びプレナムに沿って均一に広がった複数の角度付き注入出口512を含む。ガス注入インサート240は、同様に、概して円筒形状を有し得る。中心ガス注入ポート510は、中央ガス注入ポート510及び角度付き出口512によって提供されるプロセスガスの外向き/横向きの流れを促進するために、角度付き出口512を有する。角度付き出口512は、垂直軸(処理装置500の軸中心線及び/又はプラズマ源522の軸中心線に平行な垂直軸186などの)に対して、約0度から約90度、約30度から約60度、約45度などの角度を有し得る。
[0064] 角度付き出口512によって促進されるガスの外向き/横向きの流れは、処理中に基板へのガス/プラズマの流れプロファイルに影響を与え、従来のプラズマプロセス装置と比較して、中心から縁部への均一性を向上させ得る。加えて、高いプラズマ密度が、コイル130に隣接する領域において生成され得る(及び電界は、コイルから遠く離れて貫通しない)ので、プラズマプロセスチャンバを使用する従来のプラズマプロセスと比較して、新しいプラズマ化学が得られ得る。例えば、ラジカル及び励起種のプラズマ生成流(例えば、領域272の幾つかの実施形態)を、高温電子を有するプラズマ領域を通過しなかったガスの新しい流れ(例えば、注入ポート510及び角度付き出口512によって提供されるプロセスガス)と混合した場合、プラズマのユニークな混合物が生成され得る。例えば、H2供給ガスからの(例えば、注入ポート270によって提供されるガスからの)プラズマ中で得られるH及びH-ラジカルの流れを、酸素O2の流れ(例えば、注入ポート510によって供給されるガスからの)と混合することができる。その場合、誘導コイル130に隣接するプロセス領域272において、HO2、H2O2のような分子ラジカルを生成することができる。加えて、これらのユニークなプラズマ化学の生成は、上述されたように、表面180とのコイル130の位置合わせを利用する複数の実施形態において得られ得る。
[0065] 幾つかの実施形態では、中央ガス注入ポート510によって提供されるプロセスガスの流量に対する、周縁ガス注入ポート270によって提供されるプロセスガスの流量の比が、約2:1から約1:2、約1.2:1から約1:1.2など、約1:1などである。このような流量は、領域272において生成されるプラズマ中の化学種の所望の密度を提供するために、異なるプロセスガスの化学量論(例えば、実質的に等モル量)を提供してよい。
[0066] 加えて、中央ガス注入ポート510及び角度付き出口512によって提供される外向き/横向きの流れは、プラズマ源522の範囲内の流れパターンを修正し、基板へのラジカルの供給プロファイルに影響を与え得る。例えば、中央ガス注入ポート510によって提供されるプロセスガスが、周縁ガス注入ポート270によって提供されるプロセスガスと実質的に同じである複数の実施形態では、基板の縁部に向けてより多くのプラズマ流が促進され、中心から縁部へのプラズマプロファイル(例えば、基板に提供されるプラズマの均一性)が改善される。
[0067] 更に、図5のガス注入インサート240は、下面180において固定された縁部を有し、誘導コイル130の軸184を指し示すアクティブ領域を画定する。コイル130は、コイルの上側のターンが軸184(表面180)の上方に配置され、下側のターンが縁部の下方に配置されるようなやり方で、表面180と実質的に位置合わせされている。プロセスの結果に基づいて、この範囲内でコイルの位置を更に調整してよい。下面180とのコイルの垂直中心の整列は、改善されたソース効率、すなわち、プラズマプロセス用の所望の化学種の制御された生成、及びそれらを最小損失でウエハに提供することをもたらす。例えば、プラズマ維持条件(イオンの局所的な生成と損失との間のバランス)は、プラズマプロセス用の核種を生成するために好適に働かないかもしれない。基板への核種の供給に関しては、効率が、これらの特定の核種の量及び壁の再結合に依存し得る。したがって、下面180とのコイル130の位置合わせの制御は、プラズマプロセス用のソース効率の制御を提供する。
[0068] 幾つかの実施形態では、プラズマ源120を形成するために適切にサイズ決定されたインサート240を利用することによって、インサート240の下面が、コイル用のアクティブ領域を画定するインサートの下面180の縁部分と位置合わせされる(この位置合わせのレベルが、軸184として図示されている)。代替的に、インサート240の下面は、インサート240の図5で示されているような移動可能な中央部分を使用して、フレキシブルに作製され得る。一方で、インサート240の残りの部分は、プラズマ源120の一部として固定されている。例えば、機構170が、インサート240の中央部分を調整するために、中央部分に結合され得る。それによって、第1の位置を有するインサート240の中央部分は、第2の位置に調整される。幾つかの実施形態では、第1の位置から第2の位置までの位置の差(Δ)が、約0.1cm~約10cm、約1cm~約2cmなどである。機構170は、アクチュエータ(例えば、モータ、電気モータ、ステッピングモータ、又はガス圧アクチュエータ)などの任意の適切な機構であり得る。機構170によるインサート240の中央部分の移動は、中央部分と上部カバー124との間のスペースを増減させる。
[0069] 一般に、インサート240の中央部分を垂直方向Vに沿って下向きに移動させることによって、基板の中心に向かう活性種の流れが低減されることとなり、したがって、縁部に対して中心におけるプロセス速度が減少する。一方で、中央部分を上向きに移動させることによって、縁部に対して中心におけるプロセス速度が増加することになる。
[0070] 図面は、独立して説明されたが、1つの図面からの1以上の実施形態は、異なる図面の1以上の実施形態と有益に組み合わされてよいことが理解されよう。例えば、図1のガス注入インサート140又は図2のガス注入インサート240は、図3のガス注入インサート302、図4のガス注入インサート402であってよく、又は図5のガス注入インサート240及び中央ガス注入ポート510の構成であってよい。別の非限定的な一実施例として、ガス注入ポート290が、図3のプラズマ処理装置300、図4のプラズマ処理装置400、及び図5のプラズマ処理装置500を有する一実施形態として含まれてよい。
[0071] 図7は、プラズマ源と共に使用され得る誘導コイル130である。誘導コイル130は、コイルループ182を含む複数のコイルループを含む。誘導コイル130は、3つの完全なコイルを含むが、より多い又は少ないコイルが考えられる。例えば、誘導コイルは、13.56MHzのRF周波数用の2~6つの完全なターンを有してよい。より低いRF周波数には、より多くのターンが利用されてよい。
[0072] 図8は、本開示のプラズマ処理装置を用いて基板をプラズマ処理するための方法800のフロー図である。方法800は、プラズマガスをプラズマ処理源の中に導入すること810を含んでよい。プロセスガス及びその流量は、特定の基板処理用途に基づいて選択されてよい。一般に、プロセスガスは、N2、NH3、O2、H2、又はHeのうちの少なくとも一種を含んでよく、流量は、約100sccmから約3000sccmであってよい。しかし、他のプロセスガスや他の流量も考慮されている。方法800は、プラズマ源の範囲内で誘導プラズマを生成するために、高周波電力を提供すること820を更に含む。高周波電力は、特定の基板処理用途に基づいて制御されてよい。一般に、高周波電力は、約1kWから約10kWであってよいが、他の電力レベルも考慮されている。プラズマ源の内部領域から、誘導プラズマの中性粒子及び/又はラジカルが、分離グリッドを貫通して、処理チャンバ内の基板に流れる。分離グリッドが図1で示されているが、方法800は、分離グリッドなしで実行されてよい。
[0073] 方法800は、プロセスチャンバ内で基板を処理すること830を更に含む。処理チャンバの温度及び圧力は、特定の基板処理用途に基づいて制御され得る。一般に、温度は、約200℃から約1200℃であってよく、圧力は、約0.25Torrから約5Torrであってよい。しかし、他の温度や圧力も考慮されている。処理チャンバ内の基板は、分離グリッドを通過する誘導プラズマにおいて生成された中性粒子及び/又はラジカルに曝露されてよい。特に、中性粒子及び/又はラジカルを中に含むプラズマは、プラズマ源に面する基板の第1の側に接触する。幾つかの実施形態では、基板が、基板の第1の側とは反対側に配置された複数のランプを使用して加熱される。中性粒子及び/又はラジカルは、例えば、基板の表面処理プロセスの一部として使用され得る。実際には、ガスの流量及び/又はガスの比が、基板の表面が中性粒子及び/又はラジカルの反応物供給で飽和するように選択されてよい。反応種の表面飽和を提供するための本明細書で開示される装置の能力は、非常に高密度のソース、及びプラズマ源と基板との間の短い距離に起因する。
[0074] 表面飽和を伴わないプラズマ処理動作では、基板表面への反応種の到着速度が、反応種の反応及び/又は取り込み速度を決定する。しかし、本明細書で開示される装置及び/又は方法を使用して、反応種は、高い核種のフラックスにより表面上で飽和する。それによって、反応種の拡散が、支配的な要因となる。温度が、反応種の拡散を決定し、反応を活発にするので、反応は温度に依存する。熱エネルギーは、本質的に共形であり、三次元において実質的に均一なので、温度に基づいて制御される本明細書で開示される方法は、反応種の到着速度が速度を決定するプラズマ処理動作と比較して、より共形な表面処理をもたらす。
[0075] 一般に、動作830用の処理時間は、約10秒から約10分であってよく、特定の基板処理用途に依存するが、他の処理時間も考慮されている。方法800の多数の利点が、各例示的な基板処理用途に関して、以下でより詳細に説明されることとなる。方法800は、本開示のプラズマ処理装置のうちのいずれかを使用して実行され得る。
