JP2024059191A - 画像形成装置、情報処理装置 - Google Patents

画像形成装置、情報処理装置 Download PDF

Info

Publication number
JP2024059191A
JP2024059191A JP2022166716A JP2022166716A JP2024059191A JP 2024059191 A JP2024059191 A JP 2024059191A JP 2022166716 A JP2022166716 A JP 2022166716A JP 2022166716 A JP2022166716 A JP 2022166716A JP 2024059191 A JP2024059191 A JP 2024059191A
Authority
JP
Japan
Prior art keywords
error
analysis target
related information
maintenance
image forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022166716A
Other languages
English (en)
Inventor
勝秀 古賀
慎也 鈴木
学 神羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2022166716A priority Critical patent/JP2024059191A/ja
Priority to US18/487,912 priority patent/US12015742B2/en
Publication of JP2024059191A publication Critical patent/JP2024059191A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00002Diagnosis, testing or measuring; Detecting, analysing or monitoring not otherwise provided for
    • H04N1/00026Methods therefor
    • H04N1/00039Analysis, i.e. separating and studying components of a greater whole
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/00127Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture
    • H04N1/00344Connection or combination of a still picture apparatus with another apparatus, e.g. for storage, processing or transmission of still picture signals or of information associated with a still picture with a management, maintenance, service or repair apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Accessory Devices And Overall Control Thereof (AREA)
  • Facsimiles In General (AREA)

Abstract

【課題】無駄なメンテナンス作業を抑制する画像形成装置を提供する。【解決手段】画像形成装置100は、現像剤補給容器TBの動作のエラーの発生を検知する稼働状態検知部208と、エラーに関連するエラー関連情報を蓄積する機内データ蓄積メモリ204と、稼働状態検知部208で検知された解析対象のエラーのエラー関連情報と該解析対象のエラーに関連する関連エラーのエラー関連情報とにより、該解析対象のエラーの原因となった故障箇所を推定するCPU201と、を備える。CPU201は、第1解析対象エラーに対応してメンテナンスを行った後に該第1解析対象エラーと同じエラーである第2解析対象エラーが発生した場合に、第1解析対象エラーに対応してメンテナンスを行ったタイミングに基づいて、第2解析対象エラーの故障箇所の推定に用いるエラー関連情報の発生した期間を決定する。【選択図】図2

