JP2024055625A - 車載用制御装置 - Google Patents

車載用制御装置 Download PDF

Info

Publication number
JP2024055625A
JP2024055625A JP2022162706A JP2022162706A JP2024055625A JP 2024055625 A JP2024055625 A JP 2024055625A JP 2022162706 A JP2022162706 A JP 2022162706A JP 2022162706 A JP2022162706 A JP 2022162706A JP 2024055625 A JP2024055625 A JP 2024055625A
Authority
JP
Japan
Prior art keywords
voltage
power line
low
converter
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022162706A
Other languages
English (en)
Inventor
辰徳 佐藤
貴久 三浦
健輔 中西
暢 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2022162706A priority Critical patent/JP2024055625A/ja
Publication of JP2024055625A publication Critical patent/JP2024055625A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】バッテリレス制御における低電圧系への電力供給をより安定して行なう。【解決手段】自動車は、エンジンと、エンジンのクランクシャフトに連結された発電可能な電動機と、高電圧バッテリと、高電圧バッテリと電動機とを接続する高電圧系電力ラインに設けられたシステムメインリレーと、低電圧バッテリと、低電圧バッテリに接続された低電圧系電力ラインを介して電力の供給を受ける補機と、高電圧系電力ラインと低電圧系電力ラインとに接続されたDC/DCコンバータと、を備える。車載用制御装置は、システムメインリレーをオフとした状態で駆動制御するバッテリレス制御を行なうときには、DC/DCコンバータの出力電流の上限である制限電流が電動機の回転数に同期するようにDC/DCコンバータを制御する。【選択図】図3

Description

本発明は、車載用制御装置に関する。
従来、この種の車載用制御装置としては、プラネタリギヤの3つの回転要素にエンジンと第1モータと第2モータとを接続したハイブリッド車に搭載されたものが提案されている(例えば、特許文献1参照)。この車載用制御装置は、高圧電源である高電圧バッテリの高電圧を降圧して電動パワーステアリング装置(EPS)に供給するモードの実行中で、かつ、高電圧バッテリの異常発生時に、低電圧バッテリの低電圧を昇圧してEPSに供給するモードの実行に移行させた後に、高電圧バッテリと駆動回路との間の接続を遮断し、その後に、発電機により発電された電力に対応する電圧を降圧してEPSに供給するモードに移行させる。
特開2010-018183号公報
しかしながら、上述の車載用制御装置では、高電圧バッテリを遮断して駆動するバッテリレス制御では、モータ回転数が変動することにより、低電圧バッテリ側の電圧が過電圧になったり低電圧となったりして、低電圧バッテリや低圧系の補機への電力供給が失陥する場合が生じる。
本発明の車載用制御装置は、高電圧バッテリを切り離して駆動するバッテリレス制御において高電圧系電力ラインの電圧の低下を抑制することを主目的とする。
本発明の車載用制御装置は、上述の主目的を達成するために以下の手段を採った。
本発明の車載用制御装置は、
エンジンと、
前記エンジンのクランクシャフトに連結された発電可能な電動機と、
高電圧バッテリと、
前記高電圧バッテリと前記電動機とを接続する高電圧系電力ラインに設けられたシステムメインリレーと、
低電圧バッテリと、
前記低電圧バッテリに接続された低電圧系電力ラインを介して電力の供給を受ける補機と、
前記高電圧系電力ラインと前記低電圧系電力ラインとに接続されたDC/DCコンバータと、
を備える自動車に車載される車載用制御装置であって、
前記システムメインリレーをオフとした状態で駆動制御するバッテリレス制御を行なうときには、前記DC/DCコンバータの出力電流の上限である制限電流が前記電動機の回転数に同期するように前記DC/DCコンバータを制御する、
ことを特徴とする。
