JP2024059325A - Coke manufacturing method - Google Patents

Coke manufacturing method Download PDF

Info

Publication number
JP2024059325A
JP2024059325A JP2022166939A JP2022166939A JP2024059325A JP 2024059325 A JP2024059325 A JP 2024059325A JP 2022166939 A JP2022166939 A JP 2022166939A JP 2022166939 A JP2022166939 A JP 2022166939A JP 2024059325 A JP2024059325 A JP 2024059325A
Authority
JP
Japan
Prior art keywords
coal
briquettes
molded
amount
reduction amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022166939A
Other languages
Japanese (ja)
Inventor
功 ▲高▼橋
秀幸 林崎
和弥 上坊
祐基 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2022166939A priority Critical patent/JP2024059325A/en
Publication of JP2024059325A publication Critical patent/JP2024059325A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Coke Industry (AREA)
  • Image Analysis (AREA)

Abstract

【課題】成型炭と粉炭とを含む配合炭を容器に充填した際に生じる成型炭周囲の空隙量を配合炭の性状によらず高精度に解析可能である、成型炭周囲の空隙量の解析方法、当該解析方法を用いた成型炭周囲の空隙量の推定方法、及び、当該解析方法又は当該推定方法を用いて高強度のコークスを製造する方法を提供する。【解決手段】成型炭と粉炭とを含む配合炭を容器に充填した際に生じる成型炭周囲の空隙量の解析方法であって、X線CT断面画像の3D解析において、成型炭部の周縁から成型炭部と相似形で1回あたり1単位体積を膨張させる膨張処理を行い、膨張処理の各回において体積増加した領域の体積に粉炭部の平均密度と空隙部の平均密度との差分値を乗じて充填低下量を算出し、当該充填低下量を全膨張処理回数で積算して積算充填低下量を算出し、当該積算充填低下量を成型炭周囲の空隙量の指標とする、方法。【選択図】図1[Problem] To provide a method for analyzing the void volume around a molded coal that occurs when a coal blend containing molded coal and powdered coal is packed into a container, capable of analyzing the void volume around the molded coal with high accuracy regardless of the properties of the coal blend, a method for estimating the void volume around the molded coal using said analysis method, and a method for producing high-strength coke using said analysis method or said estimation method. [Solution] A method for analyzing the void volume around a molded coal that occurs when a coal blend containing molded coal and powdered coal is packed into a container, comprising the steps of: performing an expansion process in which the periphery of the molded coal part is expanded by one unit volume per time in a shape similar to the molded coal part in a 3D analysis of an X-ray CT cross-sectional image; multiplying the volume of the area that has increased in volume each time with the difference between the average density of the powdered coal part and the average density of the void part to calculate a packing reduction amount; accumulating the packing reduction amount over the total number of expansion processes to calculate an accumulated packing reduction amount; and using the accumulated packing reduction amount as an index of the void volume around the molded coal. [Selected Figure] Figure 1

Description

本発明は、コークスの製造方法に関する。 The present invention relates to a method for producing coke.

従来、高炉操業に使用されるコークスの製造においては、良質の強粘結炭の資源量枯渇化への対処として、成型炭と粉炭とで構成される配合炭における非微粘結炭などの劣質炭の配合割合を多くしつつコークス強度を良好に維持する方法が種々検討されている。劣質炭を含む配合炭を用いて所望のコークス強度を得るためには、石炭の事前処理プロセスが有用であり得る。例えば、石炭の乾燥プロセスとして、調湿炭装入法(Coal Moisture Coal; CMC)、微粉炭塊成化法(Dry-cleaned and Agglomerated Pre-compaction System; DAPS)等、成型炭など成型物を配合するプロセスとして、微粉炭塊成化法(Dry-cleaned and Agglomerated Precompaction System; DAPS)、成型炭配合法、そのほか石炭の粉砕粒度調整方法等がそれぞれ知られており、これらは適宜組合される。 Conventionally, in the manufacture of coke used in blast furnace operation, various methods have been considered to address the depletion of high-quality highly caking coal resources while maintaining good coke strength by increasing the blending ratio of inferior coal such as non- or slightly caking coal in a coal blend consisting of molded coal and pulverized coal. In order to obtain the desired coke strength using a coal blend containing inferior coal, a coal pre-treatment process can be useful. For example, as a coal drying process, the Coal Moisture Coal (CMC) method, the Dry-cleaned and Agglomerated Pre-compaction System (DAPS) method, etc., as a process for blending molded materials such as molded coal, the Dry-cleaned and Agglomerated Precompaction System (DAPS) method, the molded coal blending method, and other methods for adjusting the crushed particle size of coal are known, and these are appropriately combined.

上記のような石炭の事前処理プロセスを適宜に利用して粉炭の粒度構成及び水分率を調整することで、粉炭の膨張性が比較的低い場合であっても、コークス中の残存空隙を低減して良好なコークス強度を得ることが可能になる。但し、成型炭を配合した場合に成型炭の周囲に空隙が生じ、乾留後にも成型炭周囲の空隙が残存することがある。残存する成型炭周囲の空隙はコークス強度の低下を引き起こすため、乾留時に成型炭周囲の空隙を充填するだけの膨張性を有する成型炭の製造が重要である。成型炭周囲の空隙を充填するのに必要な成型炭の膨張性を把握し、配合炭を構成する石炭の配合を決定するためには、コークス炉に装入された配合炭が成型炭周囲に有する空隙の量を正確に見積もることが重要である。 By appropriately adjusting the particle size composition and moisture content of the powdered coal using the above-mentioned coal pretreatment process, it is possible to reduce the remaining voids in the coke and obtain good coke strength, even if the powdered coal has a relatively low expansiveness. However, when molded coal is blended, voids are generated around the molded coal, and the voids around the molded coal may remain even after carbonization. Since the remaining voids around the molded coal cause a decrease in coke strength, it is important to manufacture molded coal that has sufficient expansiveness to fill the voids around the molded coal during carbonization. In order to understand the expansiveness of the molded coal required to fill the voids around the molded coal and to determine the blend of coals that make up the coal blend, it is important to accurately estimate the amount of voids around the molded coal in the coal blend charged into the coke oven.

特許文献1は、成型炭と石炭を粉砕した粉炭を配合した配合炭とをコークス炉に装入して乾留するコークスの製造方法において、試験装置を用いて自然落下により成型炭と石炭を粉砕した粉炭を配合した配合炭とを容器に充填して、X線CTにより容器内の断面画像を撮像し、得られた断面画像から、成型炭周囲に形成されている空隙の最大幅Wを定量化し、さらに、試験装置を用いて成型炭の乾留時の最大膨張体積を測定して、成型炭の膨張量を膨張前後の円相当径の変化量Δr(mm)として求め、求められた変化量Δrが前記最大幅W(mm)の40%未満の場合は成型炭を構成する石炭配合を変更し、前記変化量Δrが前記最大幅Wの40%以上となる石炭配合を求め、この配合に基づき製造した成型炭を用いることを特徴とするコークスの製造方法を提供する。 Patent Document 1 provides a method for producing coke by charging a coal blend made of briquettes and pulverized coal powder into a coke oven and carbonizing the mixture, in which the briquettes and pulverized coal powder are naturally dropped into a container using a test device, a cross-sectional image of the inside of the container is taken by X-ray CT, and the maximum width W of the voids formed around the briquettes is quantified from the cross-sectional image obtained. The test device is also used to measure the maximum expansion volume of the briquettes during carbonization, and the expansion amount of the briquettes is calculated as the change in the equivalent circle diameter Δr (mm) before and after expansion. If the change Δr is less than 40% of the maximum width W (mm), the coal blend that makes up the briquettes is changed, a coal blend is determined such that the change Δr is 40% or more of the maximum width W, and the briquettes produced based on this blend are used.

特開2014-224242号公報JP 2014-224242 A

特許文献1に記載される方法では、成型炭と粉炭とを含む配合炭における成型炭周囲の空隙を二次元画像解析により幅として評価する。しかしこの方法には、成型炭周囲の空隙が小さ過ぎる場合、塊成炭を含む粉炭を用いる場合等における評価の正確性の点で、なお改善の余地がある。 In the method described in Patent Document 1, the voids around the briquettes in a coal blend containing briquettes and pulverized coal are evaluated as their width using two-dimensional image analysis. However, this method still has room for improvement in terms of the accuracy of the evaluation when the voids around the briquettes are too small, when pulverized coal containing agglomerated coal is used, etc.

また、コークスの製造に際して、特許文献1に記載される方法で求められる成型炭周囲の空隙量の値を利用し、目標コークス強度を得るのに必要な成型炭の膨張性の値(具体的には、SV(比容積))を算出することで、配合炭を構成する石炭の配合を決定することができる。しかし、使用する粉炭の粒度構成を変更したりすると、特許文献1に記載される方法で求められる目標コークス強度を得るのに必要な成型炭部SVと、当該目標コークス強度との対応関係が、成型炭部SV実測値とコークス強度実測値との対応関係と一致しなくなる場合があるという問題があった。 In addition, when producing coke, the amount of voids around the coal briquettes obtained by the method described in Patent Document 1 can be used to calculate the value of the expansion of the coal briquettes (specific volume (SV)) required to obtain the target coke strength, thereby determining the blend of coals that make up the coal blend. However, if the particle size composition of the powdered coal used is changed, there is a problem in that the correspondence between the briquettes SV required to obtain the target coke strength obtained by the method described in Patent Document 1 and the target coke strength may not match the correspondence between the actual measured value of the briquettes SV and the actual measured value of the coke strength.

上記のように、特許文献1に記載される方法では、粉炭粒度構成によらず、成型炭周囲の空隙量を高精度に解析可能とするためには、さらに改善の余地があった。 As described above, the method described in Patent Document 1 leaves room for further improvement in order to enable highly accurate analysis of the amount of voids around the molded coal, regardless of the powder coal particle size composition.

本発明の一態様は、上記の課題を解決し、成型炭と粉炭とを含む配合炭を容器に充填した際に生じる成型炭周囲の空隙を粉炭の粒度構成によらず高精度に解析可能である、成型炭周囲の空隙量の解析方法、当該解析方法を用いた成型炭周囲の空隙量の推定方法、及び、当該解析方法又は当該推定方法を用いて高強度のコークスを製造する方法を提供することを目的とする。 One aspect of the present invention aims to solve the above problems and provide a method for analyzing the amount of voids around molded coal, which is capable of analyzing with high accuracy the voids around molded coal that occur when a coal blend containing molded coal and powdered coal is filled into a container, regardless of the particle size composition of the powdered coal, a method for estimating the amount of voids around molded coal using said analysis method, and a method for producing high-strength coke using said analysis method or said estimation method.

本発明の要旨は、以下のとおりである。
[1] 成型炭と粉炭とを含む配合炭を容器に充填した際に生じる成型炭周囲の空隙量の解析方法であって、
試験装置を用いて自然落下により成型炭と粉炭とを試験容器に充填し、
X線CTにより試験容器内の断面画像を撮像し、
得られた断面画像の3D解析によって成型炭周囲の空隙量を求め、
前記3D解析において、
密度が既定値を超える高密度部と、密度が前記既定値以下である低密度部とをそれぞれ規定し、
前記高密度部を既定形状パラメータでフィルタリングして成型炭部を規定し、
任意に、前記高密度部のうち、前記成型炭部以外の領域であり且つ体積が既定値を超える領域を塊成炭部と規定し、前記塊成炭部は画素データ不存在として取扱うことで解析対象から除外し、
前記成型炭部の周縁から前記成型炭部と相似形で1回あたり1単位体積を膨張させる膨張処理を(n+1)回以上行い、但しnは自然数であり、
前記(n+1)は、(n+1)回目の膨張処理で体積増加した領域の平均密度が、n回目の膨張処理で体積増加した領域の平均密度と略同一である数であり、
n回目以降の膨張処理で体積増加した領域の平均密度を閾値とし、
膨張処理の各回において体積増加した領域について、密度が前記閾値を超える領域を粉炭部、密度が前記閾値以下である領域を空隙部とそれぞれ規定し、
膨張処理の各回において体積増加した領域について、前記粉炭部の平均密度と前記空隙部の平均密度との差分値を算出し、
膨張処理の各回において体積増加した領域の体積に前記差分値を乗じて充填低下量を算出し、
前記充填低下量を全膨張処理回数で積算して積算充填低下量を算出し、前記積算充填低下量を成型炭周囲の空隙量の指標とする、
成型炭周囲の空隙量の解析方法。
[2] 成型炭と粉炭とを含む配合炭を容器に充填した際に生じる成型炭周囲の空隙量の推定方法であって、
粒度構成が互いに異なる水準及び水分率が互いに異なる水準が含まれるように選定した複数種の粉炭サンプルの各々と、任意に選定した成型炭サンプルとの組合せである複数種の配合炭サンプルを調製し、
各配合炭サンプルについて、上記[1]に記載の成型炭周囲の空隙量の解析方法に従ってサンプル積算充填低下量を求め、
前記粉炭サンプルの粒度構成及び水分率と前記サンプル積算充填低下量との関係に基づいて、粉炭の粒度構成及び水分率と積算充填低下量との関係式(I)を求め、
コークス製造における使用予定の粉炭と、任意に選定した解析用成型炭との組合せである配合炭について、前記使用予定の粉炭の粒度構成及び水分率の値を前記関係式(I)に代入して積算充填低下量推定値を算出し、前記積算充填低下量推定値を成型炭周囲の空隙量の指標とする、
成型炭周囲の空隙量の推定方法。
[3] 成型炭と粉炭とを含む配合炭を用いたコークスの製造方法であって、
試験用に選択した配合炭サンプルについて、上記[1]に記載の成型炭周囲の空隙量の解析方法によって算出される積算充填低下量と、成型炭部SVを変化させてもコークス強度が一定であるような成型炭部SV範囲の下限である成型炭部SV下限値との関係式(II)を予め求めておき、
コークス製造における使用予定の粉炭と、任意に選定した解析用成型炭との組合せである配合炭について、上記[1]に記載の成型炭周囲の空隙量の解析方法に従って積算充填低下量を求め、又は上記[2]に記載の成型炭周囲の空隙量の推定方法に従って積算充填低下量推定値を求め、
前記積算充填低下量又は前記積算充填低下量推定値を前記関係式(II)に代入して成型炭部SV下限値を求め、
SV実測値が前記成型炭部SV下限値以上である成型炭を製造し、
前記使用予定の粉炭と、製造された成型炭とで構成される配合炭をコークス製造に供する、
コークスの製造方法。
The gist of the present invention is as follows.
[1] A method for analyzing a volume of voids around briquettes that occurs when a coal blend containing briquettes and powdered coal is packed into a container, comprising:
Using a test device, the briquettes and powdered coal are loaded into a test vessel by gravity.
A cross-sectional image of the inside of the test vessel is taken using X-ray CT.
The amount of voids around the molded coal is calculated by 3D analysis of the obtained cross-sectional image.
In the 3D analysis,
A high density portion having a density exceeding a predetermined value and a low density portion having a density equal to or lower than the predetermined value are defined,
filtering the densified portion with predetermined shape parameters to define a briquette portion;
Optionally, a region of the high density part other than the molded coal part and having a volume exceeding a predetermined value is defined as an agglomerated coal part, and the agglomerated coal part is excluded from the analysis target by treating it as having no pixel data;
An expansion process is performed (n+1) times or more in which one unit volume is expanded from the periphery of the molded coal part in a shape similar to the molded coal part each time, where n is a natural number;
The (n+1) is a number at which the average density of the region whose volume has increased by the (n+1)th expansion process is substantially equal to the average density of the region whose volume has increased by the nth expansion process,
The average density of the area whose volume has increased by the nth or subsequent expansion process is set as a threshold value.
Regarding the region whose volume has increased in each expansion treatment, the region whose density exceeds the threshold value is defined as a powder coal portion, and the region whose density is equal to or less than the threshold value is defined as a void portion,
Calculate the difference between the average density of the powder coal portion and the average density of the void portion for the area whose volume has increased in each expansion treatment,
calculating a filling reduction amount by multiplying the volume of the area that has increased in volume in each expansion process by the difference value;
The amount of packing decrease is integrated over the total number of expansion processes to calculate an integrated amount of packing decrease, and the integrated amount of packing decrease is used as an index of the amount of voids around the molded coal.
A method for analyzing the amount of voids around molded coal.
[2] A method for estimating a volume of voids around briquettes that occurs when a coal blend containing briquettes and powdered coal is packed into a container, comprising:
A plurality of blended coal samples are prepared by combining each of a plurality of powdered coal samples selected to include different levels of particle size composition and different levels of moisture content with an arbitrarily selected molded coal sample;
For each coal blend sample, the accumulated packing reduction amount of the sample was determined according to the analysis method for the void volume around the coal briquettes described in [1] above;
Based on the relationship between the particle size composition and moisture content of the powder coal sample and the cumulative loading reduction amount of the sample, a relationship formula (I) between the particle size composition and moisture content of the powder coal sample and the cumulative loading reduction amount is obtained;
For a blended coal which is a combination of powdered coal to be used in coke production and arbitrarily selected briquettes for analysis, a particle size composition and a moisture content of the powdered coal to be used are substituted into the relational formula (I) to calculate an estimated cumulative packing reduction amount, and the estimated cumulative packing reduction amount is used as an index of the amount of voids around the briquettes.
A method for estimating the amount of voids around briquettes.
[3] A method for producing coke using a blended coal containing molded coal and powdered coal, comprising:
For a coal blend sample selected for testing, a relational expression (II) between an accumulated packing reduction amount calculated by the analysis method of the void volume around the coal briquette described in the above [1] and a lower limit of the coal briquette SV range in which the coke strength is constant even if the coal briquette SV is changed is obtained in advance;
For a blended coal which is a combination of powder coal to be used in coke production and arbitrarily selected coal briquettes for analysis, an accumulated packing reduction is calculated according to the analysis method for the void volume around the coal briquettes described in [1] above, or an estimated accumulated packing reduction is calculated according to the estimation method for the void volume around the coal briquettes described in [2] above,
The integrated filling reduction amount or the estimated integrated filling reduction amount is substituted into the relational expression (II) to obtain a lower limit value of the briquette coal part SV;
Produce briquettes having an actual SV value equal to or greater than the lower limit SV value of the briquettes,
The blended coal composed of the powdered coal to be used and the produced molded coal is subjected to coke production.
Coke manufacturing method.

本発明の一態様によれば、成型炭と粉炭とを含む配合炭を容器に充填した際に生じる成型炭周囲の空隙を粉炭の粒度構成によらず高精度に解析可能である、成型炭周囲の空隙量の解析方法、当該解析方法を用いた成型炭周囲の空隙量の推定方法、及び、当該解析方法又は当該推定方法を用いて高強度のコークスを製造する方法が提供され得る。 According to one aspect of the present invention, a method for analyzing the amount of voids around molded coal, which is generated when a coal blend containing molded coal and powdered coal is filled into a container, can be provided that can analyze with high accuracy the voids around the molded coal regardless of the particle size composition of the powdered coal, a method for estimating the amount of voids around molded coal using the analysis method, and a method for producing high-strength coke using the analysis method or the estimation method.

