JP2024064156A - 支持層の判定装置、判定システム、判定方法、プログラム - Google Patents

支持層の判定装置、判定システム、判定方法、プログラム Download PDF

Info

Publication number
JP2024064156A
JP2024064156A JP2022172534A JP2022172534A JP2024064156A JP 2024064156 A JP2024064156 A JP 2024064156A JP 2022172534 A JP2022172534 A JP 2022172534A JP 2022172534 A JP2022172534 A JP 2022172534A JP 2024064156 A JP2024064156 A JP 2024064156A
Authority
JP
Japan
Prior art keywords
excavation
depth
value
supporting layer
pseudo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022172534A
Other languages
English (en)
Inventor
敦 小川
Atsushi Ogawa
利弘 森
Toshihiro Mori
稔 荒籾
Minoru Aramomi
浩幸 青木
Hiroyuki Aoki
太亮 中里
Taisuke Nakazato
龍之介 目時
Ryunosuke Meji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP2022172534A priority Critical patent/JP2024064156A/ja
Publication of JP2024064156A publication Critical patent/JP2024064156A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

【課題】アースドリル工法による場所打ちコンクリート杭の施工の信頼性を向上する。【解決手段】判定装置(20)は、アースドリル工法による施工時にバケットによる掘削深度が支持層に到達したかを判定する。判定装置には、施工時の掘削データから所定の掘削深度毎に掘削に要するエネルギー指標値を算出する算出部(23)と、支持層の想定深度以深の前回施工時の掘削データから求めたエネルギー指標値とN値の対応関係を記憶する記憶部(24)と、支持層の想定深度以深の今回施工時の掘削データから求めたエネルギー指標値を対応関係に従って疑似N値に変換する変換部(25)と、支持層の想定深度以深の疑似N値と判定閾値を比較して掘削深度が支持層に到達したかを判定する判定部(26)と、が設けられている。【選択図】図2