[0076] プラズマは、プラズマ源の中に導入されるプロセスガスを使用してプラズマを生成するために、RFエネルギーでプラズマ源に近接した1以上の誘導コイルを通電させることによって生成され得る。例えば、プロセスガスは、ガス源からプラズマ源の中に入れることができる。(1以上の)RF源からのRFエネルギーは、プラズマ源においてプラズマを生成するために、(1以上の)誘導コイルに印加され得る。
[0077] 一般に、方法800は、非限定的に、窒素ラジカル処理(例えば、窒化)、酸素ラジカル処理(例えば、酸化)、水素ラジカル処理、ヘリウムラジカル処理、及び様々な前処理や後処理を含む、多くの異なる基板処理用途に使用され得る。
[0078] 特定の複数の実施形態では、本開示のプラズマ処理装置が、方法800に従った酸化ケイ素(例えば、SiO2)の窒化に使用されてよい。特定の複数の実施例では、窒化プロセスを受ける基板が、約10オングストロームから約200オングストロームの厚さを有する酸化ケイ素の層を含み得る。酸化ケイ素の窒化中に、窒素ラジカル及び/又はNHラジカルを生成するために、二原子窒素(N2)、アンモニア(NH3)、又はそれらの混合物のうちの少なくとも一種が、プラズマ処理源に導入される。N2ソースガスを使用する複数の実施形態では、N2の流量が、約100sccmから約500sccm、約300sccmなどである。N2及びNH3ソースガスの混合物を使用する複数の実施形態では、N2対NH3の比が、約3:1から約1:3、約3:1から約1:1など、約1:1など、約1:1から約1:3などである。他の複数の実施形態と組み合わされてよい幾つかの実施形態では、ソースガスが、不活性ガス(例えば、アルゴン(Ar))と混合される。
[0079] 酸化ケイ素の窒化中に、プロセスチャンバは、高温(例えば、250℃以上)又は低温(例えば、250℃以下)のいずれかで運転することができる。他の実施形態と組み合わされてよい特定の複数の実施形態では、プロセスチャンバ内の温度が、約200℃以上、約200℃から約1200℃など、約250℃から約950℃など、約200℃から約250℃など、約250℃など、約250℃以上など、約500℃から約1000℃など、約500℃から約600℃など、約600℃から約700℃など、約700℃から約800℃など、約800℃から約900℃など、約850℃など、約900℃から約1000℃など、約950℃などである。プロセスチャンバ内の圧力は、約0.2Torrから約3Torr、約0.5Torrから約2Torrなど、約0.5Torrなど、約1Torrなど、約2Torrなどである。高周波電力は、約1kWから約10kW、約1kWから約5kWなど、約2kWなど、約2kWから約8kWなど、約5kWから約10kWなど、約8kWなどである。処理時間は、約2分から約8分、約4分から約5分など、約4分など、約5分などの範囲内である。
[0080] 有益なことに、本開示のプラズマ処理装置及び方法を使用して実行される酸化ケイ素の窒化は、略同じレベルの窒素共形性にある急速熱窒化プロセスと比べて、酸化ケイ素内の窒素含有量を増加させる。更に、本明細書で説明される酸化ケイ素の窒化プロセスはまた、イオン駆動非結合プラズマ窒化プロセスと比べて、酸化ケイ素内の窒素共形性を増加させる。本明細書で説明される酸化ケイ素の窒化は、表面から接触面への窒素ラジカル及び/又はNHラジカルの拡散により、シリコンと酸化ケイ素の接触面と酸化ケイ素の表面との両方において窒素含有量のピークを生成する。更に、本明細書で説明される酸化ケイ素の窒化は、ゲートオールアラウンド(GAA)半導体構造の共形性を増加させることができる。
[0081] 別の一実施例では、本開示のプラズマ処理装置が、方法800に従ったシリコン(Si)の窒化に使用されてよい。特定の複数の実施例では、窒化プロセスを受ける基板が、窒化ケイ素(例えば、SiN)の共形層を形成するために、窒素ラジカルで処理され得るシリコンの層を含み得る。シリコンの窒化の幾つかの実施形態では、窒素ラジカルを生成するために、二原子窒素(N2)がプラズマ処理源に導入される。N2ソースガスを使用する複数の実施形態では、N2の流量が、約500sccmから約1500sccm、約1000sccmなどである。他の複数の実施形態と組み合わされてよい幾つかの実施形態では、ソースガスが、不活性ガス(例えば、アルゴン(Ar))と混合される。
[0082] シリコンの窒化中に、プロセスチャンバは、高温(例えば、250℃以上)又は低温(例えば、250℃以下)のいずれかで運転することができる。他の実施形態と組み合わされてよい特定の複数の実施形態では、プロセスチャンバ内の温度が、約200℃以上、約200℃から約1200℃など、約250℃から約950℃など、約200℃から約250℃など、約250℃など、約250℃以上など、約500℃から約1000℃など、約500℃から約600℃など、約550℃など、約600℃から約700℃など、約700℃から約800℃など、約800℃から約900℃など、約900℃から約1000℃など、約950℃などである。プロセスチャンバ内の圧力は、約0.2Torrから約3Torr、約0.3Torrから約2Torrなど、約0.3Torrなど、約2Torrなどである。高周波電力は、約1kWから約10kW、約1kWから約5kWなど、約2kWなどである。処理時間は、約0.25分から約8分、約0.5分から約5分など、約0.5分など、約2分など、約4分など、約5分などの範囲内である。
[0083] 有益なことに、本開示のプラズマ処理装置及び方法を使用して実行されるシリコンの窒化は、約20オングストロームから約60オングストロームの厚さを有する窒化ケイ素の共形層を形成し得る。一実施例では、本明細書で説明される窒化ケイ素が、例えば、2.8μmの深さ、及び20:1から30:1のアスペクト比を有する、酸化物/ポリシリコン(OPOP)スタック内のポリシリコンの上部側壁と下部側壁上に、実質的に共形な窒素含有物を形成することを可能にする。
[0084] 別の一実施例では、本開示のプラズマ処理装置が、方法800に従ったタングステン(W)の窒化に使用されてよい。特定の複数の実施例では、窒化プロセスを受ける基板が、窒化タングステン(例えば、WN)の共形層を形成するために、窒素ラジカルで処理され得るタングステンの層を含む。タングステンの窒化中に、窒素ラジカルを生成するために、N2ソースガスがプラズマ処理源に導入される。N2の流量は、約500sccmから約1500sccm、約1000sccmなどである。他の複数の実施形態と組み合わされてよい幾つかの実施形態では、ソースガスが、不活性ガス(例えば、アルゴン(Ar))と混合される。他の窒素ソースガスが利用されてよいことも考慮される。
[0085] タングステンの窒化中に、プロセスチャンバ内の温度は、約800℃以下、約700℃以下など、約500℃から約700℃など、約500℃から約600℃など、約600℃から約700℃など、約650℃などである。本明細書で開示される装置及び/又は方法を使用すると、処理される膜の温度と窒素含有量とが逆相関する。例えば、約850℃以上の温度におけるプロセスチャンバの動作は、約5%以下にすぎない窒素含有量をもたらす。一方で、約780℃以下の温度は、約25%まで窒素含有量を5倍に増加させる。更に、約750℃の温度におけるプロセスチャンバの動作は、約25%と約30%との間の窒素含有量をもたらす。更に、約650℃まで温度を低減させると、窒素含有量は約30%と約35%と間まで更に増加する。温度を約550℃までまた更に低減させると、窒素含有量は約35%と約40%との間まで更に増加してよい。タングステンの窒化中に、プロセスチャンバ内の圧力は、約0.5Torrから約3Torr、約2Torrなどである。高周波電力は、約1kWから約10kW、約1kWから約5kWなど、約2kWなどである。処理時間は、約2分から約8分、約5分などの範囲内である。有益なことに、本開示のプラズマ処理装置及び方法を使用して実行されるタングステンの窒化は、約25オングストロームから約30オングストロームの厚さを有する窒化タングステンの共形層をもたらす。
[0086] 別の一実施例では、本開示のプラズマ処理装置が、方法800に従ったタングステン(W)の水素ラジカル処理に使用されてよい。このような一実施例では、水素ラジカル処理プロセスを受ける基板が、窒化チタン(例えば、TiN)の層上に配置されたタングステンのブランケット層を含む。このような一実施例では、タングステン層が、例えば、原子層堆積(ALD)によって形成されてよい。タングステンのブランケット層は、約600オングストロームから約650オングストロームの厚さを有するが、他の厚さも考慮されている。本明細書で開示される装置及び/又は方法を使用すると、水素ラジカルを用いたタングステンの処理は、界面のフッ素(F)含有量を低減させる。例えば、基板が窒化チタンの層上に配置されたタングステンを含むときに、水素ラジカル処理は、タングステンと窒化チタンの接触面における界面のフッ素(F)含有量を低減させる。タングステンの水素ラジカル処理中に、水素ラジカルを生成するために、二原子水素(H2)ソースガスがプラズマ処理源に導入される。H2の流量は、約100sccmから約1200sccm、約200sccmから約1000sccmなど、約100sccmから約500sccmなど、約200sccmなど、約500sccmから約1200sccmなど、約1000sccmなどである。ソースガスが不活性ガス(例えば、Ar)と混合されてよいことが考慮される。