本発明の一態様に係る画像処理フローについて説明する概略図である。FIG. 2 is a schematic diagram illustrating an image processing flow according to one aspect of the present invention. 充填低下量について説明する概略図である。FIG. 4 is a schematic diagram for explaining a filling reduction amount. 実施例及び従来例で用いた粉炭の粒度分布を示す図である。FIG. 1 is a diagram showing particle size distribution of powdered coal used in the examples and the conventional example. 実施例1におけるX線CT画像を示す図である。FIG. 2 is a diagram showing an X-ray CT image in Example 1. 実施例1における、粉砕炭(水分率4質量%)を用いたときの、膨張処理回数と充填低下量との関係を示す図である。FIG. 1 is a diagram showing the relationship between the number of expansion treatments and the amount of filling reduction when pulverized coal (moisture content: 4% by mass) is used in Example 1. 実施例1における、粉砕炭(水分率10質量%)を用いたときの、膨張処理回数と充填低下量との関係を示す図である。FIG. 1 is a diagram showing the relationship between the number of expansion treatments and the amount of filling reduction when pulverized coal (moisture content: 10% by mass) is used in Example 1. 実施例1における、整粒炭を用いたときの、膨張処理回数と充填低下量との関係を示す図である。FIG. 1 is a diagram showing the relationship between the number of expansion treatments and the amount of packing reduction when granulated coal is used in Example 1. 実施例1における、粗粒炭と塊成炭との組合せを用いたときの、膨張処理回数と充填低下量との関係を示す図である。FIG. 1 is a diagram showing the relationship between the number of expansion treatments and the amount of packing reduction when a combination of coarse coal and agglomerated coal is used in Example 1. 従来例1における、粉砕炭(水分率4質量%)を用いたときの、成型炭からの距離と嵩密度変化量との関係を示す図である。FIG. 1 is a diagram showing the relationship between the distance from molded coal and the amount of change in bulk density when pulverized coal (moisture content: 4% by mass) is used in Conventional Example 1. 従来例1における、粉砕炭(水分率10質量%)を用いたときの、成型炭からの距離と嵩密度変化量との関係を示す図である。FIG. 1 is a diagram showing the relationship between the distance from molded coal and the amount of change in bulk density when pulverized coal (moisture content: 10% by mass) is used in Conventional Example 1. 従来例1における、整粒炭を用いたときの、成型炭からの距離と嵩密度変化量との関係を示す図である。FIG. 1 is a diagram showing the relationship between the distance from the molded coal and the amount of change in bulk density when granulated coal is used in Conventional Example 1. 従来例1における、粗粒炭と塊成炭との組合せを用いたときの、成型炭からの距離と嵩密度変化量との関係を示す図である。FIG. 11 is a diagram showing the relationship between the distance from the briquettes and the amount of change in bulk density when a combination of coarse coal and agglomerated coal is used in Conventional Example 1. 実施例2における、粉炭の3mm篩上質量割合と積算充填低下量との関係を示す図である。1 is a diagram showing the relationship between the mass fraction of powder coal on a 3 mm sieve and the cumulative filling reduction amount in Example 2. 実施例2における、粉炭の6mm篩上質量割合と積算充填低下量との関係を示す図である。FIG. 11 is a diagram showing the relationship between the 6 mm sieve mass fraction of powder coal and the cumulative filling reduction amount in Example 2. 実施例2における、粉炭の質量平均径と積算充填低下量との関係を示す図である。FIG. 11 is a diagram showing the relationship between the mass mean diameter of powder coal and the cumulative amount of packing reduction in Example 2. 実施例2における、粉炭の水分率と積算充填低下量との関係を示す図である。FIG. 11 is a diagram showing the relationship between the moisture content of powder coal and the cumulative amount of packing reduction in Example 2. 実施例2-1における、粉炭の3mm篩上質量割合及び水分率から推定した積算充填低下量と実施例1の手順で求めた積算充填低下量との関係を示す図である。This is a figure showing the relationship between the cumulative loading reduction amount estimated from the 3 mm sieve mass fraction and moisture content of powder coal in Example 2-1 and the cumulative loading reduction amount obtained by the procedure of Example 1. 実施例2-2における、粉炭の6mm篩上質量割合及び水分率から推定した積算充填低下量と実施例1の手順で求めた積算充填低下量との関係を示す図である。This is a figure showing the relationship between the cumulative filling loss amount estimated from the 6 mm sieve mass fraction and moisture content of the powder coal in Example 2-2 and the cumulative filling loss amount obtained by the procedure of Example 1. 実施例2-3における、粉炭の質量平均径及び水分率から推定した積算充填低下量と実施例1の手順で求めた積算充填低下量との関係を示す図である。FIG. 11 is a diagram showing the relationship between the cumulative packing reduction amount estimated from the mass mean diameter and moisture content of powder coal in Example 2-3 and the cumulative packing reduction amount obtained by the procedure of Example 1. 参考例1における、粉炭の3mm篩上質量割合から推定した積算充填低下量と実施例1の手順で求めた積算充填低下量との関係を示す図である。This is a diagram showing the relationship between the cumulative loading reduction amount estimated from the 3 mm sieve mass fraction of powdered coal in Reference Example 1 and the cumulative loading reduction amount obtained by the procedure of Example 1. 参考例2における、粉炭の6mm篩上質量割合から推定した積算充填低下量と実施例1の手順で求めた積算充填低下量との関係を示す図である。This figure shows the relationship between the cumulative loading reduction amount estimated from the 6 mm sieve mass fraction of powdered coal in Reference Example 2 and the cumulative loading reduction amount obtained by the procedure of Example 1. 参考例3における、粉炭の質量平均径から推定した積算充填低下量と実施例1の手順で求めた積算充填低下量との関係を示す図である。13 is a diagram showing the relationship between the cumulative packing reduction amount estimated from the mass mean diameter of powder coal in Reference Example 3 and the cumulative packing reduction amount obtained by the procedure of Example 1. FIG. 参考例4における、粉炭の水分率から推定した積算充填低下量と実施例1の手順で求めた積算充填低下量との関係を示す図である。13 is a diagram showing the relationship between the cumulative loading reduction amount estimated from the moisture content of powdered coal in Reference Example 4 and the cumulative loading reduction amount obtained by the procedure of Example 1. FIG. 実施例2-4における、粉炭の3mm篩上質量割合及び水分率から推定した積算充填低下量と実施例1の手順で求めた積算充填低下量との関係を示す図である。This is a diagram showing the relationship between the cumulative loading reduction amount estimated from the 3 mm sieve mass fraction and moisture content of powder coal in Example 2-4 and the cumulative loading reduction amount obtained by the procedure of Example 1. 実施例2-5における、粉炭の6mm篩上質量割合及び水分率から推定した積算充填低下量と実施例1の手順で求めた積算充填低下量との関係を示す図である。This is a diagram showing the relationship between the cumulative loading reduction amount estimated from the 6 mm sieve mass fraction and moisture content of powder coal in Example 2-5 and the cumulative loading reduction amount obtained by the procedure of Example 1. 実施例2-6における、粉炭の質量平均径及び水分率から推定した積算充填低下量と実施例1の手順で求めた積算充填低下量との関係を示す図である。FIG. 13 is a diagram showing the relationship between the cumulative packing reduction amount estimated from the mass mean diameter and moisture content of powder coal in Example 2-6 and the cumulative packing reduction amount obtained by the procedure of Example 1. 評価例1における、整粒炭を用いたときの、成型炭部SVとコークス強度DI150 6との関係を示す図である。FIG. 1 is a graph showing the relationship between the molded coal part SV and the coke strength DI 150 6 when granulated coal was used in Evaluation Example 1. 評価例1における、整粒炭を用いたときの、成型炭部SVとコークス強度DI150 15との関係を示す図である。FIG. 1 is a diagram showing the relationship between the molded coal part SV and the coke strength DI 150 15 when granulated coal was used in Evaluation Example 1. 評価例1における、粉砕炭(水分率4質量%)を用いたときの、成型炭部SVとコークス強度DI150 6との関係を示す図である。FIG. 1 is a graph showing the relationship between the molded coal part SV and the coke strength DI 150 6 when pulverized coal (moisture content: 4 mass%) was used in Evaluation Example 1. 評価例1における、粉砕炭(水分率10質量%)を用いたときの、成型炭部SVとコークス強度DI150 6との関係を示す図である。FIG. 1 is a graph showing the relationship between the molded coal part SV and the coke strength DI 150 6 when pulverized coal (moisture content: 10 mass%) was used in Evaluation Example 1. コークス強度DI150 15が一定に維持される限度である成型炭部SV下限値の、比較評価例1に基づく値と乾留試験に基づく値との関係を示す図である。FIG. 13 is a graph showing the relationship between the value based on Comparative Evaluation Example 1 and the value based on a carbonization test with respect to the lower limit value of the briquette part SV, which is the limit at which the coke strength DI 150 15 is maintained constant. 実施例1における、積算充填低下量と、評価例1における、コークス強度DI150 6が一定に維持される限度である成型炭部SV下限値との関係を示す図である。FIG. 1 is a diagram showing the relationship between the cumulative packed-in reduction amount in Example 1 and the lower limit value of the briquette coal part SV, which is the limit at which the coke strength DI 150 6 is maintained constant, in Evaluation Example 1. 実施例1における、積算充填低下量と、評価例1における、コークス強度DI150 15が一定に維持される限度である成型炭部SV下限値との関係を示す図である。FIG. 1 is a diagram showing the relationship between the cumulative packed decrease amount in Example 1 and the lower limit value of the briquette part SV, which is the limit at which the coke strength DI 150 -15 is maintained constant, in Evaluation Example 1. 実施例2-5における、積算充填低下量と、評価例1における、コークス強度DI150 6が一定に維持される限度である成型炭部SV下限値との関係を示す図である。FIG. 13 is a graph showing the relationship between the cumulative packed decrease amount in Example 2-5 and the lower limit value of the briquette part SV, which is the limit at which the coke strength DI 150 6 is maintained constant in Evaluation Example 1.

以下、本発明の例示の態様(本開示で、本実施態様ということもある。)について説明するが、本発明は以下の態様に限定されるものではない。 The following describes exemplary aspects of the present invention (sometimes referred to as the present embodiment in this disclosure), but the present invention is not limited to the following aspects.

[成型炭周囲の空隙量の解析方法]
本発明の一態様は、粉炭と成型炭とで構成される配合炭における、成型炭周囲の空隙量の解析方法を提供する。本開示で、粉炭とは、粉砕された石炭を指し、粉砕後に更に粒度調整された石炭、及び塊成炭が混在している場合は塊成炭を包含する。本開示で、塊成炭とは、粉炭(一態様において0.3mm篩下の粉炭)に粘結補填材を添加し加圧成型して得られる球相当半径6mm未満の石炭を指す。本開示で、成型炭とは、粉炭(一態様において0.3mm篩下の粉炭)に粘結補填材を添加し加圧成型して得られる球相当半径6mm以上の石炭を指す。
[Method for analyzing the amount of voids around molded coal]
One aspect of the present invention provides a method for analyzing the amount of voids around the briquettes in a coal blend composed of pulverized coal and briquettes. In this disclosure, pulverized coal refers to pulverized coal, and includes coal whose particle size has been further adjusted after pulverization, and agglomerated coal when agglomerated coal is mixed. In this disclosure, agglomerated coal refers to coal having a spherical equivalent radius of less than 6 mm obtained by adding a caking filler to pulverized coal (in one aspect, pulverized coal under a 0.3 mm sieve) and pressurizing the briquettes. In this disclosure, briquetted coal refers to coal having a spherical equivalent radius of 6 mm or more obtained by adding a caking filler to pulverized coal (in one aspect, pulverized coal under a 0.3 mm sieve) and pressurizing the briquettes.

本実施態様に係る成型炭周囲の空隙量の解析方法においては、X線CT(Computed Tomography)を用いて得た配合炭の断面画像を3D解析する。断面画像の3D解析によって成型炭周囲の空隙を評価しようとする場合、当該空隙は、充填性が低くなっている領域であるが密度が完全にゼロではないため、どの領域を空隙とみなすかによって評価結果が変わる。前述の特許文献1に記載される方法では、断面画像の2D解析によって、空隙を成型炭周縁からの幅で評価するため、空隙が小さい場合には空隙とみなす領域の決定が難しい。特に、塊成炭と成型炭とが混在している場合、これらを互いに明確に区別できないために成型炭の判別精度が低く、成型炭周囲の空隙量の高精度な評価が困難であった。 In the method for analyzing the amount of voids around the molded coal according to this embodiment, a cross-sectional image of the blended coal obtained using X-ray computed tomography (CT) is analyzed in 3D. When attempting to evaluate the voids around the molded coal by 3D analysis of the cross-sectional image, the voids are areas with low packing but not completely zero density, so the evaluation results change depending on which area is considered to be a void. In the method described in the aforementioned Patent Document 1, the voids are evaluated by the width from the edge of the molded coal through 2D analysis of the cross-sectional image, so it is difficult to determine the area to be considered as a void when the voids are small. In particular, when agglomerated coal and molded coal are mixed, they cannot be clearly distinguished from each other, so the accuracy of distinguishing the molded coal is low, making it difficult to evaluate the amount of voids around the molded coal with high accuracy.

そこで、本発明者らは、成型炭周囲の空隙を断面画像の3D解析によって評価すること、及びその際、空隙とみなした部位において、密度に体積を乗ずることで体積の重みを考慮した、充填低下量という指標を採用することを着想した。 The inventors therefore came up with the idea of evaluating the voids around the molded coal by 3D analysis of cross-sectional images, and in doing so, adopting an index called the amount of packing reduction, which takes into account the weight of volume by multiplying the density by the volume in areas considered to be voids.

本発明の一態様は、
成型炭と粉炭とを含む配合炭を容器に充填した際に生じる成型炭周囲の空隙量の解析方法であって、
試験装置を用いて自然落下により成型炭と粉炭とを試験容器に充填し、
X線CTにより試験容器内の断面画像を撮像し、
得られた断面画像の3D解析によって成型炭周囲の空隙量を求め、
前記3D解析において、
密度が既定値を超える高密度部と、密度が前記既定値以下である低密度部とをそれぞれ規定し、
前記高密度部を既定形状パラメータでフィルタリングして成型炭部と規定し、
任意に、前記高密度部のうち、前記成型炭部以外の領域であり且つ体積が既定値を超える領域を塊成炭部と規定し、前記塊成炭部は画素データ不存在として取扱うことで解析対象から除外し、
前記成型炭部の周縁から前記成型炭部と相似形で1回あたり1単位体積を膨張させる膨張処理を(n+1)回以上行い、但しnは自然数であり、
前記(n+1)は、(n+1)回目の膨張処理で体積増加した領域の平均密度が、n回目の膨張処理で体積増加した領域の平均密度と略同一である数であり、
n回目以降の膨張処理で体積増加した領域の平均密度を閾値とし、
膨張処理の各回において体積増加した領域について、密度が前記閾値を超える領域を粉炭部、密度が前記閾値以下である領域を空隙部とそれぞれ規定し、
膨張処理の各回において体積増加した領域について、前記粉炭部の平均密度と前記空隙部の平均密度との差分値を算出し、
膨張処理の各回において体積増加した領域の体積に前記差分値を乗じて充填低下量を算出し、
前記充填低下量を全膨張処理回数で積算して積算充填低下量を算出し、前記積算充填低下量を成型炭周囲の空隙量の指標とする、
成型炭周囲の空隙量の解析方法を提供する。
充填低下量を用いた評価によれば、成型炭周囲の空隙の大きさ及び形状の制約なく、空隙量の高精度な定量化評価が可能である。
One aspect of the present invention is
A method for analyzing a volume of voids around briquettes that occurs when a coal blend containing briquettes and powdered coal is packed into a container, comprising:
Using a test device, the briquettes and pulverized coal are loaded into a test vessel by gravity.
A cross-sectional image of the inside of the test vessel is taken using X-ray CT.
The amount of voids around the molded coal is calculated by 3D analysis of the cross-sectional image obtained.
In the 3D analysis,
A high density portion having a density exceeding a predetermined value and a low density portion having a density equal to or lower than the predetermined value are defined,
The high density portion is filtered with a predetermined shape parameter to define it as a briquette portion;
Optionally, a region of the high density portion other than the molded coal portion and having a volume exceeding a predetermined value is defined as an agglomerated coal portion, and the agglomerated coal portion is excluded from the analysis target by treating it as having no pixel data;
An expansion process is performed (n+1) times or more in which one unit volume is expanded from the periphery of the molded coal part in a shape similar to the molded coal part each time, where n is a natural number;
The (n+1) is a number at which the average density of the region whose volume has increased by the (n+1)th expansion process is substantially equal to the average density of the region whose volume has increased by the nth expansion process,
The average density of the area whose volume has increased by the nth or subsequent expansion process is set as a threshold value.
Regarding the region whose volume has increased in each expansion treatment, the region whose density exceeds the threshold value is defined as a powder coal portion, and the region whose density is equal to or less than the threshold value is defined as a void portion,
Calculate the difference between the average density of the powder coal portion and the average density of the void portion for the area whose volume has increased in each expansion treatment,
calculating a filling reduction amount by multiplying the volume of the area that has increased in volume in each expansion process by the difference value;
The amount of packing decrease is integrated over the total number of expansion processes to calculate an integrated amount of packing decrease, and the integrated amount of packing decrease is used as an index of the amount of voids around the molded coal.
A method for analyzing the amount of voids around a coal mold is provided.
Evaluation using the amount of packing reduction enables highly accurate quantitative evaluation of the amount of voids around the molded coal, without restrictions on the size and shape of the voids.

本開示で、膨張処理とは、ある1個のボクセル(単位体積)(中央ボクセル)とそれに隣接する26個のボクセル(周辺ボクセル)を考え、周辺ボクセルの最大値を計算し、中央ボクセルの値より大きければ、中心ボクセルの値を最大値に置き換える処理を意味する。断面画像において、成型炭はその周囲よりも高密度である(すなわちX線CT値が大きい)ことから、成型炭周縁に対してこの膨張処理を行うことにより、成型炭が1ボクセル/回にて相似形に膨張されていくことになる。 In this disclosure, the expansion process refers to a process that considers one voxel (unit volume) (central voxel) and its 26 adjacent voxels (peripheral voxels), calculates the maximum value of the peripheral voxels, and if it is greater than the value of the central voxel, replaces the value of the central voxel with the maximum value. In cross-sectional images, the molded coal is denser (i.e. has a larger X-ray CT value) than its surroundings, so by performing this expansion process on the periphery of the molded coal, the molded coal is expanded into a similar shape at one voxel per time.

図1は、本発明の一態様における画像処理フローについて説明する概略図である。本実施態様の方法においては、ステップS11で取得したX線CT断面画像について、ステップS12~18で3D解析を行うことで、成型炭周囲の空隙を解析する。以下、図1を参照しながら、本実施態様に係る成型炭周囲の空隙量の解析方法の手順例について説明する。 Figure 1 is a schematic diagram illustrating an image processing flow in one embodiment of the present invention. In the method of this embodiment, the voids around the molded coal are analyzed by performing 3D analysis in steps S12 to S18 on the X-ray CT cross-sectional image acquired in step S11. Below, an example of the procedure for the method of analyzing the amount of voids around the molded coal according to this embodiment will be described with reference to Figure 1.

(ステップS11)
本ステップでは、試験装置を用いて自然落下により成型炭と粉炭とを試験容器に充填し、X線CTにより試験容器内の断面画像を撮像する。成型炭及び粉炭の各々を構成する石炭は、1種でも2種以上の組合せでもよい。粉炭は、一態様において塊成炭を含み、又は一態様において塊成炭を含まない。試験装置及びX線CT装置は市販で入手可能な装置であってよく、X線CTの測定条件は所望に応じて適宜設定してよい。ボクセルサイズは、良好な解析精度を得る観点から、小さいことが好ましく特に限定されない。なお、本発明の一態様においては0.488mm×0.488mm×0.488mmとした。
(Step S11)
In this step, the briquettes and the powdered coal are filled into the test vessel by natural drop using a test device, and a cross-sectional image of the inside of the test vessel is taken by X-ray CT. The coal constituting each of the briquettes and the powdered coal may be one type or a combination of two or more types. In one embodiment, the powdered coal includes agglomerated coal, or does not include agglomerated coal. The test device and the X-ray CT device may be commercially available devices, and the measurement conditions of the X-ray CT may be appropriately set as desired. From the viewpoint of obtaining good analysis accuracy, the voxel size is preferably small, but is not particularly limited. In one embodiment of the present invention, it is set to 0.488 mm x 0.488 mm x 0.488 mm.

(ステップS12)
ステップS12~18において、3D解析にはX線CT装置の付属ソフトを用いてよい。ステップS12では、ステップS11で取得した断面画像(以下、元画像ともいう。)内の解析範囲(以下、ROIともいう。)を密度によって二値化し、密度が既定値を超える高密度部と、密度が既定値以下である低密度部とをそれぞれ規定する。上記既定値は、成型炭及び存在する場合の塊成炭が高密度部に分類され、塊成炭以外の粉炭部が低密度部に分類されるように適宜設定してよく、例えば、1.0g/cm3としてよい。
(Step S12)
In steps S12 to S18, software attached to the X-ray CT scanner may be used for the 3D analysis. In step S12, the analysis range (hereinafter also referred to as ROI) in the cross-sectional image (hereinafter also referred to as original image) acquired in step S11 is binarized according to density, and a high density part whose density exceeds a preset value and a low density part whose density is equal to or lower than the preset value are respectively defined. The preset value may be appropriately set so that the briquettes and agglomerated coal, if present, are classified into the high density part, and the powder coal part other than the agglomerated coal is classified into the low density part, and may be, for example, 1.0 g/cm 3 .

