JP2016079198A - Method for estimating strength after hot reaction of coke - Google Patents

Method for estimating strength after hot reaction of coke Download PDF

Info

Publication number
JP2016079198A
JP2016079198A JP2014208574A JP2014208574A JP2016079198A JP 2016079198 A JP2016079198 A JP 2016079198A JP 2014208574 A JP2014208574 A JP 2014208574A JP 2014208574 A JP2014208574 A JP 2014208574A JP 2016079198 A JP2016079198 A JP 2016079198A
Authority
JP
Japan
Prior art keywords
coke
substrate
hot reaction
strength
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014208574A
Other languages
Japanese (ja)
Other versions
JP6436565B2 (en
Inventor
尚土 崎元
Naoto Sakimoto
尚土 崎元
利公 鷹觜
Toshikimi Takashi
利公 鷹觜
吉田 拓也
Takuya Yoshida
拓也 吉田
貴洋 宍戸
Takahiro Shishido
貴洋 宍戸
康爾 堺
Koji Sakai
康爾 堺
憲幸 奥山
Noriyuki Okuyama
憲幸 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Kobe Steel Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Kobe Steel Ltd
Priority to JP2014208574A priority Critical patent/JP6436565B2/en
Publication of JP2016079198A publication Critical patent/JP2016079198A/en
Application granted granted Critical
Publication of JP6436565B2 publication Critical patent/JP6436565B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coke Industry (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for estimating a strength after a hot reaction of coke.SOLUTION: A method for estimating a strength after a hot reaction of coke includes: performing binarizing processing of separating a coke cross-section image after a hot reaction to a coke substrate and substances other than the coke substrate; then dividing the coke substrate into pixel units; connecting a pixel having the coke substrate existed therein with a pixel having the coke substrate adjacent to the pixel existed therein; determining a coke substrate group having the largest area to be a connected substrate and determining the coke substrate other than the connected substrate to be an isolated substrate, of the coke substrate group formed by the connection; and substituting an area ratio of the isolated substrate with respect to the whole coke substrate into the following expression (1) to calculate the estimated value. Estimated value (%) of strength after hot reaction of coke=90-1/2×area ratio (%) of isolated substrate (1).SELECTED DRAWING: Figure 6

Description

本発明はコークスの熱間反応後強度の推定方法に関し、詳細にはコークスの熱間反応後強度をコークスの断面画像から推定する方法に関するものである。   The present invention relates to a method for estimating the strength of a coke after hot reaction, and more particularly to a method of estimating the strength of a coke after hot reaction from a cross-sectional image of the coke.

コークス強度は高炉の通気性や通液性を確保し、安定的に操業するために、重要なパラメータとなっている。コークスの強度測定方法としては、たとえばドラム強度指数、マイカム強度指数、タンブラー強度指数など機械的衝撃をコークスに与えて強度を測定する方法が知られている。   Coke strength is an important parameter for ensuring the air permeability and liquid permeability of the blast furnace and for stable operation. As a method for measuring the strength of coke, for example, a method is known in which strength is measured by applying mechanical impact to the coke such as a drum strength index, a Mycam strength index, and a tumbler strength index.

従来、コークス強度を測定するためには強度測定設備が必要であり、そのため強度測定設備の維持や運転にかかるコストが高いという問題があった。またコークス強度の測定には多量のサンプルを作製する必要がある。そのため石炭の配合を決定するまでに複数回のコークス強度の測定を行うとロスが多くなるという問題があった。   Conventionally, in order to measure the coke strength, a strength measuring facility is required, and therefore there is a problem that the cost for maintaining and operating the strength measuring facility is high. In addition, it is necessary to prepare a large amount of samples for the measurement of coke strength. Therefore, there is a problem that loss is increased when coke strength is measured a plurality of times before determining the blending of coal.

上記問題に対して実測せずにコークス強度を推測する技術が近年検討されている。コークスの冷間強度について例えば非特許文献1には、画像解析手法を用いたコークス強度評価技術が提案されている。この文献によれば、割れ方の方向性ではコークス試料の連結領域を通る部位の強度は、連結されていない部位の強度に比べて高くなることが考察されている。またコークス強度を評価するための技術として、画像解析から得られるコークス基質連結性が重要な因子であることが示されている。   In recent years, a technique for estimating the coke strength without actually measuring the above problem has been studied. Regarding the cold strength of coke, for example, Non-Patent Document 1 proposes a coke strength evaluation technique using an image analysis method. According to this document, it is considered that the strength of the portion passing through the connection region of the coke sample is higher than the strength of the unconnected portion in the direction of cracking. As a technique for evaluating coke strength, it has been shown that coke substrate connectivity obtained from image analysis is an important factor.

コークスは高炉内での反応による粉化、損壊が少ないことが要求されており、またコークスの石炭の配合が変更されると、コークスの熱間反応後強度も変動する。したがって要求品質を備えたコークスを製造するためには、コークスの冷間強度だけでなく、熱間反応後強度も考慮する必要がある。そのためコークスの熱間反応後の強度測定にも、実験設備や多量のコークスが必要になるという上記問題があった。したがってコークスの熱間反応後の強度をより簡便な方法で測定できる技術が求められていた。   Coke is required to be less pulverized and broken due to the reaction in the blast furnace, and when the coal composition of coke is changed, the strength of the coke after hot reaction also varies. Therefore, in order to produce coke having the required quality, it is necessary to consider not only the cold strength of coke but also the strength after hot reaction. Therefore, the above-mentioned problem that the experimental equipment and a large amount of coke are required also for the strength measurement after the hot reaction of the coke. Therefore, a technique capable of measuring the strength of the coke after the hot reaction by a simpler method has been demanded.

「画像解析手法を用いたコークス強度評価技術の開発」鷹觜、崎元、佐藤、奥山、宍戸、石炭科学会議発表論文集(48)、第82〜83頁、2011年10月27日“Development of Coke Strength Evaluation Technique Using Image Analysis Technique” Takashi, Sakimoto, Sato, Okuyama, Shido, Proceedings of the Coal Science Conference (48), pp. 82-83, October 27, 2011

非特許文献1は熱間反応前のコークスの冷間強度について、画像解析からコークス基質の連結性がコークス強度に対して重要な因子であることを開示するに留まっている。非特許文献1ではコークスの熱間反応後強度との関係や具体的な強度推定方法などは開示も示唆もされていない。   Non-Patent Document 1 merely discloses that the coke substrate connectivity is an important factor for the coke strength from image analysis regarding the cold strength of the coke before the hot reaction. Non-Patent Document 1 does not disclose or suggest a relationship with the strength of coke after the hot reaction or a specific strength estimation method.

本発明は上記の様な事情に着目してなされたものであって、その目的は、コークスの熱間反応後の強度を推定できる技術を確立することにある。   The present invention has been made paying attention to the above-described circumstances, and an object thereof is to establish a technique capable of estimating the strength of a coke after a hot reaction.