Description

本発明は、支持層の判定装置、判定システム、判定方法、プログラムに関する。
場所打ちコンクリート杭の構築時にはアースドリル工法等を用いて支持層まで掘削され、この施工過程における支持層確認では掘削時に採取した掘削土とボーリング調査結果(土質柱状図、土質サンプル)を比較することが基本になっている。掘削土は乱れているため、支持層とその上層の土質の変化が小さい地盤では、掘削土の観察によって支持層を確認することが難しい。施工機の振動やケリーバの動き等から支持層を確認する方法もあるが客観的な確認ができない。また、掘削データから掘削深度と回転トルク値の関連性を示す特性曲線から支持層を判定する方法も知られている(例えば、特許文献1参照)。
特開2021-085149号公報
特許文献1に記載の判定方法では、特性曲線から回転トルク値が急峻に大きくなったときに掘削深度が支持層に到達したと判定される。しかしながら、障害物等の地盤の抵抗以外の要因でも回転トルク値が上昇して支持層を精度よく判定することができない。
本発明はかかる点に鑑みてなされたものであり、アースドリル工法による場所打ちコンクリート杭の施工の信頼性を向上できる支持層の判定装置、判定システム、判定方法、プログラムを提供することを目的とする。
本発明の一態様の支持層の判定装置は、アースドリル工法による施工時にバケットによる掘削深度が支持層に到達したかを判定する支持層の判定装置であって、施工時の掘削データから所定の掘削深度毎に掘削に要するエネルギー指標値を算出する算出部と、支持層の想定深度以深の前回施工時の掘削データから求めたエネルギー指標値とN値の対応関係を記憶する記憶部と、支持層の想定深度以深の今回施工時の掘削データから求めたエネルギー指標値を前記対応関係に従って疑似N値に変換する変換部と、支持層の想定深度以深の疑似N値と判定閾値を比較して掘削深度が支持層に到達したかを判定する判定部と、を備えている。
本発明の一態様の支持層の判定装置は、エネルギー指標値に対応する疑似N値を求める際に、支持層の想定深度以深の掘削データが用いられるため、疑似N値に基づいて掘削深度が支持層に到達したか否かが精度よく判定される。よって、アースドリル工法による場所打ちコンクリート杭の施工の信頼性を高めることができる。
本実施形態の支持層の判定システムの模式図である。 本実施形態の支持層の判定装置の機能ブロック図である。 本実施形態の施工時間とバケットの深度の関係を示す図である。 本実施形態の施工時間とバケットの深度の関係を示す拡大図である。 本実施形態の疑似N値と深度の関係を示す図である。 本実施形態の杭伏図である。 本実施形態の支持層の判定方法を示すフロー図である。 本実施形態の回転エネルギーと深度の関係を示す図である。 変形例の疑似N値と深度の関係を示す図である。 変形例の積算回転トルクと深度の関係を示す図である。
以下、本実施形態の支持層の判定システムについて説明する。図1は、本実施形態の支持層の判定システムの模式図である。図2は、本実施形態の支持層の判定装置の機能ブロック図である。図3は、本実施形態の施工時間とバケットの深度の関係を示す図である。図4は、本実施形態の施工時間とバケットの深度の関係を示す拡大図である。図5は、本実施形態の疑似N値と深度の関係を示す図である。
図1に示すように、支持層の判定システムはアースドリル機1に搭載されている。アースドリル機1は、ケリーバ6の下端部に取り付けたバケット7を回転させて地盤を掘削し、バケット7に取り込んだ掘削土を引き上げて地上に排出する作業機械である。アースドリル機1の下部にはクローラ式の走行体2が設けられており、前後の車輪に掛け渡されたクローラによって不整地での施工機の移動を可能にしている。走行体2の上部には旋回体3が水平方向に旋回可能に設けられており、旋回体3の前部右側には各種操作レバー等が設けられた運転席4が形成されている。
旋回体3の前部左側にはブーム5が起伏可能に設けられており、ブーム5の先端のトップシーブから垂れ下がった主巻ロープの先端にケリーバ6が接続されている。主巻ロープの基端は運転席4の後方の主巻ウィンチ(不図示)に巻き付けられており、主巻ウィンチの駆動によってケリーバ6が昇降される。ブーム5の基端側にはフロントフレーム8を介してケリードライブ9が支持されており、ケリードライブ9にケリーバ6が挿し込まれている。ケリードライブ9によってケリーバ6が回転されることで、ケリーバ6の下端のバケット7によって地盤が掘削される。
アースドリル機1には、バケット7の深度を検出するエンコーダ11と、ケリーバ6のスラスト力を検出する第1の油圧センサ12と、ケリーバ6の回転トルク値を検出する第2の油圧センサ13と、ケリーバ6の回転角を検出する角度センサ14と、が設けられている。エンコーダ11は、例えば主巻ウィンチに取り付けられ、第1、第2の油圧センサ12、13及び角度センサ14は、例えばケリードライブ9に取り付けられている。角度センサ14は、例えば歯車状のセンサディスクと近接スイッチによって、近接スイッチから出力された歯部分と歯以外の部分の距離の違いにより生じる電圧変化によってバケット7の回転角が検出される。
一般に、アースドリル工法では、ボーリング調査時に採取した土質サンプルと掘削時に採取した掘削土を目比べることで掘削深度が支持層に到達したかが判断されるが、土質の違いを目視で判断するのは限界がある。このため、本実施形態のアースドリル機1の運転席4に支持層の判定装置20が設置され、判定装置20によって各センサ11-14から出力された掘削データが分析される。このとき、支持層の想定深度以深の掘削データが使用されることで掘削深度の支持層への到達が精度よく判定される。支持層の想定深度は任意の深度であり、ボーリング調査時にN値が例えば50以上となる深度に設定されている。N値とは、標準貫入試験によって地盤の強度等を求めた試験結果(数値)である。
なお、本実施形態では運転席4に支持層の判定装置20が設置されているが、判定装置20が事務所等の別の場所に設置されていてもよい。例えば、アースドリル機1の各センサ11-14から事務所のデータロガー(不図示)に掘削データが送られて、データロガーに格納された掘削データが判定装置20によって分析されてもよい。また、アースドリル機1の各センサ11-14から運転席4のポータブル計測機(不図示)に掘削データが出力されて、ポータブル計測機から取り出されたメモリカードの掘削データが判定装置20によって事務所で分析されてもよい。
図2に示すように、支持層の判定装置20には、取得部21と、スクリーニング部22と、算出部23と、記憶部24と、変換部25と、判定部26と、出力部27と、が設けられている。取得部21は、施工時に所定のサンプリング間隔で掘削データを取得している。この場合、各センサ11-14からは0.02秒間隔で掘削データが出力されており、この多数の掘削データが取得部21によって0.2秒間隔でサンプリングされている。取得部21によって掘削データが間引きされることで後続の算出処理の負担が軽減されている。なお、所定のサンプリング間隔は適宜変更することが可能である。