(ステップS13)
本ステップでは、上記の高密度部を既定形状パラメータでフィルタリングして成型炭部を規定する。成型炭部は、以下の手順で規定してよい。
a) ステップS12で規定した高密度部について、ノイズ除去のため、小粒子(一態様において、100ボクセル以下の小粒子)を除去する。
b) 上記a)の処理後の高密度部について、粒子を分離して1つ1つを区別できるようにする。分離は、ラベリング処理で行ってよい。
c) 上記b)の処理後の高密度部から、既定形状パラメータでのフィルタリングによって、成型炭に相当する領域を抽出する。既定形状パラメータは、成型炭部を正確に規定できるように設定されたものであり、一態様において、Anisotropy(異形度)、Flatness(平坦度)、Elongation(伸長度)、Volume(体積)等のうち1つ又は2つ以上であってよい。成型炭のサイズによらず所望のフィルタリングを容易に実施できる点で、Anisotropy、Flatness、及びElongationの組合せが好ましい。例えば、Anisotropy<0.9,Flatness<0.4,且つElongation>0.4、等によりフィルタリングを行ってよい。
d) 上記c)で抽出した領域について、くびれの検出及び除去を行う。一般に、成型炭はバリの部分にくびれを有する場合が多いためである。くびれの検出は、ウォーターシェッド法を用いて行ってよい。
e) 上記d)の処理後の領域を、1回収縮(すなわち1ボクセルの収縮処理)、上記a)と同手順の小粒子除去、1回膨張(すなわち1ボクセルの膨張処理)、スムージングの順で処理し、残った領域を成型炭部と規定する。
(Step S13)
In this step, the high density portion is filtered with a predetermined shape parameter to define a briquette portion. The briquette portion may be defined by the following procedure.
a) For the high density portion defined in step S12, small particles (in one embodiment, small particles of 100 voxels or less) are removed to remove noise.
b) After the above process of a), the particles in the high density portion are separated so that they can be distinguished one by one. The separation may be performed by a labeling process.
c) From the high density portion after the processing of b), a region corresponding to the molded coal is extracted by filtering with a preset shape parameter. The preset shape parameter is set so as to accurately define the molded coal portion, and in one embodiment, may be one or more of anisotropy (irregularity), flatness (flatness), elongation (elongation), volume (volume), etc. A combination of anisotropy, flatness, and elongation is preferred in that desired filtering can be easily performed regardless of the size of the molded coal. For example, filtering may be performed with anisotropy < 0.9, flatness < 0.4, and elongation > 0.4, etc.
d) Detect and remove constrictions from the area extracted in c) above. This is because molded coal generally has constrictions at the burr portion. Constrictions may be detected using the watershed method.
e) The area after processing d) above is processed in the following order: one contraction (i.e., one voxel contraction process), small particle removal in the same procedure as a) above, one expansion (i.e., one voxel expansion process), and smoothing, and the remaining area is defined as the molded coal part.

(ステップS14)
本ステップは、粉炭が塊成炭を含む場合のみ実施してよい。本ステップでは、ステップS12で規定した高密度部のうち、ステップS13で規定した成型炭部以外の領域であり且つ体積が既定値を超える領域を塊成炭部と規定する。当該塊成炭部は、画素データ不存在として取扱う。粉炭が塊成炭を含む場合、当該塊成炭は、球相当半径6mm未満であるが密度は成型炭同様に高い。成型炭に加えてこのような塊成炭が膨張処理対象領域に含まれると、空隙を正確に評価できなくなる恐れがある。したがって、配合炭が塊成炭を含む場合には、当該塊成炭を解析対象から除外する。
(Step S14)
This step may be performed only when the powdered coal contains agglomerated coal. In this step, the area of the high density portion defined in step S12 that is other than the briquetted coal portion defined in step S13 and has a volume exceeding a predetermined value is defined as the agglomerated coal portion. The agglomerated coal portion is treated as having no pixel data. When the powdered coal contains agglomerated coal, the agglomerated coal has a sphere-equivalent radius of less than 6 mm but has a high density similar to that of briquetted coal. If such agglomerated coal is included in the region to be expanded in addition to the briquetted coal, there is a risk that the voids cannot be accurately evaluated. Therefore, when the blended coal contains agglomerated coal, the agglomerated coal is excluded from the analysis target.

具体的には、ステップS12で規定した高密度部から、ステップS13で規定した成型炭部を差し引き、残った領域をラベリングする。このラベリングされた領域から、体積によるフィルタリング(一態様において、Volume>15mm3の体積パラメータを満足する領域のみを選択)によって、塊成炭部を抽出する。 Specifically, the molded coal part defined in step S13 is subtracted from the high density part defined in step S12, and the remaining area is labeled. From this labeled area, the agglomerated coal part is extracted by filtering based on volume (in one embodiment, only areas that satisfy a volume parameter of Volume>15 mm3 are selected).

なお、配合炭が塊成炭を含む場合には、成型炭周囲に加えて塊成炭周囲にも空隙が形成される。成型炭周囲に塊成炭が存在する場合、成型炭周囲の充填低下量として塊成炭周囲の充填低下量を含むことが考えられるため、塊成炭周囲の充填低下量を求め、これを成型炭周囲の充填低下量から差し引くことが考えられる。しかし、本発明者らの検討によれば、成型炭周囲の充填低下量に含まれる塊成炭周囲の充填低下量の割合は軽微であり、また塊成炭周囲の空隙の存在がコークス強度に与える影響は軽微である。したがって、本実施態様の充填低下量の評価において、塊成炭周囲の充填低下量は考慮しなくてよいものとする。具体的には、本実施態様の3D解析において、塊成炭に対応する部位は、画素データを有さない領域として取扱うことによって本実施態様の解析対象から除外する。本発明では、積算充填低下量は成型炭周囲の充填低下量のことを指す。 When the coal blend contains agglomerated coal, voids are formed around the agglomerated coal in addition to around the briquettes. When agglomerated coal is present around the briquettes, the amount of packing drop around the briquettes may include the amount of packing drop around the agglomerates, so it is possible to determine the amount of packing drop around the agglomerates and subtract it from the amount of packing drop around the briquettes. However, according to the study by the inventors, the proportion of the amount of packing drop around the agglomerates included in the amount of packing drop around the briquettes is small, and the presence of voids around the agglomerates has a small effect on coke strength. Therefore, in the evaluation of the amount of packing drop in this embodiment, the amount of packing drop around the agglomerates does not need to be taken into account. Specifically, in the 3D analysis of this embodiment, the area corresponding to the agglomerated coal is treated as an area that does not have pixel data and is therefore excluded from the analysis target of this embodiment. In this invention, the cumulative amount of packing drop refers to the amount of packing drop around the briquettes.

(ステップS15)
本ステップでは、元画像のROI内において、上記ステップS13で規定した成型炭部について、成型炭部の周縁から当該成型炭部と相似形で1回あたり1単位体積(すなわち1ボクセル)を膨張させる膨張処理を(n+1)回以上行う。但しnは自然数である。(n+1)は、(n+1)回目の膨張処理で体積増加した領域の平均密度が、n回目の膨張処理で体積増加した領域の平均密度と略同一である数である。ここで、略同一とは、(n+1)回目の膨張処理で体積増加した領域の平均密度が、n回目の膨張処理で体積増加した領域の平均密度に対して、一態様において±0.3%以内が例示できる。ここで、±0.3%は測定ばらつき相当であり、特にこの値に限定されない。
(Step S15)
In this step, within the ROI of the original image, the expansion process is performed (n+1) times or more to expand one unit volume (i.e., one voxel) per time from the periphery of the molded coal part in a shape similar to the molded coal part from the periphery of the molded coal part. Here, n is a natural number. (n+1) is a number in which the average density of the area whose volume has increased by the (n+1)th expansion process is approximately the same as the average density of the area whose volume has increased by the nth expansion process. Here, approximately the same can be exemplified by the average density of the area whose volume has increased by the (n+1)th expansion process being within ±0.3% in one embodiment with respect to the average density of the area whose volume has increased by the nth expansion process. Here, ±0.3% is equivalent to the measurement variation and is not particularly limited to this value.

膨張処理が1回完了するごとに、当該1回の膨張処理で増加した領域の体積(すなわち1回の膨張処理による体積増分)及び平均密度を求める。体積は、体積増加した領域のボクセル数に対応する。平均密度は、体積増加した領域における各ボクセルのCT値を当該領域のボクセル数で数平均することで算出する。膨張処理は、少なくとも、1回の膨張処理で増加した領域の平均密度が膨張処理回数を増加させても略同一となるまで行う。全膨張処理回数は、(n+1)回でもよいし、(n+1)回よりも、例えば10回以上、又は20回以上、多くてもよい。一態様において、全膨張処理回数は、30~50回、例えば30回であり得る。 Each time an expansion process is completed, the volume of the area that has increased by that expansion process (i.e., the volume increase by one expansion process) and the average density are calculated. The volume corresponds to the number of voxels in the area whose volume has increased. The average density is calculated by averaging the CT values of each voxel in the area whose volume has increased by the number of voxels in that area. The expansion process is performed at least until the average density of the area that has increased by one expansion process becomes approximately the same even if the number of expansion processes is increased. The total number of expansion processes may be (n+1) times, or may be more than (n+1), for example, 10 times or more, or 20 times or more. In one aspect, the total number of expansion processes may be 30 to 50 times, for example, 30 times.

(ステップS16)
本ステップでは、n回目以降の膨張処理で体積増加した領域の平均密度を閾値とし、膨張処理の各回において体積増加した領域について、密度が当該閾値を超える領域を粉炭部、密度が当該閾値以下である領域を空隙部とそれぞれ規定する。
(Step S16)
In this step, the average density of the area whose volume has increased by the expansion process from the nth time onwards is set as a threshold value, and for the area whose volume has increased by each expansion process, areas whose density exceeds this threshold are defined as powdered coal areas, and areas whose density is below this threshold are defined as void areas.

(ステップS17)
次いで、膨張処理の各回において体積増加した領域について、粉炭部の平均密度と空隙部の平均密度との差分値を算出する。粉炭部の平均密度は、粉炭部に含まれる各ボクセルのCT値を粉炭部全体のボクセル数で数平均した値であり、空隙部の平均密度は、空隙部に含まれる各ボクセルのCT値を空隙部全体のボクセル数で数平均した値である。次いで、膨張処理の各回において体積増加した領域の体積に上記の差分値を乗じて充填低下量を算出する。
(Step S17)
Next, for the area whose volume has increased in each expansion process, a difference value between the average density of the powder coal part and the average density of the void part is calculated. The average density of the powder coal part is a value obtained by averaging the CT values of each voxel contained in the powder coal part by the number of voxels in the entire powder coal part, and the average density of the void part is a value obtained by averaging the CT values of each voxel contained in the void part by the number of voxels in the entire void part. Next, the volume of the area whose volume has increased in each expansion process is multiplied by the difference value to calculate the amount of filling reduction.

(ステップS18)
本ステップでは、ステップS17で算出した充填低下量を全膨張処理回数で積算して積算充填低下量を算出する。この積算充填低下量を成型炭周囲の空隙量の指標とすることができる。図2は、本開示の充填低下量について説明する概略図である。本ステップで上記のように算出される充填低下量は、ある膨張処理回数(一態様において、上記のn回)までは空隙の存在により変化するが、これを上回る回数(一態様において、上記の(n+1)回以上)であると、膨張処理で増加する領域に空隙部が存在しなくなるためほぼ不変となる。例えば、図2において、膨張処理8回までは、1回の膨張処理で増加した領域の充填低下量が変化するが、膨張処理9回以降は当該充填低下量が膨張処理8回の値からほぼ変化しなくなる。充填低下量がほぼ不変となるまでの膨張処理回数を通じた充填低下量の累積値は、成型炭周囲に存在する空隙全量を反映する。上記観点から、一態様においては、充填低下量を(n+1)回以上である全膨張処理回数で合計して得られる積算充填低下量が、成型炭周囲の空隙量の指標として有用である。
(Step S18)
In this step, the amount of packing reduction calculated in step S17 is integrated over the total number of expansion processes to calculate the integrated amount of packing reduction. This integrated amount of packing reduction can be used as an index of the amount of voids around the molded coal. FIG. 2 is a schematic diagram illustrating the amount of packing reduction of the present disclosure. The amount of packing reduction calculated as described above in this step changes due to the presence of voids up to a certain number of expansion processes (in one embodiment, the above n times), but if the number of times exceeds this number (in one embodiment, the above (n+1) times or more), the amount of packing reduction becomes almost constant because there are no voids in the area increased by the expansion process. For example, in FIG. 2, the amount of packing reduction in the area increased by one expansion process changes up to the eighth expansion process, but after the ninth expansion process, the amount of packing reduction becomes almost constant from the value of the eighth expansion process. The cumulative value of the amount of packing reduction through the number of expansion processes until the amount of packing reduction becomes almost constant reflects the total amount of voids present around the molded coal. From the above viewpoint, in one embodiment, the integrated amount of packing reduction obtained by summing the amount of packing reduction over the total number of expansion processes that is (n+1) times or more is useful as an index of the amount of voids around the molded coal.

[成型炭周囲の空隙量の推定方法]
本発明の一態様はまた、粉炭と成型炭とで構成される配合炭における、成型炭周囲の空隙量の推定方法を提供する。
[Method for estimating the amount of voids around molded coal]
Another aspect of the present invention provides a method for estimating a void volume around a briquette in a coal blend composed of fine coal and briquette.

例えば、前述の特許文献1に記載される方法では、粒度構成、水分率等の性状が異なる種々の粉炭を使用する場合に、断面画像の解析をその都度実施する必要があった。一方、本実施態様に係る成型炭周囲の空隙量の解析方法を用いると、粉炭の粒度構成、水分率等の性状と、積層充填低下量との関係を予め求めておくことによって、性状が種々異なる粉炭の積層充填低下量を、実際の画像解析無しで推定することが可能である。 For example, in the method described in the aforementioned Patent Document 1, when using various types of powdered coal with different properties such as particle size composition and moisture content, it was necessary to analyze the cross-sectional image each time. On the other hand, by using the method for analyzing the void volume around the molded coal according to the present embodiment, it is possible to estimate the layered packing drop amount of powdered coal with various different properties without actual image analysis by determining in advance the relationship between the particle size composition, moisture content, and other properties of the powdered coal and the layered packing drop amount.

積算充填低下量を左右する因子としては、粉炭の粒度構成、粉炭の水分率、及びその他の因子が考えられるが、本実施態様に係る成型炭周囲の空隙の解析方法を用いて求められた積算充填低下量について本発明者らが検討したところによれば、成型炭周囲の空隙量には粉炭の粒度構成と粉炭の水分率とが特に大きく影響していると考えられる。そして、粒度構成の中でも、粉炭に含まれる粗大粒子の質量割合がとりわけ影響していると考えられる。また粉炭の水分率は、粉炭の流動性に影響することによって成型炭周囲の空隙量に影響すると考えられる。 Factors that affect the cumulative packing loss amount include the particle size composition of the powdered coal, the moisture content of the powdered coal, and other factors. However, according to the inventors' study of the cumulative packing loss amount obtained using the analysis method for the voids around the molded coal according to this embodiment, it is believed that the particle size composition of the powdered coal and the moisture content of the powdered coal have a particularly large effect on the void volume around the molded coal. Among the particle size composition, it is believed that the mass proportion of coarse particles contained in the powdered coal has a particularly large effect. It is also believed that the moisture content of the powdered coal affects the void volume around the molded coal by affecting the fluidity of the powdered coal.

そこで、粉炭の粒度構成、好ましくは粉炭中の粗大粒子の質量割合を用い、当該粒度構成及び粉炭の水分率の組み合わせと積算充填低下量との関係を求めることで成型炭周囲の空隙を推定する方法の構築を着想した。 Therefore, we came up with the idea of developing a method to estimate the voids around the briquettes by using the particle size composition of the pulverized coal, preferably the mass proportion of coarse particles in the pulverized coal, and determining the relationship between the combination of the particle size composition and the moisture content of the pulverized coal and the cumulative amount of packing reduction.

本発明の一態様は、
成型炭と粉炭とを含む配合炭を容器に充填した際に生じる成型炭周囲の空隙量の推定方法であって、
粒度構成が互いに異なる水準及び水分率が互いに異なる水準が含まれるように選定した複数種の粉炭サンプルの各々と、任意に選定した成型炭サンプルとの組合せである複数種の配合炭サンプルを調製し、
各配合炭サンプルについて、本実施態様の成型炭周囲の空隙量の解析方法に従ってサンプル積算充填低下量を求め、
前記粉炭サンプルの粒度構成及び水分率と前記サンプル積算充填低下量との関係に基づいて、粉炭の粒度構成及び水分率と積算充填低下量との関係式(I)を求め、
コークス製造における使用予定の粉炭と、任意に選定した解析用成型炭との組合せである配合炭について、前記使用予定の粉炭の粒度構成及び水分率の値を前記関係式(I)に代入して積算充填低下量推定値を算出し、前記積算充填低下量推定値を成型炭周囲の空隙量の指標とする、
成型炭周囲の空隙量の推定方法を提供する。
One aspect of the present invention is
A method for estimating a volume of voids around briquettes that occurs when a coal blend containing briquettes and powdered coal is filled into a container, comprising:
A plurality of blended coal samples are prepared by combining each of a plurality of powdered coal samples selected to include different levels of particle size composition and different levels of moisture content with an arbitrarily selected molded coal sample;
For each blended coal sample, the accumulated sample packing reduction amount was obtained according to the method for analyzing the void volume around the briquettes of this embodiment;
Based on the relationship between the particle size composition and moisture content of the powder coal sample and the cumulative loading reduction amount of the sample, a relationship formula (I) between the particle size composition and moisture content of the powder coal sample and the cumulative loading reduction amount is obtained;
For a blended coal which is a combination of powdered coal to be used in coke production and arbitrarily selected briquettes for analysis, a particle size composition and a moisture content of the powdered coal to be used are substituted into the relational formula (I) to calculate an estimated cumulative packing reduction amount, and the estimated cumulative packing reduction amount is used as an index of the amount of voids around the briquettes.
A method for estimating the amount of voids around a coal mold is provided.

<粉炭サンプルの選定>
本実施態様の推定方法で用いる粉炭サンプルは、粒度構成が互いに異なる水準及び水分率が互いに異なる水準が含まれるように選定する。粉炭サンプルは、粒度構成又は水分率が互いに同一である水準を含んでもよい。粉炭サンプルは、粒度構成及び水分率の各々が、一態様において2以上、好ましくは、3以上の異なる値を有する水準群で構成される。推定精度の観点では、異なる値の数が多い方が有利であるが、作業効率の観点では、上記の異なる値の数は、一態様において、10以下、又は8以下であってよい。
<Selection of powdered coal sample>
The pulverized coal samples used in the estimation method of this embodiment are selected so as to include different levels of particle size composition and different levels of moisture content. The pulverized coal samples may include levels in which the particle size composition or moisture content is the same. The pulverized coal samples are composed of a group of levels in which the particle size composition and moisture content each have two or more, preferably three or more, different values in one embodiment. From the viewpoint of estimation accuracy, it is advantageous to have a large number of different values, but from the viewpoint of work efficiency, the number of different values may be 10 or less, or 8 or less, in one embodiment.