Description

本発明は、複写機、複合機、プリンタ、ファクシミリ等の画像形成装置及び画像形成装置の管理システムに関する。
画像形成装置は、故障の発生時に、画像形成装置の設置場所に出向いたカスタマーエンジニア(以下「CE」という。)により修理される。故障原因の特定や対処を正確に終了するまでの時間は、CEの能力によって差がある。そのために、CEによる画像形成装置の修理にかかる時間にバラツキが生じる。修理にかかる時間を短縮するために、画像形成装置の状態を表す機内データに基づいて故障原因を推定して、必要な処理を通知する技術が提案されている(特許文献1)。機内データは、例えば画像形成装置に設けられたセンサによる検出値や、エラー発生情報等の装置内の状態を示す情報である。
特開2017-017611号公報
故障原因に応じた故障箇所のメンテナンス後に当該エラーの発生履歴が残っていると、解決済みのエラー発生情報が再度参照される可能性がある。この場合、メンテナンス済みの故障箇所が、再度、故障箇所に推定されてしまう。これは、無駄なメンテナンス作業の発生原因となる。
本発明は、上述の問題に鑑み、無駄なメンテナンス作業を抑制する画像形成装置を提供することを主たる目的とする。
本発明の画像形成装置は、シートへの画像形成に用いられる部品と、前記部品の動作のエラーの発生を検知する検知手段と、前記エラーに関連するエラー関連情報を蓄積する蓄積手段と、前記検知手段で検知された解析対象のエラーのエラー関連情報と該解析対象のエラーに関連する関連エラーのエラー関連情報とにより、該解析対象のエラーの原因となった故障箇所を推定する制御手段と、を備え、前記制御手段は、第1解析対象エラーに対応してメンテナンスを行った後に該第1解析対象エラーと同じエラーである第2解析対象エラーが発生した場合に、前記第1解析対象エラーに対応してメンテナンスを行ったタイミングに基づいて、前記第2解析対象エラーの故障箇所の推定に用いるエラー関連情報の発生した期間を決定し、決定した期間内のエラー関連情報に基づいて、前記第2解析対象エラーの故障箇所の推定を行うことを特徴とする。
本発明によれば、期間内のエラー関連情報に基づいて故障箇所を推定することで、無駄なメンテナンス作業を抑制することができる。
画像形成装置の構成図。 コントローラの構成図。 現像剤補給システムの全体構成図。 現像剤補給容器の外観図。 現像剤補給システムの断面図。 現像剤補給システムの断面図。 (a)~(c)は、現像剤補給容器が着脱不可とされた状態を示す図。 (a)~(c)は、現像剤補給容器を着脱可能とした状態を示す図。 エラーコードの説明図。 エラー関連情報の例示図。 (a)~(d)は、故障パターンの説明図。 故障箇所推定テーブルの例示図。 エラー関連情報の蓄積処理と故障箇所の推定処理を表すフローチャート。 故障パターンの判定処理を表すフローチャート。 (a)~(f)は、メンテナンス後の処理の説明図。 (a)~(c)は、メンテナンス後の処理の説明図。 (a)~(f)は、エラー関連情報のマスクの説明図。 エラー関連情報のマスクの説明図。 故障箇所推定システムの構成図。 管理装置の構成図。
以下、添付図面を参照して本発明の好適な実施形態について説明する。実施例を挙げて本発明をより具体的に説明するが、これら実施例は本発明における好適な実施形態の一例ではあるものの、本発明はこれら実施例の構成のみに限定されるものではない。
(画像形成装置の構成)
図1は、本実施形態の画像形成装置の構成図である。画像形成装置100は、電子写真方式で動作し、シートSにカラー画像を形成する。画像形成装置100は、中間転写ベルト7の画像が転写される面に沿って複数の画像形成部が配置された中間転写タンデム方式を採用する。本実施形態の画像形成装置100は、イエロー、マゼンタ、シアン、ブラックの4色の画像を形成するために、4つの画像形成部Pa、Pb、Pc、Pdを備える。このような画像形成装置100は、プリンタ、複写機、複合機、ファクシミリ等により実現される。
シートSは、シート収納庫60に収納されており、画像形成部Pa~Pdによる画像形成のタイミングに応じて、摩擦分離方式を採用した給紙ローラ61により給紙される。給紙ローラ61は、シート収納庫60から給紙したシートSを、搬送パスを介してレジストローラ62へ搬送する。レジストローラ62は、シートSの斜行を補正し、タイミングを調整して二次転写部T2へシートSを搬送する。
画像形成部Pa~Pdは、形成する画像の色が異なるのみであり、同様の構成で同様の動作により画像を形成する。画像形成部Pa~Pdは、感光体1a~1d、帯電器2a~2d、露光器3a~3d、現像器10a~10d、一次転写部T1a~T1d、及び感光体クリーナ6a~6dを備える。以下、色を区別せずに説明する場合には、符号末尾のa、b、c、dを省略する。
感光体1は、表面に感光層を有するドラム形状であり、ドラム軸を中心に回転駆動される。帯電器2は、回転する感光体1の表面を一様に帯電させる。露光器3は、形成する色の画像データに応じて変調された光を、一様に帯電した感光体1a~1dの表面に照射する。これにより感光体1の表面には、画像データに応じた静電潜像が形成される。
現像器10は、感光体1に形成された静電潜像を現像剤により現像する。本実施形態では、現像剤としてトナーを用いる。現像器10は、感光体1上の静電潜像にトナーを付着させることで、感光体1上にトナー像を形成する。画像形成部Paは、現像器10aがイエローの現像剤を収容し、イエローのトナー像を生成する。画像形成部Pbは、現像器10bがマゼンタの現像剤を収容し、マゼンタのトナー像を生成する。画像形成部Pcは、現像器10cがシアンの現像剤を収容し、シアンのトナー像を生成する。画像形成部Pdは、現像器10aがブラックの現像剤を収容し、ブラックのトナー像を生成する。なお、画像形成装置100において形成されるトナー像の色数は、4色に限定されるものではない。
本実施形態の現像器10a~10dは、非磁性トナーと磁性キャリアとを混合した二成分現像剤を収容するが、磁性トナー又は非磁性トナーのみの一成分現像剤であってもよい。現像器10a~10dは、画像形成により内部に収容する現像剤の量が所定量よりも低下することで、現像剤貯留部から現像剤が繰り返し補給される。現像剤貯留部は、内部に収容する現像剤の量が所定量よりも低下すると、現像剤の補給容器である現像剤補給容器TBa~TBdから、対応する色の現像剤が繰り返し補給される。現像剤補給容器TB、現像剤貯留部、及び現像器10から成る現像剤補給システムの構成の詳細については後述する。
現像剤補給システムにより、現像器10a~10dは、収容する現像剤の量が所定の基準量に対して安定する。収容する現像剤の量が安定化することにより、現像器10a~10dは、感光体1a~1dに付着させるトナー量を安定化できる。そのために感光体1a~1dに形成されるトナー像のトナー量が安定し、画像濃度が安定する。
一次転写部T1は、中間転写ベルト7方向への所定の加圧量及び静電的負荷バイアスが与えられることで、感光体1a~1dから中間転写ベルト7にトナー像を転写する。この際、感光体1a~1dの各々に形成されたトナー像は、中間転写ベルト7で重畳される。転写後に感光体1a~1dに残留するトナーは、感光体クリーナ6a~6dにより回収される。
中間転写ベルト7は、イエロー、マゼンタ、シアン、ブラックの各色のトナー像が重ねて転写されることで、多色のトナー像を担持する。中間転写ベルト7は、不図示の中間転写ベルトフレームに設けられ、二次転写内ローラ8、テンションローラ17、及び二次転写上流ローラ18によって張架される無端ベルトである。中間転写ベルト7は、二次転写内ローラ8、テンションローラ17、及び二次転写上流ローラ18により矢印R7方向に回転駆動される。多色のトナー像が転写された中間転写ベルト7は、回転することで二次転写部T2へ該多色のトナー像を搬送する。
シートS及び中間転写ベルト7に形成された多色のトナー像は、それぞれ二次転写部T2で合致するタイミングで搬送される。二次転写部T2は、対向して配置される二次転写内ローラ8及び二次転写外ローラ9により形成される転写ニップ部である。二次転写部T2は、所定の加圧力及び静電的負荷バイアスが与えられることで、中間転写ベルト7からシートS上に多色のトナー像を吸着させる。このようにして二次転写部T2は、中間転写ベルト7上の多色のトナー像をシートSに転写する。転写後に中間転写ベルト7に残留するトナーは、転写クリーナ11により回収される。
多色のトナー像が転写されたシートSは、二次転写外ローラ9により、二次転写部T2から定着器13へ搬送される。定着器13は、対向するローラにより形成される定着ニップ内でシートSに所定の圧力及び熱量を与えて、シートS上に多色のトナー像を溶融固着させる。多色のトナー像は、溶融固着の際に発色して、フルカラーのトナー像となる。定着器13は、熱源となるヒータを備え、常に最適な温度を維持するように制御される。
フルカラーのトナー像が定着されたシートSは、排紙トレイ63上に排出される。両面印刷の場合、一方の面に画像が形成されたシートSは、反転搬送機構により反転してレジストローラ62へ搬送され、他方の面への画像形成が行われる。以上のように、画像形成装置100は、画像データに基づく画像をシートに形成する画像形成処理を行う。
(コントローラ)
図2は、以上のような構成の画像形成装置100の全体動作を制御するコントローラの構成図である。このコントローラ200は、現像剤の補給に関する制御を行う構成について示しており、他の機能、例えば画像形成処理の制御を行う機能についての構成は省略してある。
コントローラ200は、CPU(Central Processing Unit)201、ROM(Read Only Memory)202、及びRAM(Random Access Memory)203を備える情報処理装置である。CPU201には、容器駆動制御部206、容器検知部209、残量検知部212、開閉検知部215、機内データ蓄積メモリ204、及び操作部205が接続される。
CPU201は、ROM202に格納されるコンピュータプログラムを実行することで、画像形成装置100による各種処理を行う。これによりCPU201は、画像形成装置100の各デバイスを制御する。例えばCPU201は、画像データに基づくフルカラーの画像をシートSに形成する。RAM203は、CPU201が処理を行う際のワークエリアを提供し、一時データの保存等を行う。機内データ蓄積メモリ204は、エラーやメンテナンスの発生時の日時、カウンタ値、エラーコード等の機内データを保存(蓄積)する記憶装置である。カウンタ値は、画像形成装置100の稼働状態を示す値(パラメータ)である。カウンタ値は、例えば、画像形成装置100による累積印刷枚数や現像剤補給容器TBの累積補給回数等である。
操作部205は、入力インタフェースと出力インタフェースとを備えるユーザインタフェースである。入力インタフェースは、各種キーボタン、タッチパネル等である。出力インタフェースは、ディスプレイ、スピーカ等である。ユーザは、操作部205の入力インタフェースにより各種指示やデータの入力を行う。ユーザは、操作部205の出力インタフェースにより画像形成装置100の状態や通知を確認することができる。