例えば、図3に示すように、縦軸を深度とし横軸を施工時間とした座標系に0.2秒間隔で掘削データをプロットすると複数の山形状と複数の谷形状が形成される。プロットの山頂部分はバケット7によって地上に掘削土が排出されている期間に取得された掘削データを示しており、プロットの谷底部分はバケット7によって地盤が掘削されている期間に取得された掘削データを示している。このように、バケット7が所定深度だけ掘削した掘削土を地上に排出する工程を1サイクルとしたときに、1サイクルの間に取得された掘削データによって山形状と谷形状が繰り返されている。
スクリーニング部22は、施工時の掘削データから有効なデータを取り出している。この場合、1サイクル前の最大深度よりも深くなった地点を掘削開始点とし、現サイクルの掘削によって最大深度になった地点を掘削終了点として、掘削開始点から掘削終了点までに得られたデータがスクリーニング対象になる。1サイクルの掘削開始点から掘削終了点までに得られるデータのうち、掘削開始点から所定深さを掘削する間に得られたデータと、掘削終了点まで所定深さを掘削する間に得られたデータを除いて有効なデータが取り出されている。
例えば、図4に示すように、1サイクルの掘削開始点P1から掘削終了点P2までの掘削長をDとする。掘削開始点P1からD/4の深さまでのデータは、1サイクル前の掘削工程において直上の地盤が掘削されたことによる応力解放の影響が含まれるため有効なデータから除外される。3D/4の深さから掘削終了点P2までのデータは、敷均作業等の調整作業の影響が含まれるため有効なデータから除外される。1サイクルの有効掘削長はD/2である。このように、地山の掘削に無関係なデータを除いて、有効なデータが取り出されることで後述する算出処理の精度が向上される。なお、1サイクルの有効掘削長が短すぎると掘削データの数が少なくなってデータのバラツキが大きくなる。このため、有効掘削長が短い(例えば、0.2[m]以下)のサイクルを除いて算出処理が実施されることが好ましい。
算出部23は、施工時の掘削データの有効なデータから所定の掘削深度毎に掘削に要する回転エネルギーを算出している。この場合、バケット7で生じる回転トルク値をT(x)[kN・m]、計測間隔(本実施形態では0.2秒)でバケット7が回転した回転角をθ(x)[rad]、1サイクルのデータ数をm、1サイクルの掘削長をL[m]としたときに、掘削時の回転エネルギーe(x)が次式(1)から算出される。これは1サイクルの合計回転エネルギーを1サイクルの掘削長で割った、1[m]あたりの掘削時に要する回転エネルギーe(x)を示している。なお、本実施形態ではスクリーニングが実施されるため、1サイクルの掘削長Lとして上記の有効掘削長D/2が入力される。
記憶部24は、支持層の想定深度以深の前回施工時の掘削データから求めた回転エネルギーとN値の対応関係を示す変換係数を記憶している。この場合、支持層の想定深度に到達してからiサイクル目にバケット7によって1[m]を掘削するのに要する前回施工時の回転エネルギーをe(i)、iサイクル目の深度に対応する標準貫入試験結果のN値をN(i)、支持層の想定深度に到達してからの総サイクル数(回転エネルギーe(i)の個数)をnとしたときに、対応関係を示す変換係数αは次式(2)、(3)から求められる。これにより、支持層の想定深度以深において回転エネルギーとN値の相関が強い変換係数αが求められる。なお、基準杭施工時には前回施工時の掘削データとして過去案件の掘削データを用いて変換係数αが求められ、基準杭施工後には基準杭施工時の掘削データを用いて変換係数αが求められてもよい。
なお、支持層の想定深度以深とは、例えばN値が50以上(基準値以上)になる深度を示している。すなわち、N値が50以上の深度になってからiサイクル目の回転エネルギーと、iサイクル目の深度に対応するボーリング調査時のN値と、N値が50以上の深度になってからの総サイクル数とを用いて変換係数αが算出される。ここで、本件出願人が回転エネルギーとN値の関係を調べたところ、N値が50以上かつ100以下の範囲で回転エネルギーとN値の相関が強いことが判明した。このため、N値が50以上かつ100以下の掘削サイクルの回転エネルギー及びN値が使用されることで変換係数αが精度よく算出される。N値が100以上の場合にはN(i)=100として変換係数αが求められる。また、変換係数αに代えて、回転エネルギーとN値の対応関係がグラフやルックアップテーブル等によって表されてもよい。
変換部25は、支持層の想定深度以深の今回施工時の掘削データから求めた回転エネルギーを変換係数αによって疑似N値に変換している。この場合、支持層の想定深度に到達してからiサイクル目にバケット7によって1[m]を掘削するのに要する今回施工時の回転エネルギーをe(i)、変換係数をαとしたときに、支持層の想定深度以深のiサイクル目の疑似N値r(i)は次式(4)から求められる。このように、変換係数αを用いて支持層の想定深度以深の各サイクルにおける回転エネルギーが疑似N値に変換される。なお、疑似N値とは、標準貫入試験を行わずに疑似的にN値を表現する値である。
判定部26は、支持層の想定深度以深の疑似N値の平均値と判定閾値を比較して掘削深度が支持層に到達したかを判定している。この場合、支持層の想定深度に到達してからiサイクル目の疑似N値をr(i)、支持層の想定深度に到達してから現サイクルまでの総サイクル数(疑似N値の個数)をnとしたときに、疑似N値の平均値RTRは次式(5)から求められる。そして、疑似N値の平均値RTRが判定閾値(例えば、50)以上の場合に掘削深度が支持層に到達したと判定され、疑似N値の平均値RTRが判定閾値未満の場合に掘削深度が支持層に到達していないと判定される。このように、簡易な判定処理によって掘削深度が支持層に到達したか否かが精度よく判定される。
なお、判定部26は、疑似N値と判定閾値を比較して判定する構成であればよく、疑似N値の平均値と判定閾値を比較して判定する構成に限定されない。例えば、支持層の想定深度以深における全サイクルの疑似N値と判定閾値が比較されてもよい。この場合、全ての疑似N値が判定閾値以上の場合に掘削深度が支持層に到達したと判定されてもよいし、80%以上の疑似N値が判定閾値以上の場合に掘削深度が支持層に到達したと判定されてもよい。また、疑似N値の中央値が判定閾値以上の場合に掘削深度が支持層に到達したと判定されてもよい。
出力部27は、変換係数αに基づいて疑似N値を標準貫入試験結果のN値と比較可能な態様でモニタ17に出力している。この場合、変換部25では、支持層の想定深度以深の今回施工時の掘削データに加えて、支持層の想定深度以浅の今回施工時の掘削データから求めたエネルギー指標値が変換係数αによって疑似N値に変換される。そして、出力部27では、掘削深度毎に疑似N値の変化がN値の変化と比較可能にモニタ17に出力されると共に、支持層の想定深度以深の疑似N値の平均値が判定閾値と比較可能にモニタ17に出力される。
例えば、図5に示すように、モニタ17上にはN値の基準尺度上に疑似N値と標準貫入試験結果のN値がプロットされている。これにより、掘削深度の変化に対する標準貫入試験結果のN値の変化の傾向を参考にして、今回施工時の疑似N値の変化に異常な傾向がないかが目視で確認される。また、モニタ17上には支持層の想定深度以深の疑似N値の平均値と判定閾値が表示され、疑似N値の平均値と判定閾値から掘削深度が支持層に到達したか否かが目視で確認される。このように、判定部26の判定結果だけでなく、作業者の目視でも支持層を確認することができる。