推定に用いる粒度構成の値は、一態様において粗大粒子の質量割合の値であり、好ましくは、篩上質量割合及び粒径からなる群から選ばれる1つの値である。成型炭のサイズは、通常、30cc~120ccと想定される。粉炭中の粗大粒子の質量割合の指標としての篩上質量割合の篩サイズ、より具体的にはJIS Z 8801-1準拠の目開きサイズは、典型的には2mm以上であり、好ましくは、2.8mm以上、又は5.6mm以上である。篩サイズは、粉炭中の粗大粒子が成型炭周囲の空隙量に与える影響をより正確に見積もる観点から、一態様において、8mm以下、又は6.7mm以下であってよい。粒径としては、粗大粒子の存在が値に大きく寄与する指標である質量平均径が好ましいが、他の平均粒子径、又は粒度分布の関数表示で得られるパラメータ(例えば、50%径)等を採用してもよい。 The value of the particle size composition used for the estimation is, in one embodiment, the value of the mass proportion of coarse particles, and is preferably one value selected from the group consisting of the sieve mass proportion and the particle size. The size of the briquettes is usually assumed to be 30 cc to 120 cc. The sieve size of the sieve mass proportion as an index of the mass proportion of coarse particles in the briquettes, more specifically, the mesh size according to JIS Z 8801-1, is typically 2 mm or more, and preferably 2.8 mm or more, or 5.6 mm or more. In one embodiment, the sieve size may be 8 mm or less, or 6.7 mm or less, from the viewpoint of more accurately estimating the effect of the coarse particles in the briquettes on the amount of voids around the briquettes. As the particle size, the mass average diameter, which is an index to which the presence of coarse particles greatly contributes, is preferable, but other average particle diameters, or parameters obtained by functional expression of the particle size distribution (e.g., 50% diameter), etc. may be adopted.

<関係式(I)の導出>
各配合炭サンプルについて、前述した本発明の一態様に係る成型炭周囲の空隙量の解析方法に従ってサンプル積算充填低下量を求め、次いで、粉炭サンプルの粒度構成及び水分率とサンプル積算充填低下量との関係に基づいて、粉炭の粒度構成及び水分率と積算充填低下量との関係式(I)を導出する。一態様において、関係式(I)は下記関係式(I-1)のように表される。
積算充填低下量=a×[粉炭の粒度構成の値]+b×[粉炭の水分率の値]+c (I-1)
(式中、a及びbは、粉炭サンプルの粒度構成及び水分率とサンプル積算充填低下量との関係から導出された係数であり、cは、粉炭サンプルの粒度構成及び水分率とサンプル積算充填低下量との関係から導出された定数項である。)
粉炭サンプルの粒度構成及び水分率とサンプル積算充填低下量との関係から関係式(I)を導出する方法は、これに限定されないが例えば単回帰分析又は重回帰分析等の多変量解析であってよい。以下、これらの各々の例示の解析手順について説明する。
<Derivation of Relational Formula (I)>
For each coal blend sample, the sample cumulative packing loss is calculated according to the method for analyzing the void volume around the briquettes according to one embodiment of the present invention described above, and then, based on the relationship between the particle size composition and moisture content of the powder coal sample and the sample cumulative packing loss, a relational expression (I) between the particle size composition and moisture content of the powder coal sample and the cumulative packing loss is derived. In one embodiment, the relational expression (I) is expressed as the following relational expression (I-1).
Accumulative filling reduction amount = a × [value of particle size composition of powder coal] + b × [value of moisture content of powder coal] + c (I-1)
(In the formula, a and b are coefficients derived from the relationship between the particle size composition and moisture content of the powder coal sample and the cumulative sample loading reduction amount, and c is a constant term derived from the relationship between the particle size composition and moisture content of the powder coal sample and the cumulative sample loading reduction amount.)
The method of deriving the relational expression (I) from the relationship between the particle size composition and moisture content of the powder coal sample and the cumulative sample loading reduction amount may be, but is not limited to, a multivariate analysis such as a simple regression analysis or a multiple regression analysis. Each of these exemplary analysis procedures will be described below.

(単回帰分析)
一態様に係る単回帰分析においては、粒度構成及び水分率の各々を変数とし、これらの各々とサンプル積算充填低下量との関係を、線形回帰又は多項式回帰、典型的には線形回帰してよい。具体的には、粒度構成及び水分率の各々の値をx軸、積算充填低下量の値をy軸にそれぞれプロットし、当該プロットから、例えば最小自乗法を用いた線形回帰により単回帰式を求めてよい。
(Simple regression analysis)
In the simple regression analysis according to one embodiment, the particle size distribution and the moisture content are each used as a variable, and the relationship between each of these and the cumulative filling loss of the sample may be linearly or polynomially regression-based, typically linearly regression-based. Specifically, the particle size distribution and the moisture content are plotted on the x-axis, and the cumulative filling loss is plotted on the y-axis, and a simple regression equation may be obtained from the plot by, for example, linear regression using the least squares method.

次に、粒度構成と積算充填低下量との関係を示す単回帰式から求めた回帰係数(一態様においては線形回帰式の傾き)の値を上記関係式(I-1)の係数aとし、水分率と積算充填低下量との関係を示す単回帰式から求めた回帰係数(一態様においては線形回帰式の傾き)の値を関係式(I-1)の係数bとする。係数cは、例えば0であってよく、又は0以外であってよい。これにより、粉炭の粒度構成及び水分率と積算充填低下量との関係式(I)としての関係式(I-1)を得ることができる。 Next, the value of the regression coefficient (in one embodiment, the slope of the linear regression equation) obtained from the simple regression equation showing the relationship between the particle size composition and the cumulative loading reduction amount is set as coefficient a of the above-mentioned relational equation (I-1), and the value of the regression coefficient (in one embodiment, the slope of the linear regression equation) obtained from the simple regression equation showing the relationship between the moisture content and the cumulative loading reduction amount is set as coefficient b of the relational equation (I-1). The coefficient c may be, for example, 0 or may be a value other than 0. In this way, the relational equation (I-1) can be obtained as the relational equation (I) between the particle size composition and moisture content of the powder coal and the cumulative loading reduction amount.

(重回帰分析)
一態様に係る重回帰分析においては、粒度構成及び水分率の両方を変数とし、これら変数とサンプル積算充填低下量との関係を、線形回帰又は多項式回帰、典型的には線形回帰してよい。具体的には、粒度構成及び水分率を説明変数とし、積算充填低下量を目的変数とする多回帰分析を行ってよい。本発明者らの検討によれば、粒度構成と水分率との間には強い相関がないことから、これらを説明変数とすることは有意な多回帰分析を行う点で有利であり得る。回帰は、これに限定されないが例えば最小自乗法により行ってよい。
(Multiple regression analysis)
In the multiple regression analysis according to one embodiment, both the particle size composition and the moisture content are variables, and the relationship between these variables and the cumulative filling loss of the sample may be linearly or polynomially regression-based, typically linearly regression-based. Specifically, a multiple regression analysis may be performed in which the particle size composition and the moisture content are explanatory variables, and the cumulative filling loss is the objective variable. According to the study by the present inventors, since there is no strong correlation between the particle size composition and the moisture content, using them as explanatory variables may be advantageous in terms of performing a significant multiple regression analysis. The regression may be performed, for example, by the least squares method, but is not limited thereto.

次に、粒度構成及び水分率と積算充填低下量との関係を示す重回帰式から求めた回帰係数の値を上記関係式(I-1)の係数a、bとし、当該重回帰式の切片の値を係数cとする。これにより、粉炭の粒度構成及び水分率と積算充填低下量との関係式(I)としての上記関係式(I-1)を得ることができる。なお重回帰分析においては、標準化により切片c(すなわち定数項)が0である関係式(I-1)を得てよいが、標準化を行わないこともできる。 Next, the regression coefficient values obtained from the multiple regression equation showing the relationship between the particle size composition and moisture content and the cumulative loading reduction amount are set as the coefficients a and b of the above-mentioned relational equation (I-1), and the intercept value of the multiple regression equation is set as the coefficient c. This makes it possible to obtain the above-mentioned relational equation (I-1) as the relational equation (I) between the particle size composition and moisture content of powder coal and the cumulative loading reduction amount. Note that in multiple regression analysis, it is possible to obtain the relational equation (I-1) in which the intercept c (i.e., the constant term) is 0 by standardization, but standardization may also be omitted.

重回帰分析が有効に行われたか否かの確認方法は特に限定されず、通常の手法により検定を行ってよい。有意水準は所望に応じて選択してよく、例えば5%又は1%としてよい。回帰結果が有意水準を満たさない場合には、粒度構成として選択するパラメータを変更した上で重回帰分析を再度行う操作を、有意水準が満たされるまで繰り返してよい。粒度構成として篩上質量割合を用いる場合、ある篩サイズでの篩上質量割合による重回帰分析が有意水準を満たさないときには、篩サイズをより大きいものに変更した上で重回帰分析を再度行ってよい。変数とする篩上質量割合の篩サイズを大きくすると、有意Fが小さくなり好ましい傾向がある。 There is no particular limitation on the method for confirming whether the multiple regression analysis has been performed effectively, and the test may be performed by a conventional method. The significance level may be selected as desired, for example, 5% or 1%. If the regression results do not satisfy the significance level, the parameters selected as the particle size composition may be changed and the multiple regression analysis may be performed again, and this operation may be repeated until the significance level is satisfied. When the on-sieve mass fraction is used as the particle size composition, if the multiple regression analysis using the on-sieve mass fraction at a certain sieve size does not satisfy the significance level, the sieve size may be changed to a larger one and the multiple regression analysis may be performed again. Increasing the sieve size of the on-sieve mass fraction, which is a variable, tends to decrease the significance F, which is preferable.

なお、上記では、成型炭周囲の空隙量の推定における変数として粉炭の粒度構成及び水分率の値を用いる場合について説明したが、積層充填低下量に大きく影響する他の因子が存在する場合には、粒度構成及び/又は水分率に代えて、又は粒度構成及び水分率に加えて、当該他の因子を採用することも可能である。例えば、上記では、重回帰分析の説明変数が2つである場合を例示したが、説明変数を3つ以上としてもよい。 In the above, we have described the case where the particle size composition and moisture content of the powdered coal are used as variables in estimating the amount of voids around the molded coal, but if there are other factors that significantly affect the amount of layered packing reduction, it is possible to use those other factors instead of or in addition to the particle size composition and/or moisture content. For example, although the above example shows a case where there are two explanatory variables in the multiple regression analysis, there may be three or more explanatory variables.

<積算充填低下量推定値の算出>
上記例示した手順で導出した関係式(I)を用いることで、配合炭の積算充填低下量推定値を算出できる。一態様においては、コークス製造における使用予定の粉炭と、任意に選定した解析用成型炭との組合せである配合炭について、当該使用予定の粉炭の粒度構成及び水分率の値を、上記関係式(I)に代入して積算充填低下量推定値を算出する。この積算充填低下量推定値を、成型炭周囲の空隙量の指標とすることができる。
<Calculation of Estimated Accumulative Charging Reduction Amount>
By using the relational expression (I) derived by the procedure exemplified above, an estimated cumulative packing loss amount of the coal blend can be calculated. In one embodiment, for a coal blend that is a combination of powder coal to be used in coke production and arbitrarily selected briquettes for analysis, the particle size composition and moisture content of the powder coal to be used are substituted into the relational expression (I) to calculate an estimated cumulative packing loss amount. This estimated cumulative packing loss amount can be used as an index of the void volume around the briquettes.

[コークスの製造方法]
本発明の一態様は、成型炭と粉炭とを含む配合炭を用いたコークスの製造方法も提供する。本発明者らは、本実施態様の充填低下量という指標を用いて成型炭周囲の空隙の量を高精度に解析することで、劣質炭を多く使用しつつ高強度のコークスを製造できることを見出した。本発明者らの検討によれば、成型炭と粉炭とを含む配合炭のコークス強度は、成型炭部のSVが所定値以上であるとほぼ一定であるが、当該所定値を下回ると、当該成型炭部のSVが低くなるに従って低くなるという傾向がある。この傾向は、粉炭の膨張性・水分率・粒度構成によらず同様にみられ、積算充填低下量が異なると上記所定値が異なる。SVが低い成型炭は、劣質であるが故に安価であり得る。したがって、成型炭部のSVの上記所定値、すなわち、成型炭部SVを低下させたときのコークス強度低下が生じない限度値である成型炭部SV下限値を求め、この成型炭部SV下限値を示す成型炭を選択して用いることは、高強度のコークスを安価に得る点で有利である。積算充填低下量と成型炭部SV下限値との関係式(II)を予め求めておき、使用予定の粉炭を含む配合炭について積算充填低下量を求め、これを上記関係式(II)に代入して成型炭部SV下限値を算出し、SVがこの成型炭部SV下限値以上である成型炭を上記使用予定の粉炭と配合することができる。なお、劣質炭を多く使用しつつ高強度のコークスを形成可能な配合炭を構成するためには、成型炭部SV下限値に近い値であるほど好ましい。具体的には、実操業での成型炭部SVのばらつきが通常±0.1cm3/g程度であることを考慮し、成型炭部SV下限値+0.1cm3/gのSV値を有する成型炭を、上記使用予定の粉炭と配合することが好ましい。
[Coke manufacturing method]
One aspect of the present invention also provides a method for producing coke using a coal blend containing molded coal and powdered coal. The inventors have found that by analyzing the amount of voids around the molded coal with high accuracy using the index of the packing drop amount of this embodiment, it is possible to produce high-strength coke while using a large amount of inferior coal. According to the study by the inventors, the coke strength of a coal blend containing molded coal and powdered coal is almost constant when the SV of the molded coal part is equal to or higher than a predetermined value, but when it falls below the predetermined value, it tends to decrease as the SV of the molded coal part decreases. This tendency is observed regardless of the expansion property, moisture content, and particle size composition of the powdered coal, and the predetermined value differs when the cumulative packing drop amount differs. Molded coal with a low SV can be inexpensive because it is of inferior quality. Therefore, it is advantageous in terms of obtaining high-strength coke at low cost to obtain the above-mentioned predetermined value of the SV of the briquettes, i.e., the lower limit value of the briquettes SV, which is the limit value at which the coke strength does not decrease when the briquettes SV is reduced, and to select and use briquettes showing this lower limit value of the briquettes SV. The relational expression (II) between the cumulative packing reduction amount and the lower limit value of the briquettes SV is obtained in advance, the cumulative packing reduction amount is obtained for a coal blend containing the powdered coal to be used, and this is substituted into the above relational expression (II) to calculate the lower limit value of the briquettes SV. The briquettes having an SV equal to or greater than the lower limit value of the briquettes SV can be blended with the powdered coal to be used. In order to form a coal blend capable of forming a high-strength coke while using a large amount of inferior coal, the closer the value is to the lower limit value of the briquettes SV, the more preferable it is. Specifically, taking into consideration that the variation in SV of the briquette coal part in actual operation is usually about ±0.1 cm 3 /g, it is preferable to blend briquette coal having an SV value of the lower limit of the briquette coal part SV +0.1 cm 3 /g with the powdered coal to be used.

本実施態様のコークスの製造方法においては、
A) 試験用に選択した配合炭について、本実施態様の成型炭周囲の空隙量の解析方法によって算出される積算充填低下量と、成型炭部SVを変化させてもコークス強度が一定であるような成型炭部SV範囲の下限である成型炭部SV下限値との関係式(II)を予め求めておき、
B) コークス製造における使用予定の粉炭と、任意に選定した解析用成型炭との組合せについて、B1)本実施態様の成型炭周囲の空隙量の解析方法を用いて積算充填低下量を求め、又は、B2)本実施態様の成型炭周囲の空隙量の推定方法を用いて積算充填低下量推定値を求め、
C) B1)で求めた積算充填低下量又はB2)で求めた積算充填低下量推定値を前記関係式(II)に代入して成型炭部SV下限値を求め、
D) SV実測値が前記成型炭部SV下限値以上である成型炭を製造し、前記使用予定の粉炭と、製造された成型炭とで構成される配合炭をコークス製造に供する。
以下、より具体的に説明する。
In the coke manufacturing method of this embodiment,
A) For a coal blend selected for testing, a relational expression (II) between an accumulated packing reduction amount calculated by the method for analyzing the void volume around the briquettes of the present embodiment and a lower limit value of the briquettes SV, which is the lower limit of the range of the briquettes SV such that the coke strength is constant even if the briquettes SV is changed, is obtained in advance;
B) For a combination of powdered coal to be used in coke production and arbitrarily selected coal briquettes for analysis, B1) calculate an accumulated packing reduction amount using the analysis method of the void volume around the coal briquettes of this embodiment, or B2) calculate an estimated accumulated packing reduction amount using the estimation method of the void volume around the coal briquettes of this embodiment,
C) Substituting the accumulated charge reduction amount obtained in B1) or the estimated accumulated charge reduction amount obtained in B2) into the relational formula (II) to obtain a lower limit value of the briquette coal part SV;
D) Briquettes having an actual SV value equal to or greater than the lower limit SV value of the briquettes are produced, and a coal blend consisting of the powder coal to be used and the produced briquettes is subjected to coke production.
This will be explained in more detail below.

(積算充填低下量と成型炭部SV下限値との関係式(II)の導出)
上記A)において、試験用に選択した配合炭について、本実施態様の成型炭周囲の空隙量の解析方法によって算出される積算充填低下量と、成型炭部SVを低下させたときのコークス強度低下が生じない限度値である成型炭部SV下限値との関係式(II)を予め求めておく。一態様において、水分率及び/又は粒度構成が異なる複数水準の粉炭と、SVが異なる複数水準の成型炭とを選定する。粉炭の各水準と、成型炭のうち任意に選択した1水準とを組合せた試験用配合炭について、本実施態様の方法によって、積算充填低下量を算出する。例えば、粉炭を3水準、成型炭を10水準選定する場合、計3種の試験用配合炭について積算充填低下量を算出する。積算充填低下量の算出に供する成型炭としては、上記複数水準のうち、欠損等がないものを選択する。
(Derivation of the relationship between the cumulative filling reduction amount and the lower limit value of the briquette coal part SV (II))
In the above A), for the coal blend selected for testing, a relational expression (II) between the cumulative packing reduction amount calculated by the method for analyzing the void volume around the briquettes in this embodiment and the lower limit value of the briquettes SV, which is the limit value at which the coke strength does not decrease when the briquettes SV is reduced, is obtained in advance. In one embodiment, multiple levels of powder coal with different moisture content and/or particle size composition and multiple levels of briquettes with different SV are selected. For the test coal blend combining each level of powder coal with one arbitrarily selected level of briquettes, the cumulative packing reduction amount is calculated by the method in this embodiment. For example, when three levels of powder coal and ten levels of briquettes are selected, the cumulative packing reduction amount is calculated for a total of three types of test coal blends. As the briquettes to be used for calculating the cumulative packing reduction amount, those without defects, etc. are selected from the multiple levels.