[0087] タングステンの水素ラジカル処理中に、プロセスチャンバ内の温度は、約500℃から約1000℃、約500℃から約600℃など、約600℃から約700℃など、約650℃など、約700℃から約800℃など、約750℃など、約800℃から約900℃など、約850℃など、約900℃から約1000℃など、約950℃などである。処理中に、プロセスチャンバ内の温度を上げると、界面のフッ素含有量の減少が大きくなる。すなわち、温度と界面のフッ素含有量の減少とは正に相関し、又は言い換えると温度と界面のフッ素含有量とは逆相関する。例えば、約950℃以上の温度におけるプロセスチャンバの動作は、界面のフッ素含有量を20分の1までも減少させる。一方で、約650℃以下の温度は、界面のフッ素含有量を約1.4分1のまで減少させるにすぎない。約750℃の温度は、界面のフッ素含有量を約2.1分の1まで減少させる。約850℃の温度は、界面のフッ素含有量を約4.8分の1まで減少させる。
[0088] タングステンの水素ラジカル処理中に、プロセスチャンバ内の圧力は、約0.2Torrから約2Torr、約0.5Torrなどである。高周波電力は、約1kWから約10kW、約5kWから約8kWなど、約5kWなど、約8kWなどである。処理時間は、約2分から約8分、約5分などの範囲内である。
[0089] 有益なことに、本開示のプラズマ処理装置及び方法を使用して実行されるタングステンの水素ラジカル処理は、界面のフッ素含有量を約20分の1以下まで低減させる。本明細書で開示される装置及び方法を使用して可能な水素ラジカル密度の増加は、界面のフッ素含有量の更なる低減につながる。更に、温度を増加させることと、水素ラジカルの密度を増加させることとの効果は、界面のフッ素の低減に更なる影響を与える。熱H2アニールなどの従来のアプローチとは対照的であり、従来のアプローチは、界面のフッ素含有量を低減させない。本明細書で説明される複数の態様を使用すると、タングステンの水素ラジカル処理は、非処理膜と比較して、タングステン層のシート抵抗(Rs)の10%の低減につながる。
[0090] 別の一実施例では、本開示のプラズマ処理装置が、方法800に従った窒化チタン(例えば、TiN)の水素ラジカル処理に使用されてよい。本明細書で開示される装置及び/又は方法を使用すると、水素ラジカルを用いた窒化チタンの処理は、窒化チタン層内の不純物を低減させることによって、非処理膜と比較して、窒化チタン層のRsを約50%以上低減させる。窒化チタンの水素ラジカル処理中に、水素ラジカルを生成するために、H2ソースガスがプラズマ処理源に導入される。H2の流量は、約200sccmから約1200sccm、約200sccmから約500sccmなど、約350sccmなど、約350sccmから約1000sccmなど、約500sccmから約1200sccmなど、約1000sccmなどである。別の一実施例では、水素ラジカル処理が、二回動作プロセスであり、第1の動作でH2ソースガスを導入し、次いで、第1の動作の後にN2ソースガスを導入する。ソースガスが不活性ガス(例えば、Ar)と混合されてよいことが考慮される。H2ソースガスがArと混合されたときに、H2ソースガスの分画は、体積で約5%から約90%、体積で約50%などの範囲内である。
[0091] 窒化チタンの水素ラジカル処理中に、プロセスチャンバ内の温度は、約500℃から約1000℃、約500℃から約600℃など、約550℃など、約600℃から約700℃など、約650℃など、約700℃から約800℃など、約750℃など、約800℃から約900℃など、約850℃など、約900℃から約1000℃などである。処理中に、プロセスチャンバ内の温度を上げると、窒化チタン層のRsの減少が大きくなる。すなわち、温度と窒化チタン層のRsの減少とは正に相関し、又は言い換えると温度と窒化チタン層のRsとは逆相関する。例えば、約550℃の温度におけるプロセスチャンバの動作は、窒化チタン層のRsが、約30%と40%との間だけ減少し、約650℃の温度では、窒化チタン層のRsが、約40%と50%との間だけ減少し、約750℃の温度では、窒化チタン層のRsが、約50%と60%との間だけ減少し、約850℃の温度では、窒化チタン層のRsが、約60%と70%との間だけ減少する。窒化チタンの水素ラジカル処理中に、プロセスガス内の圧力は、約0.2Torrから約3Torr、約0.5Torrから約3Torrなど、約0.5Torrなど、約2Torrなどである。高周波電力は、約1kWから約5kW、約2kWなどである。処理時間は、約2分から約8分、約5分などの範囲内である。
[0092] 有益なことに、本開示のプラズマ処理装置及び方法を使用して実行される窒化チタンの水素ラジカル処理は、チタンと酸素の結合を選択的に低減させ、それによって、チタンと窒素の結合を実質的に一定に維持しながら、窒化チタンの層内の酸素含有量を低減させる。一方で、熱のみの処理は、チタンと酸素の結合を低減させることができない。本明細書で説明される複数の態様を使用すると、温度と酸素含有量とが逆相関する。更に、水素ラジカル処理は、熱のみの処理と同様に塩素含有量を低減させる。更に、水素ラジカル処理は、炭素含有量を低減させるが、一方、熱のみの処理は、炭素含有量を低減させることができない。全体として、水素ラジカル処理を介した塩素、酸素、又は炭素のうちの少なくとも一種の不純物含有量の低減は、熱のみの処理と比較して、窒化チタンの層のRsの低減につながる。本明細書で説明される複数の態様を使用すると、水素ラジカル処理が、熱のみの処理と比較して、窒化チタンの層のRsを約6%から約11%だけ低減させる。水素ラジカル処理は、グリッド(例えば、図1で示されている分離グリッド116)の使用の有無にかかわらず、実行されてよいことが考慮されている。特筆すべきは、水素ラジカル処理による改善は、熱のみの処理と比較して、グリッドを使用しない方がより顕著であることである。一般に、プロセスチャンバ内でのより高い温度の印加は、窒化チタンの層のRsを低減させる窒化チタンの粒径を増加させる。言い換えると、温度と粒径とは、各々、窒化チタンの層のRsと逆相関する。
[0093] 別の一実施例では、本開示のプラズマ処理装置が、方法800に従ったルテニウム(Ru)の水素ラジカル処理に使用されてよい。特定の複数の実施例では、処理プロセスを受ける基板が、化学気相堆積(CVD)によって形成されるルテニウムを含み得る。本明細書で開示される装置及び/又は方法を使用すると、水素ラジカルを用いたルテニウムの処理は、水素ラジカルを用いないH2アニールと比較して、間隙充填を改善し、ルテニウムの層のRsを低減させる。ルテニウムの水素ラジカル処理中に、水素ラジカルを生成するために、H2ソースガスがプラズマ処理源に導入される。H2の流量は、約100sccmから約2000sccmである。ソースガスが不活性ガス(例えば、Ar)と混合されてよいことが考慮される。H2ソースガスがArと混合されたときに、H2ソースガスの分画は、体積で約5%から約90%、体積で約50%などの範囲内である。
[0094] ルテニウムの水素ラジカル処理中に、プロセスチャンバ内の温度は、約400℃から約500℃、約450℃などである。プロセスチャンバ内の圧力は、約0.2Torrから約3Torrである。高周波電力は、約1kWから約10kWである。処理時間は、約0.5分から約10分、約1分から約5分など、約1分など、約5分などの範囲内である。処理中に、水素ラジカル密度が増加すると、ルテニウムの層のRsの減少がより大きくなる。例えば、10%のH2ソースガスを450℃で1分間導入すると、ルテニウムの層のRsが、非処理膜と比較して、約35%から約40%だけ減少する。一方、50%のH2ソースガスを450℃で5分間導入すると、これは、より低い水素ラジカル密度に相当し、ルテニウムの層のRsは、非処理膜と比較して、約30%しか減少しない。
[0095] 有益なことに、本開示のプラズマ処理装置及び方法を使用して実行される水素ラジカルを用いたルテニウムの処理は、水素ラジカルを用いないH2アニールと比較して、ルテニウムの層の間隙充填を改善する。更に、水素ラジカル処理は、H2アニールと比べて、ルテニウムの粒径を増加させ、ルテニウムの層内のシーム(seam)サイズを低減させる。本明細書で開示される装置及び/又は方法を使用すると、水素ラジカルを用いないH2アニールと比較して、ルテニウムの層のRsが低減される。更に、水素ラジカルで支援されたアニールは、水素ラジカルを用いないH2アニールと比較して、熱収支を低減させながら、リフローを改善し、抵抗を低減させる。
[0096] 別の一実施例では、本開示のプラズマ処理装置が、方法800に従った炭窒化タングステン(例えば、WCN)の水素ラジカル処理及び任意選択的な窒素ラジカル処理に使用されてよい。本明細書で開示される装置及び/又は方法を使用すると、水素ラジカルを用いた炭窒化タングステンの処理は、非処理膜と比較して、炭窒化タングステンの膜内の窒素含有量を増加させることなしに、炭素含有量を低減させる。本明細書で説明される複数の態様を使用すると、水素ラジカル及び窒素ラジカルを用いた炭窒化タングステンの処理は、非処理膜と比較して、炭窒化タングステンの膜内の炭素含有量を低減させ、窒素含有量を増加させる。炭窒化タングステンの水素ラジカル処理中に、水素ラジカルを生成するために、H2ソースガスがプラズマ処理源に導入される。H2の流量は、約100sccmから約2000sccmである。炭窒化タングステンの窒素ラジカル処理中に、窒素ラジカルを生成するために、N2ソースガスがプラズマ処理源に導入される。N2の流量は、約100sccmから約2000sccmである。ソースガスが不活性ガス(例えば、Ar)と混合されてよいことが考慮される。