上記課題を解決し得た本発明のコークスの熱間反応後強度の推定方法は、熱間反応後のコークス断面画像をコークス基質とそれ以外とに分離する2値化処理を行った後、前記コークス基質をピクセル単位に分割し、コークス基質が存在するピクセルと、該ピクセルに隣接するコークス基質が存在するピクセルとを連結させ、該連結によって形成されるコークス基質群のうち、最大面積を有するコークス基質群を連結基質、前記連結基質以外のコークス基質を孤立基質とし、コークス基質全体に対する前記孤立基質の面積率を下記式(1)に代入して推算値を算出することに要旨を有する。
コークスの熱間反応後強度の推算値(%)=90−1/2×孤立基質の面積率(%)・・・(1)
The estimation method of the strength after the hot reaction of the coke according to the present invention, which can solve the above-mentioned problem, after performing the binarization processing for separating the coke cross-sectional image after the hot reaction into the coke substrate and the other, The coke substrate is divided into pixel units, the pixel having the coke substrate is connected to the pixel having the coke substrate adjacent to the pixel, and the coke having the largest area among the coke substrate groups formed by the connection. The gist is to calculate an estimated value by substituting the substrate group as a linked substrate, a coke substrate other than the linked substrate as an isolated substrate, and substituting the area ratio of the isolated substrate with respect to the entire coke substrate into the following equation (1).
Estimated value of strength after hot reaction of coke (%) = 90−1 / 2 × area ratio of isolated substrate (%) (1)

上記式(1)のコークスの熱間反応後強度の推算値は、コークスの熱間反応後のマイクロストレングスの実測値と相関関係を有する。   The estimated value of the strength of the coke after the hot reaction of the above formula (1) has a correlation with the actually measured value of the micro strength after the hot reaction of the coke.

また上記式(1)のコークスの熱間反応後強度の推算値は、下記式(2)に基づいて算出されるコークスの熱間反応後のマイクロストレングスの推算値と相関を有することが事前に確認されたものである。
コークスの熱間反応後のマイクロストレングスの推算値(%)=a×P0+b×R+c・・・(2)
式中、a、b、cはコークス毎に回帰分析によって定まる定数
P0は熱間反応前気孔率であって、下記式(3)によって得られる値
P0=((真密度(g/cm3)−(熱間反応前質量(g)/熱間反応前体積(cm3)))/真密度(g/cm3)×100・・・(3)
Rは反応率であって、熱間反応前後のコークスの質量を測定し、下記式(4)によって得られる値
反応率R(%)=(熱間反応前質量(g)−熱間反応後質量(g))/熱間反応前質量(g)×100・・・(4)
In addition, the estimated value of the strength after the hot reaction of the coke in the above formula (1) has a correlation with the estimated value of the micro strength after the hot reaction of the coke calculated based on the following formula (2) in advance. It has been confirmed.
Estimated value of micro strength after hot reaction of coke (%) = a × P0 + b × R + c (2)
In the formula, a, b, and c are constants determined by regression analysis for each coke. P0 is the porosity before hot reaction, and is obtained by the following formula (3) P0 = ((true density (g / cm 3 ) -(Mass before hot reaction (g) / volume before hot reaction (cm 3 ))) / true density (g / cm 3 ) × 100 (3)
R is the reaction rate, and the mass of coke before and after the hot reaction is measured. The value obtained by the following formula (4): the reaction rate R (%) = (mass before hot reaction (g) −after the hot reaction Mass (g)) / mass before hot reaction (g) × 100 (4)

本発明によればコークスの熱間反応後強度をコークス断面の画像解析によって推定できる。特に本発明の推定方法によれば、マイクロストレングス(Micro−Strength Index:以下、「MSI」と略記することがある)を実測した場合と同等のコークスの熱間反応後強度を推算できる。   According to the present invention, the strength after hot reaction of coke can be estimated by image analysis of the coke cross section. In particular, according to the estimation method of the present invention, it is possible to estimate the post-hot-reaction strength of coke equivalent to that obtained by actually measuring micro-strength index (hereinafter sometimes abbreviated as “MSI”).

図1は、二値化処理後のコークスの切断面の一例を示す図面代用写真である。FIG. 1 is a drawing-substituting photograph showing an example of a cut surface of coke after binarization processing. 図2は、連結基質、孤立基質、背景と気孔の一例を示す図面代用写真である。FIG. 2 is a drawing-substituting photograph showing an example of a linked substrate, isolated substrate, background and pores. 図3は、コークス断面の撮影画像の明度ヒストグラムの一例である。FIG. 3 is an example of a brightness histogram of a captured image of a coke cross section. 図4は、ピクセル処理した画像から連結の有無を判断するための説明図である。FIG. 4 is an explanatory diagram for determining the presence or absence of connection from the pixel-processed image. 図5は、MSIの実測値とMSIの推算値をプロットしたグラフである。FIG. 5 is a graph plotting measured values of MSI and estimated values of MSI. 図6は、孤立基質の面積率とMSIの推算値をプロットしたグラフである。FIG. 6 is a graph in which the area ratio of the isolated substrate and the estimated value of MSI are plotted.

本発明においてマイクロストレングスとは、コークス基質の強さを示すマイクロストレングス指数であって、直径20mm±1mmの球状コークス1個を内径24.2mm、長さ300mmの円筒形ドラムに装入し、25回転/分で800回ドラムを回転させた後、球状コークスの表面破壊により発生したコークス粉を取り除いた後に残ったコークス塊の質量の百分率(%)をいう。   In the present invention, the micro strength is a micro strength index indicating the strength of a coke substrate, and a spherical coke having a diameter of 20 mm ± 1 mm is charged into a cylindrical drum having an inner diameter of 24.2 mm and a length of 300 mm. This refers to the percentage (%) of the mass of the coke mass remaining after removing the coke powder generated by the surface destruction of the spherical coke after rotating the drum 800 times at a rotation / min.

本発明においてコークスの連結基質とは、コークス断面を画像解析したとき、コークス基質同士を連結して形成されるコークス基質群のうち、最大面積を有する部位をいう。なお、コークス基質同士の連結の有無は、熱間反応後のコークス断面画像を2値化処理した後、ピクセル単位に分割し、コークス基質が存在するピクセルと、該ピクセルに隣接するピクセルにコークス基質が存在する場合は、連結していると判断し、隣接するピクセルのいずれにもコークス基質が存在しない場合は、連結していないと判断する。   In the present invention, the coke substrate refers to a portion having the maximum area in a coke substrate group formed by connecting coke substrates when image analysis is performed on a coke cross section. In addition, the presence or absence of the connection between coke substrates is determined by subjecting the coke cross-sectional image after the hot reaction to binarization processing and then dividing the image into pixels, and coke substrates in the pixels where the coke substrate exists and the pixels adjacent to the pixels. Is present, it is determined that they are connected, and if there is no coke substrate in any of the adjacent pixels, it is determined that they are not connected.

またコークスの孤立基質とは、上記最大面積を有するコークス基質群以外、すなわち連結基質以外のコークス基質をいう。   The coke isolated substrate means a coke substrate other than the coke substrate group having the maximum area, that is, a coke substrate other than the linked substrate.