判定装置20の各部の処理は、プロセッサを用いてソフトウェアによって実現されてもよいし、集積回路等に形成された論理回路(ハードウェア)によって実現されてもよい。プロセッサを用いる場合には、プロセッサがメモリに記憶されているプログラムを読み出して実行することで各種処理が実施される。プロセッサとしては、例えばCPU(Central Processing Unit)が使用される。また、メモリは、用途に応じてROM(Read Only Memory)、RAM(Random Access Memory)等の一つ又は複数の記憶媒体によって構成されている。
図6及び図7を参照して、支持層の判定方法について説明する。図6は、本実施形態の杭伏図である。図7は、本実施形態の支持層の判定方法を示すフロー図である。なお、ここでは、図1及び図2の符号を適宜使用して説明する。
図6に示すように、敷地内には複数の杭が施工されるが、いずれかの杭を基準杭19aに設定しなければならない。ボーリング調査位置Bの近くの杭が基準杭19aに設定されることが好ましい。1本目である基準杭19aの施工前には掘削データが検出されていないため、基準杭19aの施工時には過去案件の掘削データを利用して支持層への到達判定が実施される。2本目以降の他の杭19b-19dの施工時には、基準杭19aの施工時に検出された掘削データを利用して支持層への到達判定が実施される。なお、支持層への到達判定には、ボーリング調査で得られた土質区分も参考にされる。
図7に示すように、施工対象が基準杭19aの場合には(ステップS01でYes)、過去案件の掘削データから求めた変換係数αが設定される(ステップS02)。施工対象が基準杭19a以外の他の杭19b-19dの場合には(ステップS01でNo)、基準杭施工時の掘削データから求めた変換係数αが設定される(ステップS03)。これらの場合、上記式(2)、(3)を用いて、支持層の想定深度以深の掘削データから算出された回転エネルギーと、ボーリングデータに含まれるN値とから変換係数αが求められている。前回施工時の掘削データから求められた回転エネルギーとN値の対応関係が設定されている。
各センサ11-14から判定装置20に掘削データが出力され始め、アースドリル機1によって地盤の掘削が開始される(ステップS04)。取得部21によって所定のサンプリング間隔で掘削データが取得され(ステップS05)、スクリーニング部22によって掘削データから有効なデータが取り出される(ステップS06)。算出部23によって有効なデータから所定の掘削深度毎(1サイクル毎)に掘削に要する回転エネルギーが算出される(ステップS07)。この場合、上記式(1)を用いて、掘削データに含まれる回転トルク値、回転角、1サイクルのデータ数、1サイクルの掘削長から所定の掘削深度毎に回転エネルギーが算出される。
次に、変換部25によって掘削深度毎(1サイクル毎)に回転エネルギーから疑似N値が求められる(ステップS08)。この場合、上記式(4)を用いて、回転エネルギーと変換係数αから疑似N値が求められる。次に、判定部26によって支持層の想定深度以深の疑似N値の平均値と判定閾値が比較される(ステップS09)。この場合、上記式(5)を用いて疑似N値の平均値が求められる。疑似N値が判定閾値以上の場合には(ステップS09でYes)、判定部26によって掘削深度が支持層に達したと判定される(ステップS10)。疑似N値が判定閾値未満の場合には(ステップS09でNo)、判定部26によって掘削深度が支持層に達していないと判定される(ステップS11)。
さらに、出力部27によって縦軸を深度とし横軸をN値とした座標系に、疑似N値とボーリングデータのN値がモニタ17に出力されると共に、支持層の想定深度以深の疑似N値の平均値と判定閾値がモニタ17に出力される(ステップS12)。モニタ17に表示された疑似N値の大きさ、疑似N値の変化とボーリングデータのN値の変化の傾向等を参考にして(図5参照)、作業者等によって掘削深度が目視で確認される。なお、掘削深度が支持層に到達していないと判定された場合には(ステップS11)、再び地盤が掘削されて判定処理が実施される。掘削深度が支持層に到達していると判定された場合には(ステップS10)、掘削穴の拡底部の掘削等が実施される。
以上のように、本実施形態の支持層の判定装置20によれば、回転エネルギーに対応する疑似N値を求める際に、支持層の想定深度以深の掘削データが用いられるため、疑似N値に基づいて掘削深度が支持層に到達したか否かが精度よく判定される。よって、アースドリル工法による場所打ちコンクリート杭の施工の信頼性を高めることができる。また、掘削深度の変化に対する回転エネルギーの変化から地盤の層序も把握することができる。例えば、掘削している地盤が、粘性土あるいはシルトから砂質土あるいは砂礫に変わった場合、回転エネルギーが大きく増加し、逆の場合、減少する傾向がある。また、砂質土から砂礫に変わった場合、回転エネルギーが大きく増加し、逆の場合、減少する傾向がある。このような傾向について基準杭で確認し層序と回転エネルギーの変動の対応関係を元に層序の把握を行う。なお、回転エネルギーが指標として用いられているため、障害物等によるバケット7の回転停止等の影響を出力結果から排除することができる。
なお、変換係数αの算出に支持層の想定深度以深の掘削データが用いられているが、掘削深度毎に疑似N値の変化をN値の変化と比較可能に出力するだけであれば、支持層の想定深度以深の掘削データを用いる必要はない。この場合、掘削開始からiサイクル目にバケット7によって1[m]を掘削するのに要する回転エネルギーをe(i)、iサイクル目の深度に対応するボーリング調査時の標準貫入試験結果のN値をN(i)としたときに、変換係数αが次式(6)から求められてもよい。
また、今回施工時の回転エネルギーがN値と比較可能な態様で出力されてもよい。この場合、上記式(6)で求めた変換係数αからN値の基準尺度に応じた回転エネルギーの基準尺度が求められて、今回施工時の回転エネルギーが回転エネルギーの基準尺度で示される。次式(7)のx(N値)に対してN値の基準尺度の各目盛が入力されることで、回転エネルギーEN=Xとして回転エネルギーの基準尺度の各目盛が求められる。N値の基準尺度を回転エネルギーの基準尺度に変換することで今回施工時の回転エネルギーとN値が比較される。
例えば、図8に示すように、回転エネルギーの基準尺度の目盛4000[kN・m・rad/m]がN値の基準尺度の目盛45付近に対応し、回転エネルギーの基準尺度の目盛6000[kN・m・rad/m]がN値の基準尺度の目盛65付近に対応している。今回施工時の1サイクル毎に1つの回転エネルギーが算出されて、回転エネルギーの基準尺度上に回転エネルギーがプロットされている。また、上記式(7)からボーリング調査時の標準貫入試験結果のN値に応じた推定回転エネルギーが求められて、今回施工時の回転エネルギーが推定回転エネルギーと比較可能に出力されてもよい。
なお、本実施形態の支持層の判定装置には、エネルギー指標値として回転エネルギーが用いられているが、エネルギー指標値は所定の掘削深度毎に掘削に要するエネルギーを示す指標値であればよい。例えば、支持層の判定装置には、エネルギー指標値として積算回転トルクが用いられていてもよい。以下、エネルギー指標値として積算回転トルクを用いた変形例の判定装置について説明する。なお、変形例では上記実施形態と同様な内容については説明を省略して相違点について主に説明する。