本発明の車載用制御装置は、エンジンと、エンジンのクランクシャフトに連結された発電可能な電動機と、高電圧バッテリと、高電圧バッテリと電動機とを接続する高電圧系電力ラインに設けられたシステムメインリレーと、低電圧バッテリと、低電圧バッテリに接続された低電圧系電力ラインを介して電力の供給を受ける補機と、高電圧系電力ラインと低電圧系電力ラインとに接続されたDC/DCコンバータと、を備える自動車に車載される。本発明の車載用制御装置は、システムメインリレーをオフとした状態で駆動制御するバッテリレス制御を行なうときには、DC/DCコンバータの出力電流の上限である制限電流が電動機の回転数に同期するようにDC/DCコンバータを制御する。これにより、DC/DCコンバータの出力電流(低電圧系への出力電流)を制限電流の範囲内することができ、バッテリレス制御においてDC/DCコンバータの出力電流に対してモータMGの発電電力が不足することにより生じる高電圧系電力ラインの電圧の低下を抑制することができる。
本発明の車載用制御装置において、前記バッテリレス制御の際に、前記高電圧系電力ラインの電圧が目標電圧に対して予め定めた閾値の範囲外となったときには、段階的に前記制限電流を低下させるものとしてよい。即ち、高電圧系電力ラインの電圧が目標電圧に対して予め定めた閾値の範囲外となる毎に段階的に制限電流を低下させることによってDC/DCコンバータの出力電流を段階的に制限するのである。これにより、DC/DCコンバータの出力電流をモータMGの発電電力に見合ったものとし、高電圧系電力ラインの電圧の低下を抑制することができる。この場合、前記制限電流を予め定めた最小電流とした以降に前記高電圧系電力ラインの電圧が前記目標電圧に対して前記閾値の範囲外となったときには、前記DC/DCコンバータを停止してバッテリレス制御を終了するものとしてもよい。
本発明の実施形態としての車載用制御装置を搭載する自動車20の構成の概略を示す構成図である。 実施形態の自動車20の電気系統を模式的に示す構成図である。 MGECU74により実行される制限電流設定処理の一例を示すフローチャートである。 カウンタCfailとモータMGの回転数Nmと制限電流Ilimとの時間変化の一例を示す説明図である。
次に、本発明の実施形態について説明する。図1は、本発明の実施形態としての車載用制御装置を搭載する自動車20の構成の概略を示す構成図である。図2は、実施形態の自動車20の電気系統を模式的に示す構成図である。
実施形態の自動車20は、エンジン22と、自動変速装置30と、モータMGと、インバータ36と、高電圧バッテリ40と、DC/DCコンバータ50と、低電圧バッテリ60と、エンジン用電子制御ユニット(以下、「エンジンECU」という。)70と、自動変速機用電子制御ユニット(以下、「変速ECU」という。)72と、モータ用電子制御ユニット(以下、「MGECU」という。)74と、を備える。
エンジン22は、ガソリンや軽油などを燃料として動力を出力する内燃機関として構成されている。エンジン22のクランクシャフト23は、自動変速装置30の入力軸に接続されている。エンジン22は、エンジンECU70により駆動制御されている。エンジンECU70は、図示しないがCPUを中心とするマイクロコンピュータとして構成されている。エンジンECU70は、クランクシャフト23に取り付けられた回転数センサ24からの回転数Neやエンジン22に取り付けられた図示しない各種センサからの信号に基づいて、エンジン22の吸入空気量制御や燃料噴射制御、点火制御などを行なう。
自動変速装置30は、例えば、一般的な流体伝動装置として構成されたトルクコンバータと、複数の遊星歯車と油圧駆動の複数の摩擦係合要素(クラッチ,ブレーキ)とからなる例えば前進6段後進1段の自動変速機とにより構成されている。自動変速装置30の出力軸は、デファレンシャルギヤ32を介して駆動輪34a,34bに連結された車軸33に接続されている。自動変速装置30は、変速ECU72により駆動制御されている。変速ECU72は、図示しないがCPUを中心とするマイクロコンピュータとして構成されている。変速ECU72は、車速Vと出力軸に要求される要求トルクT*とを予め定めた変速線に適用して目標変速段M*を設定し、変速段Mが目標変速段M*となるように複数のクラッチやブレーキの係合・非係合を制御する。
モータMGは、例えば同期発電電動機として構成されている。モータMGの回転子は伝達機構26によりエンジンのクランクシャフト23に連結されている。伝達機構26は、例えば、クランクシャフト23に固定されたプーリと、モータMGの回転子に固定されたプーリと、両プーリに巻き掛けられるベルトとにより構成されている。インバータ30は、例えば、6つのトランジスタと、各トランジスタに逆向きに並列接続された6つのダイオードとを有する周知のインバータ回路として構成されている。モータMGは、MGECU74により駆動制御されている。MGECU74は、図示しないがCPUを中心とするマイクロコンピュータとして構成されている。MGECU74は、モータMGのトルク指令に基づいてインバータ30の6つのトランジスタをスイッチング制御することにより、モータMGを駆動制御する。