容器駆動制御部206は、CPU201の指示により容器駆動部207を制御する。容器駆動部207は、現像剤補給容器TBの駆動及び容器交換扉213の開放を行うための駆動源を含む。容器駆動部207は、1つの駆動源の正回転と逆回転を切り替えることで異なる2つの負荷、ここでは現像剤補給容器TBと容器交換扉213とへ排他的に駆動力を伝達する。容器駆動部207は、容器駆動制御部206により電流を供給されて駆動し、現像剤補給容器TBを駆動する。容器駆動部207は、容器駆動制御部206により現像剤補給容器TB駆動時とは逆方向の電流を供給されることで、現像剤補給容器TB駆動時とは逆回転方向に駆動し、容器交換扉213を開放する。容器交換扉213は、現像剤補給容器TBの交換時に開放される扉であり、例えば画像形成装置100の前面に設けられる。
容器検知部209は、CPU201の指示により稼働状態検知部208を制御する。稼働状態検知部208は、現像剤補給容器TBが駆動していることを検知するセンサを含む稼働監視部である。稼働状態検知部208が備えるセンサは、例えば光学式のフォトセンサ等である。稼働状態検知部208は、現像剤補給容器TBの駆動状態を検知して、該駆動状態を表す検知信号を容器検知部209へ送信する。容器検知部209は、稼働状態検知部208による検知結果をCPU201へ送信する。
CPU201は、容器駆動制御部206へ駆動信号を送信して容器駆動部207を駆動している間に、稼働状態検知部208による検知結果を取得する。CPU201は、容器駆動制御部206へ駆動信号を送信しているにもかかわらず、稼働状態検知部208の検知結果が現像剤補給容器TBが駆動していないことを示す場合に、故障が発生したと判断して操作部205へエラー表示を行う。同時にCPU201は、エラーの種類に応じて予め割り当てられたエラーコード、エラーの発生した日時、及び画像形成装置100の稼働状態を示すカウンタ値を、機内データとして機内データ蓄積メモリ204へ蓄積する。
残量検知部212は、CPU201の指示により残量検知センサ211を制御する。残量検知センサ211は、現像剤貯留部210内の現像剤の量を検知するセンサである。残量検知センサ211は、例えば、圧電セラミックスと振動構造体を備えた圧電素子方式の粉体レベルセンサ等のセンサである。
残量検知センサ211は、現像剤貯留部210内の現像剤量の検知結果を表す検知信号を残量検知部212へ送信する。残量検知部212は、残量検知センサ211による検知結果をCPU201へ送信する。CPU201は、画像形成動作中に残量検知センサ211の検知結果を取得する。CPU201は、残量検知センサ211の検知結果が、現像剤貯留部210内の現像剤量が少ないことを示す場合に、容器駆動制御部206へ駆動信号を送信し、容器駆動部207を駆動して現像剤貯留部210へ現像剤を供給する。
現像剤補給容器TBが空になった場合、ユーザ或いはCEによって現像剤補給容器TBの交換操作が行われる。その際、CPU201は、操作部205に交換ボタンを表示する。CPU201は、この交換ボタンが押下されたことを検知すると、容器駆動制御部206へ、容器駆動部207が現像剤補給容器TBを駆動するときとは逆回転するように、駆動信号を送信する。これにより容器駆動部207は、容器交換扉213を開放する。
容器交換扉213は、現像剤補給容器TBが空になった場合のみ交換作業が行われるように、現像剤補給容器TBへの外部からのアクセスを防止する扉である。容器交換扉213の開閉状態は、開閉検知センサ214により検知される。開閉検知センサ214は、例えば光学式のフォトセンサ等による状態監視部である。開閉検知センサ214は、容器交換扉213の開閉状態の検知結果を表す検知信号を開閉検知部215へ送信する。開閉検知部215は、開閉検知センサ214による検知結果をCPU201へ送信する。
CPU201は、容器駆動制御部206へ駆動信号を送信して容器交換扉213を開放した際に、開閉検知センサ214による検知結果を取得する。CPU201は、開閉検知センサ214の検知結果が、容器交換扉213が開状態になったことを示す場合に容器駆動制御部206への駆動信号を停止する。
なお容器駆動制御部206へ駆動信号を所定時間送信したにもかかわらず、開閉検知センサ214の検知結果が、容器交換扉213が開状態ではないことを示す場合、CPU201は、故障が発生したと判断して操作部205へエラー表示を行う。同時にCPU201は、エラーの種類に応じて予め割り当てられたエラーコード、エラーの発生した日時、及び画像形成装置100の稼働状態を示すカウンタ値を、機内データとして機内データ蓄積メモリ204へ蓄積する。
(現像剤の補給動作)
現像剤補給システムおよび補給動作について、図3~図6を用いて説明する。図3は、現像剤補給システムの全体構成図である。図4は、現像剤補給容器TBの外観図である。図5及び図6は、現像剤補給システムの断面図である。
図3に示すように、本実施形態の現像剤補給システムは、主に、容器駆動部207、現像剤補給容器TBを画像形成装置100内に保持する容器保持部301、現像剤貯留部210から構成される。容器駆動部207は、現像剤補給容器TBを駆動する。現像剤貯留部210は、現像剤Tを一定量貯留しており、現像器10へ現像剤を供給する。
現像剤補給容器TBは、画像形成装置100に着脱自在である。図4に示すように、現像剤補給容器TBは、画像形成装置100に装着された状態で容器保持部301に保持される被保持部402と、被保持部402に対して相対回転可能な現像剤収容部401と、から構成される。
図5に示すように、容器駆動部207は、CPU201からの駆動信号により駆動する駆動モータ2071と、駆動モータ2071の駆動力を現像剤補給容器TBのへ伝達する駆動伝達部2072と、を備える。現像剤収容部401は、内部に補給用の現像剤Tを収容する。現像剤収容部401は、外周部の一部に容器駆動部207からの駆動力を受け付ける駆動受け部4012と、突起部4011と、が設けられている。突起部4011は、後述の検知フラグ2082に当接する。
現像剤貯留部210は、現像器10へ現像剤Tを安定的に供給するために、一定量の現像剤Tを貯留するために設けられている。現像剤貯留部210は、受入れ部2101、残量検知センサ211、搬送部2102、及び吐出口2103を備えている。受入れ部2101は、現像剤貯留部210の上部に設けられ、現像剤補給容器TBから吐出された現像剤Tを受け入れる。残量検知センサ211は、現像剤貯留部210の略中央部に設けられ、内部の現像剤Tの残量を検知する。搬送部2102及び吐出口2103は、残量検知センサ211の下部に設けられ、現像器10へ現像剤Tを搬送する。
現像剤貯留部210の上部には容器保持部301(図3参照)が設けられている。容器保持部301は、現像剤補給容器TBの稼働状態を監視する上記の稼働状態検知部208を備える。稼働状態検知部208は、フォトセンサ2081と、現像剤補給容器TBの回転動作に連動してフォトセンサ2081の検知面を遮蔽或いは解放する検知フラグ2082と、を備える。
ユーザによって画像形成動作が指示されると、画像形成処理が実行される。その結果、図5に示すように、現像器10内の現像剤Tは、感光体1へ付着して消費される。CPU201は、現像器10内の現像剤Tが一定量消費されたと判断すると、現像剤貯留部210から現像器10へ現像剤Tの供給を制御する。
現像器10へ現像剤が供給されることで、図6に示すように、現像剤貯留部210内の現像剤Tが減少し、残量検知センサ211の検知レベルが低下する。残量検知センサ211による検知結果から現像剤貯留部210内の現像剤Tが所定量よりも低下したことを検知したCPU201は、容器駆動部207を駆動させ、現像剤補給容器TBから現像剤貯留部210への現像剤Tの供給動作を制御する。本実施形態では、現像剤補給容器TBが矢印m方向へ回転することによって、現像剤Tが現像剤貯留部210へ供給される。
現像剤補給容器TBの交換操作について、図7及び図8を用いて説明する。図7は、現像剤補給容器TBが画像形成装置100に装着され、着脱不可とされた状態を示す図である。図8は、現像剤補給容器TBを画像形成装置100から着脱可能とした状態を示す図である。なお、図7(a)、図8(a)は斜視図である。図7(b)、図8(b)は上面図である。図7(c)、図8(c)は、側面図である。説明の便宜上、図7(b)、図7(c)、図8(b)、図8(c)は構成を簡略化している。
図7(a)に示すように、画像形成装置100が稼働している状態では、現像剤補給容器TBが容器ハウジング700に内包される。現像剤補給容器TBは、容器ハウジング700に設けられた容器交換扉213によって外部からアクセスできなくなっている。
図7(b)に示すように、容器交換扉213は、容器ハウジング700に沿って延在するリンクシャフト7001と容器保持部301に設けられたリンク部材3011を介して、容器駆動部207の駆動伝達部2072に連結される。また、容器ハウジング700には、容器交換扉213の開閉を検知する開閉検知センサ214が設けられている。
現像剤補給容器TBが空になった場合、ユーザ或いはCEによって現像剤補給容器TBの交換操作が行われる。その際、操作部205上に表示される現像剤補給容器TBの交換ボタンが押下されることで、容器駆動部207の駆動モータ2071及び駆動伝達部2072が現像剤補給容器TBの現像剤Tの補給動作時とは逆回転する(図6の矢印nとは逆方向の回転)。なお、駆動伝達部2072の一部には不図示のクラッチが設けられており、逆回転時にはクラッチにより現像剤補給容器TBに駆動力が伝達されないよう構成されている。
駆動伝達部2072が逆回転することで、図8(b)に示すように、駆動伝達部2072の一部がリンク部材3011に当接し、リンク部材3011が矢印P方向に回動する。続いて、リンク部材3011の動作にともない、リンクシャフト7001が矢印Y方向に変位する。リンクシャフト7001の変位に伴い、容器交換扉213が図8(c)の矢印S方向に開放される。図8(a)に示すように、容器交換扉213が開放されると、ユーザ或いはCEは、現像剤補給容器TBをY方向に脱着し、新しい現像剤補給容器と交換することができる。
現像剤補給容器TBの交換操作では、容器交換扉213が正しく開放されたかどうかの状態が、開閉検知センサ214により監視されている。開閉検知センサ214の異常を検知した場合、CPU201は何らかの故障により現像剤補給容器TBの交換操作に異常があったと判断し画像形成装置100を停止する。開閉検知センサ214の異常は、例えば交換ボタンの押下にも関わらず一定時間内に開閉検知センサ214の検知状態に変化がなかった場合に検知される。その後、CPU201は、異常状態が発生して画像形成装置100を停止したことを操作部205に表示することでユーザに通知する。また、画像形成装置100がネットワーク接続されている場合、CPU201は、ネットワークを介して、CE或いは販売会社へ異常状態が発生して画像形成装置100を停止したことを通知する。
現像剤補給容器TBの交換操作の異常は、主に以下の3つの故障状態により発生する。