成型炭部SVを低下させたときのコークス強度低下が生じない限度値である成型炭部SV下限値は、以下のように求める。
a)試験用に選定した成型炭の各水準について、JIS M8801に準拠し、ジラートメーターを用いた乾留試験によってSVを実測する。
b) 試験用配合炭から得られたコークスの各々について、JIS K 2151に準拠し、ドラム試験によってコークス強度を実測する。コークス強度は、一態様においてDI150 15又はDI150 6であってよい。DI150 15は、ドラム試験における150回転後の15mm篩上の割合であって、コークスの体積破壊強度を主に表す指標であり、DI150 6は、ドラム試験における150回転後の6mm篩下の割合であって、コークスの表面破壊強度を主に表す指標である。
c) 全試験用配合炭について、粉炭の水準ごとに、成型炭部SV(x軸)と試験用配合炭から得られたコークス強度(y軸)との関係をプロットする。例えば、粉炭を3水準、成型炭を10水準選定する場合、第1の水準の粉炭と第1~第10の水準の各々の成型炭との組合せに係る試験用配合炭についての第1のプロット、第2の水準の粉炭と第1~第10の水準の各々の成型炭との組合せに係る試験用配合炭についての第2のプロット、並びに、第3の水準の粉炭と第1~第10の水準の各々の成型炭との組合せに係る試験用配合炭についての第3のプロットを作成する。各プロットについて、コークス強度が、成型炭部SVの値によらず一定に維持される領域の成型炭部SVの最小値を、成型炭部SV下限値と規定する。コークス強度が、成型炭部SVの値によらず一定に維持される領域とは、各プロットにおいて、コークス強度の値が標準偏差内に収まる領域を意味する。例えば、各プロットの標準偏差が0.4である場合、コークス強度が成型炭部SVの値によらず一定に維持される領域は、コークス強度が±0.4の範囲に収まる領域である。このようにして、粉炭の水準ごとの成型炭部SV下限値を得る。なお、成型炭部SV(x軸)の増加に対して、試験用配合炭から得られたコークス強度(y軸)が増加する度合が明らかに変化してほぼ同じ値に維持されていれば、一定に維持される領域と見なすことができ、その判断は標準偏差に限定されない。
d) 上記で算出した、粉炭の水準毎の積算充填低下量をx軸、上記で規定した、粉炭の水準毎の成型炭部SV下限値をy軸にプロットし、例えば線形近似によって、積算充填低下量と成型炭部SV下限値との関係式(II)を導出する。
The lower limit of the briquette coal part SV, which is the limit value at which the coke strength does not decrease when the briquette coal part SV is reduced, is determined as follows.
a) For each level of briquettes selected for testing, the SV is measured by a carbonization test using a dilatometer in accordance with JIS M8801.
b) For each of the cokes obtained from the test coal blends, the coke strength is measured by a drum test in accordance with JIS K 2151. In one embodiment, the coke strength may be DI 150 15 or DI 150 6. DI 150 15 is the proportion of 15 mm oversize after 150 rotations in a drum test, and is an index that mainly represents the volumetric breaking strength of the coke, and DI 150 6 is the proportion of 6 mm undersize after 150 rotations in a drum test, and is an index that mainly represents the surface breaking strength of the coke.
c) For all test coal blends, the relationship between the briquette SV (x-axis) and the coke strength (y-axis) obtained from the test coal blend is plotted for each level of powder coal. For example, when three levels of powder coal and ten levels of briquette coal are selected, a first plot is prepared for the test coal blend relating to a combination of a first level of powder coal and each of the first to tenth levels of briquette coal, a second plot is prepared for the test coal blend relating to a combination of a second level of powder coal and each of the first to tenth levels of briquette coal, and a third plot is prepared for the test coal blend relating to a combination of a third level of powder coal and each of the first to tenth levels of briquette coal. For each plot, the minimum value of the briquette SV in the region where the coke strength is maintained constant regardless of the value of the briquette SV is defined as the lower limit of the briquette SV. The region where the coke strength is maintained constant regardless of the value of the molded coal SV means a region where the value of the coke strength falls within the standard deviation in each plot. For example, when the standard deviation of each plot is 0.4, the region where the coke strength is maintained constant regardless of the value of the molded coal SV is a region where the coke strength falls within the range of ±0.4. In this way, the molded coal SV lower limit value for each level of powder coal is obtained. Note that if the degree of increase in the coke strength (y-axis) obtained from the test blended coal with respect to the increase in the molded coal SV (x-axis) clearly changes and is maintained at approximately the same value, it can be considered as a region where the strength is maintained constant, and the judgment is not limited to the standard deviation.
d) The cumulative packing reduction amount for each level of powdered coal calculated above is plotted on the x-axis, and the molded coal part SV lower limit value for each level of powdered coal specified above is plotted on the y-axis, and a relationship equation (II) between the cumulative packing reduction amount and the molded coal part SV lower limit value is derived, for example, by linear approximation.

(コークス製造における使用候補の石炭の選定)
上記B1)において、コークス製造における使用予定の粉炭と、任意に選定した解析用成型炭との組合せについて、本実施態様の成型炭周囲の空隙量の解析方法を用いて積算充填低下量を求める。成型炭としては、欠損等がないものを選択してよい。
(Selection of candidate coals for use in coke production)
In the above B1), for a combination of powder coal to be used in coke production and arbitrarily selected briquettes for analysis, the cumulative packing reduction amount is calculated using the analysis method for the void volume around the briquettes of this embodiment. Briquettes that have no defects may be selected.

又は、上記B2)において、コークス製造における使用予定の粉炭と、任意に選定した解析用成型炭との組合せについて、本実施態様の成型炭周囲の空隙量の推定方法を用いて積算充填低下量推定値を求める。 Or, in the above B2), for a combination of powdered coal to be used in coke production and arbitrarily selected coal briquettes for analysis, an estimated cumulative packing reduction amount is obtained using the method for estimating the void volume around the coal briquettes of this embodiment.

上記C)において、上記B1)で求めた積算充填低下量又は上記B2)で求めた積算充填低下量推定値を、上記A)で求めた関係式(II)に代入して、成型炭部SV下限値を求める。この成型炭部SV下限値は、使用予定の粉炭を含む配合炭において成型炭に起因する(より具体的には、成型炭部のコークス化時の膨張不足に起因してコークスに空隙が残存することによる)コークス強度低下を生じさせずに、成型炭部SVを下げる(すなわち、より劣質の成型炭を活用する)ことができる限界を示すものである。 In C) above, the cumulative packing reduction amount calculated in B1) above or the estimated cumulative packing reduction amount calculated in B2) above is substituted into the relational expression (II) calculated in A) above to calculate the lower limit of the briquette SV. This lower limit of the briquette SV indicates the limit at which the briquette SV can be lowered (i.e., inferior briquette can be utilized) without causing a decrease in coke strength due to briquette (more specifically, due to voids remaining in the coke due to insufficient expansion of the briquette during coking) in the blended coal containing the powdered coal to be used.

上記D)において、SV実測値が上記で求めた成型炭部SV下限値以上である成型炭を製造する。製造される成型炭のSV実測値は、上記成型炭部SV下限値に近い値であるほど好ましいが、実操業での成型炭部SVのばらつきが通常±0.1cm3/g程度であることを考慮し、例えば成型炭部SV下限値+0.1cm3/gである値が好ましい。このような成型炭は、成型炭に起因するコークス強度低下を生じさせない限度において最も劣質であり得る。成型炭のSV実測値は、例えば、当該成型炭の製造に用いる石炭及び/又は粘結補填材の種類及び/又は量を調整することによって、所望の値に調整できる。上記のように製造された成型炭を用いた配合炭をコークス製造に供することで、安価でありながら所望のコークス強度を維持したコークスの製造が可能になる。 In the above D), molded coal is produced whose actual SV value is equal to or greater than the molded coal part SV lower limit value obtained above. The actual SV value of the molded coal produced is preferably as close to the molded coal part SV lower limit value as possible, but considering that the variation in the molded coal part SV in actual operation is usually about ±0.1 cm 3 /g, for example, a value of the molded coal part SV lower limit value +0.1 cm 3 /g is preferable. Such molded coal may be of the lowest quality to the extent that it does not cause a decrease in coke strength due to the molded coal. The actual SV value of the molded coal can be adjusted to a desired value, for example, by adjusting the type and/or amount of coal and/or caking filler used in the production of the molded coal. By subjecting a blended coal using the molded coal produced as described above to coke production, it is possible to produce coke that is inexpensive yet maintains a desired coke strength.

以下、本発明の例示の態様を実施例を挙げて更に説明するが、本発明はこれらの実施例に何ら限定されない。 The following provides further explanation of exemplary aspects of the present invention with reference to examples, but the present invention is not limited to these examples.

[実施例1]
<成型炭周囲の空隙量の解析>
(使用した石炭)
解析には、表1に示す水準1~4の粉炭と、欠損等がない成型炭とを用いた。なお、「粉砕炭」とは、粉炭のうち粉砕で得た石炭自体を指し、「粗粒炭」とは、粒径0.3mm未満の微粉を除いた石炭を指し、「整粒炭」とは、粒径を0.3mm~3mmとした石炭を指す。各粉炭の粒度分布を図3に示す。成型炭は粒径40mm程度のピロー型を用いた。
[Example 1]
<Analysis of void volume around molded coal>
(Coal used)
For the analysis, pulverized coal of levels 1 to 4 shown in Table 1 and molded coal without defects were used. Note that "pulverized coal" refers to the coal itself obtained by crushing pulverized coal, "coarse coal" refers to coal excluding fine powder with a particle size of less than 0.3 mm, and "pre-sized coal" refers to coal with a particle size of 0.3 mm to 3 mm. The particle size distribution of each type of pulverized coal is shown in Figure 3. Pillow-type molded coal with a particle size of about 40 mm was used.

以下の手順で、成型炭周囲の空隙を充填低下量により解析した。 The voids around the molded coal were analyzed based on the amount of packing reduction using the following procedure.

(ステップS11)
試験装置を用いて、自然落下により成型炭と粉炭とを試験容器に充填し、X線CTにより試験容器内の断面画像を撮像した。
(Step S11)
Using a test device, molded coal and powdered coal were filled into a test vessel by gravity falling, and cross-sectional images of the inside of the test vessel were taken by X-ray CT.

試験装置として、ASTM D 291-86に準拠した嵩密度試験において以下の条件を改良したASTM改良型嵩密度測定装置(清塘et al.,コークスサーキュラー,30(11),13-5(1981).)の1/2スケールである、Mini ASTM装置(落下高さ1m)を用いた。 The test equipment used was a Mini ASTM device (drop height 1 m), which is a half-scale version of the ASTM improved bulk density measuring device (Kiyotaka et al., Coke Circular, 30 (11), 13-5 (1981)) that has the following improved conditions in the bulk density test according to ASTM D 291-86.

Mini ASTM装置の試験容器(150×150×150mm)に、各水準の粉炭のうち1.5kgを落下させ、次いで成型炭(カップサイズ30cc、球形換算で粒径39mm)を落下させ、最後に残りの各水準の粉炭2.75kgを落下させて、石炭を充填した。石炭が充填された試料容器を、X線CT診断装置(東芝メディカルシステムズ(株)製TSX-201(Aquilion LB))で撮影した。X線CTの撮影条件は以下のとおりである。下記撮影条件により、1ピクセルあたり0.488mmの解像度が得られた。
スキャンモード:Helical
管電圧:120kV
管電流:400mA
FOV(視野径):440mm
撮影スライス厚:0.5mm
Into the test vessel (150 x 150 x 150 mm) of the Mini ASTM device, 1.5 kg of the powdered coal of each level was dropped, then molded coal (cup size 30 cc, particle size 39 mm in spherical equivalent) was dropped, and finally the remaining 2.75 kg of powdered coal of each level was dropped to fill the coal. The sample vessel filled with coal was photographed with an X-ray CT diagnostic device (TSX-201 (Aquilion LB) manufactured by Toshiba Medical Systems Corporation). The shooting conditions of the X-ray CT are as follows. A resolution of 0.488 mm per pixel was obtained under the following shooting conditions.
Scan mode: Helical
Tube voltage: 120 kV
Tube current: 400mA
FOV (field of view): 440 mm
Imaging slice thickness: 0.5 mm

得られた断面画像を画像解析ソフトAvizoにて処理した。解析はすべて3次元で実施した。解析範囲(ROI)は、壁効果を除くために、中央の120mm矩形領域(すなわち、容器寸法(150×150×150mm)中の中央部分(120×120×120mm))とした。 The cross-sectional images obtained were processed using the image analysis software Avizosa. All analyses were performed in three dimensions. The region of interest (ROI) was set to the central 120 mm rectangular area (i.e., the central portion (120 x 120 x 120 mm) of the vessel dimensions (150 x 150 x 150 mm)) to eliminate wall effects.

(ステップS12)
ROI内の各画素のX線CT値に基づき、密度(BD)を下記関係式:
BD(t/m3)=0.001×(X線CT値)+1
に従って算出した。密度が1.0g/cm3を超える領域を高密度部、1.0g/cm3以下の領域を低密度部と規定した。
(Step S12)
Based on the X-ray CT value of each pixel in the ROI, density (BD) was calculated using the following formula:
BD(t/ m3 )=0.001×(X-ray CT value)+1
The density was calculated according to the following formula: A region where the density exceeds 1.0 g/ cm3 is defined as a high density portion, and a region where the density is 1.0 g/cm3 or less is defined as a low density portion.

(ステップS13)
a) ステップS12で規定した高密度部について、100ボクセル以下の小粒子を除去した。
b) 上記a)の処理後の高密度部について、粒子を分離して1つ1つを区別できるように、ラベリング処理を行った。
c) 上記b)の処理後の高密度部から、Anisotropy<0.9,Flatness<0.4,且つElongation>0.4、の形状パラメータを満足するもののみを、異形粒子として選択した。
d) 上記c)で抽出した異形粒子について、ウォーターシェッド法を用いて、くびれを検出及び除去した。
e) 上記d)の処理後の異形粒子を、1ボクセル収縮、上記a)と同手順の小粒子除去、1ボクセル膨張、スムージングの順で処理し、残った領域を成型炭部と規定した。膨張及び収縮の処理は、全て球形(ball dilation/ball erosion)で行った。
(Step S13)
a) For the high density portion defined in step S12, small particles of 100 voxels or less were removed.
b) The high density portion after the above process a) was subjected to a labeling process so that the particles could be separated and distinguished one by one.
c) From the high density portion after the above process b), only particles satisfying the shape parameters of anisotropy<0.9, flatness<0.4, and elongation>0.4 were selected as irregular shaped particles.
d) For the irregularly shaped particles extracted in c) above, constrictions were detected and removed using the watershed method.
e) The irregular particles after the above d) process were processed in the following order: 1 voxel shrinkage, small particle removal in the same procedure as above a), 1 voxel expansion, and smoothing, and the remaining area was defined as the molded charcoal part. All expansion and contraction processes were performed in a spherical shape (ball dilation/ball erosion).

(ステップS14)
本ステップは、塊成炭を含む水準のみ行った。ステップS12で規定した高密度部から、ステップS13で規定した成型炭部を差し引き、残った領域をラベリングした。このラベリングされた領域から、Volume>15mm3の体積パラメータを満足する領域のみを、塊成炭部として選択した。この領域に対してマスク処理をすることで、解析対象から除外した。
(Step S14)
This step was performed only for the level including agglomerated coal. The molded coal part defined in step S13 was subtracted from the high density part defined in step S12, and the remaining area was labeled. From this labeled area, only the area satisfying the volume parameter Volume>15 mm3 was selected as the agglomerated coal part. This area was excluded from the analysis by performing mask processing.

(ステップS15)
元画像のROI内において、上記ステップS13で規定した成型炭部について、成型炭部の周縁から当該成型炭部と相似形で1回あたり1ボクセルを膨張させる膨張処理を30回行った。
(Step S15)
Within the ROI of the original image, the expansion process was performed 30 times for the molded coal part defined in step S13 above, in which one voxel was expanded each time from the periphery of the molded coal part in a shape similar to the molded coal part.

(ステップS16)
膨張処理が1回完了するごとに、当該1回の膨張処理で増加した領域の体積(すなわち1回の膨張処理による体積増分)及び平均密度を求めた。膨張処理回数21回を超えると、上記平均密度がほぼ変化しなくなったことから、膨張処理回数21回以降の平均密度を粉炭部の平均密度とした。この平均密度を閾値とし、当該閾値を超える領域を粉炭部、当該閾値以下の領域を空隙部と規定した。
(Step S16)
Each time the expansion process was completed, the volume of the area increased by one expansion process (i.e., the volume increase by one expansion process) and the average density were calculated. Since the average density hardly changed after 21 expansion processes, the average density after 21 expansion processes was defined as the average density of the powder coal part. This average density was defined as a threshold value, and the area exceeding the threshold value was defined as the powder coal part, and the area below the threshold value was defined as the void part.

(ステップS17)
粉炭部に対応する各ボクセルのX線CT値から算出される密度の粉炭部全体での数平均を粉炭部の平均密度とし、空隙部に対応する各ボクセルのX線CT値から算出される密度の空隙部全体での数平均を空隙部の平均密度とし、粉炭部の平均密度と空隙部の平均密度との差分値を算出した。膨張処理回数ごとに、下記式に従って充填低下量を算出した。
充填低下量=[膨張処理の各回において体積増加した領域の体積]×[粉炭部の平均密度と空隙部の平均密度との差分値]
(Step S17)
The average density of the powdered coal part was determined as the number average of the densities calculated from the X-ray CT values of each voxel corresponding to the powdered coal part, and the average density of the void part was determined as the number average of the densities calculated from the X-ray CT values of each voxel corresponding to the void part, and the difference between the average density of the powdered coal part and the average density of the void part was calculated. The amount of filling reduction was calculated for each expansion treatment according to the following formula.
Filling reduction amount = [Volume of the area that has increased in volume in each expansion treatment] x [Difference between the average density of the powder coal part and the average density of the void part]

(ステップS18)
上記の充填低下量を膨張処理回数で積算して、積算充填低下量を算出した。図2は、粗粒炭+塊成炭(水分4質量%)の粉炭を用いたときの積算充填低下量を示す。図2に示すハッチング領域が積算充填低下量に相当する。当該積算充填低下量を、成型炭周囲の空隙量の指標とした。
(Step S18)
The amount of packing loss was integrated by the number of expansion treatments to calculate the integrated amount of packing loss. Figure 2 shows the integrated amount of packing loss when using powder coal of coarse coal + agglomerated coal (moisture 4 mass%). The hatched area in Figure 2 corresponds to the integrated amount of packing loss. The integrated amount of packing loss was used as an index of the amount of voids around the molded coal.

図2に示すように、積算充填低下量を指標とする空隙評価においては、膨張処理が所定回数(図2では8回)を超えると、膨張処理回数による充填低下量の変動がほぼなくなること、したがって、膨張処理回数を所定以上とすれば良好な評価結果が得られることが分かる。 As shown in Figure 2, in void evaluation using the cumulative filling reduction amount as an index, when the expansion process is performed more than a certain number of times (8 times in Figure 2), the variation in the filling reduction amount due to the number of expansion processes almost disappears, and therefore it can be seen that good evaluation results can be obtained by performing the expansion process more than a certain number of times.

図4は、水準1~4の各粉炭を用いた例におけるX線CT画像を示す。水分率が互いに異なる水準1と水準2とでCT画像を比較すると、水分が少ない水準1では水分が多い水準2よりも空隙が小さいことが分かった。また、粒度構成が互いに異なる水準1,3,4でCT画像を比較すると、粉砕炭(水準1)、粗粒炭及び塊成炭(水準4)と比べて、整粒炭(水準3)では空隙が小さいことが分かった。 Figure 4 shows X-ray CT images of examples using powdered coal at levels 1 to 4. Comparing the CT images of levels 1 and 2, which have different moisture contents, it was found that level 1, which has less moisture, had smaller voids than level 2, which has more moisture. In addition, comparing the CT images of levels 1, 3, and 4, which have different particle size structures, it was found that voids were smaller in granulated coal (level 3) than in pulverized coal (level 1), coarse coal, and agglomerated coal (level 4).

図5~8は、水準1~4の各粉炭を用いた実施例1における、膨張処理回数と積算充填低下量との関係を示す。 Figures 5 to 8 show the relationship between the number of expansion treatments and the cumulative amount of charge reduction in Example 1, using each of the powdered coal levels 1 to 4.

[従来例1]
実施例1と同様の配合炭を用い、特許文献1(特に段落番号0020~0026)に記載される方法に従い、以下の手順で、成型炭周囲の空隙の幅を評価した。
2値化で抽出した成型炭部分を選択領域として、成型炭部分を単位幅a(mm)=0.488mmでn回膨張し、成型炭周縁から幅Xn(=a×n)(mm)にて離れた領域を除いた部分の粉炭部の密度BDp,nを求め、Xnに対するBDp,n+1-BDp,nの変化量が所定の範囲に収束したときのXnを成型炭周囲の空隙の幅とした。
[Conventional Example 1]
Using the same blended coal as in Example 1, the width of the voids around the molded coal was evaluated in the following manner according to the method described in Patent Document 1 (particularly paragraphs 0020 to 0026).
The molded coal portion extracted by binarization was used as the selected region, and the molded coal portion was expanded n times with a unit width a (mm) = 0.488 mm. The density BDp,n of the powder coal portion excluding the region separated from the edge of the molded coal by a width Xn (= a × n) (mm) was obtained, and Xn when the change in BDp,n+1-BDp,n with respect to Xn converged to a specified range was defined as the width of the gap around the molded coal.

図9~12は、従来例1における、水準1~4の各粉炭を用いた成型炭からの距離Xと、膨張処理の各回での嵩密度変化量との関係を示す。 Figures 9 to 12 show the relationship between the distance X from the molded coal using each of the powdered coals of levels 1 to 4 in Conventional Example 1 and the amount of change in bulk density at each expansion treatment.