例えば図4は画像をピクセル単位に分割した模式図であり、図中、斜線部はピクセル内にコークス基質が存在していることを示している。図中、3Dを中心として隣接する2C〜2E、3C、3E、4C〜4Eの8ピクセルのうち、2E、3C、4Eにはコークス基質が存在しており、3D、2E、3C、4Eは連結し、更にこれらと3B、4Bが連結し、4Bと隣接する5Cまで連結していると判断する。また図中、6E、7D〜7Fは連結しているが、3Dを含むコークス基質群と7Eを含むコークス基質群はコークス基質が存在するピクセルで連結されていないため、夫々独立したコークス基質群である。なお、図4では3Dを含むコークス基質群は7Eを含むコークス基質群よりも面積が大きいため、3Dを含むコークス基質群は連結基質、7Eを含むコークス基質群は孤立基質である。   For example, FIG. 4 is a schematic diagram in which an image is divided into units of pixels. In the figure, the hatched portion indicates that a coke substrate is present in the pixel. In the figure, among 8C of 2C to 2E, 3C, 3E, 4C to 4E adjacent to 3D as the center, coke substrate exists in 2E, 3C, and 4E, and 3D, 2E, 3C, and 4E are connected. Further, it is determined that these are connected to 3B and 4B, and to 5C adjacent to 4B. In the figure, 6E and 7D to 7F are connected, but the coke substrate group including 3D and the coke substrate group including 7E are not connected by the pixel in which the coke substrate exists. is there. In FIG. 4, since the coke substrate group containing 3D has a larger area than the coke substrate group containing 7E, the coke substrate group containing 3D is a linked substrate, and the coke substrate group containing 7E is an isolated substrate.

本発明は、熱間反応後のコークス断面を画像解析して得られる孤立基質の割合を下記式(1)に代入するだけで、MSIの実測値と高い相関関係を有するコークスの熱間反応後強度を推算できることを見出し、本発明に至った。
コークスの熱間反応後強度の推算値(%)=90−1/2×孤立基質の面積率(%)・・・(1)
In the present invention, after substituting the ratio of the isolated substrate obtained by image analysis of the coke cross section after the hot reaction into the following formula (1), the coke after the hot reaction having a high correlation with the measured value of MSI is obtained. The inventors have found that the strength can be estimated and have arrived at the present invention.
Estimated value of strength after hot reaction of coke (%) = 90−1 / 2 × area ratio of isolated substrate (%) (1)

本発明に至った経緯は以下のとおりである。   The background to the present invention is as follows.

本発明者らは、コークスの熱間反応後強度を推定する方法について検討した。まず、配合炭の種類や配合割合の異なるコークスの気孔率や反応率などの各種物性を調べると共に、様々な条件で熱間反応させて得られたコークスのMSIを実測し、コークスの物性と熱間反応後強度との関係について検討を重ねた。   The present inventors examined a method for estimating the strength of the coke after the hot reaction. First, we investigated various physical properties such as porosity and reaction rate of coke with different types of blended coal and blending ratio, and measured the MSI of coke obtained by hot reaction under various conditions to determine the physical properties and heat of coke. The relationship with the strength after interreaction was studied repeatedly.

その結果、本発明者らは下記式(2)に基づいてコークスの熱間反応後のMSIの実測値と良好な相関関係を示すMSIの推算値(%)を算出できることを突き止めた。
コークスの熱間反応後のMSIの推算値(%)=a×P0+b×R+c・・・(2)
式中、a、b、cはコークス毎に決定される係数であって、a、b、cは夫々回帰分析によって求められる値である。
式中、
P0は、下記式(3)に基づいて算出した熱間反応前のコークスの気孔率である。
気孔率P0=(真密度(g/cm3)−(熱間反応前質量(g)/熱間反応後体積(cm3)))/真密度(g/cm3)×100・・・(3)
熱間反応前質量、および熱間反応前体積は、熱間反応前のコークスの質量と体積である。
真密度は、コークス基質の真密度であり、代表値として1.9g/cmを用いても良い。
R(%)は、熱間反応前後のコークスの質量を測定し、下記式(4)に基づいて算出した反応率である。
反応率R(%)=(熱間反応前質量(g)−熱間反応前質量(g))/熱間反応前質量(g)×100・・・(4)
As a result, the present inventors found out that the estimated value (%) of MSI showing a good correlation with the actually measured value of MSI after the hot reaction of coke can be calculated based on the following formula (2).
Estimated value (%) of MSI after hot reaction of coke = a × P0 + b × R + c (2)
In the formula, a, b, and c are coefficients determined for each coke, and a, b, and c are values obtained by regression analysis, respectively.
Where
P0 is the porosity of the coke before the hot reaction calculated based on the following formula (3).
Porosity P0 = (true density (g / cm 3 ) − (mass before hot reaction (g) / volume after hot reaction (cm 3 ))) / true density (g / cm 3 ) × 100 (100) 3)
The mass before hot reaction and the volume before hot reaction are the mass and volume of coke before hot reaction.
The true density is the true density of the coke substrate, and 1.9 g / cm 3 may be used as a representative value.
R (%) is the reaction rate calculated based on the following formula (4) by measuring the mass of coke before and after the hot reaction.
Reaction rate R (%) = (mass before hot reaction (g) −mass before hot reaction (g)) / mass before hot reaction (g) × 100 (4)

上記式(2)に基づくMSI推算値とMSI実測値をプロットすると図5のように相関関係を示す。すなわち、上記式(2)で求められるMSI推算値とMSI実測値の間には比例関係があり、MSI推算値が低い場合は、MSI実測値も低くなる傾向を示した。   When the estimated MSI value and the measured MSI value based on the above equation (2) are plotted, a correlation is shown as shown in FIG. That is, there is a proportional relationship between the estimated MSI value obtained by the above formula (2) and the measured MSI value, and when the estimated MSI value is low, the measured MSI value tends to be low.

式(2)に基づけば図5に示すように良好な相関関係を有するコークスの熱間反応後の強度を高い精度で推定できる。一方で上記式(2)に基づくMSI推算値を算出するためには、事前にコークス毎に熱間反応前気孔率P0、反応率Rを測定し、更に多量のコークスの熱間反応後のMSIを実測して回帰分析が必要となる。   Based on the equation (2), as shown in FIG. 5, the strength of the coke having a good correlation after the hot reaction can be estimated with high accuracy. On the other hand, in order to calculate the estimated value of MSI based on the above formula (2), the pre-hot reaction porosity P0 and the reaction rate R are measured in advance for each coke, and further, the MSI after the hot reaction of a large amount of coke. It is necessary to perform regression analysis by actually measuring.

そこで本発明者らは、より簡便にコークスの熱間反応後の強度を推定する方法について検討した。まず、熱間反応後のコークスの断面画像を調べたところ、コークス基質は連結基質と孤立基質に分けることができた。そして孤立基質は、コークスに機械的衝撃が加わった際にコークスの損壊の起点となるため、コークスの熱間反応後強度に及ぼす影響が大きいと考えた。   Therefore, the present inventors examined a method for estimating the strength of the coke after the hot reaction more simply. First, the cross-sectional image of the coke after the hot reaction was examined, and the coke substrate could be divided into a ligated substrate and an isolated substrate. And since the isolated substrate becomes the starting point of coke damage when mechanical impact is applied to the coke, it was thought that the influence on the strength of the coke after the hot reaction was great.