第1の故障状態は、容器駆動部207の故障である。このような故障を、以降、「故障モードA」と呼称する。故障モードAは、具体的には、駆動モータ2071が動作しない、或いは駆動伝達部2072が負荷重になり駆動力が伝達されない等により発生する。この場合、リンク部材3011及びリンクシャフト7001に駆動力が伝達されないため、容器交換扉213は開放されない。
第2の故障状態は、容器駆動部207から駆動力を受けたリンク部材3011或いはリンクシャフト7001自体の故障である。このような故障を、以降、「故障モードB」と呼称する。故障モードBは、具体的には、リンク部材3011とリンクシャフト7001とが、組み立て不良や物流の衝撃等で非連結状態となることで発生する。この場合、故障モードAと同様に、リンクシャフト7001に駆動力が伝達されないため、容器交換扉213は開放されない。
第3の故障状態は、開閉検知センサ214の故障である。このような故障を、以降、「故障モードC」と呼称する。故障モードCの場合、容器駆動部207の駆動力によって容器交換扉213は開放されるが、その開放状態が検知されない。
なお、停止した画像形成装置100の復旧作業はCEによって速やかに行われることが望ましい。例えば故障モードAの場合は容器駆動部207を修理する必要があり、故障モードBの場合は容器保持部301のリンク部材3011或いはリンクシャフト7001を修理する必要がある。故障モードCの場合は、開閉検知センサ214の修理が必要である。しかしながら、通知を受けてからメンテナンス作業を行うまでは、修理箇所の特定や、修理部品の手配を考えると、数時間から数日間のブランクが発生するのが実態である。
したがって、ユーザに対して、画像形成装置100の電源を入れ直すことによって再起動させ、画像形成装置100が再稼働可能かどうか、再稼働後にどのような状態になるか確認してもらうオペレーションを指示することがある。これは、画像形成装置100の再起動により、修理対象となる故障箇所を特定するための情報を入手するためである。また、故障の程度や種類によっては、再起動により画像形成装置100がすぐには停止せず、引き続き画像形成を行える場合がある。この場合、ユーザの機会損失が最小限に抑えられる可能性がある。
例えば交換操作の異常が故障モードAもしくは故障モードBの場合、画像形成装置100を再稼働した際に、現像剤補給容器TBの交換を促す通知が再度出力される。その際、前回と同様に操作部205を操作すると、状態が変化していないためすぐに同様の動作異常が発生する可能性が高い。動作異常が発生した場合、ユーザ或いはCEにその旨が再度通知される。言い換えれば、すぐに動作異常が再発生することで、CEは、今回の動作異常が故障モードAの要因である駆動伝達部2072の異常、或いは故障モードBの要因であるリンク部材3011かリンクシャフト7001の異常であることを想定することができる。
仮に、故障モードCが発生していた場合、画像形成装置100は停止したが、容器交換扉213が開放されているため、現像剤補給容器TBが交換されている可能性がある。この場合、画像形成装置100を再稼働させると、現像剤補給容器TBが交換されたことをCPU201が検知するため、交換を促す通知は行われない。つまり、通常通り画像形成装置100を稼働し、交換した現像剤補給容器TBが空になった際に再度同様の動作異常が発生する可能性が高い。CEは、すぐに動作異常が再発生しないことを受けて、前回の動作異常の要因が故障モードCの要因である開閉検知センサ214の故障可能性が高いと判断することができる。
(エラーコード)
図9は、エラーコードの説明図である。図9は、CPU201が容器交換扉213のエラーを検知した際に操作部205へ表示するエラーコード、その検知内容、発生する現象、故障モード、故障箇所、再稼働時に再びエラーが発生するまでの稼働期間を示している。図9を用いて、エラーと故障内容の関係、再稼働時にエラーが再発生するまでの期間について説明する。
エラーコードE001のエラーは、容器駆動部207を逆回転駆動しているにもかかわらず、開閉検知センサ214によって容器交換扉213の開状態が検知できない際に発出されるエラーである。上記のように、この場合、故障モードA、故障モードB、及び故障モードCのいずれかが発生している。故障モードAもしくは故障モードBが発生している場合には、容器駆動部207と、リンク部材3011及びリンクシャフト7001とのいずれかが故障している。故障モードCが発生している場合には、開閉検知センサ214が故障している。どちらの故障においても、CPU201は、容器交換扉213の開状態が検知できないため、同じエラーコードE001を発出する。
故障モードAもしくは故障モードBでは、容器交換扉213が開放されないために現像剤補給容器TBは交換されずに空のままとなる。そのために、エラー発生後に画像形成装置100を再起動及び再稼働させると、CPU201は再び容器交換扉213を開放させるために容器駆動部207を駆動する。しかし容器交換扉213の開状態が検知できないため、再びエラーコードE001のエラーが発生する。エラーコードE001のエラーは、短い稼働期間、具体的には印刷枚数10枚以下で再度発生する。印刷枚数10枚という閾値は、エラー判断が行われるまでの画像形成装置100の稼働期間に基づき算出した、エラーコードE001のエラーが再発するまでの値である。
故障モードCでは、開閉検知センサ214が開状態を検知できないが容器交換扉213は開放されるため、現像剤補給容器TBの交換作業は実行可能である。現像剤補給容器TBが交換されると、再び容器交換扉213を開放するのは、交換された現像剤補給容器TBが空になるタイミングである。そのために、故障モードA、Bよりも長い稼働期間、具体的には10枚よりも多い印刷枚数でエラーコードE001のエラーが再発することとなる。
(エラー関連情報)
図10は、機内データ蓄積メモリ204に蓄積されるエラー関連情報の例示図である。エラー関連情報は、エラーの発生した日時、画像形成装置100の稼働状態を示すカウンタ値、及びエラーの種類に応じて予め割り当てられたエラーコードを含む。本実施形態では、カウンタ値は画像形成装置100の累積印刷枚数である。
CPU201は、エラーを検知するたびに、図10に例示するエラー関連情報を、1行追加する形で機内データ蓄積メモリ204に蓄積する。例えば図10の1行目のエラー関連情報は、2022/6/1 12:00に累積印刷枚数100010枚の稼働状態でエラーコードE001のエラーが発生したことを示している。故障箇所推定では、CPU201がこのエラー関連情報を参照し、累積印刷枚数とエラーコードから故障箇所の推定を行う。
(故障箇所推定)
故障箇所推定では、故障パターンを複数(ここでは3つ)に分類し、エラーの発生状況がどの故障パターンに当てはまるかの判定が行われる。判定した故障パターンに応じて故障箇所が推定される。図11は、故障パターンの説明図である。図11の横軸は、画像形成装置100のカウンタ値である。三角形のマークは、エラーが発生したタイミングを示している。白色の三角形のマークは、故障箇所推定の解析対象のエラーを示している。網掛の三角形のマークは、解析対象のエラーよりも過去に発生したエラーを示している。
故障箇所推定では、所定の1つのエラーを解析対象として着目する。解析対象のエラーのエラーコード及びカウンタ値と、解析対象のエラーに関連する関連エラーのエラーコード及びカウンタ値を用いて、故障箇所推定が行われる。関連エラーとは、解析対象のエラーが発生し得る故障箇所と同様の故障箇所によって発生する可能性のあるエラーであり、且つ解析対象のエラーよりも過去に発生しているエラーである。
故障箇所推定は、過去に関連エラーが発生したときのカウンタ値と、画像形成装置100が再起動及び再稼働され、再び解析対象のエラーが発生したときのカウンタ値と、の差分に基づいて行われる。このカウンタ値の差分を「稼働期間」と呼称する。稼働期間が所定範囲内であるか否かが判断され、判断結果に基づいて故障箇所が推定される。
図11(a)は、解析対象のエラーと関連エラーとの間の稼働期間が短く、再稼働後すぐにエラーが発生するような故障状態を表している。エラーが続いて発生することから、このような故障パターンを「連続」と定義する。CPU201は、稼働期間の閾値Aの範囲内に関連エラーが発生しているかどうかを判断し、閾値Aの範囲内に関連エラーが発生している場合に故障パターンが連続であると判定する。閾値Aは、故障パターンが連続であることを判断するために予め設定され、ROM202に記憶される値である。閾値Aは、多数のエラー発生情報と故障箇所とを対応付けたデータに基づいて、統計的に確率の高い値を算出して決定されてもよい。
図11(b)は、連続の故障パターンよりも解析対象のエラーと関連エラーとの間の稼働期間が長い故障状態を表している。エラー間隔が空いていることから、このような故障パターンを「間欠」と定義する。CPU201は、閾値Aよりも大きく、閾値Bの範囲内に関連エラーが発生しているかどうかを判断する。閾値Aよりも大きく、閾値Bの範囲内に関連エラーがある場合、CPU201は、故障パターンが間欠であると判定する。閾値Bは、故障パターンが間欠であることを判断するために予め設定され、ROM202に記憶される値である。閾値Bは、閾値Aよりも長い期間である。閾値Bは、多数のエラー発生情報と故障箇所とを対応付けたデータに基づいて、統計的に確率の高い値を算出して決定されてもよい。
図11(c)は、間欠の故障パターンよりも解析対象のエラーと関連エラーとの間の稼働期間がさらに長い状態を表している。このような場合、安定して稼働している期間が長いことから、所定の故障状態がずっと続いている可能性は低いと判断される。よって解析対象のエラーと関連エラーは、同一の故障要因によって発生しているものではなく、各々独立した故障要因によって発生したと判断される。
即ち、CPU201は、解析対象のエラーと同一の故障要因で発生した関連エラーはないと判断する。関連エラーの発生が無いことから、このような故障パターンを「発生無し」と定義する。この場合、故障箇所推定を行うための情報が無いため、カウンタ値に基づいた故障箇所推定を行うことはできない。CPU201は、閾値Aの範囲内に関連エラーが無いこと、及び閾値Aよりも大きく閾値Bの範囲内に関連エラーが無いことを判断し、故障パターンを発生無しと判定する。
図11(d)は、関連エラーが発生していない状態を表している。このような場合、故障箇所推定を行うための情報が無いため、カウンタ値に基づいた故障箇所推定を行うことはできない。このような故障パターンは図11(c)と同じく発生無しと定義される。CPU201の処理としては、図11(c)と同様となる。CPU201は、閾値Aの範囲内に関連エラーが無いこと、及び閾値Aよりも大きく閾値Bの範囲内に関連エラーが無いことを判断し、故障パターンを発生無しと判定する。
図12は、故障箇所推定テーブルの例示図である。図12の故障箇所推定テーブルは、解析対象のエラーと関連エラーのエラーコードの組み合わせ毎に、閾値A及び閾値Bに基づく判定条件、故障パターン、エラー原因となる可能性のある故障箇所の関係を示す情報がまとめられた故障箇所推定情報である。CPU201は、故障箇所推定テーブルに基づいて故障箇所推定を行う。故障箇所推定テーブルは、ROM202に記憶され、故障箇所推定実行時に読み出される。故障箇所推定テーブルの詳細について説明する。