図5~12に示す結果から得た、成型炭周囲の積算充填低下量の解析結果(実施例1)、及び成型炭周囲の空隙の最大幅の解析結果(従来例1)を表1に示す。 The analysis results of the cumulative packing reduction amount around the briquettes (Example 1) and the analysis results of the maximum width of the gap around the briquettes (Conventional Example 1), obtained from the results shown in Figures 5 to 12, are shown in Table 1.

従来例1に係る空隙の最大幅による評価において、粉砕炭(水準1)は整粒炭(水準3)と比べて空隙の幅が小さかった。これに対し、実施例1に係る積算充填低下量による評価において、粉砕炭(水準1)は整粒炭(水準3)と比べて空隙の値が大きく、従来例1とは逆の結果となった。従来例1の方法では、粉炭部と空隙とが正しく区別できなかったと考えられる。実施例1の積算充填低下量による解析結果は、図4に示すCT画像とも良く一致しており、水準1~4中、整粒炭条件(水準3)で積算充填低下量が最小であった。上記より、実施例1に係る解析方法は従来例1に係る解析方法と比べて優れることが分かる。 In the evaluation of the maximum width of the voids in Conventional Example 1, the void width of pulverized coal (Level 1) was smaller than that of granulated coal (Level 3). In contrast, in the evaluation of the cumulative packing reduction amount in Example 1, the void value of pulverized coal (Level 1) was larger than that of granulated coal (Level 3), which was the opposite result to Conventional Example 1. It is believed that the method in Conventional Example 1 was unable to correctly distinguish between the powdered coal portion and the voids. The analysis results based on the cumulative packing reduction amount in Example 1 are in good agreement with the CT image shown in Figure 4, and the cumulative packing reduction amount was the smallest under the granulated coal condition (Level 3) among levels 1 to 4. From the above, it can be seen that the analysis method in Example 1 is superior to the analysis method in Conventional Example 1.

成型炭を複数個使用した場合に、成型炭周囲の積算充填低下量が変化するか検討した。その検討方法として、水準2の粉砕炭70質量%と成型炭30質量%とで構成される配合炭を準備し事前によく混合した。混合した配合炭を、試験装置を用いて自然落下により試験容器に充填し、X線CTにより試験容器内の断面画像を撮像した。撮像した断面画像の解析については上記ステップS12~S18を実施した。なお、成型炭領域の体積を成型炭1個の体積で割ることで解析領域中の成型炭の個数を求めたところ約11.2個であった。成型炭を複数個使用した場合の積算充填低下量の絶対値を求めたところ6.83g(成型炭1個あたりに換算すると0.61g)であり、実施例1について表1に示す水準2の積算充填低下量0.68gと近い値であることが確認された。 We investigated whether the cumulative packing drop amount around the briquettes would change when multiple briquettes were used. As a method of investigation, a coal blend consisting of 70% crushed coal by mass and 30% briquettes by mass of level 2 was prepared and mixed thoroughly in advance. The mixed coal blend was filled into a test vessel by gravity using a test device, and a cross-sectional image of the inside of the test vessel was taken by X-ray CT. The above steps S12 to S18 were carried out to analyze the captured cross-sectional image. The number of briquettes in the analysis region was calculated by dividing the volume of the briquettes by the volume of one briquettes, and was found to be approximately 11.2. The absolute value of the cumulative packing drop amount when multiple briquettes were used was calculated to be 6.83 g (0.61 g per briquettes), and it was confirmed that this value was close to the cumulative packing drop amount of 0.68 g for level 2 shown in Table 1 for Example 1.

[実施例2]
<成型炭周囲の空隙量の推定>
実施例2では、画像解析をせずに、成型炭周囲の空隙に影響する因子を用いて成型炭周囲の空隙量を推定する方法を検討した。図4、表1の結果より、成型炭周囲の空隙の大小には、粉炭の粒度構成(より具体的には粗大粒子の割合)、及び粉炭の水分率が影響していることがわかる。本例では、粉炭の粒度構成として、粉炭の3mm篩上質量割合、6mm篩上質量割合、及び質量平均径に着目した。これらはいずれも、粉炭中の粗大粒子の割合の指標となる。また、粉炭の水分率は、粉炭の流動性に影響し、したがって積算充填低下量に影響すると考えられる。なお、積算充填低下量に影響する因子は粉炭の粒度構成及び水分率に限られるものではないが、本例では、積算充填低下量に対する影響度合いが大きい主な因子である粒度構成及び水分率に着目して推定を行った。なお実施例及び参考例では、便宜上、JIS Z 8801-1準拠の目開きが2.8mm及び5.6mmである篩をそれぞれ3mm篩及び6mm篩と称している。
[Example 2]
<Estimation of void volume around briquettes>
In Example 2, a method for estimating the amount of voids around the briquettes using factors that affect the voids around the briquettes without image analysis was examined. From the results of FIG. 4 and Table 1, it can be seen that the size of the voids around the briquettes is affected by the particle size composition of the powdered coal (more specifically, the proportion of coarse particles) and the moisture content of the powdered coal. In this example, as the particle size composition of the powdered coal, attention was paid to the mass proportion of the powdered coal on a 3 mm sieve, the mass proportion of the powdered coal on a 6 mm sieve, and the mass average diameter. All of these are indicators of the proportion of coarse particles in the powdered coal. In addition, the moisture content of the powdered coal is thought to affect the fluidity of the powdered coal, and therefore to affect the cumulative packing reduction amount. Note that factors that affect the cumulative packing reduction amount are not limited to the particle size composition and moisture content of the powdered coal, but in this example, the estimation was performed by focusing on the particle size composition and moisture content, which are the main factors that have a large influence on the cumulative packing reduction amount. In the Examples and Reference Examples, for the sake of convenience, sieves having mesh sizes of 2.8 mm and 5.6 mm conforming to JIS Z 8801-1 are referred to as 3 mm sieves and 6 mm sieves, respectively.

(1)実施例2-1~2-3:単回帰分析の組合せ
本例では、粉炭の粒度構成と水分率とをそれぞれ単独で説明変数とし、積算充填低下量を目的変数として単回帰分析を行った。得られた回帰係数を用いて、粒度構成及び水分率と積算充填低下量との関係式を求めた。粒度構成としては、粉炭の3mm篩上質量割合、粉炭の6mm篩上質量割合、及び粉炭の質量平均径から1つを選んだ。
(1) Examples 2-1 to 2-3: Combination of simple regression analysis In this example, simple regression analysis was performed with the particle size composition and moisture content of the powder coal as explanatory variables and the cumulative packing loss as the objective variable. Using the obtained regression coefficients, a relationship between the particle size composition and moisture content and the cumulative packing loss was obtained. As the particle size composition, one was selected from the mass fraction of the powder coal on a 3 mm sieve, the mass fraction of the powder coal on a 6 mm sieve, and the mass average diameter of the powder coal.

(使用した石炭)
推定には、実施例1で用いたのと同様の、表1に示す水準1~4の粉炭と欠損等がない成型炭とを用いた。
(Coal used)
For the estimation, powdered coal of levels 1 to 4 shown in Table 1 and molded coal without defects, etc., similar to those used in Example 1, were used.

(推定手順)
上記粉炭の各々と、上記成型炭との組合せについて、実施例1と同様の手順で積算充填低下量を求め、図13~16に示すようにプロットした。図13は、3mm篩上質量割合と積算充填低下量との関係を示す図であり、図14は、6mm篩上質量割合と積算充填低下量との関係を示す図であり、図15は、質量平均径と積算充填低下量との関係を示す図であり、図16は、水分率と積算充填低下量との関係を示す図である。図13~16に示すように、プロット値からの最小自乗法による線形回帰にて単回帰を行い、回帰式を得た。各回帰式の傾きである回帰係数を用いて、粒度構成及び水分率と、積算充填低下量との関係式(I)を導出した。
(Estimation Procedure)
For each of the combinations of the powdered coal and the molded coal, the cumulative packing loss was determined in the same manner as in Example 1, and plotted as shown in Figures 13 to 16. Figure 13 is a diagram showing the relationship between the mass ratio on a 3 mm sieve and the cumulative packing loss, Figure 14 is a diagram showing the relationship between the mass ratio on a 6 mm sieve and the cumulative packing loss, Figure 15 is a diagram showing the relationship between the mass mean diameter and the cumulative packing loss, and Figure 16 is a diagram showing the relationship between the moisture content and the cumulative packing loss. As shown in Figures 13 to 16, a simple regression was performed by linear regression using the least squares method from the plotted values to obtain a regression equation. Using the regression coefficient, which is the slope of each regression equation, a relationship equation (I) between the particle size composition and moisture content and the cumulative packing loss was derived.

(実施例2-1)
3mm篩上質量割合及び水分率の各々を説明変数とし、積算充填低下量を目的関数として、図13に示す単回帰式の回帰係数(=0.0222)及び図16に示す単回帰式の回帰係数(=0.0539)を用い、関係式(I)としての下記関係式(2-1)を得た。
積算充填低下量=[粉炭の3mm篩上質量割合(質量%)]×0.0222+[粉炭の水分率(質量%)]×0.0539 (2-1)
図17は、各粉炭の3mm篩上質量割合及び水分率の値を上記式に代入して算出した積算充填低下量推定値と、各粉炭について実施例1の手順で求めた積算充填低下量との関係を示す図である。
(Example 2-1)
The 3 mm sieve mass fraction and moisture content were each used as explanatory variables, the cumulative filling reduction amount was used as an objective function, and the regression coefficient (=0.0222) of the simple regression equation shown in FIG. 13 and the regression coefficient (=0.0539) of the simple regression equation shown in FIG. 16 were used to obtain the following relational equation (2-1) as relational equation (I).
Accumulative filling reduction amount = [3 mm sieve mass ratio of powder coal (mass%)] × 0.0222 + [moisture content of powder coal (mass%)] × 0.0539 (2-1)
Figure 17 shows the relationship between the estimated cumulative loading reduction amount calculated by substituting the 3 mm sieve mass fraction and moisture content of each powdered coal into the above formula, and the cumulative loading reduction amount obtained for each powdered coal using the procedure of Example 1.

(実施例2-2)
6mm篩上質量割合及び水分率の各々を説明変数とし、積算充填低下量を目的関数として、図14に示す単回帰式の回帰係数(=0.0395)及び図16に示す単回帰式の回帰係数(=0.0539)を用い、関係式(I)としての下記関係式(2-2)を得た。
積算充填低下量=[粉炭の6mm篩上質量割合(質量%)]×0.0395+[粉炭の水分率(質量%)]×0.0539 (2-2)
図18は、各粉炭の6mm篩上質量割合及び水分率の値を上記式に代入して算出した積算充填低下量推定値と、各粉炭について実施例1の手順で求めた積算充填低下量との関係を示す図である。
(Example 2-2)
The 6 mm sieve mass fraction and moisture content were each used as explanatory variables, the cumulative filling reduction amount was used as an objective function, and the regression coefficient (=0.0395) of the simple regression equation shown in FIG. 14 and the regression coefficient (=0.0539) of the simple regression equation shown in FIG. 16 were used to obtain the following relational equation (2-2) as relational equation (I).
Accumulative filling reduction amount = [6 mm sieve mass ratio of powder coal (mass%)] × 0.0395 + [moisture content of powder coal (mass%)] × 0.0539 (2-2)
Figure 18 shows the relationship between the estimated cumulative loading reduction amount calculated by substituting the 6 mm sieve mass fraction and moisture content of each powdered coal into the above formula, and the cumulative loading reduction amount obtained for each powdered coal using the procedure of Example 1.

(実施例2-3)
質量平均径及び水分率の各々を説明変数とし、積算充填低下量を目的関数として、図15に示す単回帰式の回帰係数(=0.3347)及び図16に示す単回帰式の回帰係数(=0.0539)を用い、関係式(I)としての下記関係式(2-3)を得た。
積算充填低下量=[粉炭の質量平均径(mm)]×0.3347+[粉炭の水分率(質量%)]×0.0539 (2-3)
図19は、各粉炭の質量平均径及び水分率の値を上記式に代入して算出した積算充填低下量推定値と、各粉炭について実施例1の手順で求めた積算充填低下量との関係を示す図である。
(Example 2-3)
The mass mean diameter and the moisture content were each used as explanatory variables, the cumulative filling reduction amount was used as an objective function, and the regression coefficient (=0.3347) of the simple regression equation shown in FIG. 15 and the regression coefficient (=0.0539) of the simple regression equation shown in FIG. 16 were used to obtain the following relational equation (2-3) as relational equation (I).
Accumulative packing reduction amount = [mass average diameter of powder coal (mm)] × 0.3347 + [moisture content of powder coal (mass%)] × 0.0539 (2-3)
Figure 19 is a diagram showing the relationship between the estimated cumulative loading reduction amount calculated by substituting the mass mean diameter and moisture content of each powdered coal into the above formula and the cumulative loading reduction amount obtained for each powdered coal by the procedure of Example 1.

図17~19に示す結果から、上記の実施例2-1~2-3のいずれの方法でも積算充填低下量を推定可能であることが示された。すなわち、コークス製造における使用予定の粉炭と、任意に選定した解析用成型炭との組合せである配合炭について、当該使用予定の粉炭の粒度構成及び水分率の値を、本開示の関係式(I)としての上記関係式(2-1)~(2-3)のいずれかに代入して積算充填低下量推定値を算出し、当該積算充填低下量推定値を成型炭周囲の空隙量の指標とすれば、上記配合炭の成型炭周囲の空隙量を精度よく推定することが可能である。 The results shown in Figures 17 to 19 show that the cumulative packing reduction amount can be estimated by any of the methods of Examples 2-1 to 2-3 above. In other words, for a coal blend that is a combination of powdered coal to be used in coke production and arbitrarily selected molded coal for analysis, the particle size composition and moisture content of the powdered coal to be used are substituted into any of the above relational expressions (2-1) to (2-3) as relational expression (I) of the present disclosure to calculate an estimated cumulative packing reduction amount, and the estimated cumulative packing reduction amount is used as an index of the void amount around the molded coal, making it possible to accurately estimate the void amount around the molded coal in the above coal blend.

[参考例1]
3mm篩上質量割合のみを変数として、図13に示す単回帰式の回帰係数(=0.0222)を用い、下記関係式(A)に従って積算充填低下量を算出した。
積算充填低下量=[粉炭の3mm篩上質量割合(質量%)]×0.0222 (A)
図20は、各粉炭の3mm篩上質量割合の値を上記式に代入して算出した積算充填低下量推定値と、各粉炭について実施例1の手順で求めた積算充填低下量との関係を示す図である。
[Reference Example 1]
Using only the mass ratio on the 3 mm sieve as a variable and the regression coefficient (=0.0222) of the simple regression equation shown in FIG. 13, the cumulative filling reduction amount was calculated according to the following relational expression (A).
Accumulative filling reduction amount = [mass ratio of powder coal on 3 mm sieve (mass%)] x 0.0222 (A)
Figure 20 shows the relationship between the estimated cumulative loading reduction amount calculated by substituting the 3 mm sieve mass fraction of each powdered coal into the above formula and the cumulative loading reduction amount obtained for each powdered coal using the procedure of Example 1.

[参考例2]
6mm篩上質量割合のみを変数として、図14に示す単回帰式の回帰係数(=0.0395)を用い、下記関係式(B)に従って積算充填低下量を算出した。
積算充填低下量=[粉炭の6mm篩上質量割合(質量%)]×0.0395 (B)
図21は、各粉炭の6mm篩上質量割合の値を上記式に代入して算出した積算充填低下量推定値と、各粉炭について実施例1の手順で求めた積算充填低下量との関係を示す図である。
[Reference Example 2]
Using only the 6 mm sieve mass ratio as a variable and the regression coefficient (=0.0395) of the simple regression equation shown in FIG. 14, the cumulative filling reduction amount was calculated according to the following relational expression (B).
Accumulative filling reduction amount = [6 mm sieve mass ratio of powder coal (mass%)] x 0.0395 (B)
Figure 21 shows the relationship between the estimated cumulative loading reduction amount calculated by substituting the 6 mm sieve mass fraction value of each powdered coal into the above formula and the cumulative loading reduction amount obtained for each powdered coal using the procedure of Example 1.

[参考例3]
質量平均径のみを変数として、図15に示す単回帰式の回帰係数(=0.3347)を用い、下記関係式(C)に従って積算充填低下量を算出した。
積算充填低下量=[粉炭の質量平均径(mm)]×0.3347 (C)
図22は、各粉炭の質量平均径の値を上記式に代入して算出した積算充填低下量推定値と、各粉炭について実施例1の手順で求めた積算充填低下量との関係を示す図である。
[Reference Example 3]
Using only the mass mean diameter as a variable and the regression coefficient (=0.3347) of the simple regression equation shown in FIG. 15, the accumulated filling reduction amount was calculated according to the following relational expression (C).
Accumulative filling reduction amount = [mass average diameter of powder coal (mm)] x 0.3347 (C)
Figure 22 is a diagram showing the relationship between the estimated cumulative loading reduction amount calculated by substituting the mass mean diameter value of each powder coal into the above formula and the cumulative loading reduction amount obtained for each powder coal by the procedure of Example 1.

[参考例4]
水分率のみを変数として、図16に示す単回帰式の回帰係数(=0.0539)を用い、下記関係式(D)に従って積算充填低下量を算出した。
積算充填低下量=[粉炭の水分率(質量%)]×0.0539 (D)
図23は、各粉炭の水分率の値を上記式に代入して算出した積算充填低下量推定値と、各粉炭について実施例1の手順で求めた積算充填低下量との関係を示す図である。
[Reference Example 4]
Using only the moisture content as a variable and the regression coefficient (=0.0539) of the simple regression equation shown in FIG. 16, the accumulated filling reduction amount was calculated according to the following relational expression (D).
Accumulative filling reduction amount = [moisture content of powder coal (mass%)] x 0.0539 (D)
Figure 23 is a diagram showing the relationship between the estimated cumulative loading reduction amount calculated by substituting the moisture content value of each powdered coal into the above formula and the cumulative loading reduction amount obtained for each powdered coal using the procedure of Example 1.

図20~23に示す結果から、参考例1~4においては、関係式(A)~(D)の各々で求めた積算充填低下量と実施例1の手順で求めた積算充填低下量との乖離が大きいこと、すなわち、粒度構成及び水分率から選んだ1つのみを変数とした場合、積算充填低下量を精度良く推定できないことが示された。 The results shown in Figures 20 to 23 show that in Reference Examples 1 to 4, the cumulative filling loss calculated using each of the relational expressions (A) to (D) largely deviates from the cumulative filling loss calculated using the procedure of Example 1; that is, when only one of the particle size composition and moisture content is used as a variable, the cumulative filling loss cannot be estimated with high accuracy.

(2)実施例2-4~2-6:重回帰分析
本例では、粉炭の粒度構成及び水分率の両方を説明変数とし、積算充填低下量を目的変数とし、最小自乗法による線形回帰で重回帰分析を行った。得られた回帰式の傾きである回帰係数を用いて、粒度構成及び水分率と、積算充填低下量との関係式(I)を導出した。粒度構成としては、粉炭の3mm篩上質量割合、粉炭の6mm篩上質量割合、及び粉炭の質量平均径から1つを選んだ。
(2) Examples 2-4 to 2-6: Multiple regression analysis In this example, both the particle size composition and moisture content of the powder coal were used as explanatory variables, and the cumulative packing loss was used as the objective variable, and multiple regression analysis was performed using linear regression by the least squares method. Using the regression coefficient, which is the slope of the obtained regression equation, a relationship equation (I) between the particle size composition and moisture content and the cumulative packing loss was derived. As the particle size composition, one was selected from the mass fraction of the powder coal on a 3 mm sieve, the mass fraction of the powder coal on a 6 mm sieve, and the mass average diameter of the powder coal.

なお、説明変数として用いた粒度構成と水分率との間に強い相関がないことは、以下の方法で予め確認した。
粒度構成と水分率の関係を示す図において、プロット値からの最小自乗法による線形回帰にて単回帰を行い、回帰式の決定係数(R2乗値)を得て、トレランス(=1-R2乗値)が0.1より大きいことを確認した。
It was previously confirmed by the following method that there was no strong correlation between the particle size distribution used as the explanatory variable and the moisture content.
In the graph showing the relationship between particle size distribution and moisture content, a simple regression was performed using linear regression by the least squares method from the plotted values to obtain the coefficient of determination (R2 value) of the regression equation, and it was confirmed that the tolerance (=1-R2 value) was greater than 0.1.