[0097] 炭窒化タングステンの水素ラジカル処理及び/又は窒素ラジカル処理中に、プロセスチャンバ内の温度は、約500℃から約1000℃、約500℃から約600℃など、約550℃など、約600℃から約700℃など、約650℃など、約700℃から約800℃、約750℃など、約800℃から約900℃など、約900℃から約1000℃などである。プロセスチャンバ内の圧力は、約0.2Torrから約3Torrである。高周波電力は、約1kWから約10kWである。水素ラジカル処理中、処理時間は、約1分から約10分、約1分から約5分など、約3分などの範囲内である。水素ラジカル処理の後の任意選択的な窒素ラジカル処理中に、処理時間は、約10秒から約2分、約30秒から約1分など、約30秒など、約1分などの範囲内である。
[0098] 有益なことに、本開示のプラズマ処理装置及び方法を使用して実行される水素ラジカルを用いた炭窒化タングステンの処理は、非処理膜と比較して、窒素含有量を略同じに維持しながら、炭窒化タングステンの膜内の炭素含有量を約3分の1から約6分の1まで低減させる。本明細書で開示される装置及び/又は方法を使用すると、窒素ラジカルを用いた炭窒化タングステンの更なる処理は、非処理膜と比較して、炭窒化タングステンの膜内の窒素含有量を約2倍から約3倍に増加させる。したがって、炭窒化タングステンの処理の各々は、非処理膜と比較して、膜の品質を向上させる。
[0099] 別の一実施例では、本開示のプラズマ処理装置が、方法800に従った窒化チタン(例えば、TiN)のシーム除去に使用されてよい。特定の複数の実施例では、処理プロセスを受ける基板が、ALDによって形成された窒化チタンの層を含み得る。シーム除去のためのソースガスは、O2、H2、N2、又はそれらの混合物を含んでよいことが考慮されている。O2ソースガスを導入すると、H2又はN2ソースガスのいずれか単独よりもシーム除去率が向上する。本明細書で開示される装置及び/又は方法を使用すると、窒素ラジカルの前の水素ラジカルの前の酸素ラジカルを用いた一連の処理を含む3つの動作を有するプロセスが、窒化チタンの層内の窒素に対するチタンの元々の化学量論比を実質的に回復させるために更なる窒素を取り込むことも行いながら、酸素ラジカル処理単独と同様にシーム除去率も向上させる。本明細書で開示される装置及び/又は方法を使用すると、酸素ラジカル処理が、窒化チタンの層を酸化し、体積膨張及びフィーチャの間の間隙充填をもたらす。これは、シームを除去する。酸素ラジカル処理後に、水素ラジカル処理は、チタン格子の構造を維持しながら、窒化チタンの層の酸素含有量を低減させる。水素ラジカル処理後に、窒素ラジカル処理は、チタン格子内の酸素空孔を窒素で置換する。これは、シームなしに窒化チタンの層を回復させる。
[00100] 別の一実施例では、本開示のプラズマ処理装置が、方法800に従ったタングステンの選択的な酸化に使用されてよい。タングステンの選択的な酸化は、隣接するタングステンの層を酸化することなしに、シリコンの層を酸化することを含む。タングステンの選択的な酸化中に、酸素ラジカルを生成するために、O2ソースガスがプラズマ処理源に導入される。タングステンの酸化を最小化するために、過剰なH2をプラズマに加えて、大量の水素ラジカルを生成する。タングステンの選択的な酸化中に、ソースガス内のH2の濃度は、H2とO2の総流量の約65%から約95%である。O2に対するH2の比は、選択性を制御するように動作可能である。例えば、H2の濃度が約65%未満では、酸化プロセスの選択性が制限される。一方で、H2の濃度が約95%を超えると、シリコンの酸化が低減される。トップダウンプラズマ源を利用する本明細書で開示される装置及び/又は方法は、基板の中心から縁部まで均一な濃度の水素ラジカルを提供する。これにより、サイドインジェクトプラズマ源と比較して、タングステンの選択的な酸化が改善される。サイドインジェクトプラズマ源では、水素ラジカルの濃度が、基板の中心に向かって減少する。H2の流量は、約400scmmから約8000scmmであり、O2の流量は、約100scmmから約3000scmmである。ソースガスが不活性ガス(例えば、Ar)と混合されてよいことが考慮される。
[00101] タングステンの選択的な酸化中に、プロセスチャンバ内の温度は、約600℃から約1000℃、約700℃から約900℃など、約800℃などである。プロセスチャンバ内の圧力は、約1Torrから約3Torrである。高周波電力は、約3kWから約5kW、約4kWなどである。酸化のための処理時間は、約1分から約4分の範囲内である。
[00102] 有益なことに、本開示のプラズマ処理装置及び方法を用いて行われるタングステンの選択的な酸化は、酸素含有量を約40原子%以下に低減しながら、約3オングストローム/√(秒)以上の酸化ケイ素(例えば、SiO2)の成長速度を実現する。
[00103] 別の一実施例では、本開示のプラズマ処理装置が、方法800に従ったシリコンの酸化に使用されてよい。特定の複数の実施例では、酸化プロセスを受ける基板が、酸化ケイ素の共形層を形成するために、酸素ラジカルを用いて処理されたシリコンの層を含み得る。特定の複数の実施例では、基板が、例えば、8μmの深さ、125nmの上部限界寸法、及び約80:1のアスペクト比を有する、酸化物/窒化物の交互層を有する層スタック内に、ALDによって堆積された窒化ケイ素(例えば、SiN)を含む3次元NAND構造を有し得る。処理中に、酸素ラジカルと水素ラジカルをそれぞれ生成するために、O2とH2のソースガスの混合物がプラズマ処理源に導入される。O2の流量は、約500sccmから約1000sccm、約750sccmなどである。H2の流量は、約400sccmから約1000sccm、約400sccmから約600sccmなど、約500sccmなど、約600sccmから約900sccmなど、約750sccmなどである。ソースガスが不活性ガス(例えば、Ar)と混合されてよいことが考慮される。O2とH2のソースガスの混合物がArと混合されたときに、O2に対するH2の分画は、体積で約5%から約50%、体積で約33%から約50%などの範囲内である。
[00104] シリコンの酸化中に、プロセスチャンバ内の温度は、約600℃から約1000℃、約700℃から約900℃など、約800℃などである。プロセスチャンバ内の圧力は、約1Torrから約3Torr、約2Torrなどである。高周波電力は、約1kWから約10kWである。酸化のための処理時間は、約1分から約10分の範囲内である。
[00105]有益なことに、本開示のプラズマ処理装置及び方法を使用して実行されるシリコンの酸化は、約5オングストローム/√(秒)以上、約5オングストローム/√(秒)から約6オングストローム/√(秒)などの酸化ケイ素(例えば、SiO2)の成長速度を実現することができ、酸化ケイ素の共形性は、約95%から約100%、約99%などである。本明細書で開示される装置及び/又は方法を使用すると、酸化ケイ素の共形性は、従来の遠隔プラズマ酸化(RPO)プロセスを使用して実現される酸化ケイ素の共形性よりも大きい。本明細書で説明される複数の態様を使用すると、酸化ケイ素の共形性は、H2ソースガスの濃度に依存する。特に、H2ソースガスの分画が大きいほど、酸化ケイ素の共形性が大きくなる。一実施例では、50%のH2を有するソースガスを導入した結果、約98%の酸化ケイ素の共形性が得られたが、一方で、33%のH2を有するソースガスを導入した結果、約70%の酸化ケイ素の共形性が得られ、5%のH2を有するソースガスを導入した結果、約61%の酸化ケイ素の共形性しか得られなかった。本明細書で説明される複数の態様を使用すると、酸化ケイ素の共形性は、ソースガス内のH2のより高い濃度において層の厚さから独立している。例えば、約5%のH2を有するソースガスでは、酸化ケイ素の共形性は層の厚さに依存するが、一方で、約50%のH2のようなより高いH2の分画では、酸化ケイ素の共形性は層の厚さから実質的に独立している。
[00106] 別の一実施例では、本開示のプラズマ処理装置が、方法800に従った酸化ケイ素(例えば、SiOx)の酸素ラジカル処理及び任意選択的な水素ラジカル処理に使用されてよい。特定の複数の実施例では、処理プロセスを受ける基板が、流動性CVD (FCVD)によって形成された酸化ケイ素の層を含み得る。酸素ラジカル及び/又は水素ラジカルをそれぞれ生成するために、O2ソースガス、H2ソースガス、又はそれらの混合ガスが、プラズマ処理源に導入される。O2の流量は、約500sccmから約3000sccmである。H2の流量は、約25sccmから約200sccmである。ソースガスが不活性ガス(例えば、Ar)と混合されてよいことが考慮される。
[00107] 酸化ケイ素の酸素ラジカル及び/又は水素ラジカル処理中に、プロセスチャンバ内の温度は、約400℃から約600℃、約500℃などである。プロセスチャンバ内の圧力は、約0.5Torrから約3Torrである。高周波電力は、約1kWから約10kWである。処理時間は、約1分から約10分、約1分から約5分など、約1分など、約5分などの範囲内である。
[00108] 有益なことに、本開示のプラズマ処理装置及び方法を使用して実行される酸化ケイ素の酸素ラジカル処理及び水素ラジカル処理は、FTIRによれば、非処理膜と比較して、酸素と水素の結合、シリコンと水素の結合、及び/又は窒素と水素の結合を低減させる。一実施例では、、酸素ラジカル処理及び水素ラジカル処理の処理時間を5分に延長すると、処理時間を1分にした場合と比較して、湿式エッチング反応速度(WERR)が低下し得る。本明細書で開示される装置及び/又は方法を使用すると、酸化ケイ素膜のWERRは、アニールのみのプロセスで処理された酸化ケイ素膜よりも低くなる。
[00109] 別の一実施例では、本開示のプラズマ処理装置が、方法800に従った酸化ケイ素(例えばSiO2)のヘリウムラジカル処理に使用されてよい。特定の複数の実施例では、処理プロセスを経験する基板が、ALDによって形成された酸化ケイ素の層(例えば、高温酸化物(HTO)の層)を含み得る。ヘリウムラジカル処理は、全ての種類のALD膜に使用されてよいと考えられる。ヘリウムラジカル処理中に、ヘリウムラジカルを生成するために、ヘリウム(He)ソースガスがプラズマ処理源に導入される。Heの流量は、約100sccmから約2000sccmである。ソースガスが不活性ガス(例えば、Ar)と混合されてよいことが考慮される。