もっとも画像解析したコークスは樹脂で包埋処理されているため、MSIを実測できない。そこでMSIの実測値と良好な相関関係を示す上記式(2)によって求められるMSIの推算値との関係を調べた。その結果、図6に示すように孤立基質の面積率(%)はMSIの推算値と良好な相関関係を有することがわかった。そしてMSIの推算値は、下記式(1)により求められる「コークスの熱間反応後強度の推算値(%)」として、孤立基質の面積率(%)から求めることができることを突き止めた。
コークスの熱間反応後強度の推算値(%)=90−1/2×孤立基質の面積率(%)・・・(1)
However, since the coke subjected to image analysis is embedded with resin, MSI cannot be measured. Therefore, the relationship between the measured value of MSI and the estimated value of MSI obtained by the above formula (2) showing a good correlation was examined. As a result, as shown in FIG. 6, it was found that the area ratio (%) of the isolated substrate had a good correlation with the estimated value of MSI. It was found that the estimated value of MSI can be obtained from the area ratio (%) of the isolated substrate as “estimated value (%) of strength after hot reaction of coke” obtained by the following formula (1).
Estimated value of strength after hot reaction of coke (%) = 90−1 / 2 × area ratio of isolated substrate (%) (1)

したがって熱間反応後のコークス断面を画像解析して孤立基質の面積率を求めれば、式(1)に基づいてMSIの実測値と高い相関関係を有する式(2)のMSIの推算値を算出できる。そのため、孤立基質の面積率を算出するだけで、式(1)に基づいて簡便にコークスの熱間反応後強度を推定できる。   Therefore, if the area ratio of the isolated substrate is obtained by image analysis of the coke cross section after the hot reaction, the estimated value of MSI in equation (2) that has a high correlation with the measured value of MSI is calculated based on equation (1). it can. Therefore, it is possible to simply estimate the strength of the coke after the hot reaction based on the formula (1) only by calculating the area ratio of the isolated substrate.

以下、本発明の推定方法について説明する。   Hereinafter, the estimation method of the present invention will be described.

(コークス)
本発明で対象とするコークスの原料炭は特に限定されず、強粘結炭、準強粘結炭、非微粘結炭など各種公知の石炭を所望の割合で配合した配合炭を用いることができる。また必要に応じて無灰炭やアスファルトピッチなど結合材、その他任意の添加材を適宜配合させてもよい。配合炭から直径20mm±1mmの球状コークスを製造する。コークスは公知の方法に基づいて製造すればよい。
(Coke)
The coking coal used in the present invention is not particularly limited, and it is preferable to use a blended coal in which various known coals such as strong caking coal, semi-caking caking coal, and non-caking caking coal are blended in a desired ratio. it can. Moreover, you may mix | blend suitably binders, such as ashless coal and asphalt pitch, and other arbitrary additives as needed. Spherical coke having a diameter of 20 mm ± 1 mm is produced from the blended coal. Coke may be produced based on a known method.

(熱間反応処理)
球状コークスを熱間反応処理する。熱間反応処理条件は、例えば加熱温度850℃〜1100℃、所定の加熱温度での保持時間0〜60分、反応ガス組成をモル比でCO/N=0.3〜3、HO/N=0.3〜3とする。
(Hot reaction processing)
Spherical coke is subjected to a hot reaction treatment. The hot reaction treatment conditions are, for example, a heating temperature of 850 ° C. to 1100 ° C., a holding time of 0 to 60 minutes at a predetermined heating temperature, a reaction gas composition in a molar ratio of CO 2 / N 2 = 0.3 to 3, H 2 O / N 2 = 0.3-3.

(樹脂包埋)
断面観察時にコークスを安定に保持するため、コークスを樹脂包埋する。この際、コークスの気孔内にも樹脂を含浸させるために真空状態でコークスに樹脂を含浸させることが望ましい。コークスを型枠に納めてから真空状態とし、コークスが埋設されるように包埋樹脂を充填した後、外気圧に戻せばよい。真空度は特に限定されず、包埋樹脂の種類に応じて必要とされる公知の真空度とすればよい。包埋樹脂としては特に限定されず、エポキシ樹脂、フェノール樹脂、アクリル樹脂など公知の樹脂を用いることができる。樹脂は公知の方法で硬化させればよく、例えば乾燥機などで加熱して硬化させてもよい。
(Resin embedding)
In order to stably hold the coke during cross-sectional observation, the coke is embedded in a resin. At this time, in order to impregnate the resin in the pores of the coke, it is desirable to impregnate the coke with the resin in a vacuum state. After the coke is placed in the mold, it is evacuated, filled with the embedding resin so that the coke is embedded, and then returned to the external pressure. The degree of vacuum is not particularly limited, and may be a known degree of vacuum required according to the type of embedding resin. It does not specifically limit as embedding resin, Well-known resin, such as an epoxy resin, a phenol resin, and an acrylic resin, can be used. The resin may be cured by a known method. For example, the resin may be cured by heating with a dryer.

次に観察面を作製するために樹脂包埋コークスを切断する。切断位置は特に限定されないが、樹脂包埋コークス長手方向の長さ×1/2位置で切断することが好ましい。また切断時の衝撃や摩耗等によって樹脂包埋コークスの切断面に切断跡や凹凸等が生じた場合は、必要に応じて切断面を研磨して切断跡や凹凸等がない状態にすることが望ましい。   Next, the resin-embedded coke is cut to produce an observation surface. The cutting position is not particularly limited, but it is preferable to cut at a length in the longitudinal direction of the resin-embedded coke × 1/2. In addition, if cut marks or irregularities are generated on the cut surface of the resin-embedded coke due to impact or wear during cutting, the cut surface may be polished as necessary so that there are no cut marks or irregularities. desirable.

コークス内の気孔が十分に樹脂で包埋できておらず、研磨作業に問題が生じる場合、切断した樹脂包埋コークスは必要に応じて乾燥させた後、上記包埋樹脂を用いてコークス切断面を包埋処理する。包埋処理は真空状態下でコークス切断面が埋設されるように包埋樹脂を充填した後、外気圧に戻し、包埋樹脂を硬化させればよい。   If the pores in the coke are not sufficiently embedded in the resin and there is a problem in the polishing operation, the cut resin-embedded coke is dried if necessary, and then the coke-cut surface using the embedded resin is used. The embedding process. The embedding process may be performed by filling the embedding resin so that the coke cut surface is embedded under a vacuum state, and then returning to the external pressure to cure the embedding resin.