変形例の算出部23は、施工時の掘削データの有効なデータから所定の掘削深度毎に掘削に要する積算回転トルクを算出している。この場合、バケット7で生じる回転トルク値をT(x)[kN・m]、計測間隔(本実施形態では0.2秒)をΔt[s]、1サイクルのデータ数をm、1サイクルの掘削長をL[m]としたときに、掘削時の積算回転トルクs(x)が次式(8)から算出される。これは1サイクルの回転トルク値の積算値を1サイクルの掘削長で割った、1[m]あたりの掘削時に要する積算回転トルクs(x)を示している。
記憶部24は、支持層の想定深度以深の前回施工時の掘削データから求めた積算回転トルクとN値の対応関係を示す変換係数を記憶している。この場合、支持層の想定深度に到達してからiサイクル目にバケット7によって1[m]を掘削するのに要する前回施工時の積算回転トルクをs(i)、iサイクル目の深度に対応する標準貫入試験結果のN値をN(i)、支持層の想定深度に到達してからの総サイクル数(積算回転トルクs(i)の個数)をnとしたときに、対応関係を示す変換係数αc2は次式(9)、(10)から求められる。これにより、支持層の想定深度以深において積算回転トルクとN値の相関が強い変換係数αc2が求められる。
上記したように、支持層の想定深度以深とは、例えばN値が50以上(基準値以上)になる深度を示している。すなわち、N値が50以上の深度になってからiサイクル目の積算回転トルクと、iサイクル目の深度に対応するボーリング調査時のN値と、N値が50以上の深度になってからの総サイクル数とを用いて変換係数αc2が算出される。基準杭施工時には前回施工時の掘削データとして過去案件の掘削データを用いて変換係数αc2が求められ、基準杭施工後には基準杭施工時の掘削データを用いて変換係数αc2が求められてもよい。また、変換係数αc2に代えて、積算回転トルクとN値の対応関係がグラフやルックアップテーブル等によって表されてもよい。
変換部25は、支持層の想定深度以深の今回施工時の掘削データから求めた積算回転トルクを変換係数αc2によって疑似N値に変換している。この場合、支持層の想定深度に到達してからiサイクル目にバケット7によって1[m]を掘削するのに要する今回施工時の積算回転トルクをs(i)、支持層の想定深度以深の変換係数をαc2としたときに、iサイクル目の疑似N値r(i)は次式(11)から求められる。このように、変換係数αc2を用いて支持層の想定深度以深の各サイクルにおける積算回転トルクが疑似N値に変換される。
判定部26では上記式(5)から支持層の想定深度以深の疑似N値の平均値が求められて、疑似N値の平均値と判定閾値を比較して掘削深度が支持層に到達したかが判定される。出力部27では掘削深度毎に疑似N値の変化がN値の変化と比較可能にモニタ17に出力されると共に、支持層の想定深度以深の疑似N値の平均値が判定閾値と比較可能にモニタ17に出力される。例えば、図9に示すように、モニタ17上にはN値の基準尺度上に疑似N値と標準貫入試験結果のN値がプロットされ、今回施工時の疑似N値の変化に異常な傾向がないかが目視で確認される。モニタ17上には支持層の想定深度以深の疑似N値の平均値と判定閾値が表示され、疑似N値の平均値と判定閾値から掘削深度が支持層に到達したか否かが目視で確認される。
以上のように、変形例の支持層の判定装置20でも、疑似N値に基づいて掘削深度が支持層に到達したか否かが精度よく判定され、アースドリル工法による場所打ちコンクリート杭の施工の信頼性を高めることができる。
なお、変形例の変換係数αc2の算出に支持層の想定深度以深の掘削データが用いられているが、掘削深度毎に疑似N値の変化をN値の変化と比較可能に出力するだけであれば、支持層の想定深度以深の掘削データを用いる必要はない。この場合、掘削開始からiサイクル目にバケット7によって1[m]を掘削するのに要する積算回転トルクをs(i)、iサイクル目の深度に対応するボーリング調査時の標準貫入試験結果のN値をN(i)としたときに、変換係数αc2が次式(12)から求められてもよい。
また、今回施工時の積算回転トルクがN値と比較可能な態様で出力されてもよい。この場合、上記式(12)で求めた変換係数αc2からN値の基準尺度に応じた積算回転トルクの基準尺度が求められて、今回施工時の積算回転トルクが積算回転トルクの基準尺度で示されている。次式(13)のx(N値)に対してN値の基準尺度の各目盛が入力されることで、積算回転トルクSN=Xとして積算回転トルクの基準尺度の各目盛が求められる。N値の基準尺度を積算回転トルクの基準尺度に変換することで今回施工時の積算回転トルクとN値が比較される。
例えば、図10に示すように、積算回転トルクの基準尺度の目盛3000[kN・m・s/m]がN値の基準尺度の目盛30に対応し、積算回転トルクの基準尺度の目盛5000[kN・m・s/m]がN値の基準尺度の目盛50に対応している。今回施工時の1サイクル毎に1つの積算回転トルクが算出されて、積算回転トルクの基準尺度上に積算回転トルクがプロットされている。また、上記式(13)からボーリング調査時の標準貫入試験結果のN値に応じた推定積算回転トルクが求められて、今回施工時の積算回転トルクが推定積算回転トルクと比較可能に出力されてもよい。
なお、本実施形態及び変形例では、コンピュータにプログラムがインストールされることで、コンピュータが支持層の判定装置として機能されてもよい。例えば、タブレット端末やスマートフォン等の携帯端末にプログラムがインストールされることで、これら携帯端末が判定装置として機能してもよい。このプログラムは記憶媒体に記憶されていてもよい。記憶媒体は特に限定されないが、光ディスク、光磁気ディスク、フラッシュメモリ等の非一過性の記憶媒体であってもよい。
また、本実施形態及び変形例では、支持層の判定装置とモニタが別体に形成されているが、判定装置とモニタが一体に形成されていてもよい。
また、本実施形態では、上記式(1)に基づいて回転エネルギーが算出されたが、回転エネルギーの算出方法は特に限定されない。
また、本実施形態では、上記式(2)、(3)に基づいて変換係数が算出されたが、変換係数の算出方法は特に限定されない。
また、変形例では、上記式(8)に基づいて積算回転トルクが算出されたが、積算回転トルクの算出方法は特に限定されない。
また、変形例では、上記式(9)、(10)に基づいて変換係数が算出されたが、変換係数の算出方法は特に限定されない。
また、本実施形態及び変形例では、掘削データにスクリーニング処理が実施されたが、掘削データにスクリーニング処理が実施されなくてもよい。
また、本実施形態では、上記式(2)、(3)に基づいて算出された変換係数を用いて掘削深度が支持層に到達したかが判定され、変形例では上記式(9)、(10)に基づいて算出された変換係数を用いて掘削深度が支持層に到達したかが判定されているが、これらの変換係数を用いて今回施工時のエネルギー指標値とN値とが比較可能な態様で出力されるだけでもよい。すなわち、施工時の掘削データから所定の掘削深度毎に掘削に要するエネルギー指標値を算出する算出部と、前回施工時の掘削データから求められたエネルギー指標値とN値の変換係数を記憶する記憶部と、変換係数に基づいて今回施工時のエネルギー指標値をN値と比較可能な態様で出力する出力部と、を備え、上記式(2)、(3)又は上記式(9)、(10)に基づいて変換係数が求められる支持層の確認装置でもよい。