No.1は、解析対象エラーコードが「E001」で関連エラーコードが「E001」であり、且つ故障パターンが連続のケースである。これは図9の故障モードA、或いは故障モードBに相当する。連続か間欠かを判断する閾値Aは10枚である。CPU201は、解析対象のエラーコードE001のエラーが発生したときを基準として、10枚以下の範囲内で関連エラーコードE001のエラーが発生している場合に、No.1に該当すると判断する。この場合、CPU201は、故障箇所を容器駆動部207と、リンク部材3011及びリンクシャフト7001とのいずれかであると推定する。
No.2は、解析対象エラーコードが「E001」で関連エラーコードが「E001」であり、且つ故障パターンが間欠のケースである。これは図9の故障モードCに相当する。間欠か発生無しかを判断するための閾値Bは1000枚である。CPU201は、解析対象のエラーコードE001のエラーが発生したときを基準として、10枚より大きく1000枚以下の範囲内で関連エラーコードE001のエラーが発生している場合に、No.2に該当すると判断する。この場合、CPU201は、故障箇所を開閉検知センサ214であると推定する。
No.3は、解析対象エラーコードが「E001」で関連エラーコードが「E001」であり、且つ故障パターンが発生無しのケースである。CPU201は、解析対象であるエラーコードE001のエラーが発生したときを基準として1000枚以下の範囲内で関連エラーコードE001のエラーが発生していない場合に、No.3に該当したと判断する。この場合、CPU201は、故障箇所推定を行うための情報が無いため、故障箇所を解析対象エラーE001と関連するすべての箇所のいずれかであると推定する。解析対象エラーE001と関連するすべての箇所のいずれかは、容器駆動部207と、リンク部材3011及びリンクシャフト7001と、開閉検知センサ214とのいずれかである。
図13は、エラー関連情報の蓄積処理と故障箇所の推定処理を表すフローチャートである。この一連の処理は、画像形成装置100にエラーが発生した際に実行される。
CPU201は、過去に発生したエラー関連情報を機内データ蓄積メモリ204から取得する(S101)。CPU201は、新たに発生したエラー関連情報を機内データ蓄積メモリ204に蓄積する(S102)。CPU201は、故障箇所推定テーブルをROM202から取得する(S103)。
CPU201は、過去のエラー関連情報に基づいて関連エラーの故障パターンの判定を行う(S104)。この判定は、関連エラー毎に行われる。例えば解析対象エラーコードが「E001」である場合、CPU201は、図12の故障箇所推定テーブルに基づいて、「E001」に対応する関連エラーコードが「E001」であると判断して、故障パターンを判定する。故障パターンの判定方法の詳細は後述する。
CPU201は、故障箇所推定テーブルに基づいて、エラーコードと故障パターンとから故障箇所を推定する(S105)。例えば、解析対象エラーコードが「E001」、関連エラーコードが「E001」、故障パターンが連続の場合、CPU201は、故障箇所を容器駆動部207と、リンク部材3011及びリンクシャフト7001とのいずれかであると推定する。関連エラーが複数種類発生しており、複数の故障パターンに該当する場合、CPU201は、各々の故障パターンで推定した故障箇所を合わせて推定結果とする。例えば、解析対象エラーコードが「E001」であり、関連エラーコードが「E001」、故障パターンが連続である判定結果と、関連エラーコードが「E001」、故障パターンが間欠である判定結果の両方が得られるとする。この場合、CPU201は、各々の故障箇所である容器駆動部207と、リンク部材3011及びリンクシャフト7001と、開閉検知センサ214とのいずれかを故障箇所として推定する。
CPU201は、故障箇所推定処理による推定結果に基づいて、故障箇所に関する情報を操作部205へ表示する(S106)。以上によりCPU201は、一連の処理を終了する。なお操作部205への表示は、故障箇所のみでなく、メンテナンス関連情報もあわせて行われてもよい。メンテナンス関連情報は、例えば部品交換手順やメンテナンスに要する作業時間目安である。故障箇所と対応するメンテナンス関連情報は、例えば予めROM202に記憶される。CPU201は、故障箇所推定後にROM202から該当するメンテナンス関連情報を読み出して、操作部205へ表示する。また、画像形成装置100がネットワーク接続されている場合、CPU201は、ネットワークを介して、故障箇所やメンテナンス関連情報をCEへ通知する。
図14は、S104の故障パターンの判定処理を表すフローチャートである。
CPU201は、解析対象のエラーと関連エラーとの間のカウンタ値の差分を算出し、算出した差分が閾値A以内であるかどうかを判断する(S201)。閾値Aは、上記の通り、本実施形態では印刷枚数10枚である。例えば、解析対象のエラーの累積印刷枚数が100000枚、関連エラーの累積印刷枚数が99999枚である場合、差分は1枚である。CPU201は、この差分が閾値Aである10枚以内の値であるかどうかを判断する。
差分が閾値A以内である場合(S201:Y)、CPU201は、故障パターンが連続であると判定し(S202)、故障パターンの判定処理を終了する。差分が閾値Aより大きい場合(S201:N)、CPU201は、S201の処理で算出した差分が閾値Aより大きく閾値B以内であるかどうかを判断する(S203)。閾値Bは、上記の通り本実施形態では印刷枚数1000枚である。差分が閾値B以内である場合(S203:Y)、CPU201は、故障パターンが間欠であると判定し(S204)、故障パターンの判定処理を終了する。差分が閾値Bより大きい場合(S203:N)、CPU201は、故障パターンが発生無しであると判定し(S205)、故障パターンの判定処理を終了する。
(メンテナンス後の処理)
次に、故障箇所のメンテナンス後の処理について説明する。故障箇所が推定されると、ユーザ或いはCEは、図13のS106の処理で表示された内容に応じて故障箇所を特定し、該特定箇所の交換等のメンテナンスを行う。メンテナンス後には画像形成装置100が通常動作を行う。図15、図16は、メンテナンス後の処理の説明図である。
図15(a)は、機内データ蓄積メモリ204に蓄積されたエラー関連情報の一例である。図15(b)は、図15(a)のエラー関連情報による故障パターンを例示する。便宜上、エラーの履歴番号(No.)を「E1」、「E2」、「E3」としている。この例では、解析対象のエラーが「E3」のエラーである。過去の関連エラーが「E1」、「E2」である。
解析対象エラーE3と過去の関連エラーE1、E2とのカウンタ値(累積印刷枚数)の差分は、いずれも閾値A(10枚)より大きく、且つ閾値B(1000枚)よりも小さい。そのために「E3」は、故障パターンが間欠である。従って、図12の故障箇所推定テーブルを参照すると、故障箇所が開閉検知センサ214に推定される。
この後、ユーザ或いはCEは、故障箇所に推定された開閉検知センサ214のメンテナンスを行う。ユーザ或いはCEは、メンテナンスを終了すると、操作部205に設けられる不図示のメンテナンス終了ボタンを押下する。CPU201は、メンテナンス終了ボタンが押下されることで、機内データ蓄積メモリ204にメンテナンスを行ったことを示すメンテナンス終了情報(M1)を蓄積する(図15(c)、(d))。 メンテナンスM1の終了情報には、メンテナンスの発生日時、累積印刷枚数(カウンタ値)、エラーコードが含まれる。エラーコードは、メンテナンスに対応する解析対象エラー(ここでは解析対象エラーE3)のエラーコードである。
図15(e)、15(f)は、メンテナンスM1後に新たな解析対象エラーE4(エラーコードE001)が発生した場合を示す。解析対象エラーE4は、E3と同じエラーコードであり、同じエラーが再発したものである。仮にメンテナンスM1後にエラー関連情報に何も処理をせずに故障箇所推定を行うと、解析対象エラーE4の関連エラーE2、E3が間欠で発生していることになる。そのために図12の故障箇所推定テーブルによると、開閉検知センサ214をメンテナンスしたにも関わらず、故障箇所が再び開閉検知センサ214に推定されてしまう。
既にメンテナンス済みの故障箇所が短時間で再度故障することは通常起こりにくいため、この判定は、誤判定である可能性が高い。このような誤判定の可能性を低くするために、本実施形態では、メンテナンス以前の過去の関連エラーを故障箇所の推定に含まないようにマスクする。マスクすることで、新たな解析対象エラーE4の故障箇所推定からメンテナンス以前の過去の関連エラーが除外される。この場合、前回の解析対象エラーE3も関連エラーとして扱われるために、E3の情報もマスクされて、故障箇所推定から除外される。
図16及び図17は、エラー関連情報のマスクの説明図である。
図16(a)は、メンテナンス以前の過去の関連エラーのエラー関連情報をマスクした状態を例示する。図16(a)では、メンテナンスM1後にエラーコードE001の解析対象エラーE4が再発した場合に、機内データ蓄積メモリ204に記憶されたメンテナンスM1と同じエラーコードE001の過去の関連エラーE1、E2、E3がマスクされる。マスクされた関連エラーE1、E2、E3の情報は、マスクされることでCPU201により取得されなくなる。このように、マスクにより、過去のエラー関連情報が、故障箇所の推定に用いる情報から除外される。
図16(b)は、このときの故障パターンの説明図である。メンテナンスM1より過去に発生した関連エラーE1、E2、E3が取得されないことから、解析対象エラーE4の故障パターンは、発生無しと同等になる。図16(c)は、機内データ蓄積メモリ204に蓄積されたメンテナンスM1より過去の関連エラーの履歴をマスクする処理を表すフローチャートである。
CPU201は、解析対象エラーE4が発生することでこの処理を開始する。CPU201は、解析対象エラーE4が発生すると、機内データ蓄積メモリ204にメンテナンス終了の情報が有るか否か判断する(S301)。メンテナンス終了の情報が無い場合(S301:N)、CPU201は、エラー関連情報をマスクすることなく、図14の故障パターン判定処理を行う(S303)。メンテナンス終了の情報が有る場合(S301:Y)、CPU201は、メンテナンスM1より過去のエラー関連情報をマスクする(S302、図16(a))。CPU201は、エラー関連情報のマスク後に図14の故障パターン判定処理を行う(S303)。
マスク後のエラー関連情報を用いて故障箇所の推定を行う場合、故障パターン判定処理では、図12の故障箇所推定テーブルを参照すると、故障パターンが発生無しとなる。そのために故障箇所は、容器駆動部207と、リンク部材3011及びリンクシャフト7001と、開閉検知センサ214とのいずれかに推定される。ユーザ及びCEは、メンテナンスM1により開閉検知センサ214をメンテナンスしていることがわかっているため、今回の故障箇所を、容器駆動部207と、リンク部材3011及びリンクシャフト7001とに絞り込むことが可能になる。