続いて上記コークスの切断面側の余分な樹脂を除去し、コークス切断面を出現させる。樹脂の除去方法は特に限定されず、所望の研磨材を用いてコークス切断面を被覆している余分な樹脂を除去すればよい。また樹脂を除去した後のコークス切断面に研磨痕などの凹凸などがある場合は、これらを除去するためにコークス切断面を更に研磨してもよい。良好な画像を採取して測定精度を高める観点からコークス切断面は研磨して鏡面仕上げすることが好ましい。   Subsequently, excess resin on the cut surface side of the coke is removed, and a coke cut surface appears. The method for removing the resin is not particularly limited, and it is only necessary to remove the excess resin covering the coke cut surface using a desired abrasive. If the coke cut surface after removing the resin has irregularities such as polishing marks, the coke cut surface may be further polished to remove these. From the viewpoint of obtaining a good image and improving the measurement accuracy, it is preferable to polish the coke cut surface to a mirror finish.

(画像撮影)
コークス切断面を鏡面仕上げした後、該コークス切断面を画像撮影する。撮影画像からコークス切断面の状態を確認して画像解析できれば、撮影倍率は特に限定されない。例えば撮影倍率は50倍とすればよい。撮影視野は特に限定されず、1回または複数回の撮影でコークス切断面全体が撮影できればよい。複数回の撮影を行う場合、コークス切断面を撮影視野サイズで区画し、各区画を撮影した後に各撮影画像を結合処理してコークス切断面の合成写真を作製すればよい。
(Image shooting)
After the coke cut surface is mirror-finished, the coke cut surface is imaged. The imaging magnification is not particularly limited as long as the state of the coke cut surface can be confirmed from the captured image and image analysis can be performed. For example, the photographing magnification may be 50 times. The field of view for photography is not particularly limited, as long as the entire coke cut surface can be photographed by one or a plurality of times of photography. When shooting multiple times, the coke cut surface may be sectioned according to the field of view, and after each section is shot, each captured image is combined to produce a composite photograph of the coke cut surface.

(二値化処理)
次にコークス切断面の画像を二値化処理し、コークスの基質と、気孔などコークスの基質以外とで2階調に変換する。二値化処理する際の閾値の決定は、画像の明度ヒストグラムから包埋樹脂のピークとコークスのピークの間の谷底を境界値とするモード法を用いればよい。
(Binarization processing)
Next, the image of the coke cut surface is binarized and converted into two gradations using a coke substrate and a substrate other than the coke substrate such as pores. The threshold value for the binarization process may be determined by using a mode method in which the valley value between the embedding resin peak and the coke peak is a boundary value from the brightness histogram of the image.

二値化処理することで例えば図1に示すようにコークス基質部分を、閉気孔、開気孔など基質以外の部分、及びコークス以外の型枠や背景部分とを色分けできる。図1ではコークス基質分を白色、その他の部分を黒色としている。   By performing binarization, for example, as shown in FIG. 1, the coke substrate portion can be color-coded into portions other than the substrate such as closed pores and open pores, and mold frames and background portions other than coke. In FIG. 1, the coke substrate is white and the other parts are black.

二値化処理後、コークス基質部分を連結基質と孤立基質とに区別する。具体的には上記したように画像をピクセル単位に分割して、隣接するピクセル内にコークス基質が存在するか判断して連結の有無を確認すればよい。連結基質と孤立基質は識別性を高める観点から必要に応じて着色してもよい。また更に視認性を高める観点から上記二値化処理した基質以外の部分を任意の色で着色してもよい。   After binarization, the coke substrate part is distinguished into a ligated substrate and an isolated substrate. Specifically, as described above, the image may be divided into units of pixels, and it may be determined whether or not the coke substrate exists in the adjacent pixels to confirm the presence or absence of the connection. The linked substrate and the isolated substrate may be colored as necessary from the viewpoint of enhancing the discrimination. Further, from the viewpoint of further improving the visibility, portions other than the binarized substrate may be colored with an arbitrary color.

コークス基質を連結基質と孤立基質に区別した後、コークス基質全体に対する孤立基質の面積率を算出する。具体的には下記式(5)に基づいて算出する。
孤立基質の面積率(%)=孤立基質の面積/(孤立基質の面積+連結基質の面積)×100・・・(5)
After distinguishing the coke substrate into the ligated substrate and the isolated substrate, the area ratio of the isolated substrate to the entire coke substrate is calculated. Specifically, it is calculated based on the following formula (5).
Area ratio of isolated substrate (%) = area of isolated substrate / (area of isolated substrate + area of linked substrate) × 100 (5)

得られた孤立基質の面積率(%)を下記式(1)に代入することでコークスの熱間反応後強度を算出できる。
コークスの熱間反応後強度の推算値(%)=90−1/2×孤立基質の面積率(%)・・・(1)
By substituting the area ratio (%) of the obtained isolated substrate into the following formula (1), the strength after hot reaction of coke can be calculated.
Estimated value of strength after hot reaction of coke (%) = 90−1 / 2 × area ratio of isolated substrate (%) (1)

上記式(1)から算出された上記コークスの熱間反応後強度の推算値(%)は、上記したように実質的に式(2)のMSIの推算値と相関しており、また該式(2)のMSIの推算値はMSIの実測値と相関している。そのため、上記式(1)のコークスの熱間反応後強度の推算値はコークスの熱間反応後のマイクロストレングスの実測値と相関関係を有しており、上記式(1)からコークスの熱間反応後強度を高精度で推定できる。   The estimated value (%) of the strength after hot reaction of the coke calculated from the above formula (1) is substantially correlated with the estimated MSI value of the formula (2) as described above. The estimated value of MSI in (2) correlates with the measured value of MSI. Therefore, the estimated value of the strength of the coke after the hot reaction of the above formula (1) has a correlation with the actually measured value of the micro strength after the hot reaction of the coke. Post reaction intensity can be estimated with high accuracy.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

実施例1
(1)コークスの測定
表1に示す配合炭から製造された直径21mmの球状コークスを用いて熱間反応後強度の推算、およびMSIの実測を行った。
Example 1
(1) Measurement of coke Using a spherical coke having a diameter of 21 mm manufactured from the coal blend shown in Table 1, the strength after hot reaction was estimated, and the MSI was actually measured.

まず、球状コークスの熱間反応前の質量、及び体積を夫々測定し、熱間反応前の球状コークスの気孔率を下記式(3)に基づいて算出した。真密度は、コークス基質の真密度の代表値として1.9g/cmを採用した。
気孔率P0=((真密度(g/cm3)−(熱間反応前質量(g)/熱間反応前体積(cm3)))/真密度(g/cm3)×100・・・(3)
First, the mass and volume of the spherical coke before the hot reaction were measured, respectively, and the porosity of the spherical coke before the hot reaction was calculated based on the following formula (3). As the true density, 1.9 g / cm 3 was adopted as a representative value of the true density of the coke substrate.
Porosity P0 = ((true density (g / cm 3 ) − (mass before hot reaction (g) / volume before hot reaction (cm 3 ))) / true density (g / cm 3 ) × 100 (3)

更に後記熱間反応後に球状コークスの質量を測定した後、下記式(4)に基づいて反応率Rを算出した。
反応率R(%)=(熱間反応前質量(g)−熱間反応後質量(g))/熱間反応前質量(g)×100・・・(4)
Further, after measuring the mass of the spherical coke after the hot reaction described later, the reaction rate R was calculated based on the following formula (4).
Reaction rate R (%) = (mass before hot reaction (g) −mass after hot reaction (g)) / mass before hot reaction (g) × 100 (4)