(使用した石炭)
推定には、表2に示す水準1~7の粉炭と、実施例1と同じ成型炭とを用いた。表2に示す水準1~4の粉炭は表1に示す水準1~4の粉炭と同じである。本例では、水準1~4に加え、粒径0.3mm未満の微粉を除いた粗粒炭(水準5)、3mm篩下質量割合100%とした粉砕炭(水準6)、水準3の整粒炭に塊成炭を配合した整粒炭+塊成炭(水準7)を用いた。すなわち、水準1~7に係る7種の粉炭を用いることで、重回帰分析を適切に行うためのサンプル数を確保した。
(Coal used)
For the estimation, pulverized coal of levels 1 to 7 shown in Table 2 and the same molded coal as in Example 1 were used. The pulverized coal of levels 1 to 4 shown in Table 2 are the same as the pulverized coal of levels 1 to 4 shown in Table 1. In this example, in addition to levels 1 to 4, coarse-grained coal (level 5) in which fine powder less than 0.3 mm in particle size was removed, pulverized coal (level 6) with a 3 mm undersieve mass ratio of 100%, and granulated coal + agglomerated coal (level 7) in which granulated coal of level 3 was blended with agglomerated coal were used. In other words, by using seven types of pulverized coal relating to levels 1 to 7, the number of samples required for appropriate multiple regression analysis was ensured.

(推定手順)
上記粉炭の各々と、上記成型炭との組合せについて、実施例1と同様の手順で断面画像解析により積算充填低下量を求めた。表2に各条件での積算充填低下量を示す。水準1~7の結果をもとに、粉炭の3mm篩上質量割合及び水分率の組み合わせ(実施例2-4について)、粉炭の6mm篩上質量割合及び水分率の組み合わせ(実施例2-5について)、又は粉炭の質量平均径及び水分率の組み合わせ(実施例2-6について)を説明変数とし、積算充填低下量を目的変数として重回帰分析を実施した。このとき、有意水準としては、重回帰分析において一般的である5%を採用した。
(Estimation Procedure)
For each of the combinations of the powdered coal and the molded coal, the cumulative packing reduction amount was obtained by cross-sectional image analysis in the same manner as in Example 1. Table 2 shows the cumulative packing reduction amount under each condition. Based on the results of levels 1 to 7, a multiple regression analysis was performed using the combination of the 3 mm sieve mass fraction and moisture content of the powdered coal (for Example 2-4), the combination of the 6 mm sieve mass fraction and moisture content of the powdered coal (for Example 2-5), or the combination of the mass average diameter and moisture content of the powdered coal (for Example 2-6) as explanatory variables, and the cumulative packing reduction amount as the objective variable. At this time, 5%, which is common in multiple regression analysis, was adopted as the significance level.

(実施例2-4)
3mm篩上質量割合及び水分率を説明変数として、重回帰分析を実施した。得られた回帰式の回帰係数(=0.01956、0.03984)を用い、関係式(I)としての下記関係式(2-4)を得た。
積算充填低下量=[粉炭の3mm篩上質量割合(質量%)]×0.01956+[粉炭の水分率(質量%)]×0.03984 (2-4)
なお本例では、切片を有意に0と異なるとして重回帰分析を実施した際の切片のP値が有意水準を超えたため、切片は有意に0と異ならない(すなわち、切片=0)として再度重回帰分析を実施し、得られた結果を採用した。
図24は、各粉炭の3mm篩上質量割合及び水分率の値を上記式に代入して算出した積算充填低下量推定値と、各粉炭について実施例1の手順で求めた積算充填低下量との関係を示す図である。
(Example 2-4)
A multiple regression analysis was performed using the 3 mm sieve mass fraction and moisture content as explanatory variables. Using the regression coefficients (=0.01956, 0.03984) of the obtained regression equation, the following relational formula (2-4) was obtained as relational formula (I).
Accumulative filling loss amount = [mass ratio of powder coal on 3 mm sieve (mass%)] x 0.01956 + [moisture content of powder coal (mass%)] x 0.03984 (2-4)
In this example, when multiple regression analysis was performed assuming that the intercept was significantly different from 0, the P value of the intercept exceeded the significance level, so multiple regression analysis was performed again assuming that the intercept was not significantly different from 0 (i.e., intercept = 0), and the obtained results were adopted.
Figure 24 shows the relationship between the estimated cumulative loading reduction amount calculated by substituting the 3 mm sieve mass fraction and moisture content of each powdered coal into the above formula, and the cumulative loading reduction amount obtained for each powdered coal using the procedure of Example 1.

上記の重回帰分析は、関係式(2-4)に従って算出した積算充填低下量と、実施例1の手順で求めた積算充填低下量(すなわち実測値)との2つの群における分散の比の上側確率(有意F)が0.00030であり、0.05より小さいことから、回帰分析に意味があると判断した。また、粉炭の3mm篩上質量割合及び粉炭の水分率の回帰係数が極端な値となる確率であるP値は、それぞれ0.00124、0.00788であり、どちらも0.05より小さいことから、各回帰係数は有意な係数であると判断した。 The above multiple regression analysis was judged to be meaningful because the upper probability (significance F) of the ratio of variances in the two groups, the cumulative filling reduction amount calculated according to the relational expression (2-4) and the cumulative filling reduction amount (i.e., the actual measured value) obtained by the procedure of Example 1, was 0.00030, which is smaller than 0.05. In addition, the P values, which are the probability that the regression coefficients of the 3 mm sieve mass fraction of powdered coal and the moisture content of powdered coal will be extreme values, were 0.00124 and 0.00788, respectively, both of which were smaller than 0.05, so each regression coefficient was judged to be a significant coefficient.

(実施例2-5)
6mm篩上質量割合及び水分率を説明変数として、重回帰分析を実施した。得られた回帰式の回帰係数(=0.03366、0.05159)を用い、関係式(I)としての下記関係式(2-5)を得た。
積算充填低下量=[粉炭の6mm篩上質量割合(質量%)]×0.03366+[粉炭の水分率(質量%)]×0.05159 (2-5)
なお本例では、切片を有意に0と異なるとして重回帰分析を実施した際の切片のP値が有意水準を超えたため、切片は有意に0と異ならない(すなわち、切片=0)として再度重回帰分析を実施し、得られた結果を採用した。
図25は、各粉炭の6mm篩上質量割合及び水分率の値を上記式に代入して算出した積算充填低下量推定値と、各粉炭について実施例1の手順で求めた積算充填低下量との関係を示す図である。
(Example 2-5)
A multiple regression analysis was performed using the 6 mm sieve mass fraction and moisture content as explanatory variables. Using the regression coefficients (=0.03366, 0.05159) of the obtained regression equation, the following relational formula (2-5) was obtained as relational formula (I).
Accumulative filling reduction amount = [6 mm sieve mass ratio of powder coal (mass%)] × 0.03366 + [moisture content of powder coal (mass%)] × 0.05159 (2-5)
In this example, when multiple regression analysis was performed assuming that the intercept was significantly different from 0, the P value of the intercept exceeded the significance level, so multiple regression analysis was performed again assuming that the intercept was not significantly different from 0 (i.e., intercept = 0), and the obtained results were adopted.
Figure 25 shows the relationship between the estimated cumulative loading reduction amount calculated by substituting the 6 mm sieve mass fraction and moisture content of each powdered coal into the above formula, and the cumulative loading reduction amount obtained for each powdered coal using the procedure of Example 1.

上記の重回帰分析は、分散分析の有意Fが0.00023であり、0.05より小さいことから回帰分析に意味があると判断した。また、粉炭の6mm篩上質量割合及び粉炭の水分率のP値はそれぞれ0.00093、0.00107であり、いずれも0.05より小さいことから、各回帰係数は有意な係数であると判断した。 The above multiple regression analysis was deemed meaningful because the significance F of the analysis of variance was 0.00023, which is less than 0.05. In addition, the P values for the mass fraction of pulverized coal on the 6 mm sieve and the moisture content of pulverized coal were 0.00093 and 0.00107, respectively, both of which were less than 0.05, so each regression coefficient was deemed significant.

(実施例2-6)
質量平均径及び水分率を説明変数として、重回帰分析を実施した。得られた回帰式の回帰係数(=0.02924、0.06227)及び定数項(=-0.3472)を用い、関係式(I)としての下記関係式(2-6)を得た。
積算充填低下量=[粉炭の質量平均径(mm)]×0.02924+[粉炭の水分率(質量%)]×0.06227-0.3472 (2-6)
なお本例では、切片を有意に0と異なるとして重回帰分析を実施した際の切片のP値が有意水準を超えなかったため、当該重回帰分析の結果をそのまま用いた。
図26は、各粉炭の質量平均径及び水分率の値を上記式に代入して算出した積算充填低下量推定値と、各粉炭について実施例1の手順で求めた積算充填低下量との関係を示す図である。
(Example 2-6)
A multiple regression analysis was performed using the mass average particle size and the moisture content as explanatory variables. Using the regression coefficients (=0.02924, 0.06227) and the constant term (=-0.3472) of the obtained regression equation, the following relational formula (2-6) was obtained as relational formula (I).
Accumulative filling reduction amount = [mass average diameter of powder coal (mm)] × 0.02924 + [moisture content of powder coal (mass%)] × 0.06227 - 0.3472 (2-6)
In this example, when multiple regression analysis was performed assuming that the intercept was significantly different from 0, the P value of the intercept did not exceed the significance level, so the result of the multiple regression analysis was used as is.
Figure 26 is a diagram showing the relationship between the estimated cumulative loading reduction amount calculated by substituting the mass mean diameter and moisture content of each powdered coal into the above formula and the cumulative loading reduction amount obtained for each powdered coal by the procedure of Example 1.

上記の重回帰分析は、分散分析の有意Fが0.00456であり、0.05より小さいことから回帰分析に意味があると判断した。また、粉炭の質量平均径、粉炭の水分率及び切片のP値はそれぞれ0.00256、0.01276、0.03849であり、いずれも0.05より小さいことから、各回帰係数は有意な係数であると判断した。 The above multiple regression analysis was deemed meaningful because the significance F of the analysis of variance was 0.00456, which is less than 0.05. In addition, the P values of the mass mean diameter of powdered coal, the moisture content of powdered coal, and the intercept were 0.00256, 0.01276, and 0.03849, respectively, all of which were less than 0.05, so each regression coefficient was deemed significant.

上記の(実施例2-4)~(実施例2-6)のいずれの方法でも積算充填低下量を推定可能であり、また粉炭の流動性の指標として粉炭の水分率を用いることが可能であることが示された。すなわち、コークス製造における使用予定の粉炭と、任意に選定した解析用成型炭との組合せである配合炭について、当該使用予定の粉炭の粒度構成及び水分率の値を、本開示の関係式(I)としての上記関係式(2-4)~(2-6)のいずれかに代入して積算充填低下量推定値を算出し、当該積算充填低下量推定値を成型炭周囲の空隙量の指標とすれば、上記配合炭の成型炭周囲の空隙量を精度よく推定することが可能である。 It was shown that the cumulative packing reduction amount can be estimated by any of the above methods (Example 2-4) to (Example 2-6), and that the moisture content of the powdered coal can be used as an index of the fluidity of the powdered coal. In other words, for a coal blend that is a combination of powdered coal to be used in coke production and arbitrarily selected briquettes for analysis, the particle size composition and moisture content of the powdered coal to be used are substituted into any of the above relational expressions (2-4) to (2-6) as relational expression (I) of the present disclosure to calculate an estimated cumulative packing reduction amount, and the estimated cumulative packing reduction amount is used as an index of the void amount around the briquettes, making it possible to accurately estimate the void amount around the briquettes of the above coal blend.

[評価例1]
<試験コークス炉を用いた乾留試験による成型炭部SV下限値の評価>
(使用した石炭)
次に、粉炭を水分率4質量%又は10質量%にて成型炭と配合してなる配合炭について、試験コークス炉を用いた乾留試験より成型炭部SV下限値を評価した。
[Evaluation Example 1]
<Evaluation of the lower limit of SV of molded coal by carbonization test using a test coke oven>
(Coal used)
Next, for a coal blend obtained by blending powder coal with briquettes at a moisture content of 4 mass % or 10 mass %, the lower limit value of the SV of the briquettes was evaluated by a carbonization test using a test coke oven.

表3に、各石炭の性状を示し、表4及び5に、表3の石炭を用いた配合炭における粉炭部の配合条件を示す。配合条件1は粒度0.3~3mmの整粒炭(水分率4質量%)、配合条件2は3mm篩下割合85%の粉砕炭(水分率4質量%)、配合条件3は3mm篩下割合85%の粉砕炭(水分率10質量%)とした。粉砕粒度としての3mm篩下質量割合は、配合条件1、2、3でそれぞれ92.5%、85%、85%であった。液体粘結補填材としてタール系粘結補填材を用い、固体粘結補填材としてアスファルトピッチ(ASP)を用いた。 Table 3 shows the properties of each coal, and Tables 4 and 5 show the blending conditions for the powder coal portion of the blended coal using the coals in Table 3. Blending condition 1 was granulated coal with a particle size of 0.3 to 3 mm (moisture content: 4% by mass), blending condition 2 was pulverized coal with a 3 mm undersieve ratio of 85% (moisture content: 4% by mass), and blending condition 3 was pulverized coal with a 3 mm undersieve ratio of 85% (moisture content: 10% by mass). The mass proportion of 3 mm undersieve as the pulverized particle size was 92.5%, 85%, and 85% for blending conditions 1, 2, and 3, respectively. A tar-based binder was used as the liquid binder, and asphalt pitch (ASP) was used as the solid binder.

表6に、成型炭部の配合を示す。粉砕粒度が3mm篩下質量割合90%である粉炭を配合1~23にて成型機(新東工業(株)製のBMS II)で成型して成型炭を製造した。成型炭は粒径40mm程度のピロー型とした。液体粘結補填材としてタール系粘結補填材を用い、固体粘結補填材としてアスファルトピッチ(ASP)を用いた。なお、配合1~8、9~15、16~23の3つのシリーズのうち、配合1~8、9~15については、成型炭部SVによる影響を評価するために、ΣVMをほぼ同じ値に揃える一方、成型炭部SVを異ならせた。なお水準1~8で用いた整粒炭は、粉炭部SV×BD=1.13である。SV×BDとは空隙充填度と呼ばれ、単位体積の中で膨張した石炭が満たすことができる空間の割合を示す。 Table 6 shows the blending ratio of the molded coal. Powdered coal with a crushed particle size of 3 mm and a mass ratio of 90% under the sieve was molded in blends 1 to 23 using a molding machine (BMS II manufactured by Shinto Kogyo Co., Ltd.) to produce molded coal. The molded coal was a pillow type with a particle size of about 40 mm. A tar-based binder was used as the liquid binder, and asphalt pitch (ASP) was used as the solid binder. Of the three series of blends 1 to 8, 9 to 15, and 16 to 23, blends 1 to 8 and 9 to 15 were made to have almost the same ΣVM value in order to evaluate the effect of the molded coal SV, but the molded coal SV was made different. The granulated coal used in levels 1 to 8 had a powdered coal SV x BD = 1.13. SV x BD is called the void filling ratio and indicates the ratio of space that can be filled by expanded coal in a unit volume.

(ジラートメーターを用いた乾留試験による成型炭部SVの測定)
ジラートメーターを用いた乾留試験を行った。表6に示す各配合条件の成型炭を粉砕して3mm篩下質量割合100%に粒度調整した後、ジラートメーター用の成型機を用いて、嵩密度1.10g/cm3(乾燥ベース)、高さ60mmの成型物として反応管に入れ、昇温速度3℃/分で加熱して乾留試験を行い、成型炭部SVを測定した。結果を表6に示す。
(Measurement of SV of molded coal by carbonization test using a dilatometer)
A carbonization test was carried out using a dilatometer. The molded coals of each blending condition shown in Table 6 were pulverized and adjusted to a particle size of 100% by mass fraction under 3 mm sieve, and then molded into a bulk density of 1.10 g/cm 3 (dry basis) and a height of 60 mm using a molding machine for a dilatometer. The molded coals were then heated at a heating rate of 3° C./min to carry out a carbonization test, and the SV of the molded coals was measured. The results are shown in Table 6.

(ドラム試験によるコークス強度の測定)
表7に示す水準1~23の条件で粉炭と成型炭とを配合してなる配合炭を試験コークス炉にて乾留し、コークスとしたものについて、ドラム試験を回転数30及び150回転、N=3で実施した。結果を表7に示す。また、水準1~8について、成型炭部SVとDI150 6との関係を図27に示し、成型炭部SVとDI150 15との関係を図28に示す。
(Measurement of coke strength by drum test)
Coal blends obtained by blending powder coal and briquettes under the conditions of levels 1 to 23 shown in Table 7 were carbonized in a test coke oven to obtain cokes, and drum tests were carried out at rotation speeds of 30 and 150 rpm, N=3. The results are shown in Table 7. For levels 1 to 8, the relationship between briquettes SV and DI 150 6 is shown in Figure 27, and the relationship between briquettes SV and DI 150 15 is shown in Figure 28.

ジラートメーターを用いた乾留試験で測定した成型炭部SVとドラム試験で測定したコークス強度の値とから、コークス強度が一定に維持される限度である成型炭部SV下限値を求めた。図27に示す結果から、成型炭部SVが1.0cm3/gよりも高い範囲では配合炭全体のコークス強度DI150 6は略同一であるが、成型炭部SVが0.93cm3/g、更に0.9cm3/gと低くなるとコークス強度DI150 6が大きく低下していることが分かる。成型炭部SVが0.9cm3/g及び0.93cm3/gであるプロットを結んだ直線と、その他のプロットのDI150 6の平均値を示す直線との交点を成型炭部SV下限値として求めたところ、0.97cm3/gであった。図28に示す成型炭部SVとDI150 15との関係においても同様にして成型炭部SV下限値を求めたところ、0.95cm3/gであり、DI150 6について求めた成型炭部SV下限値と近い値であった。 From the briquette SV measured in the carbonization test using a dilatometer and the coke strength measured in the drum test, the lower limit of the briquette SV, which is the limit at which the coke strength is maintained constant, was determined. From the results shown in Fig. 27, it can be seen that the coke strength DI 150 6 of the entire coal blend is almost the same when the briquette SV is in the range of more than 1.0 cm 3 /g, but when the briquette SV is lowered to 0.93 cm 3 /g or further to 0.9 cm 3 /g, the coke strength DI 150 6 is significantly reduced. The lower limit of the briquette SV was determined as the intersection point between the straight line connecting the plots with the briquette SV of 0.9 cm 3 /g and 0.93 cm 3 /g and the straight line showing the average value of the DI 150 6 of the other plots, and was found to be 0.97 cm 3 /g. Similarly, when the lower limit of the briquette SV was calculated for the relationship between the briquette SV and DI 150 15 shown in FIG.

同様に、水準9~15(すなわち、配合条件2である水分率4質量%の粉砕炭を配合したもの)についての成型炭部SVとDI150 6との関係を示す図29から求められる成型炭部SV下限値は1.10cm3/gであり、水準16~23(すなわち、配合条件3である水分率10質量%の粉砕炭を配合したもの)についての成型炭部SVとDI150 6との関係を示す図30から求められる成型炭部SV下限値は1.50cm3/gであり、粉砕炭を用いた配合炭においては、整粒炭を用いた配合炭よりも、成型炭部SV下限値が高かった。 Similarly, the lower limit of the molded coal part SV obtained from Figure 29, which shows the relationship between the molded coal part SV and DI 150 6 for levels 9 to 15 (i.e., blends containing pulverized coal with a moisture content of 4 mass%, which is blending condition 2), was 1.10 cm 3 /g, and the lower limit of the molded coal part SV obtained from Figure 30, which shows the relationship between the molded coal part SV and DI 150 6 for levels 16 to 23 (i.e., blends containing pulverized coal with a moisture content of 10 mass%, which is blending condition 3), was 1.50 cm 3 /g.The lower limit of the molded coal part SV obtained from the coal blends using pulverized coal was higher than that of the coal blends using granulated coal.