エラー関連情報のマスクは、ユーザ或いはCEによるメンテナンス終了ボタンの押下に応じて即時行われるのではなく、メンテナンスによりエラーが解決したことを確認できる所定の猶予期間(以降、「再発区間」という)の経過後に行われてもよい。再発区間後にメンテナンス以前のエラー関連情報をマスクすることで、メンテナンスによりエラーが解決できたか否かが確認される。また、解決していない場合であっても、複数ある故障箇所の候補から故障箇所を更に絞りやすくなる。
図17及び図18は、再発区間を設定した場合のエラー関連情報のマスクの説明図である。
図17(a)は、メンテナンス以前エラー区間、再発区間、及び新規エラー期間を例示する。メンテナンス以前エラー区間は、メンテナンスM1以前の関連エラーが発生している期間である。再発区間は、メンテナンスM1後の一定期間である。ここでは、再発区間は、メンテナンス後の累積印刷枚数の差分で10枚とする。新規エラー区間は、再発区間後に関連エラーが発生する期間である。メンテナンス以前エラー区間には、図17(b)に示す関連エラーE1、E2、E3が発生している。
関連エラーE3(累積印刷枚数101055枚)が解析対象エラーの場合について説明する。この場合、過去の関連エラーE2(累積印刷枚数101050枚)との累積印刷枚数の差分が10枚以下であることから、故障パターンは図12の故障箇所推定テーブルより連続と判断される。故障箇所は、容器駆動部207と、リンク部材3011及びリンクシャフト7001とのいずれかであると推定される。ユーザ或いはCEが、過去の経験からリンク部材3011及びリンクシャフト7001に対してメンテナンスを行ったとする。図17(b)では、メンテナンスM1の累積印刷枚数が101057枚である。
メンテナンスM1後の再発区間内(累積印刷枚数101067枚まで)で解析対象エラーE4(累積印刷枚数101060枚)が発生すると、メンテナンスM1以前の関連エラーを即時マスクせずに、故障箇所推定が行われる。解析対象エラーE4と関連エラーE3の累積印刷枚数の差分が10枚以下であるため、故障パターンが図12の故障箇所推定テーブルより連続と判断される。この場合、CPU201は、容器駆動部207と、リンク部材3011及びリンクシャフト7001とのいずれかが故障箇所である推定する。ユーザ或いはCEは、メンテナンスM1でリンク部材3011及びリンクシャフト7001をメンテナンスしていることから、解析対象エラーE4の故障箇所を残りの容器駆動部207であると容易に絞り込むことが可能である。
図17(c)、17(d)は、解析対象エラーE4に対応した容器駆動部207のメンテナンス(メンテナンスM2)後に、解析対象エラーE5(累積印刷枚数101080枚)が発生していることを示している。解析対象エラーE5は、メンテナンスM2後に再発区間が経過した後の新規エラー区間に発生する。図17(e)、17(f)は、解析対象エラーE5が再発区間経過後の新規エラー区間で発生した場合に、メンテナンスM2以前の関連エラーE1、E2、E3、E4をマスクしたことを示している。過去の関連エラーE1、E2、E3、E4がマスクされたことで、解析対象エラーE5(累積印刷枚数101080枚)の過去の関連エラーは発生なしと判断される。CPU201は、容器駆動部207と、リンク部材3011及びリンクシャフト7001と、開閉検知センサ214との全てを故障箇所として推定する。
図18は、メンテナンスM2の再発区間経過後に過去の関連エラーの履歴をマスクする処理を表すフローチャートである。CPU201は、解析対象エラーE5が発生することでこの処理を開始する。
CPU201は、解析対象エラーE5が発生すると、機内データ蓄積メモリ204にメンテナンス終了の情報(メンテナンスM2)が有るか否か判断する(S401)。メンテナンス終了の情報が有る場合(S401:Y)、CPU201は、解析対象エラーE5が発生したときのカウント値(累積印刷枚数)とメンテナンスM2のカウント値(累積印刷枚数)との差分を算出する(S402)。CPU201は、この差分値が再発区間(ここでは10枚)経過しているか否かを判断する(S403)。差分値が再発区間経過している場合(S403:Y)、CPU201は、メンテナンスM2より過去のエラー関連情報E1、E2、E3、E4をマスクする(S404)。CPU201は、エラー関連情報のマスク後に図14の故障パターン判定処理を行う(S405)。
なお、メンテナンス終了の情報が無い場合(S401:N)、CPU201は、エラー関連情報をマスクすることなく、図14の故障パターン判定処理を行う(S405)。また、差分値が再発区間経過していない場合(S403:N)、CPU201は、エラー関連情報をマスクすることなく、図14の故障パターン判定処理を行う(S405)。
以上のように、CPU201は、メンテナンスを行ったタイミングに基づいて、故障箇所推定に用いるエラー関連情報の発生した期間を決定する。期間内のエラー関連情報に基づいて、解析対象エラーの故障箇所が推定される。具体的には、メンテナンス以前の関連エラーのエラー関連情報が故障箇所の推定から除外されるように期間が決定される。期間外のエラー関連情報は、例えばマスクされることで除外される。メンテナンス後の関連エラーは、故障箇所の推定に用いられる。図10に例示するように、エラー関連情報には、エラーの発生日時が含まれる。期間内であるか否かは、この発生日時に基づいて決定される。
例えば、メンテナンス後に、メンテナンス以前に発生しており、該メンテナンスの対象となった解析対象エラー及びその関連エラーのエラー関連情報がマスクされる。これにより故障箇所の誤判定の可能性が低くなる。また、メンテナンス後に再発区間を設定し、再発区間中にメンテナンス時と同じエラーコードの解析対象エラーが発生した場合には、過去の関連エラーのエラー関連情報をマスクせずに、故障箇所が推定される。再発区間中に解析対象エラーが発生せず、新規エラー区間に解析対象エラーが発生する場合、メンテナンス以前に発生したエラー関連情報をマスクして、故障箇所推定が行われる。これにより、複数ある故障箇所の候補から故障箇所を絞り込み安くなる。そのために故障箇所の推定の誤判定の可能性が低くなる。
(変形例)
上記の例では、エラー関連情報を画像形成装置100内の機内データ蓄積メモリ204に蓄積し、CPU201が機内データ蓄積メモリ204からエラー関連情報を読み出して故障箇所を推定する構成について説明した。本例では、これらの処理を画像形成装置100の外部に設けられる情報処理装置で行う場合について説明する。
図19は、外部の情報処理装置により画像形成装置の故障箇所を推定する故障箇所推定システムの構成図である。故障箇所推定システム1500は、1台以上の画像形成装置1501、1502と、サーバ1503と、管理装置1504とを備える。ここでは、一例として2台の画像形成装置1501、1502が故障箇所推定システム1500に設けられる。画像形成装置1501、1502は、画像形成装置100にネットワークインタフェースが追加された構成であり、シートSに画像を形成して成果物を作成する。サーバ1503及び管理装置1504が、機内データに基づいて故障箇所を推定する情報処理装置として機能する。
画像形成装置1501、1502、サーバ1503、及び管理装置1504は、ネットワークを介して通信可能である。ここでは、ネットワークは、インターネット1505である。ネットワークは、LAN(Local Area Network)、WAN(Wide Area Network)等の電気通信回線であってもよい。故障箇所推定システム1500は、画像形成装置1501、1502からそれぞれのデータを収集し、収集したそれぞれのデータに基づいて、画像形成装置1501、1502毎に故障の原因を推定する。
画像形成装置1501、1502は、それぞれ、エラー及びメンテナンスが発生すると、発生したエラー及びメンテナンス関連情報をサーバ1503へ送信する。
サーバ1503は、画像形成装置1501、1502のそれぞれから取得した機内データであるエラー及びメンテナンス関連情報を、取得した画像形成装置1501、1502毎に蓄積する。また、サーバ1503は、受信したエラー及びメンテナンス関連情報と過去に同じ画像形成装置で発生したエラー及びメンテナンスのエラー及びメンテナンス関連情報とを、管理装置1504へ送信する。
図20は、管理装置1504の構成図である。管理装置1504は、CPU1601、メモリ1602、ストレージ1603、ネットワークインタフェース(I/F)1604、及び操作部1606を備える。CPU1601、メモリ1602、ストレージ1603、及びネットワークI/F1604は、システムバス1605を介して通信可能に接続されている。
CPU1601は、管理装置1504全体の動作を制御する。メモリ1602は、CPU1601の起動用プログラム及び該起動用プログラムの実行に必要となるデータを格納する。ストレージ1603は、メモリ1602より大容量の記憶装置であり、例えば、HDD(Hard Disk Drive)やSSD(Solid State Drive)等である。ストレージ1603は、CPU1601が実行する制御用プログラム等を格納する。
CPU1601は、管理装置1504の起動時にメモリ1602に格納されている起動用プログラムを実行する。起動用プログラムは、ストレージ1603に格納された制御用プログラムをメモリ1602に展開するためのプログラムである。CPU1601は、メモリ1602に展開された制御用プログラムを実行し、各種制御を行う。また、CPU1601は、ネットワークI/F1604により、インターネット1505を介してサーバ1503等の他の機器と通信を行う。操作部1606は、操作部205と同様の機能を有する。操作部1606は、故障箇所推定結果表示の指示をCPU1601へ入力する。また操作部1606は、CPU1601の制御により、故障箇所推定結果を表示する。
CPU1601は、サーバ1503から受信したエラー及びメンテナンス関連情報に基づいて、図13、図14、図16(c)、及び図18の処理を実行して故障箇所を推定する。CPU1601は、故障箇所の推定結果をサーバ1503へ送信する。サーバ1503は、受信した故障箇所の推定結果を保存する。
CPU1601は、操作部1606から故障箇所推定結果表示の指示が入力されると、サーバ1503から故障箇所の推定結果を取得し、操作部1606へ故障箇所に関する情報を表示する。なおCPU1601は、故障箇所のみでなく、メンテナンス関連情報もあわせて操作部1606に表示してもよい。メンテナンス関連情報は、例えば部品交換手順やメンテナンスに要する作業時間目安である。このようにして、故障箇所推定システム1500の管理対象となる画像形成装置1501、1502の故障箇所が推定され、メンテンナンス作業が行われる。
以上のような本実施形態の画像形成装置100及び故障箇所推定システム1500は、エ故障箇所のメンテナンス後に該故障箇所に関する過去のエラー関連情報をマスクする。これにより、その後の故障箇所の推定で、該故障箇所に関する過去のエラー関連情報を使用できなくする。そのために、メンテナンス済みの故障箇所を誤って再度故障箇所の候補に挙げる可能性が低くなる。更には、メンテナンス後に再発区間を設けて、再発区間後に過去のエラー関連情報をマスクすることで、故障箇所の候補が複数ある場合であっても容易に故障箇所の絞り込みを行うことが可能になる。そのために、無駄なメンテナンス作業を抑制することができる。