(2)熱間反応処理
球状コークスを直径75mm、高さ75mmの円筒バスケット型反応管にコークス層が一層となるように平積みした。コークス下部よりN2を流通し850℃〜1100℃の反応温度まで昇温させた後、CO2、H2OをCO2/N2=0.3〜3、H2O/N2=0.3〜3の割合となるように混合した気体を0.44mol/minで流通させつつ、反応器温度が反応温度で安定するように制御し、該温度で5〜60分間、保持をして熱間反応後コークスを得た。
(2) Hot reaction treatment Spherical coke was stacked on a cylindrical basket type reaction tube having a diameter of 75 mm and a height of 75 mm so that the coke layer was a single layer. After N 2 was circulated from the lower part of the coke and heated to a reaction temperature of 850 ° C. to 1100 ° C., CO 2 and H 2 O were changed to CO 2 / N 2 = 0.3 to 3, H 2 O / N 2 = 0. Control the reactor temperature to be stable at the reaction temperature while circulating the gas mixed at a rate of 3 to 3 at 0.44 mol / min, and hold at that temperature for 5 to 60 minutes. Coke was obtained after the hot reaction.

(3)マイクロストレングス試験
上記熱間反応後コークスのマイクロストレングスを測定した。熱間反応後の球状コークス1個を、内径24.2mm、長さ300mmの円筒形ドラムに装入し、25回転/分で800回ドラムを回転させた後、コークス塊の表面破壊により発生したコークス粉を除いた後に残ったコークス塊の質量の百分率(%)を算出した。得られた値をMSIの実測値とした。
(3) Micro-strength test The micro-strength of the coke after the hot reaction was measured. One spherical coke after hot reaction was charged into a cylindrical drum having an inner diameter of 24.2 mm and a length of 300 mm, and the drum was rotated 800 times at 25 revolutions / minute, and then generated due to surface destruction of the coke mass. The percentage (%) of the mass of the coke mass remaining after removing the coke powder was calculated. The obtained value was taken as an actual measurement value of MSI.

また上記気孔率P0、および反応率Rを下記式(2)に代入してMSIの推算値を算出した。
コークスの熱間反応後のMSIの推算値(%)=a×P0+b×R+c・・・(2)
式中、a、b、cは下記分析によって定まる定数である。
Further, the estimated value of MSI was calculated by substituting the porosity P0 and the reaction rate R into the following formula (2).
Estimated value (%) of MSI after hot reaction of coke = a × P0 + b × R + c (2)
In the formula, a, b and c are constants determined by the following analysis.

MSIの推算値と実測値を、図5にプロットした。図5に示すようにMSIの実測値とMSIの推算値は、コークスの種類にかかわらず、良好な相関関係を示すことがわかった。   The estimated value and the actual measurement value of MSI are plotted in FIG. As shown in FIG. 5, it was found that the measured value of MSI and the estimated value of MSI showed a good correlation regardless of the type of coke.

実施例2
(1)コークスの熱反応
上記実施例1と同様にして表1に示す配合炭から製造した直径21mmの球状コークスを熱間反応させて熱間反応後コークスを得た。
Example 2
(1) Thermal reaction of coke In the same manner as in Example 1, spherical coke having a diameter of 21 mm produced from the coal blend shown in Table 1 was subjected to a hot reaction to obtain a coke after the hot reaction.

(2)熱間反応処理
上記実施例1と同様にして各球状コークスを熱間反応処理した。
(2) Hot reaction treatment Each spherical coke was subjected to a hot reaction treatment in the same manner as in Example 1 above.

(3)樹脂包埋処理
得られた熱間反応後コークスを樹脂包埋処理した。具体的には熱間反応後コークスを内径1インチの円柱状の樹脂包埋用型枠に入るように165μmの研磨盤で直径20mm程度となるまで研磨成型した後、80℃で12時間の真空乾燥を行った。該コークスを1インチの円柱状の樹脂包埋用型枠に入れてデジケーターにセットした。デジケーター内を100hPaまで真空状態にしてから、エポキシ樹脂をまず樹脂包埋用型枠と該コークスの隙間に充填し、その後、該コークス上面側にも充填した。エポキシ樹脂充填後、真空状態を解除した。続いて乾燥器内に該コークスを静置して24時間乾燥させて樹脂を固化させた。その後、得られた樹脂包埋コークスをBUEHLER社製の精密切断機ISOMETで高さ×1/2で湿式切断した。コークス内が十分に樹脂で包埋されておらず、研磨作業に支障をきたす気孔があるコークス断面は、室温で12時間の真空乾燥を行った後、該コークスをデジケーターにセットした。デジケーター内を100hPaまで真空状態にし、エポキシ樹脂で該コークスの断面を被覆した後に真空状態を解除した。続いて該コークスを乾燥器で24時間乾燥させて樹脂を硬化させた。
(3) Resin embedding treatment The obtained coke after hot reaction was resin-embedded. Specifically, after the hot reaction, the coke is polished and molded to a diameter of about 20 mm with a 165 μm polishing disk so as to enter a cylindrical resin embedding mold with an inner diameter of 1 inch, and then vacuumed at 80 ° C. for 12 hours. Drying was performed. The coke was placed in a 1-inch cylindrical resin embedding mold and set in a desiccator. After the inside of the desiccator was evacuated to 100 hPa, the epoxy resin was first filled into the gap between the resin embedding mold and the coke, and then filled into the upper surface of the coke. After filling the epoxy resin, the vacuum state was released. Subsequently, the coke was allowed to stand in a dryer and dried for 24 hours to solidify the resin. Thereafter, the obtained resin-embedded coke was wet-cut at a height of ½ with a precision cutting machine ISOMET manufactured by BUEHLER. The coke cross section in which coke was not sufficiently embedded with resin and had pores that hindered the polishing operation was vacuum-dried at room temperature for 12 hours, and then the coke was set in a digitalizer. The inside of the desiccator was evacuated to 100 hPa, and after the cross section of the coke was covered with an epoxy resin, the vacuum state was released. Subsequently, the coke was dried in a dryer for 24 hours to cure the resin.