[00110] 酸化ケイ素のヘリウムラジカル処理中に、プロセスチャンバ内の温度は、約500℃から約1000℃、約700℃から約800℃など、約700℃など、約800℃などである。プロセスチャンバ内の圧力は、約0.2Torrから約4Torr、約0.5Torrから約2Torrなど、約0.5Torrなど、約2Torrなどである。高周波電力は、約1kWから約10kW、約5kWから約10kWなど、約8kWなどである。処理時間は、約0.25分から約5分、約0.5分から約3分など、約0.5分など、約3分などの範囲内である。
[00111] 有益なことに、本開示のプラズマ処理装置及び方法を用いて行われる酸化ケイ素のヘリウムラジカル処理は、非処理膜と比較して、酸化ケイ素層の膜の品質を向上させ、そのリークを低減させる。本明細書で開示される装置及び/又は方法を使用すると、膜の品質は、非処理膜と比較して、約50%から約60%だけ改善される。膜の品質とは、エッチングされて、処理膜のWERRの低減をもたらす膜の分を指す。更に、酸化ケイ素の層の湿式エッチング後の側壁の共形性が、より低い圧力において(すなわち、2Torrと比較して0.5Torrにおいて)より大きく改善される。
[00112] 別の一実施例では、本開示のプラズマ処理装置が、方法800に従ったホウ素に富んだアモルファスカーボン層の水素ラジカル処理に使用されてよい。特定の複数の実施例では、処理プロセスを受ける基板が、ホウ素がドープされた炭素ベースのハードマスク層を含み得る。一実施例では、ホウ素がドープされた炭素ベースのハードマスク層が、CVDによって堆積され、水素プラズマ処理がCVD後に実行される。ハードマスク層は、約0.2μmの厚さを有してよい。水素ラジカル処理中に、水素ラジカルを生成するために、H2ソースガスがプラズマ処理源に導入される。H2の流量は、約100sccmから約2000sccmである。ソースガスが不活性ガス(例えば、Ar)と混合されてよいことが考慮される。
[00113] 水素ラジカル処理中に、プロセスチャンバ内の温度は、約400℃から約1000℃、約500℃から約700℃など、約500℃など、約700℃などである。プロセスチャンバ内の圧力は、約0.5Torrから約3Torrである。高周波電力は、約1kWから約10kWである。処理時間は、約3分から約5分、約4分などの範囲内である。
[00114] 有益なことに、本開示のプラズマ処理装置及び方法を使用して実行されるホウ素に富んだアモルファスカーボン膜の水素ラジカル処理は、膜の水素含有量を低減させ、それによって、非処理膜と比較して、ヤング率及び密度を増加させる。一般に、水素ラジカル処理によって、非処理の膜と比較して、膜の安定性を向上させる全体的に応力の低い高密度の膜が得られる。
[00115] 別の一実施例では、本開示のプラズマ処理装置が、方法800に従った、H2、NH3、N2、O2、又はArのうちの少なくとも一種を含むソースガスを使用する、様々なALD前処理及び後処理に使用されてよい。
[00116] 一実施例では、本開示のプラズマ処理装置が、方法800に従った窒化ケイ素(例えば、SiN)膜の処理に使用されてよい。水素ラジカル処理中に、水素ラジカルを生成するために、H2ソースガスがプラズマ処理源に導入される。H2の流量は、約500sccmから約1500sccm、約1000sccmなどである。ソースガス中のH2の分画は、体積で約50%である。水素ラジカルと窒素ラジカルとの複合処理中に、水素ラジカルを用いた処理後に、窒素ラジカルを生成するために、N2がプラズマ処理源に任意選択的に追加される。N2の流量は、約200sccmから約400sccm、約300sccmなどである。ソースガス中のH2の分画は、体積で約10%である。他の窒素ソースガスが利用されてよいことも考慮される。例えば、NHラジカルを生成するために、NH3がプラズマ処理源に導入されてよい。NH3の流量は、約200sccmから約400sccm、約300sccmなどである。ソースガス中のNH3の分画は、体積で約10%である。ソースガスが不活性ガス(例えば、Ar)と混合されてよいことが考慮される。
[00117] 酸化ケイ素の水素ラジカル処理、窒素ラジカル処理、及び/又はNHラジカル処理中に、プロセスチャンバ内の温度は、約800℃から約1200℃、約900℃から約1000℃など、約950℃などである。プロセスチャンバ内の圧力は、約0.25Torrから約2Torr、約0.5Torrから約1Torrなど、約0.5Torrなど、約1Torrなどである。高周波電力は、約5kWから約10kW、約8kWなどである。処理時間は、約1分から約10分、約1分から約3分など、約2.5分など、約3分から約4分など、約3.3分など、約4分から約6分など、約5分などの範囲内である。
[00118] 有益なことに、本開示のプラズマ処理装置及び方法を使用して実行される窒化ケイ素の膜の処理は、非処理膜と比較して、酸素、水素、又は塩素のうちの少なくとも一種の不純物含有量を低減させる。本明細書で開示される装置及び/又は方法を使用すると、窒化ケイ素の膜の水素ラジカル処理、窒素ラジカル処理、及び/又はNHラジカル処理が、急速熱処理(RTP)アニールを使用して処理された窒化ケイ素の膜のWERRと比較して、WERRを低減させる。本明細書で説明される複数の態様を使用すると、窒化ケイ素の処理の効果が、膜の上面(例えば、表面の20オングストローム以内)で最も顕著である。特筆すべきことは、H2とN2のソースガスをそれぞれ使用して生成された水素ラジカルと窒素ラジカルを用いた複合処理は、H2又はNH3のソースガスをそれぞれ使用して生成された水素ラジカル又はNHラジカルのいずれかを用いた単独の処理と比較して、窒化ケイ素の膜からの水素の除去を改善することである。更に、H2とN2のソースガスをそれぞれ使用して生成された水素ラジカルと窒素ラジカルを用いた複合処理は、N2又はNH3のソースガスをそれぞれ使用して生成された窒素ラジカル又はNHラジカルのいずれかを用いた単独の処理と比較して、窒化ケイ素の膜からの塩素の除去を改善する。
[00119] 別の一実施例では、本開示のプラズマ処理装置が、方法800に従った窒化ケイ素(例えば、SiN)のシーム除去に使用されてよい。特定の複数の実施例では、処理プロセスを受ける基板が、ALDによって形成された窒化ケイ素の層を含み得る。ソースガスは、O2、H2、N2、又はそれらの混合物を含んでよいことが考慮されている。一実施例では、処理が、O2ソースガスを含む1つの動作のみを含む。別の一実施例では、処理が、H2ソースガスの前のO2ソースガスを含む2つの動作を含む。更に別の一実施例では、処理が、N2ソースガスの前のH2ソースガスの前のO2ソースガスを含む3つの動作を含む。酸素ラジカルを生成するために、O2ソースガスがプラズマ処理源に導入される。O2の流量は、約2500sccmから約3500sccm、約3000sccmなどである。酸素ラジカルを用いて処理した後に、水素ラジカルを生成するために、H2ソースガスがプラズマ処理源に任意選択的に導入される。H2の流量は、約200sccmから約500sccm、約300sccmから約350sccmなど、約300sccmなど、約350sccmなどである。酸素ラジカルと水素ラジカルを用いて処理した後に、窒素ラジカルを生成するために、N2ソースガスがプラズマ処理源に任意選択的に追加される。N2の流量は、約200sccmから約400sccm、約300sccmなどである。ソースガスが不活性ガス(例えば、Ar)と混合されてよいことが考慮される。
[00120] 窒化ケイ素の酸素ラジカル処理、水素ラジカル処理、及び/又は窒素ラジカル処理中に、プロセスチャンバ内の温度は、約500℃から約1000℃、約600℃から約700℃など、約650℃など、約700℃から約800℃など、約750℃などである。プロセスチャンバ内の圧力は、約0.5Torrから約5Torr、約1Torrから約3Torrなど、約1Torrなど、約3Torrなどである。高周波電力は、約5kWから約10kW、約8kWなどである。処理時間は、約1分から約10分、約1分から約3分など、約2.5分など、約3分から約6分など、約5分などの範囲内である。
[00121] 有益なことに、窒素ラジカルの前の水素ラジカルの前の酸素ラジカルを使用する一連の処理は、窒化ケイ素の層内の窒素に対するシリコンの元々の化学量論比を実質的に回復させるために更なる窒素を取り込むことも行いながら、酸素ラジカル処理単独と同様にシーム除去率も向上させる。本明細書で開示される装置及び/又は方法を使用すると、酸素ラジカル処理が、窒化ケイ素を酸化し、体積膨張及びフィーチャの間の間隙充填をもたらす。これは、シームを除去する。酸素ラジカル処理後に、水素ラジカル処理は、シリコン格子の構造を維持しながら、窒化ケイ素の層の酸素含有量を低減させる。水素ラジカル処理後に、窒素ラジカル処理は、シリコン格子内の酸素を窒素で置換する。これは、シームなしに窒化ケイ素の層を回復させる。
[00122] 別の一実施例では、本開示のプラズマ処理装置が、方法800に従った、PH3、BF3、AsH3、又はGaのうちの少なくとも一種を含むソースガスを使用する、様々な気相ドーピング処理に使用されてよい。