以上の通り、第1態様は、アースドリル工法による施工時にバケット(7)による掘削深度が支持層に到達したかを判定する支持層の判定装置(20)であって、施工時の掘削データから所定の掘削深度毎に掘削に要するエネルギー指標値を算出する算出部(23)と、支持層の想定深度以深の前回施工時の掘削データから求めたエネルギー指標値とN値の対応関係を記憶する記憶部(24)と、支持層の想定深度以深の今回施工時の掘削データから求めたエネルギー指標値を対応関係に従って疑似N値に変換する変換部(25)と、支持層の想定深度以深の疑似N値と判定閾値を比較して掘削深度が支持層に到達したかを判定する判定部(26)と、を備えている。この構成によれば、エネルギー指標値に対応する疑似N値を求める際に、支持層の想定深度以深の掘削データが用いられるため、疑似N値に基づいて掘削深度が支持層に到達したか否かが精度よく判定される。よって、アースドリル工法による場所打ちコンクリート杭の施工の信頼性を高めることができる。
第2態様は、第1態様において、判定部は、支持層の想定深度以深の疑似N値の平均値と判定閾値を比較して掘削深度が支持層に到達したかを判定する。この構成によれば、簡易な判定処理によって掘削深度が支持層に到達したか否かを精度よく判定することができる。
第3態様は、第1態様又は第2態様において、エネルギー指標値が所定の掘削深度毎に掘削に要する回転エネルギーである。この構成によれば、回転エネルギーがエネルギー指標値として用いられているため、障害物等によるバケットの回転停止等の影響を出力結果から排除することができる。
第4態様は、第3態様において、バケットが所定深度だけ掘削して掘削土を地上に排出する工程を1サイクルとし、算出部は、バケットで生じる回転トルク値をT(x)、計測間隔でバケットが回転した回転角をθ(x)、1サイクルのデータ数をm、1サイクルの掘削長をLとしたときに、掘削時の回転エネルギーe(x)を上記式(1)から算出する。この構成によれば、1m当たりの掘削時の回転エネルギーを算出することができる。
第5態様は、第4態様において、支持層の想定深度に到達してからiサイクル目にバケットによって1[m]を掘削するのに要する回転エネルギーをe(i)、iサイクル目の深度に対応する標準貫入試験結果のN値をN(i)、支持層の想定深度に到達してからの総サイクル数をnとしたときに、対応関係を示す変換係数αは上記式(2)、(3)から求められる。この構成によれば、支持層の想定深度以深において回転エネルギーとN値の相関が強い変換係数αを求めることができる。
第6態様は、第1態様又は第2態様において、エネルギー指標値が所定の掘削深度毎に掘削に要する積算回転トルクである。この構成によれば、積算回転トルクを用いて掘削深度が支持層に到達したか否かを判定することができる。
第7態様は、第6態様において、バケットが所定深度だけ掘削して掘削土を地上に排出する工程を1サイクルとし、算出部は、バケットで生じる回転トルク値をT(x)、計測間隔をΔt、1サイクルのデータ数をm、1サイクルの掘削長をLとしたときに、掘削時の積算回転トルクs(x)を上記式(8)から算出する。この構成によれば、1m当たりの掘削時の積算回転トルクを算出することができる。
第8態様は、第7態様において、支持層の想定深度に到達してからiサイクル目にバケットによって1[m]を掘削するのに要する積算回転トルクをs(i)、iサイクル目の深度に対応する標準貫入試験結果のN値をN(i)、支持層の想定深度に到達してからの総サイクル数をnとしたときに、対応関係を示す変換係数αc2は上記式(9)、(10)から求められる。この構成によれば、支持層の想定深度以深において回転エネルギーとN値の相関が強い変換係数αc2を求めることができる。
第9態様は、第1態様から第8態様のいずれか1態様において、対応関係に基づいて疑似N値を標準貫入試験結果のN値と比較可能な態様で出力する出力部(27)を備え、変換部は、支持層の想定深度以深の今回施工時の掘削データに加えて、想定深度以浅の今回施工時の掘削データから求めたエネルギー指標値を対応関係に従って疑似N値に変換し、出力部は、掘削深度毎に疑似N値の変化をN値の変化と比較可能に出力すると共に、支持層の想定深度以深の疑似N値を判定閾値と比較可能に出力する。この構成によれば、疑似N値の平均値と判定閾値から掘削深度が支持層に到達したか否かを目視で確認することができる。また、掘削深度の変化に対する標準貫入試験結果のN値の変化の傾向を参考にして、今回施工時の疑似N値の変化に異常な傾向がないかを目視で確認することができる。
第10態様は、第1態様から第9態様のいずれか1態様の支持層の判定装置と、アースドリル機に取り付けられて掘削データを検出するセンサ(11-14)と、を備え、センサが判定装置に掘削データを出力する判定システムである。この構成によれば、アースドリル機のセンサから出力された掘削データに基づいて掘削深度が支持層に到達したか否かを判定することができる。
第11態様は、アースドリル工法による施工時にバケットによる掘削深度が支持層に到達したかを判定する支持層の判定方法であって、支持層の想定深度以深の前回施工時の掘削データから求めたエネルギー指標値とN値の対応関係を設定するステップと、支持層の想定深度以深の今回施工時の掘削データから掘削深度毎に掘削に要するエネルギー指標値を算出するステップと、支持層の想定深度以深の今回施工時の掘削データから求めたエネルギー指標値を対応関係に従って疑似N値に変換するステップと、疑似N値と判定閾値を比較して掘削深度が支持層に到達したかを判定するステップと、を有している。この構成によれば、アースドリル工法による場所打ちコンクリート杭の施工の信頼性を高めることができる。
第12態様は、アースドリル工法による施工時にバケットによる掘削深度が支持層に到達したかを判定するためのプログラムであって、支持層の想定深度以深の前回施工時の掘削データから求めたエネルギー指標値とN値の対応関係を設定するステップと、支持層の想定深度以深の今回施工時の掘削データから掘削深度毎に掘削に要するエネルギー指標値を算出するステップと、支持層の想定深度以深の今回施工時の掘削データから求めたエネルギー指標値を対応関係に従って疑似N値に変換するステップと、疑似N値と判定閾値を比較して掘削深度が支持層に到達したかを判定するステップと、をコンピュータに実行させる。この構成によれば、コンピュータにプログラムをインストールすることで、コンピュータを支持層の判定装置として機能させることができる。
なお、本実施形態及び変形例を説明したが、他の実施形態として、上記実施形態及び変形例を全体的又は部分的に組み合わせたものでもよい。
また、本発明の技術は上記の実施形態に限定されるものではなく、技術的思想の趣旨を逸脱しない範囲において様々に変更、置換、変形されてもよい。さらには、技術の進歩又は派生する別技術によって、技術的思想を別の仕方で実現することができれば、その方法を用いて実施されてもよい。したがって、特許請求の範囲は、技術的思想の範囲内に含まれ得る全ての実施態様をカバーしている。
1 :アースドリル機
7 :バケット
11:エンコーダ(センサ)
12:第1の油圧センサ(センサ)
13:第2の油圧センサ(センサ)
14:角度センサ(センサ)
17:モニタ
20:判定装置
23:算出部
24:記憶部
25:変換部
26:判定部
27:出力部