(4)研磨
続いてBUEHLER社製のEcoMet250を用いて上記コークス切断面の研磨を行った。具体的には、余分な樹脂を除去してコークス切断面を出すために粒度165μmの研磨紙で粗研磨を行った。なお、コークス切断面の研磨痕や凹凸については必要に応じて#600、#800の研磨紙を用いて研磨を行った。更に該研磨後、6μm、1μm、0.05μmの液体研磨剤の順で切断面の仕上げ研磨を行った。
(5)画像撮影
得られたコークスの仕上げ研磨面を下記条件で撮影を行った。
マイクロスコープ:KEYENCE社製VHX−600
対物レンズ:VH−Z20
撮影視野:6.1×4.6mm
撮影画素:1600×1200画素
撮影倍率:50倍
解像度:3.8μm/画素
コークスを移動させながら切断面の撮影を行った後、撮影画像を合成して約5000×5000画素の仕上げ研磨面全体画像を得た。
(6)二値化処理
得られた仕上げ研磨面全体画像を解析するために二値化処理を行った。その際、図3に示すように撮影画像の明度ヒストグラムからコークス基質の山と樹脂の山の間の谷底を明度の境界値とするモード法を用いた。図1に二値化処理後の写真の一例を示す。
(7)コークス基質分析
二値化処理後、画像をピクセル単位に分割してコークス基質の連結の有無を確認し、連結基質と孤立基質を区別した。図2は図1の連結基質(図中、白色)と、孤立基質(図中、灰色)、気孔と背景(図中、黒色)を示している。図2の場合、孤立基質の面積は1856073ピクセル、連結基質の面積は2778844ピクセルであった。下記式(5)に基づいて孤立基質の面積率を算出したところ、40.0%であった。
孤立基質の面積率(%)=孤立基質の面積(ピクセル)/(孤立基質の面積(ピクセル)+連結基質の面積(ピクセル))×100・・・(5)
(4) Polishing Subsequently, the coke cut surface was polished using EcoMet250 manufactured by BUEHLER. Specifically, rough polishing was performed with polishing paper having a particle size of 165 μm in order to remove excess resin and provide a coke cut surface. In addition, about the grinding | polishing trace and unevenness | corrugation of a coke cut surface, it grind | polished using the abrasive paper of # 600 and # 800 as needed. Further, after the polishing, finish polishing of the cut surfaces was performed in the order of 6 μm, 1 μm, and 0.05 μm liquid abrasive.
(5) Image photography The finish grinding | polishing surface of the obtained coke was image | photographed on condition of the following.
Microscope: VHX-600 manufactured by KEYENCE
Objective lens: VH-Z20
Field of view: 6.1 x 4.6 mm
Shooting pixels: 1600 × 1200 pixels Shooting magnification: 50 times Resolution: 3.8 μm / pixel After shooting the cut surface while moving the coke, the shot images are synthesized and the entire finished polished surface image of about 5000 × 5000 pixels Got.
(6) Binarization process A binarization process was performed to analyze the entire image of the finished polished surface. At that time, as shown in FIG. 3, a mode method was used in which the bottom of the valley between the peak of the coke substrate and the peak of the resin was determined from the brightness histogram of the photographed image. FIG. 1 shows an example of a photograph after binarization processing.
(7) Coke Substrate Analysis After binarization, the image was divided into pixel units to check whether or not the coke substrate was linked, and the linked substrate and the isolated substrate were distinguished. FIG. 2 shows the ligated substrate of FIG. 1 (white in the figure), the isolated substrate (gray in the figure), the pores and the background (black in the figure). In the case of FIG. 2, the area of the isolated substrate was 1856073 pixels and the area of the linked substrate was 2778844 pixels. When the area ratio of the isolated substrate was calculated based on the following formula (5), it was 40.0%.
Area ratio (%) of isolated substrate = area of isolated substrate (pixel) / (area of isolated substrate (pixel) + area of linked substrate (pixel)) × 100 (5)

実施例1で得られたMSIの推算値(%)をY軸、上記孤立基質の面積率(%)をX軸として図6にプロットした。   The estimated value (%) of MSI obtained in Example 1 is plotted in FIG. 6 with the Y-axis and the area ratio (%) of the isolated substrate as the X-axis.

図6に示すように孤立基質の面積率とMSIの推算値は、コークスの種類にかかわらず、良好な相関関係を示すことがわかった。   As shown in FIG. 6, it was found that the area ratio of the isolated substrate and the estimated value of MSI showed a good correlation regardless of the type of coke.

また実施例1で得られたMSIの推算値(%)は、上記プロセスを経ることなく、孤立基質の面積率(%)を下記式(1)に代入することで算出できた。
コークスの熱間反応後強度の推算値(%)=90−1/2×孤立基質の面積率(%)・・・(1)
The estimated value (%) of MSI obtained in Example 1 could be calculated by substituting the area ratio (%) of the isolated substrate into the following formula (1) without going through the above process.
Estimated value of strength after hot reaction of coke (%) = 90−1 / 2 × area ratio of isolated substrate (%) (1)

したがってコークスの断面画像を解析して孤立基質の面積率を算出して式(1)に代入すれば、MSIの実測値と相関を有することが事前に確認された上記式(2)のMSIの推定値を算出できる。そのため本発明によれば、高精度でコークスの熱間反応後のマイクロストレングスの実測値と相関関係を有するコークスの熱間反応後強度を簡便に推定できる。   Therefore, by analyzing the cross-sectional image of coke and calculating the area ratio of the isolated substrate and substituting it into the equation (1), the MSI of the above equation (2), which has been confirmed in advance to have a correlation with the measured value of MSI, is obtained. An estimated value can be calculated. Therefore, according to the present invention, the strength of the coke after the hot reaction having a correlation with the actual measurement value of the micro strength after the hot reaction of the coke can be easily estimated with high accuracy.

1 気孔
2 樹脂包埋用型枠
3 樹脂
4 コークス基質
DESCRIPTION OF SYMBOLS 1 Pore 2 Form for resin embedding 3 Resin 4 Coke substrate

Claims (3)