[00123] 別の一実施例では、本開示のプラズマ処理装置が、方法800に従った酸化ハフニウム(例えばHfO2)などの高誘電率(high-k)誘電材料の窒化に使用されてよい。特定の複数の実施例では、処理プロセスを受ける基板が、シリコン基板、シリコン基板の上の界面層(例えば、酸化ケイ素を含む)、及び界面層の上の酸化ハフニウムの層を含む。高誘電率窒化中に、窒素ラジカルとNHラジカルを生成するために、N2とNH3の混合物がプラズマ処理源に導入される。N2の流量は、約30sccmから約180sccm、約50sccmから約150sccmなど、約50sccmから約100sccmなど、約50sccmなど、約100sccmから約150sccmなど、約100sccmなど、約120sccmなどである。NH3の流量は、約10sccmから約50sccm、約10sccmから約20sccmなど、約15sccmなどである。ソースガスが不活性ガス(例えば、Ar)と混合されてよいことが考慮される。Arの流量は、約2500sccmから約3500sccm、約3000sccmなどである。
[00124] 酸化ハフニウムの窒化中に、プロセスチャンバ内の温度は、約400℃未満、約150℃から約400℃など、約200℃から約300℃など、約300℃から約400℃など、約300℃など、約325℃などである。温度は、酸化ハフニウムの窒化中に上昇してもよい。例えば、温度は、約200℃未満から約300℃の上まで上昇してよい。上昇時間は、約60秒から約120秒、約90秒などであってよい。プロセスチャンバ内の圧力は、約0.5Torrから約2Torr、約0.75Torrなどである。高周波電力は、約5kWから約10kW、約8kWなどである。処理時間は、約20秒から約5分、約20秒から約2分など、約25秒など、約90秒など、約2分から約4分など、約2.5分など、約4分などの範囲内である。本明細書で開示される装置及び/又は方法を使用する酸化ハフニウムの窒化に関連付けられる短縮された処理時間は、従来のICPチャンバ内でのNH3とArガスの混合物を使用する窒化と比較して、スループットを向上させる。
[00125] 有益なことに、N2とNH3の混合物を用いた酸化ハフニウムの窒化は、従来のICPチャンバ内でのNH3とArガスの混合物を使用する窒化と比較して、界面層の薄化を実質的に防止する。NH3ソースガスへのN2ソースガスの追加は、NHラジカルを生成するために水素ラジカルと結合させることによって、水素ラジカルの濃度を低減させる。この水素ラジカルの減少により、水素ラジカルによる界面層への攻撃が減少し、それによって、界面層の薄化を防止する。更に、N2とNH3の混合物を使用することによって、N2単独と比較して、界面層の薄化が実質的に防止される。N2とNH3の混合物にArを追加すると、Arを追加しないN2とNH3と比較して、窒化速度が増加する。
[00126] 一般に、N2とNH3の混合物を用いる本明細書で開示される装置及び/又は方法を使用すると、温度の低減が界面層の薄化を更に抑制する。例えば、約400℃未満の温度は、より高い温度と比較して、界面層の薄化を抑制する。一般に、N2とNH3の混合物を用いる本明細書で開示される装置及び/又は方法を使用すると、処理時間の増加が、酸化ハフニウムの層内の窒素含有量を増加させる。例えば、処理時間を約2分から約3分の範囲内にすると、窒素含有量が約5%未満から約15%から約20%まで増加し、窒化前の厚さと略等しい界面層の厚さを維持する。しかし、処理時間を約4分よりも上にすると、相対的により短い処理時間と比較して、界面層の肥厚につながる。したがって、処理時間を約4分未満に制限することが望ましいだろう。一般に、N2とNH3の混合物を用いる本明細書で開示される装置及び/又は方法を使用すると、圧力の低減が、酸化ハフニウムの層内の窒素含有量を増加させ、界面層の薄化を更に抑制する。例えば、約1Torr未満の圧力は、界面層の厚さを窒化前の厚さと略等しく維持しながら、窒素含有量を約10%より上に増加させる。一般に、N2とNH3の混合物を用いる本明細書で開示される装置及び/又は方法を使用すると、ハフニウムと窒素の結合を増加させ、窒素と酸素の準安定結合の形成を実質的に防止する。本明細書で開示される装置及び/又は方法を使用すると、従来のICPチャンバを使用した場合と比較して、NHラジカルの濃度が増加することに起因して、共形性及び均一なパターンローディングが改善される。
[00127] 本明細書で使用されるときに、「内側」及び「外側」、「上」及び「下」、「上側」および「下側」、「上部」及び「下部」、「垂直」及び「水平」、「上向き」及び「下向き」、「上方」及び「下方」、並びに他の同様な用語は、互いに対する相対的に位置を指し、全体的なソース/装置の特定の方向又は空間的な配向を示すことを意図してない。本明細書で使用されるときに、「略」又は「約」という用語は、基準値の少なくとも±5%以内であることを指す。
[00128] 上記は本開示の複数の実施形態を対象とするが、本開示の基本的な範囲から逸脱することなく、本開示の他の実施形態及び更なる実施形態を考案してもよい。

Claims (23)

  1. プラズマ処理方法であって、
    プロセスガスをガス注入インサートとプラズマ源の側壁との間で画定されたガス注入チャネルの中に導入すること、
    前記側壁に近接して配置され、前記ガス注入チャネルに水平に重なる誘導コイルを用いて、前記ガス注入チャネル内で誘導結合プラズマを生成することであって、前記プラズマは、酸素、窒素、水素、NH、及びヘリウムから選択される少なくとも一種のラジカル種を含む、誘導結合プラズマを生成すること、
    前記プラズマを前記プラズマ源から前記プラズマ源に結合されたプロセスチャンバに供給することであって、前記プラズマは、前記プラズマ源と処理される基板との間に配置された分離グリッドを貫通して流れる、プロセスチャンバに供給すること、並びに
    前記プロセスチャンバ内で前記基板を処理することを含み、前記基板を処理することは、
    前記少なくとも一種のラジカル種を含む前記プラズマを前記分離グリッドに面する前記基板の第1の側に接触させること、及び
    前記分離グリッドとは反対の前記基板の第2の側に位置付けられた複数のランプを使用して前記基板を加熱することを含む、方法。
  2. 前記基板は炭窒化タングステンの層を含み、前記プロセスガスは水素ガスを含み、前記プラズマは水素ラジカルを含み、加熱中に前記水素ラジカルを前記炭窒化タングステンの層に接触させることが、前記炭窒化タングステンの層内の窒素含有量を低減させることなしに、前記炭窒化タングステンの層内の炭素含有量を約3分の1から約6分の1まで低減させる、請求項1に記載の方法。
  3. 前記基板を前記プラズマを用いて処理した後に、前記方法は、
    窒素ガスを前記プラズマ源の前記ガス注入チャネルの中に導入すること、
    前記ガス注入チャネル内で窒素プラズマを生成することであって、前記窒素プラズマは窒素ラジカルを含む、窒素プラズマを生成すること、
    前記窒素プラズマを前記プラズマ源から前記プロセスチャンバに供給すること、並びに
    前記プロセスチャンバ内で前記基板を前記窒素プラズマを用いて処理することを更に含み、前記基板を処理することは、
    前記窒素ラジカルを含む前記窒素プラズマを前記分離グリッドに面する前記基板の前記第1の側に接触させること、及び
    前記分離グリッドとは反対の前記基板の前記第2の側に位置付けられた前記複数のランプを使用して前記基板を加熱することを含み、加熱中に前記窒素ラジカルを前記炭窒化タングステンの層に接触させることが、前記炭窒化タングステンの層内の窒素含有量を約2倍から約3倍に増加させる、請求項2に記載の方法。
  4. 前記基板は、シームと窒素に対するチタンの出発化学量論比とを有する窒化チタンの層を含み、前記方法は、3つの一連の動作を含み、前記動作は、
    前記プロセスガスが酸素ガスを含み、前記プラズマが酸素ラジカルを含み、加熱中に前記酸素ラジカルを前記窒化チタンの層に接触させることが、前記窒化チタンの層を酸化し、前記窒化チタンの層の体積膨張をもたらす、第1の動作、
    前記プロセスガスが水素ガスを含み、前記プラズマが水素ラジカルを含み、加熱中に前記水素ラジカルを前記窒化チタンの層に接触させることが、前記窒化チタンの層の酸素含有量を低減させ、それによって、前記シームを除去し、窒素に対するチタンの前記化学量論比を変化させる、第2の動作、及び
    前記プロセスガスが窒素ガスを含み、前記プラズマが窒素ラジカルを含み、加熱中に前記窒素ラジカルを前記窒化チタンの層に接触させることが、前記窒化チタンの層の窒素含有量を増加させ、それによって、前記シームなしに前記窒化チタンの層の窒素に対するチタンの前記出発化学量論比を実質的に回復させる、第3の動作を含む、請求項1に記載の方法。
  5. 前記基板はタングステンの層を含み、前記プロセスガスは酸素ガスを含み、前記プラズマは酸素ラジカルを含み、加熱中に前記酸素ラジカルを前記タングステンの層に接触させることが、酸化ケイ素の成長速度を約3オングストローム/√(秒)以上に増加させ、酸素含有量を約40原子パーセント以下に低減させる、請求項1に記載の方法。
  6. 前記基板はシリコンの層を含み、前記プロセスガスは酸素ガスを含み、前記プラズマは酸素ラジカルを含み、加熱中に前記酸素ラジカルを前記シリコンの層に接触させることが、酸化ケイ素の成長速度を約5オングストローム/√(秒)以上に増加させ、酸化ケイ素の共形性は約95%から約100%である、請求項1に記載の方法。
  7. 前記基板は酸化ケイ素の層を含み、前記プロセスガスは酸素ガスと水素ガスの混合物を含み、前記プラズマは酸素ラジカルと水素ラジカルを含み、加熱中に前記酸素ラジカルと前記水素ラジカルを前記酸化ケイ素の層に接触させることが、処理前の前記酸化ケイ素の層と比較して、前記酸化ケイ素の層内の酸素と水素の結合、シリコンと水素の結合、及び窒素と水素の結合を低減させる、請求項1に記載の方法。
  8. 前記基板は酸化ケイ素の層を含み、前記プロセスガスはヘリウムガスを含み、前記プラズマはヘリウムラジカルを含み、加熱中に前記ヘリウムラジカルを前記酸化ケイ素の層に接触させることが、処理前の前記酸化ケイ素の層と比較して、前記酸化ケイ素の層の膜の品質を改善する、請求項1に記載の方法。