高電圧バッテリ40は、例えば40-50Vの定格出力電圧を有するリチウムイオン二次電池またはニッケル水素二次電池等を用いることができる。低電圧バッテリ60は、例えば12Vの定格出力電圧を有する鉛蓄電池等の二次電池を用いることができる。
DC/DCコンバータ50は、図1及び図2に示すように、一端が高電圧バッテリ40にシステムメインリレー42やLCフィルタ46を介して接続された高電圧系電力ラインLHに接続されており、他端が低電圧バッテリ60や補機62が接続された低電圧系電力ラインLLに接続されている。DC/DCコンバータ50は、上アームとしての第1スイッチング素子52と、下アームとしての第2スイッチング素子54と、コイル(リアクトル)56と、第1スイッチング素子52および第2スイッチング素子54をスイッチング制御する制御IC(制御回路)58とを有する。第1スイッチング素子52は、トランジスタおよび当該トランジスタに逆向きに並列接続されたダイオードとにより構成されている。第1スイッチング素子52のトランジスタのドレインは、高圧電力ラインLHに接続されている。第2スイッチング素子54は、トランジスタおよび当該トランジスタに逆向きに並列接続されたダイオードとにより構成されている。第2スイッチング素子54のトランジスタのドレインは、第1スイッチング素子52のトランジスタのソースに接続され、第2スイッチング素子54のトランジスタのソースは接地されている。コイル56の一端は、第1スイッチング素子52のトランジスタのソースおよび第2スイッチング素子54のトランジスタのドレインに接続されており、コイル56の他端は低圧電力ラインLLに接続されている。DC/DCコンバータ50は、MGECU74により第1スイッチング素子52および第2スイッチング素子54をスイッチング制御することにより駆動制御される。MGECU74には、高電圧系電力ラインLHに取り付けられた電圧検出回路48からの高電圧系電圧VHや低電圧電力ラインLLに取り付けられた電圧検出回路68からの低電圧系電圧VLなどが入力されている。MGECU74は、通常時には、電圧検出回路68により検出される低電圧系電圧VLを要求値にするための電圧指令値をDC/DCコンバータ50の制御IC58に与える。そして、制御IC58は、MGECU74からの電圧指令値に基づいて第1スイッチング素子52および第2スイッチング素子54をスイッチング制御する。なお、図2中のリアクタンス44は回路の寄生リアクタンスである。
次に、実施形態の自動車20の動作、特にシステムメインリレー42をオフとして駆動する際におけるDC/DCコンバータ50の動作について説明する。図3は、システムメインリレー42をオフとして駆動する際にMGECU74により実行される制限電流設定処理の一例を示すフローチャートである。
制限電流設定処理が実行されると、MGECU74は、まず、高電圧バッテリ40が失陥中であるか否かを判定する(ステップS100)。高電圧バッテリ40が失陥中であるか否かの判定は、高電圧バッテリ40の劣化の程度や温度などに基づいて設定されるフラグの値を調べることにより行なうことができる。高電圧バッテリ40が失陥中ではない(正常である)と判定したときには、本処理は不要と判断し、処理を修了する。
ステップS100で高電圧バッテリ40が失陥中であると判定したときには、バッテリレス制御を実行する(ステップS110)。バッテリレス制御では、システムメインリレー42をオフとして高電圧バッテリ40を切り離した状態で、モータMGによる発電電力をDC/DCコンバータ50により降圧して制限電流Ilimの範囲内で低電圧電力ラインLLに供給する。上述した通常時におけるDC/DCコンバータ50の制御では、モータMGの発電電力が不足するときには高電圧バッテリ40からの電力が供給されるため、モータMGの発電電力を考慮することなく、低電圧系電力ラインLLの電圧VLが要求値となるようにDC/DCコンバータ50を制御することができる。しかし、バッテリレス制御では、高電圧バッテリ40が切り離されているため、モータMGの発電電力を考慮してDC/DCコンバータ50を制御しないと、高電圧系電力ラインLHの電圧VHが低下し、モータMGの制御に不都合が生じてしまう。モータMGの発電電力はモータMGの回転数Nmに依存するが、モータMGの回転数NmはモータMGの回転子が伝達機構26によりエンジン22のクランクシャフト23に連結されているため、エンジン22の回転数Neに伝達系数を乗じたものとなる。そして、エンジン22の回転数Neは運転者のアクセル操作に応じて変化するから、モータMGの回転数Nmも運転者のアクセル操作に応じて変化することになる。このため、実施形態のバッテリレス制御では、高電圧系電力ラインLHの電圧VHを保持するために、モータMGの回転数Nmに応じて(同期して)DC/DCコンバータ50から低電圧系電力ラインLLに出力する出力電流Ioutを制御する必要が生じる。なお、モータMGによる発電制御は、通常時と同様に、高電圧系電力ラインLHの電圧VHが目標値になるように行なわれる。