コークスの熱間反応後強度の推定方法であって、
熱間反応後のコークス断面画像をコークス基質とそれ以外とに分離する2値化処理を行った後、前記コークス基質をピクセル単位に分割し、コークス基質が存在するピクセルと、該ピクセルに隣接するコークス基質が存在するピクセルとを連結させ、該連結によって形成されるコークス基質群のうち、最大面積を有するコークス基質群を連結基質、前記連結基質以外のコークス基質を孤立基質とし、コークス基質全体に対する前記孤立基質の面積率を下記式(1)に代入して推算値を算出するものであるコークスの熱間反応後強度の推定方法。
コークスの熱間反応後強度の推算値(%)=90−1/2×孤立基質の面積率(%)・・・(1)
A method for estimating the strength of coke after hot reaction,
After performing a binarization process that separates the coke cross-sectional image after the hot reaction into a coke substrate and the other, the coke substrate is divided into pixel units, and a pixel in which the coke substrate exists and adjacent to the pixel. A coke substrate group is connected to a pixel in which a coke substrate is present, and among the coke substrate groups formed by the connection, a coke substrate group having the largest area is defined as a linked substrate, and a coke substrate other than the linked substrate is defined as an isolated substrate. A method for estimating the strength after hot reaction of coke, wherein the estimated value is calculated by substituting the area ratio of the isolated substrate into the following formula (1).
Estimated value of strength after hot reaction of coke (%) = 90−1 / 2 × area ratio of isolated substrate (%) (1)
前記式(1)のコークスの熱間反応後強度の推算値は、コークスの熱間反応後のマイクロストレングスの実測値と相関関係を有するものである請求項1に記載の推定方法。   The estimation method according to claim 1, wherein the estimated value of the strength of the coke after the hot reaction of the formula (1) has a correlation with the actually measured value of the micro strength after the hot reaction of the coke. 前記式(1)のコークスの熱間反応後強度の推算値は、下記式(2)に基づいて算出されるコークスの熱間反応後のマイクロストレングスの推算値と相関を有することが事前に確認されたものである請求項1または2に記載の推定方法。
コークスの熱間反応後のマイクロストレングスの推算値(%)=a×P0+b×R+c・・・(2)
式中、a、b、cはコークス毎に回帰分析によって定まる定数
P0は熱間反応前気孔率であって、下記式(3)によって得られる値
P0=(真密度(g/cm3)−(熱間反応前質量(g)/熱間反応前体積(cm3)))/真密度(g/cm3)×100・・・(3)
Rは反応率であって、熱間反応前後のコークスの質量を測定し、下記式(4)によって得られる値
反応率R(%)=(熱間反応前質量(g)−熱間反応後質量(g))/熱間反応前質量(g)×100・・・(4)
It is confirmed in advance that the estimated value of the strength of the coke after the hot reaction of the formula (1) has a correlation with the estimated value of the micro strength after the hot reaction of the coke calculated based on the following formula (2). The estimation method according to claim 1 or 2, wherein the estimation method is performed.
Estimated value of micro strength after hot reaction of coke (%) = a × P0 + b × R + c (2)
In the formula, a, b and c are constants determined by regression analysis for each coke. P0 is the porosity before hot reaction, and is obtained by the following formula (3) P0 = (true density (g / cm 3 ) − (Mass before hot reaction (g) / volume before hot reaction (cm 3 ))) / true density (g / cm 3 ) × 100 (3)
R is the reaction rate, and the mass of coke before and after the hot reaction is measured. The value obtained by the following formula (4): the reaction rate R (%) = (mass before hot reaction (g) −after the hot reaction Mass (g)) / mass before hot reaction (g) × 100 (4)
JP2014208574A 2014-10-10 2014-10-10 Estimation method of strength after hot reaction of coke. Active JP6436565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014208574A JP6436565B2 (en) 2014-10-10 2014-10-10 Estimation method of strength after hot reaction of coke.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014208574A JP6436565B2 (en) 2014-10-10 2014-10-10 Estimation method of strength after hot reaction of coke.

Publications (2)

Publication Number Publication Date
JP2016079198A true JP2016079198A (en) 2016-05-16
JP6436565B2 JP6436565B2 (en) 2018-12-12

Family

ID=55957643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014208574A Active JP6436565B2 (en) 2014-10-10 2014-10-10 Estimation method of strength after hot reaction of coke.

Country Status (1)

Country Link
JP (1) JP6436565B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019032223A (en) * 2017-08-08 2019-02-28 関西熱化学株式会社 Estimation method of coke substrate strength
CN113804678A (en) * 2020-06-16 2021-12-17 上海梅山钢铁股份有限公司 Detection method for coke reaction depth
JP7226676B1 (en) * 2021-11-02 2023-02-21 Jfeスチール株式会社 Method for estimating post-reaction strength of coke and method for producing coke
WO2023079837A1 (en) * 2021-11-02 2023-05-11 Jfeスチール株式会社 Method for estimating post-reaction strength of coke and method for producing coke

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759165A (en) * 1980-09-27 1982-04-09 Nippon Kokan Kk <Nkk> Method for estimation of coke strength
JP2013001895A (en) * 2011-06-21 2013-01-07 Nippon Steel & Sumitomo Metal Corp Estimation method of coke strength after hot reaction
KR20140016634A (en) * 2012-07-30 2014-02-10 현대제철 주식회사 Method for predicting hot strength of coke

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759165A (en) * 1980-09-27 1982-04-09 Nippon Kokan Kk <Nkk> Method for estimation of coke strength
JP2013001895A (en) * 2011-06-21 2013-01-07 Nippon Steel & Sumitomo Metal Corp Estimation method of coke strength after hot reaction
KR20140016634A (en) * 2012-07-30 2014-02-10 현대제철 주식회사 Method for predicting hot strength of coke

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019032223A (en) * 2017-08-08 2019-02-28 関西熱化学株式会社 Estimation method of coke substrate strength
CN113804678A (en) * 2020-06-16 2021-12-17 上海梅山钢铁股份有限公司 Detection method for coke reaction depth
CN113804678B (en) * 2020-06-16 2024-05-10 上海梅山钢铁股份有限公司 Method for detecting coke reaction depth
JP7226676B1 (en) * 2021-11-02 2023-02-21 Jfeスチール株式会社 Method for estimating post-reaction strength of coke and method for producing coke
WO2023079837A1 (en) * 2021-11-02 2023-05-11 Jfeスチール株式会社 Method for estimating post-reaction strength of coke and method for producing coke

Also Published As

Publication number Publication date
JP6436565B2 (en) 2018-12-12

Similar Documents

Publication Publication Date Title
JP6436565B2 (en) Estimation method of strength after hot reaction of coke.
US20150262417A1 (en) Method for building a 3d model of a rock sample
CN107727663A (en) It is a kind of that the method for carrying out failure detection is characterized to LED chip
JP2014137344A (en) Microscopic image analysis method of sintered ore
JPWO2018159689A1 (en) Method for observing internal structure of ceramics, method for manufacturing ceramics, analysis system, and system for manufacturing ceramics
JP2014215987A (en) Microscopic image analysis method of bound substance, microscopic image analysis device, and computer program
JP7205399B2 (en) Powder shape analysis method
Lomas et al. Petrographic analysis and characterisation of a blast furnace coke and its wear mechanisms
JP5575448B2 (en) Method for estimating the content of hardened concrete
JP7063033B2 (en) Powder shape analysis method and powder fluidity evaluation method
Polaczyk et al. Quantification of asphalt mixture interlocking utilizing 2D and 3D image processing
EP2894505A1 (en) The method for determining the morphology of cokes and chars
JP5484099B2 (en) Method for estimating compressive strength of hardened concrete
Nichols et al. 3D surface image analysis for fracture modeling of cement-based materials
TW201944060A (en) Glass plate, and glass plate manufacturing method and end surface inspection method
JP6627483B2 (en) Tissue structure classification method using color change distance and material property estimation method using the classification
JP7393652B2 (en) Coke average particle size prediction method
CN108519394A (en) Test method is continuously tracked in cement material freezing-thawing damage process visualization
JP4239753B2 (en) Coke cake pushability estimation method
Calado et al. Porosity and delamination defect detection in ceramic materials by active infrared thermography and optical digital microscopy
Hondo et al. Enhancing the contrast of low-density packing regions in images of ceramic powder compacts using a contrast agent for micro-X-ray computed tomography
Mori et al. Rare Primary Esophageal Paget's Disease Diagnosed on a Large Bloc Specimen Obtained by Endoscopic Mucosal Resection.
KR101741135B1 (en) Analytic method for detecting behavior and quantification of superabsorbent polymer within cement-based material using 3d x-ray computed tomography
JP6747320B2 (en) Method for analyzing foreign matter contained in metal oxide powder
TWI772056B (en) Method for detecting carbon-containing pores in ceramics

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170322

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181112

R150 Certificate of patent or registration of utility model

Ref document number: 6436565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250