[比較評価例1]
従来例1に係る方法で求めた成型炭周囲の空隙の最大幅から、特許文献1(特開2014-224242号公報)に記載の下記式(1):
Δr=r{(SV×ρ)1/3-1} (1)
(ここで、r:膨張前の円相当半径(mm)、SV:成型炭の膨張比容積(cm3/g)、ρ:成型炭の密度(g/cm3)である。)
を用いて、コークス強度DI150 15が一定に維持される限度である成型炭部SV下限値を求めた。なお、この下限値を求めるに際して下記の処理を行った。
[Comparative Evaluation Example 1]
From the maximum width of the voids around the briquettes obtained by the method according to Conventional Example 1, the following formula (1) described in Patent Document 1 (JP 2014-224242 A):
Δr = r {(SV × ρ) 1/3 - 1} (1)
(where r is the circle equivalent radius (mm) before expansion, SV is the expansion specific volume of the briquettes (cm 3 /g), and ρ is the density of the briquettes (g/cm 3 ).)
The lower limit of the briquette part SV, which is the limit at which the coke strength DI 150 is kept constant at 15 , was determined using the above formula. The following process was carried out to determine this lower limit.

表1に示す、従来例1に係る成型炭周囲の空隙の最大幅は、成型炭1個の周囲に生じる空隙の最大幅であり、特許文献1に記載されるような複数個の成型炭に係る空隙の最大幅とは異なる。成型炭の数が増加すると、成型炭と成型炭との距離が近い場合には密度が低い領域が合わさることになるため、成型炭周囲の空隙の最大幅は、成型炭が1個の場合に比べて成型炭が複数個の場合には大きい値として算出されると考えられる。そこで、成型炭部SVを求める際には、表1に示す水準2の粉炭を用いる例における成型炭周囲の空隙の最大幅の値が、特許文献1の実施例において段落0044に記載される5.37mmと一致するように、表1に示す従来例1で得た成型炭周囲の空隙の最大幅の値を約3.1倍する補正を行った。 The maximum width of the gap around the coal briquette in Conventional Example 1 shown in Table 1 is the maximum width of the gap around one coal briquette, and is different from the maximum width of the gap around multiple coal briquette pieces as described in Patent Document 1. When the number of coal briquette pieces increases, low density areas will be combined when the coal briquette pieces are close to each other, so the maximum width of the gap around the coal briquette pieces is thought to be calculated as a larger value when there are multiple coal briquette pieces compared to when there is one coal briquette. Therefore, when calculating the coal briquette part SV, the maximum width of the gap around the coal briquette pieces in the example using level 2 powder coal shown in Table 1 was corrected by multiplying it by about 3.1 so that the value of the maximum width of the gap around the coal briquette pieces in the example using level 2 powder coal shown in Table 1 matches the 5.37 mm described in paragraph 0044 of the example in Patent Document 1.

なお、特許文献1では、配合炭全体のコークス強度DI150 15が一定に維持される成型炭部SVの範囲について、成型炭部SVとともにΣVMも変化させた配合条件で検討しているため、コークス強度DI150 6が一定に維持される成型炭部SVは、コークス強度DI150 15が一定に維持される成型炭部SVと異なる。特許文献1では、DI150 6が一定に維持される成型炭部SVの範囲を求めることができる評価条件は記載されていない。 In Patent Document 1, the range of the briquette SV in which the coke strength DI 150 15 of the entire coal blend is maintained constant is examined under blending conditions in which the briquette SV and ΣVM are changed, and therefore the briquette SV in which the coke strength DI 150 6 is maintained constant is different from the briquette SV in which the coke strength DI 150 15 is maintained constant. Patent Document 1 does not disclose evaluation conditions that can determine the range of the briquette SV in which the DI 150 6 is maintained constant.

そこで、本比較評価例では、表1の水準2における成型炭周囲の空隙の最大幅を5.37mmとした場合に特許文献1に記載の上記式(1)から得られる成型炭部SV下限値が1.50cm3/gとなるように、成型炭の膨張前後の球相当半径の変化量Δrを、Δr=w×0.75(式中、wは、成型炭周囲の空隙の最大幅である。)として計算した。 Therefore, in this comparative evaluation example, when the maximum width of the gap around the molded coal at level 2 in Table 1 is 5.37 mm, the change in sphere equivalent radius Δr before and after the expansion of the molded coal was calculated as Δr = w × 0.75 (where w is the maximum width of the gap around the molded coal) so that the lower limit SV of the molded coal part obtained from the above formula (1) described in Patent Document 1 would be 1.50 cm3 /g.

[評価結果]
比較評価例1で算出した成型炭部SV下限値と、乾留試験で求めた成型炭部SVに基づいて算出した成型炭部SV下限値との関係を、表8及び図31に示す。特に、水準3(整粒炭条件)では、比較評価例1に基づく成型炭部SV下限値1.40cm3/gと、乾留試験に基づく成型炭部SV下限値0.97cm3/gとが大きく乖離していた。これは、従来例1に係る空隙の最大幅による成型炭周囲の空隙量の解析方法では、粉炭部の粒度構成が従来と異なる、整粒炭条件において、粉炭部と空隙とが正しく区別できなかったためだと考えられる。
[Evaluation results]
The relationship between the lower limit of the briquette SV calculated in Comparative Evaluation Example 1 and the lower limit of the briquette SV calculated based on the briquette SV obtained in the carbonization test is shown in Table 8 and Figure 31. In particular, in Level 3 (sizing coal conditions), the lower limit of the briquette SV of 1.40 cm3 /g based on Comparative Evaluation Example 1 was significantly different from the lower limit of the briquette SV of 0.97 cm3 /g based on the carbonization test. This is thought to be because the method of analyzing the amount of voids around the briquette based on the maximum void width according to Conventional Example 1 was unable to correctly distinguish between the powder coal part and the voids under the sizing coal conditions, in which the particle size composition of the powder coal part is different from that of the conventional method.

一方、表1に示す成型炭周囲の積算充填低下量と、図27、29及び30に示すように求めたコークス強度DI150 6が一定に維持される限度である成型炭部SV下限値との関係を整理すると(図32)、強い相関が得られた。図32から得られた相関式を本開示の関係式(II)として用いて、コークス強度DI150 6が一定に維持される限度である成型炭部SV下限値を求めたところ、配合条件1(整粒炭条件)で0.95cm3/g、配合条件2(粉砕炭条件、水分率4質量%)で1.12cm3/g、配合条件3(粉砕炭条件、水分率10質量%)で1.49cm3/gであった。特に、整粒炭条件の成型炭部SV下限値は、比較評価例1よりも、乾留試験での整粒炭条件の値0.97cm3/gに近い値であり、これから、実施例1に係る積算充填低下量による成型炭周囲の空隙量の解析方法は、従来例1に係る解析方法に比べて解析精度が高いことが示された。
同様に、成型炭周囲の積算充填低下量と、コークス強度DI150 15が一定に維持される限度である成型炭部SV下限値との関係(図33)においても、強い相関が得られた。したがって、成型炭周囲の積算充填低下量と、コークス強度が一定に維持される限度である成型炭部SV下限値との関係に基づき、配合炭の成型炭部SV下限値を精度よく予測できる。このような成型炭部SV下限値を下回らない限度においてSVが低い成型炭を製造し、これをコークス製造に用いることで、安価且つ高強度のコークスの製造が可能になる。
On the other hand, when the relationship between the cumulative packing reduction amount around the briquettes shown in Table 1 and the lower limit SV of the briquettes, which is the limit at which the coke strength DI 150 6 is maintained constant as shown in Figures 27, 29, and 30, was summarized (Figure 32), a strong correlation was obtained. The lower limit SV of the briquettes, which is the limit at which the coke strength DI 150 6 is maintained constant, was obtained using the correlation equation obtained from Figure 32 as the relational equation (II) of the present disclosure, and the results were 0.95 cm 3 /g under blending condition 1 (sizing coal condition), 1.12 cm 3 /g under blending condition 2 (crushed coal condition, moisture content 4 mass%), and 1.49 cm 3 /g under blending condition 3 (crushed coal condition, moisture content 10 mass%). In particular, the lower limit value of the SV of the molded coal part under the granulated coal conditions was closer to the value of 0.97 cm3 /g under the granulated coal conditions in the carbonization test than comparative evaluation example 1, which shows that the method of analyzing the void volume around the molded coal based on the cumulative filling reduction amount in Example 1 has higher analytical accuracy than the analysis method in Conventional Example 1.
Similarly, a strong correlation was also obtained in the relationship between the cumulative packing decrease amount around the briquettes and the lower limit of the briquettes SV, which is the limit at which the coke strength DI 150 15 is maintained constant (FIG. 33). Therefore, the lower limit of the briquettes SV of a coal blend can be accurately predicted based on the relationship between the cumulative packing decrease amount around the briquettes and the lower limit of the briquettes SV, which is the limit at which the coke strength is maintained constant. By producing briquettes with a low SV at a limit that does not fall below the lower limit of the briquettes SV and using the briquettes in coke production, it becomes possible to produce inexpensive, high-strength coke.

また、実施例2-5において関係式(2-5)に従って算出した積算充填低下量推定値(x軸)と、コークス強度DI150 6が一定に維持される限度である成型炭部SV下限値(y軸)との関係を整理すると(図34)、実施例1の手順で求めた積算充填低下量をx軸としている図32と同様に、強い相関が得られることが確認できた。 In addition, when the relationship between the estimated cumulative packing reduction amount (x-axis) calculated according to the relational expression (2-5) in Example 2-5 and the lower limit value of the molded coal part SV (y-axis), which is the limit at which the coke strength DI 150 6 is maintained constant, is summarized as in FIG. 34, it was confirmed that a strong correlation was obtained, as in FIG. 32 in which the cumulative packing reduction amount obtained by the procedure of Example 1 is on the x-axis.

Figure 2024059325000002
Figure 2024059325000002

Figure 2024059325000003
Figure 2024059325000003

Figure 2024059325000004
Figure 2024059325000004

Figure 2024059325000005
Figure 2024059325000005

Figure 2024059325000006
Figure 2024059325000006

Figure 2024059325000007
Figure 2024059325000007

Figure 2024059325000008
Figure 2024059325000008

Figure 2024059325000009
Figure 2024059325000009

Claims (3)

成型炭と粉炭とを含む配合炭を容器に充填した際に生じる成型炭周囲の空隙量の解析方法であって、
試験装置を用いて自然落下により成型炭と粉炭とを試験容器に充填し、
X線CTにより試験容器内の断面画像を撮像し、
得られた断面画像の3D解析によって成型炭周囲の空隙量を求め、
前記3D解析において、
密度が既定値を超える高密度部と、密度が前記既定値以下である低密度部とをそれぞれ規定し、
前記高密度部を既定形状パラメータでフィルタリングして成型炭部を規定し、
任意に、前記高密度部のうち、前記成型炭部以外の領域であり且つ体積が既定値を超える領域を塊成炭部と規定し、前記塊成炭部は画素データ不存在として取扱うことで解析対象から除外し、
前記成型炭部の周縁から前記成型炭部と相似形で1回あたり1単位体積を膨張させる膨張処理を(n+1)回以上行い、但しnは自然数であり、
前記(n+1)は、(n+1)回目の膨張処理で体積増加した領域の平均密度が、n回目の膨張処理で体積増加した領域の平均密度と略同一である数であり、
n回目以降の膨張処理で体積増加した領域の平均密度を閾値とし、
膨張処理の各回において体積増加した領域について、密度が前記閾値を超える領域を粉炭部、密度が前記閾値以下である領域を空隙部とそれぞれ規定し、
膨張処理の各回において体積増加した領域について、前記粉炭部の平均密度と前記空隙部の平均密度との差分値を算出し、
膨張処理の各回において体積増加した領域の体積に前記差分値を乗じて充填低下量を算出し、
前記充填低下量を全膨張処理回数で積算して積算充填低下量を算出し、前記積算充填低下量を成型炭周囲の空隙量の指標とする、
成型炭周囲の空隙量の解析方法。
A method for analyzing a volume of voids around briquettes that occurs when a coal blend containing briquettes and powdered coal is packed into a container, comprising:
Using a test device, the briquettes and powdered coal are loaded into a test vessel by gravity.
A cross-sectional image of the inside of the test vessel is taken using X-ray CT.
The amount of voids around the molded coal is calculated by 3D analysis of the obtained cross-sectional image.
In the 3D analysis,
A high density portion having a density exceeding a predetermined value and a low density portion having a density equal to or lower than the predetermined value are defined,
filtering the densified portion with predetermined shape parameters to define a briquette portion;
Optionally, a region of the high density part other than the molded coal part and having a volume exceeding a predetermined value is defined as an agglomerated coal part, and the agglomerated coal part is excluded from the analysis target by treating it as having no pixel data;
An expansion process is performed (n+1) times or more in which one unit volume is expanded from the periphery of the molded coal part in a shape similar to the molded coal part each time, where n is a natural number;
The (n+1) is a number at which the average density of the region whose volume has increased by the (n+1)th expansion process is substantially equal to the average density of the region whose volume has increased by the nth expansion process,
The average density of the area whose volume has increased by the nth or subsequent expansion process is set as a threshold value.
Regarding the region whose volume has increased in each expansion treatment, the region whose density exceeds the threshold value is defined as a powder coal portion, and the region whose density is equal to or less than the threshold value is defined as a void portion,
Calculate the difference between the average density of the powder coal portion and the average density of the void portion for the area whose volume has increased in each expansion treatment,
calculating a filling reduction amount by multiplying the volume of the area that has increased in volume in each expansion process by the difference value;
The amount of packing decrease is integrated over the total number of expansion processes to calculate an integrated amount of packing decrease, and the integrated amount of packing decrease is used as an index of the amount of voids around the molded coal.
A method for analyzing the amount of voids around molded coal.
成型炭と粉炭とを含む配合炭を容器に充填した際に生じる成型炭周囲の空隙量の推定方法であって、
粒度構成が互いに異なる水準及び水分率が互いに異なる水準が含まれるように選定した複数種の粉炭サンプルの各々と、任意に選定した成型炭サンプルとの組合せである複数種の配合炭サンプルを調製し、
各配合炭サンプルについて、請求項1に記載の成型炭周囲の空隙量の解析方法に従ってサンプル積算充填低下量を求め、
前記粉炭サンプルの粒度構成及び水分率と前記サンプル積算充填低下量との関係に基づいて、粉炭の粒度構成及び水分率と積算充填低下量との関係式(I)を求め、
コークス製造における使用予定の粉炭と、任意に選定した解析用成型炭との組合せである配合炭について、前記使用予定の粉炭の粒度構成及び水分率の値を前記関係式(I)に代入して積算充填低下量推定値を算出し、前記積算充填低下量推定値を成型炭周囲の空隙量の指標とする、
成型炭周囲の空隙量の推定方法。
A method for estimating a volume of voids around briquettes that occurs when a coal blend containing briquettes and powdered coal is filled into a container, comprising:
A plurality of blended coal samples are prepared by combining each of a plurality of powdered coal samples selected to include different levels of particle size composition and different levels of moisture content with an arbitrarily selected molded coal sample;
For each coal blend sample, an integrated sample packing reduction amount is obtained according to the method for analyzing the void volume around the coal briquettes described in claim 1;
Based on the relationship between the particle size composition and moisture content of the powder coal sample and the cumulative loading reduction amount of the sample, a relationship formula (I) between the particle size composition and moisture content of the powder coal sample and the cumulative loading reduction amount is obtained;
For a blended coal which is a combination of powdered coal to be used in coke production and arbitrarily selected briquettes for analysis, a particle size composition and a moisture content of the powdered coal to be used are substituted into the relational formula (I) to calculate an estimated cumulative packing reduction amount, and the estimated cumulative packing reduction amount is used as an index of the amount of voids around the briquettes.
A method for estimating the amount of voids around briquettes.
成型炭と粉炭とを含む配合炭を用いたコークスの製造方法であって、
試験用に選択した配合炭サンプルについて、請求項1に記載の成型炭周囲の空隙量の解析方法によって算出される積算充填低下量と、成型炭部SVを変化させてもコークス強度が一定であるような成型炭部SV範囲の下限である成型炭部SV下限値との関係式(II)を予め求めておき、
コークス製造における使用予定の粉炭と、任意に選定した解析用成型炭との組合せである配合炭について、請求項1に記載の成型炭周囲の空隙量の解析方法に従って積算充填低下量を求め、又は請求項2に記載の成型炭周囲の空隙量の推定方法に従って積算充填低下量推定値を求め、
前記積算充填低下量又は前記積算充填低下量推定値を前記関係式(II)に代入して成型炭部SV下限値を求め、
SV実測値が前記成型炭部SV下限値以上である成型炭を製造し、
前記使用予定の粉炭と、製造された成型炭とで構成される配合炭をコークス製造に供する、
コークスの製造方法。
A method for producing coke using a blended coal containing molded coal and powdered coal,
For a coal blend sample selected for testing, a relational expression (II) between an accumulated packing reduction amount calculated by the method for analyzing the void volume around the coal briquette according to claim 1 and a lower limit value of the coal briquette SV, which is a lower limit of the range of the coal briquette SV in which the coke strength is constant even if the coal briquette SV is changed, is previously obtained;
For a blended coal which is a combination of powder coal to be used in coke production and arbitrarily selected coal briquettes for analysis, an integrated packing reduction amount is calculated according to the analysis method for the void volume around the coal briquettes as described in claim 1, or an estimated integrated packing reduction amount is calculated according to the estimation method for the void volume around the coal briquettes as described in claim 2,
The integrated filling reduction amount or the estimated integrated filling reduction amount is substituted into the relational expression (II) to obtain a lower limit value of the briquette coal part SV;
Produce briquettes having an actual SV value equal to or greater than the lower limit SV value of the briquettes,
The blended coal composed of the powdered coal to be used and the produced molded coal is subjected to coke production.
Coke manufacturing method.
JP2022166939A 2022-10-18 2022-10-18 Coke manufacturing method Pending JP2024059325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022166939A JP2024059325A (en) 2022-10-18 2022-10-18 Coke manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022166939A JP2024059325A (en) 2022-10-18 2022-10-18 Coke manufacturing method

Publications (1)

Publication Number Publication Date
JP2024059325A true JP2024059325A (en) 2024-05-01

Family

ID=90828419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022166939A Pending JP2024059325A (en) 2022-10-18 2022-10-18 Coke manufacturing method

Country Status (1)

Country Link
JP (1) JP2024059325A (en)

Similar Documents

Publication Publication Date Title
JP6870528B2 (en) Manufacturing method of coke for blast furnace
JP7205399B2 (en) Powder shape analysis method
O'Brien et al. Coal characterisation by automated coal petrography☆
Lomas et al. Petrographic analysis and characterisation of a blast furnace coke and its wear mechanisms
JP5900531B2 (en) Coke production method
KR101649672B1 (en) Method for sample quality prediction and Method for forecasting CSR(Coke Strength Reaction)
JP4054278B2 (en) Manufacturing method of high strength coke
JP2024059325A (en) Coke manufacturing method
JP6265015B2 (en) Coke manufacturing method
WO2010073718A1 (en) Sintering material granulation method using x-ray ct
JP7063033B2 (en) Powder shape analysis method and powder fluidity evaluation method
JP5045081B2 (en) Manufacturing method of high strength coke
JP6874524B2 (en) Coke strength estimation method
JP7393652B2 (en) Coke average particle size prediction method
RU2675567C1 (en) Coal assessment method and the coke production method
JP2016079198A (en) Method for estimating strength after hot reaction of coke
JP6007958B2 (en) Coke production method
JP7408567B2 (en) Method for producing needle coke powder, needle coke powder, method for producing graphite compact, graphite compact, and graphite electrode
JP2017088794A (en) Estimation method of coke strength
EP3922701A1 (en) Method for evaluating coal, method for preparing blended coal, and method for producing coke
JP5867307B2 (en) Method for selecting caking filler and method for producing high strength coke using the same
JP2005194462A (en) Method for estimating surface-breaking strength of coke
JP2022149760A (en) Estimation method of volume destruction strength of coke
JP7406099B2 (en) Method for predicting the spread of coke particle size distribution
JP2016148019A (en) Manufacturing method of coke