  9. 前記基板を処理することは、化学気相堆積後処理を含む、請求項1に記載の方法。
  10. 前記基板を処理することは、原子層堆積前処理又は後処理を含む、請求項1に記載の方法。
  11. 前記基板は窒化ケイ素の層を含み、前記プロセスガスは水素ガス、窒素ガス、又はアンモニアのうちの少なくとも一種を含み、前記プラズマは水素ラジカル、窒素ラジカル、又はNHラジカルのうちの少なくとも一種を含み、加熱中に前記水素ラジカル、前記窒素ラジカル、又は前記NHラジカルを前記窒化ケイ素の層に接触させることが、急速熱処理アニールと同様に、前記窒化ケイ素の層内の酸素、水素、及び塩素の不純物含有量を低減させる、請求項1に記載の方法。
  12. 前記基板は、シームと窒素に対するシリコンの出発化学量論比とを有する窒化ケイ素の層を含み、前記方法は、3つの一連の動作を含み、前記動作は、
    前記プロセスガスが酸素ガスを含み、前記プラズマが酸素ラジカルを含み、加熱中に前記酸素ラジカルを前記窒化ケイ素の層に接触させることが、前記窒化ケイ素の層を酸化し、前記窒化ケイ素の層の体積膨張をもたらし、それによって、前記シームを除去し、窒素に対するシリコンの前記化学量論比を変化させる、第1の動作、
    前記プロセスガスが水素ガスを含み、前記プラズマが水素ラジカルを含み、加熱中に前記水素ラジカルを前記窒化ケイ素の層に接触させることが、前記窒化ケイ素の層の酸素含有量を低減させる、第2の動作、及び
    前記プロセスガスが窒素ガスを含み、前記プラズマが窒素ラジカルを含み、加熱中に前記窒素ラジカルを前記窒化ケイ素の層に接触させることが、前記窒化ケイ素の層の窒素含有量を増加させ、それによって、前記シームなしに前記窒化ケイ素の層の窒素に対するシリコンの前記出発化学量論比を実質的に回復させる、第3の動作を含む、請求項1に記載の方法。
  13. 前記プロセスガスは、PH3、BF3、AsH3、又はGaのうちの少なくとも一種を含み、前記基板を処理することは、気相ドーピングを含む、請求項1に記載の方法。
  14. プラズマ処理方法であって、
    プロセスガスをガス注入インサートとプラズマ源の側壁との間で画定されたガス注入チャネルの中に導入すること、
    前記側壁に近接して配置され、前記ガス注入チャネルに水平に重なる誘導コイルを用いて、前記ガス注入チャネル内でプラズマを生成することであって、前記プラズマは、窒素ラジカル又はNHラジカルのうちの少なくとも一種を含む、プラズマを生成すること、
    前記プラズマを前記プラズマ源から前記プラズマ源に結合されたプロセスチャンバに供給することであって、前記プラズマは、前記プラズマ源と処理される基板との間に配置された分離グリッドを貫通して流れる、プロセスチャンバに供給すること、並びに
    前記プロセスチャンバ内で前記基板を処理することを含み、前記基板を処理することは、
    前記プラズマを前記分離グリッドに面する前記基板の第1の側に接触させること、及び
    前記分離グリッドとは反対の前記基板の第2の側に位置付けられた複数のランプを使用して前記基板を加熱することを含む、方法。
  15. 前記基板は酸化ケイ素の層を含み、前記プロセスガスは窒素ガス、アンモニア、又はそれらの混合物のうちの少なくとも一種を含み、加熱中に前記窒素ラジカル又は前記NHラジカルを前記酸化ケイ素の層に接触させることが、略同じレベルの窒素共形性において、前記酸化ケイ素の層の窒素含有量を増加させる、請求項14に記載の方法。
  16. 前記基板はシリコンの層を含み、前記プロセスガスは窒素ガスを含み、加熱中に前記窒素ラジカルを前記シリコンの層に接触させることが、窒化ケイ素の共形層を形成する、請求項14に記載の方法。
  17. 前記基板はタングステンの層を含み、前記プロセスガスは窒素ガスを含み、加熱中に前記窒素ラジカルを前記タングステンの層に接触させることが、窒化タングステンの共形層を形成する、請求項14に記載の方法。
  18. 前記基板は、界面層の上に配置された高誘電率誘電体の層を含み、前記プロセスガスは窒素ガス、アンモニア、及びアルゴンを含み、加熱中に前記NHラジカルを前記高誘電率誘電体の層に接触させることが、前記界面層の実質的な薄化なしに、前記高誘電率誘電体の層の窒素含有量を増加させる、請求項14に記載の方法。
  19. プラズマ処理方法であって、
    プロセスガスをガス注入インサートとプラズマ源の側壁との間で画定されたガス注入チャネルの中に導入すること、
    前記側壁に近接して配置され、前記ガス注入チャネルに水平に重なる誘導コイルを用いて、前記ガス注入チャネル内で水素プラズマを生成することであって、前記水素プラズマは、水素ラジカルを含む、水素プラズマを生成すること、
    前記水素プラズマを前記プラズマ源から前記プラズマ源に結合されたプロセスチャンバに供給することであって、前記水素プラズマは、前記プラズマ源と処理される基板との間に配置された分離グリッドを貫通して流れる、プロセスチャンバに供給すること、並びに
    前記プロセスチャンバ内で前記基板を処理することを含み、前記基板を処理することは、
    前記水素ラジカルを含む前記水素プラズマを前記分離グリッドに面する前記基板の第1の側に接触させること、及び
    前記分離グリッドとは反対の前記基板の第2の側に位置付けられた複数のランプを使用して前記基板を加熱することを含む、方法。
  20. 前記基板はタングステンの層を含み、前記プロセスガスは水素ガスを含み、加熱中に前記水素ラジカルを前記タングステンの層に接触させることが、前記タングステンの層の界面フッ素含有量を約2分の1から約20分の1まで低減させる、請求項19に記載の方法。
  21. 前記基板は窒化チタンの層を含み、前記プロセスガスは水素ガスを含み、加熱中に前記水素ラジカルを前記窒化チタンの層に接触させることが、熱のみの処理よりも、前記窒化チタンの層内の酸素、塩素、及び炭素の不純物含有量を低減させる、請求項19に記載の方法。
  22. 前記基板はルテニウムの層を含み、前記プロセスガスは水素ガスを含み、加熱中に前記水素ラジカルを前記ルテニウムの層に接触させることが、水素ラジカルなしの水素アニールと比べて、ルテニウムの間隙充填を改善する、請求項19に記載の方法。
  23. 前記基板はホウ素でドープされた炭素の層を含み、前記プロセスガスは水素ガスを含み、加熱中に前記水素ラジカルを前記ホウ素でドープされた炭素の層に接触させることが、前記ホウ素でドープされた炭素の層の水素含有量を低減させ、それによって、前記ホウ素でドープされた炭素の層のヤング率及び密度を増加させる、請求項19に記載の方法。
JP2023542672A 2021-01-14 2021-12-30 独立した温度制御を用いたプラズマ処理 Pending JP2024504618A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US17/149,232 2021-01-14
US17/149,232 US11854770B2 (en) 2021-01-14 2021-01-14 Plasma processing with independent temperature control
PCT/US2021/065598 WO2022154968A1 (en) 2021-01-14 2021-12-30 Plasma processing with independent temperature control

Publications (1)

Publication Number Publication Date
JP2024504618A true JP2024504618A (ja) 2024-02-01

Family

ID=82322055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023542672A Pending JP2024504618A (ja) 2021-01-14 2021-12-30 独立した温度制御を用いたプラズマ処理

Country Status (7)

Country Link
US (2) US11854770B2 (ja)
EP (1) EP4278373A1 (ja)
JP (1) JP2024504618A (ja)
KR (1) KR20230128550A (ja)
CN (1) CN116848614A (ja)
TW (1) TW202242998A (ja)
WO (1) WO2022154968A1 (ja)

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632322B1 (en) 2000-06-30 2003-10-14 Lam Research Corporation Switched uniformity control
JP2003033647A (ja) 2001-07-23 2003-02-04 Tokyo Ohka Kogyo Co Ltd プラズマ処理装置
US7557362B2 (en) 2004-02-04 2009-07-07 Veeco Instruments Inc. Ion sources and methods for generating an ion beam with a controllable ion current density distribution
US7371688B2 (en) * 2003-09-30 2008-05-13 Air Products And Chemicals, Inc. Removal of transition metal ternary and/or quaternary barrier materials from a substrate