Claims (12)

  1. アースドリル工法による施工時にバケットによる掘削深度が支持層に到達したかを判定する支持層の判定装置であって、
    施工時の掘削データから所定の掘削深度毎に掘削に要するエネルギー指標値を算出する算出部と、
    支持層の想定深度以深の前回施工時の掘削データから求めたエネルギー指標値とN値の対応関係を記憶する記憶部と、
    支持層の想定深度以深の今回施工時の掘削データから求めたエネルギー指標値を前記対応関係に従って疑似N値に変換する変換部と、
    支持層の想定深度以深の疑似N値と判定閾値を比較して掘削深度が支持層に到達したかを判定する判定部と、を備えていることを特徴とする支持層の判定装置。
  2. 前記判定部は、支持層の想定深度以深の疑似N値の平均値と判定閾値を比較して掘削深度が支持層に到達したかを判定することを特徴とする請求項1に記載の支持層の判定装置。
  3. エネルギー指標値が所定の掘削深度毎に掘削に要する回転エネルギーであることを特徴とする請求項1又は請求項2に記載の支持層の判定装置。
  4. 前記バケットが所定深度だけ掘削して掘削土を地上に排出する工程を1サイクルとし、
    前記算出部は、前記バケットで生じる回転トルク値をT(x)、計測間隔で前記バケットが回転した回転角をθ(x)、1サイクルのデータ数をm、1サイクルの掘削長をLとしたときに、掘削時の回転エネルギーe(x)を次式(1)から算出することを特徴とする請求項3に記載の支持層の判定装置。
  5. 支持層の想定深度に到達してからiサイクル目に前記バケットによって1[m]を掘削するのに要する回転エネルギーをe(i)、iサイクル目の深度に対応する標準貫入試験結果のN値をN(i)、支持層の想定深度に到達してからの総サイクル数をnとしたときに、前記対応関係を示す変換係数αは次式(2)、(3)から求められることを特徴とする請求項4に記載の支持層の判定装置。
  6. エネルギー指標値が所定の掘削深度毎に掘削に要する積算回転トルクであることを特徴とする請求項1又は請求項2に記載の支持層の判定装置。
  7. 前記バケットが所定深度だけ掘削して掘削土を地上に排出する工程を1サイクルとし、
    前記算出部は、前記バケットで生じる回転トルク値をT(x)、計測間隔をΔt、1サイクルのデータ数をm、1サイクルの掘削長をLとしたときに、掘削時の積算回転トルクs(x)を次式(4)から算出することを特徴とする請求項6に記載の支持層の判定装置。
  8. 支持層の想定深度に到達してからiサイクル目に前記バケットによって1[m]を掘削するのに要する積算回転トルクをs(i)、iサイクル目の深度に対応する標準貫入試験結果のN値をN(i)、支持層の想定深度に到達してからの総サイクル数をnとしたときに、前記対応関係を示す変換係数αc2は次式(5)、(6)から求められることを特徴とする請求項7に記載の支持層の判定装置。
  9. 前記対応関係に基づいて疑似N値を標準貫入試験結果のN値と比較可能な態様で出力する出力部を備え、
    前記変換部は、支持層の想定深度以深の今回施工時の掘削データに加えて、想定深度以浅の今回施工時の掘削データから求めたエネルギー指標値を前記対応関係に従って疑似N値に変換し、
    前記出力部は、掘削深度毎に疑似N値の変化をN値の変化と比較可能に出力すると共に、支持層の想定深度以深の疑似N値を判定閾値と比較可能に出力することを特徴とする請求項1又は請求項2に記載の支持層の判定装置。
  10. 請求項1又は請求項2に記載の支持層の判定装置と、
    アースドリル機に取り付けられて掘削データを検出するセンサと、を備え、
    前記センサが前記判定装置に掘削データを出力することを特徴とする支持層の判定システム。
  11. アースドリル工法による施工時にバケットによる掘削深度が支持層に到達したかを判定する支持層の判定方法であって、
    支持層の想定深度以深の前回施工時の掘削データから求めたエネルギー指標値とN値の対応関係を設定するステップと、
    支持層の想定深度以深の今回施工時の掘削データから掘削深度毎に掘削に要するエネルギー指標値を算出するステップと、
    支持層の想定深度以深の今回施工時の掘削データから求めたエネルギー指標値を前記対応関係に従って疑似N値に変換するステップと、
    疑似N値と判定閾値を比較して掘削深度が支持層に到達したかを判定するステップと、を有していることを特徴とする支持層の判定方法。
  12. アースドリル工法による施工時にバケットによる掘削深度が支持層に到達したかを判定するためのプログラムであって、
    支持層の想定深度以深の前回施工時の掘削データから求めたエネルギー指標値とN値の対応関係を設定するステップと、
    支持層の想定深度以深の今回施工時の掘削データから掘削深度毎に掘削に要するエネルギー指標値を算出するステップと、
    支持層の想定深度以深の今回施工時の掘削データから求めたエネルギー指標値を前記対応関係に従って疑似N値に変換するステップと、
    疑似N値と判定閾値を比較して掘削深度が支持層に到達したかを判定するステップと、をコンピュータに実行させることを特徴とするプログラム。
JP2022172534A 2022-10-27 2022-10-27 支持層の判定装置、判定システム、判定方法、プログラム Pending JP2024064156A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022172534A JP2024064156A (ja) 2022-10-27 2022-10-27 支持層の判定装置、判定システム、判定方法、プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022172534A JP2024064156A (ja) 2022-10-27 2022-10-27 支持層の判定装置、判定システム、判定方法、プログラム