Claims (8)

  1. シートへの画像形成に用いられる部品と、
    前記部品の動作のエラーの発生を検知する検知手段と、
    前記エラーに関連するエラー関連情報を蓄積する蓄積手段と、
    前記検知手段で検知された解析対象のエラーのエラー関連情報と該解析対象のエラーに関連する関連エラーのエラー関連情報とにより、該解析対象のエラーの原因となった故障箇所を推定する制御手段と、を備え、
    前記制御手段は、第1解析対象エラーに対応してメンテナンスを行った後に該第1解析対象エラーと同じエラーである第2解析対象エラーが発生した場合に、前記第1解析対象エラーに対応してメンテナンスを行ったタイミングに基づいて、前記第2解析対象エラーの故障箇所の推定に用いるエラー関連情報の発生した期間を決定し、決定した期間内のエラー関連情報に基づいて、前記第2解析対象エラーの故障箇所の推定を行うことを特徴とする、
    画像形成装置。
  2. 前記制御手段は、前記第1解析対象エラーに対応してメンテナンスを行った後に前記第2解析対象エラーが発生した場合に、前記メンテナンスより以前の前記関連エラーのエラー関連情報と前記第1解析対象エラーのエラー関連情報を用いずに、前記第2解析対象エラーの故障箇所の推定を行うことを特徴とする、
    請求項1記載の画像形成装置。
  3. 前記制御手段は、前記メンテナンスが終了してから所定の猶予期間が経過する前に前記第2解析対象エラーが発生した場合には、前記関連エラーのエラー関連情報と前記第1解析対象エラーのエラー関連情報を用いて、前記第2解析対象エラーの故障箇所の推定を行うことを特徴とする、
    請求項2記載の画像形成装置。
  4. 前記制御手段は、前記猶予期間が経過した後に前記第2解析対象エラーが発生した場合には、前記関連エラーのエラー関連情報と前記第1解析対象エラーのエラー関連情報を用いずに、前記第2解析対象エラーの故障箇所の推定を行うことを特徴とする、
    請求項3記載の画像形成装置。
  5. 前記蓄積手段は、メンテナンスを行ったことを示すメンテナンス終了情報を蓄積し、
    前記制御手段は、前記蓄積手段に前記メンテナンス終了情報が有る場合に、前記蓄積手段に蓄積される前記メンテナンスより以前の前記関連エラーのエラー関連情報と前記第1解析対象エラーのエラー関連情報を前記第2解析対象エラーの前記故障箇所の推定に用いないことを特徴とする、
    請求項1記載の画像形成装置。
  6. 前記エラー関連情報と前記メンテナンス終了情報は、前記画像形成装置の稼働状態を示すカウンタ値をさら含み、
    前記制御手段は、前記カウンタ値により前記メンテナンスが終了してから所定の猶予期間が経過したか否かを判断し、前記猶予期間が経過する前に前記第2解析対象エラーが発生した場合に前記関連エラーのエラー関連情報と前記解析対象エラーのエラー関連情報を用いて前記第2解析対象エラーの故障箇所の推定を行い、前記猶予期間が経過した後に前記第2解析対象エラーが発生した場合に、前記メンテナンスより以前の前記関連エラーのエラー関連情報と前記解析対象エラーのエラー関連情報を用いずに、前記第2解析対象エラーの故障箇所の推定を行うことを特徴とする、
    請求項5記載の画像形成装置。
  7. 前記制御手段は、前記メンテナンス終了情報のカウンタ値と前記第2解析対象エラーのカウンタ値との差分により、前記猶予期間が経過したか否かを判断することを特徴とする、
    請求項6記載の画像形成装置。
  8. シートへの画像形成に用いられる部品と、前記部品の動作のエラーの発生を検知する検知手段と、を備える1台以上の画像形成装置にネットワークを介して接続される情報処理装置であって、
    前記エラーに関連するエラー関連情報を蓄積する蓄積手段と、
    前記検知手段で検知された解析対象のエラーのエラー関連情報と該解析対象のエラーに関連する関連エラーのエラー関連情報とにより、該解析対象のエラーの原因となった故障箇所を推定する制御手段と、を備え、
    前記制御手段は、第1解析対象エラーに対応してメンテナンスを行った後に該第1解析対象エラーと同じエラーである第2解析対象エラーが発生した場合に、前記第1解析対象エラーに対応してメンテナンスを行ったタイミングに基づいて、前記第2解析対象エラーの故障箇所の推定に用いるエラー関連情報の発生した期間を決定し、決定した期間内のエラー関連情報に基づいて、前記第2解析対象エラーの故障箇所の推定を行うことを特徴とする、
    情報処理装置。
JP2022166716A 2022-10-18 2022-10-18 画像形成装置、情報処理装置 Pending JP2024059191A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022166716A JP2024059191A (ja) 2022-10-18 2022-10-18 画像形成装置、情報処理装置
US18/487,912 US12015742B2 (en) 2022-10-18 2023-10-16 Image forming apparatus, information processing apparatus, and method of giving notification of causal part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022166716A JP2024059191A (ja) 2022-10-18 2022-10-18 画像形成装置、情報処理装置