US8058156B2 (en) 2004-07-20 2011-11-15 Applied Materials, Inc. Plasma immersion ion implantation reactor having multiple ion shower grids
US7393761B2 (en) * 2005-01-31 2008-07-01 Tokyo Electron Limited Method for fabricating a semiconductor device
KR100999583B1 (ko) 2008-02-22 2010-12-08 주식회사 유진테크 기판처리장치 및 기판처리방법
US8916022B1 (en) 2008-09-12 2014-12-23 Novellus Systems, Inc. Plasma generator systems and methods of forming plasma
US7998859B2 (en) * 2008-09-25 2011-08-16 Enthone Inc. Surface preparation process for damascene copper deposition
US8236706B2 (en) * 2008-12-12 2012-08-07 Mattson Technology, Inc. Method and apparatus for growing thin oxide films on silicon while minimizing impact on existing structures
KR101659594B1 (ko) 2011-08-19 2016-09-23 맷슨 테크놀로지, 인크. 고효율 플라즈마 소스
US9161428B2 (en) 2012-04-26 2015-10-13 Applied Materials, Inc. Independent control of RF phases of separate coils of an inductively coupled plasma reactor
KR101517489B1 (ko) 2013-04-25 2015-05-07 피에스케이 주식회사 플라즈마 발생 장치 및 그 제어 방법, 그리고 플라즈마 발생 장치를 포함하는 기판 처리 장치
WO2015145663A1 (ja) 2014-03-27 2015-10-01 株式会社日立国際電気 半導体装置の製造方法および基板処理装置
KR102465801B1 (ko) 2015-05-22 2022-11-14 주식회사 히타치하이테크 플라스마 처리 장치 및 그것을 이용한 플라스마 처리 방법
US20170170018A1 (en) * 2015-12-14 2017-06-15 Lam Research Corporation Conformal doping using dopant gas on hydrogen plasma treated surface
JP6527482B2 (ja) 2016-03-14 2019-06-05 東芝デバイス&ストレージ株式会社 半導体製造装置
WO2018111333A1 (en) * 2016-12-14 2018-06-21 Mattson Technology, Inc. Atomic layer etch process using plasma in conjunction with a rapid thermal activation process
US20180358204A1 (en) 2017-06-09 2018-12-13 Mattson Technology, Inc. Plasma Strip Tool With Multiple Gas Injection Zones
US20180358206A1 (en) 2017-06-09 2018-12-13 Mattson Technology, Inc. Plasma Processing Apparatus
US20190131112A1 (en) 2017-10-30 2019-05-02 Mattson Technology, Inc. Inductively Coupled Plasma Wafer Bevel Strip Apparatus
KR20200072557A (ko) 2017-12-27 2020-06-22 매슨 테크놀로지 인크 플라즈마 처리 장치 및 방법
US10984987B2 (en) * 2018-10-10 2021-04-20 Lam Research Corporation Showerhead faceplate having flow apertures configured for hollow cathode discharge suppression
US11049728B2 (en) * 2018-10-31 2021-06-29 Entegris, Inc. Boron-doped amorphous carbon hard mask and related methods
US11120973B2 (en) 2019-05-10 2021-09-14 Applied Materials, Inc. Plasma processing apparatus and techniques
US11348784B2 (en) 2019-08-12 2022-05-31 Beijing E-Town Semiconductor Technology Co., Ltd Enhanced ignition in inductively coupled plasmas for workpiece processing
US11075157B2 (en) * 2019-09-09 2021-07-27 Texas Instruments Incorporated IC having trench-based metal-insulator-metal capacitor
US11658006B2 (en) 2021-01-14 2023-05-23 Applied Materials, Inc. Plasma sources and plasma processing apparatus thereof

Also Published As

Publication number Publication date
US20240170263A1 (en) 2024-05-23
US11854770B2 (en) 2023-12-26
US20220223381A1 (en) 2022-07-14
CN116848614A (zh) 2023-10-03
KR20230128550A (ko) 2023-09-05
TW202242998A (zh) 2022-11-01
WO2022154968A1 (en) 2022-07-21
EP4278373A1 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
US11676812B2 (en) Method for forming silicon nitride film selectively on top/bottom portions
TWI781279B (zh) 氧化矽薄膜的沉積後處理之方法
CN107104036B (zh) 用于在沟槽侧壁或平整表面上选择性形成氮化硅膜的方法
TWI602943B (zh) 基板處理方法及基板處理裝置
US4668365A (en) Apparatus and method for magnetron-enhanced plasma-assisted chemical vapor deposition
US8236706B2 (en) Method and apparatus for growing thin oxide films on silicon while minimizing impact on existing structures
KR20180116455A (ko) 선택적 건식 에칭을 위한 방법들 및 장치
JP4246477B2 (ja) 解離及びイオン化の空間的制御のためのプラズマ処理装置
TW201421582A (zh) 使用離子遮蔽件處理基材的方法及設備
CN111566780A (zh) 添加氩至远程等离子体氧化
KR20070033930A (ko) 처리 장치
CN113488368A (zh) 工件的加工
US20230369017A1 (en) Plasma sources and plasma processing apparatus thereof
US10692717B2 (en) Minimization of carbon loss in ALD SiO2 deposition on hardmask films
US11043393B2 (en) Ozone treatment for selective silicon nitride etch over silicon
WO2021076843A1 (en) Selective etch process using hydrofluoric acid and ozone gases
JP2024504618A (ja) 独立した温度制御を用いたプラズマ処理
US20230127138A1 (en) Plasma processing with tunable nitridation
KR20220106189A (ko) 고 붕소 함량 하드 마스크 재료들
CN112368807A (zh) 工件的表面平滑化

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230913