Publications (1)

Publication Number Publication Date
JP2024064156A true JP2024064156A (ja) 2024-05-14

Family

ID=91034272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022172534A Pending JP2024064156A (ja) 2022-10-27 2022-10-27 支持層の判定装置、判定システム、判定方法、プログラム

Country Status (1)

Country Link
JP (1) JP2024064156A (ja)

Similar Documents

Publication Publication Date Title
JP7311244B2 (ja) 地盤評価システム及び地盤評価方法
AU2013318066B2 (en) A method and system for preemptively determining a load weight for mining excavation equipment
JP5819152B2 (ja) 杭埋設工法で用いる支持層到達推定方法および支持層到達推定支援装置
Yue et al. Automatic monitoring of rotary-percussive drilling for ground characterization—illustrated by a case example in Hong Kong
JP6911356B2 (ja) 支持層到達判定方法及び判定支援システム
JP5249874B2 (ja) 地盤評価装置および地盤評価方法
JP6874378B2 (ja) 支持層到達判定方法及び判定支援システム
JP6969212B2 (ja) 支持層到達判定方法及び判定支援システム
JP4421146B2 (ja) トンネル切羽前方の地質予測方法および地質予測装置
JP2016000933A (ja) トンネル切羽の安定性予測/判定方法
JP2024064156A (ja) 支持層の判定装置、判定システム、判定方法、プログラム
JP2005307607A (ja) 杭の施工管理装置
JP2017115457A (ja) 地盤調査方法および地盤調査装置
JP2023141056A (ja) 支持層の確認装置、確認システム、確認方法、プログラム
JP2005226412A (ja) 土砂の採取装置および地盤密度の測定方法
JP6799253B2 (ja) 地盤の掘削方法
JP2873397B2 (ja) 地山状況調査システム
KR100777377B1 (ko) 연약지반 개량시 케이싱 파이프의 관입한계치 자동측정시스템 및 자동측정 방법
JP5616244B2 (ja) 地中削孔データ解析による基盤判定方法
JP7332004B2 (ja) 地盤評価システム及び地盤評価方法
JP2014234629A (ja) 地盤強度計測解析システム
JPH07311133A (ja) 地盤硬さの計測方法及び装置
JP7188768B2 (ja) 支持層判定システム
JP7464354B2 (ja) 中掘り工法における杭の支持層到達確認方法
JPS62291392A (ja) 地盤穿孔による支持層の検出方法