Publications (1)

Publication Number Publication Date
JP2024059191A true JP2024059191A (ja) 2024-05-01

Family

ID=90625893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022166716A Pending JP2024059191A (ja) 2022-10-18 2022-10-18 画像形成装置、情報処理装置

Country Status (2)

Country Link
US (1) US12015742B2 (ja)
JP (1) JP2024059191A (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10025657B2 (en) 2015-06-29 2018-07-17 Ricoh Company, Ltd. Information processing system and failure diagnosis method
JP6752739B2 (ja) * 2017-02-15 2020-09-09 株式会社日立製作所 保守装置、提示システム及びプログラム
JP2023087410A (ja) * 2021-12-13 2023-06-23 キヤノン株式会社 画像形成装置、情報処理装置

Also Published As

Publication number Publication date
US20240129412A1 (en) 2024-04-18
US12015742B2 (en) 2024-06-18

Similar Documents

Publication Publication Date Title
JP5440257B2 (ja) 画像形成装置
JP2008191232A (ja) 画像形成装置
CN101840183A (zh) 成像设备及成像方法
JP2008107696A (ja) 画像形成装置およびトナーカートリッジの寿命判定方法
US20240077822A1 (en) Information processing apparatus and image forming apparatus
JP2007003837A (ja) 画像形成装置および方法
JP2024059191A (ja) 画像形成装置、情報処理装置
JP2010204343A (ja) 画像形成装置
JP2024047741A (ja) 画像形成装置、情報処理装置
JP2008107699A (ja) 画像形成装置および画像形成方法
JP2024047399A (ja) 画像形成装置、情報処理装置
JP2004118193A (ja) マルチカラー画像形成装置およびその装置におけるカラー関連構成要素の消耗を低減させる方法
JP2024047397A (ja) 画像形成装置、及び画像形成装置と通信可能な情報処理装置
JP6160242B2 (ja) 故障診断装置、画像形成装置及び故障診断システム
US20240103421A1 (en) Information processing apparatus for determining causal part of cause of error which has occurred in image forming apparatus, and notification method of giving notification of causal part of cause of error which has occurred in image forming apparatus
JP2020015580A (ja) 部品管理サーバ、部品管理システム、及びプログラム
JP2008107698A (ja) 画像形成装置および画像形成方法
JP2020149004A (ja) 画像形成装置
JP2019086594A (ja) 画像形成装置
US20230195020A1 (en) Information processing apparatus and image forming apparatus
JP2019035785A (ja) 画像形成装置、画像形成装置の制御方法及びプログラム
JP4681213B2 (ja) 画像形成装置、コンピュータプログラム、及び、画像形成システム
JP2009086546A (ja) 画像形成装置
JP2006227536A (ja) プロセスカートリッジの寿命管理方法、プロセスカートリッジ、画像形成装置及びメモリデバイス
JP2018031854A (ja) 画像形成装置