バッテリレス制御では、以下のステップS120~170の処理によりDC/DCコンバータ50の出力電流Ioutに対する制限電流Ilimの設定を行なうことにより、高電圧系電力ラインLHの電圧VHの保持が行なわれる。まず、カウンタCfailが閾値Cendに一致したか否かを判定する(ステップS120)。ここで、カウンタCfailは、バッテリレス制御において、高電圧系電力ラインLHの電圧VHが閾値を超えて目標値から変動したことによりバッテリレス制御が失敗したと判定された回数を示すものであり、後述するステップS160,S170により設定されるものである。なお、カウンタCfailには初期値として値0が設定されている。閾値Cendは、バッテリレス制御が失敗したとの判定の回数の最終値である。いま、ステップS110によりバッテリレス制御の実行を開始した直後を考えると、カウンタCfailには値0が設定されているため、ステップS120では否定的判定がなされる。
ステップS120でカウンタCfailは閾値Cendではないと判定したときには、モータMGの回転数Nmの上昇に対する制限電流Ilimの同期係数IlimupにカウンタCfailを引数とした値f(Cfail)を設定する(ステップS130)。f(Cfail)は、f(1)>f(2)>・・・>f(n)の関係を有するように予め定められており、f(t)-f(t+1)の差分は変数tに拘わらず同一であるものとしたり、変数tが大きくなるにしたがって徐々に小さくなるものとしたりしてもよい。
続いて、DC/DCコンバータ50から低電圧系電力ラインLLに出力可能な制限電流Ilimを次式(1)により計算して設定する(ステップS140)。即ち同期係数IlimupにモータMGの回転数上昇分ΔNmを乗じたものと最小値Ilim0に加えて制限電流Ilimを計算するのである。ここで、最小値Ilom0は、低電圧系電力ラインLLに出力する最小電流(車両負荷電流の最小値)である。
Ilim=Ilim0+Ilimup・ΔNm (1)
次に、イグニッションスイッチがオフされたか否かを判定し(ステップS150)、イグニッションスイッチがオフされていないと判定したときには、バッテリレス制御が失敗したか否かを判定する(ステップS160)。バッテリレス制御の失敗は、上述したように、高電圧系電力ラインLHの電圧VHが閾値を超えて目標値から変動したか否かにより判定することができる。バッテリレス制御が失敗していないと判定したときにはステップS140の制限電流Ilimの設定に戻る。したがって、バッテリレス制御が失敗していない間はイグニッションスイッチがオフされるまでステップS140~S160の処理が繰り返され、モータMGの回転数Nmに同期した制限電流Ilimが設定され、DC/DCコンバータ50から低電圧系電力ラインLLへの出力電流Ioutが制限電流Ilimの範囲内となるように制御される。
ステップS160でバッテリレス制御に失敗したと判定したときには、カウンタCfailが値1だけインクリメントされ(ステップS170)、ステップS120のカウンタCfailが閾値Cendに一致したか否かを判定する処理に戻る。カウンタCfailが値1だけインクリメントされると、ステップS130でインクリメントされたカウンタCfailに基づいて同期係数Ilimupが設定され、ステップS140で新に設定された同期係数Ilimupを用いて制限電流Ilimが設定される。上述したようにf(1)>f(2)>・・・>f(n)の関係を有するから、新に設定された同期係数Ilimupは前回の同期係数Ilimupより小さくなる。このため、制限電流Ilimも前回の制限電流Ilimより小さく設定されることになる。以上の説明から、ステップS120~S170の処理は、バッテリレス制御が失敗する毎に段階的に小さくなる同期係数Ilimupを用いて段階的に小さくなる制限電流Ilimを設定する処理となる。
図4は、カウンタCfailとモータMGの回転数Nmと制限電流Ilimとの時間変化の一例を示す説明図である。図4(a)ではカウンタCfail=0のときのモータMGの回転数Nmと制限電流Ilimとの時間変化を示し、図4(b)ではカウンタCfail=3のときのモータMGの回転数Nmと制限電流Ilimとの時間変化を示し、図4(c)ではカウンタCfail=Cend-1のときのモータMGの回転数Nmと制限電流Ilimとの時間変化を示す。なお、カウンタCfail=Cend-1のときの同期係数Ilimupとしては値0を用いている。このため、カウンタCfail=Cend-1のときの制限電流Ilimは最小値Ilim0となる。図中、一点鎖線はモータMGの回転数Nmを示し、実線は制限電流Ilimを示す。左軸はモータMGの回転数[rpm]を示し、右軸は制限電流の電流値[A]を示す。実施形態では、図示するように、DC/DCコンバータ50の制限電流Ilimは、モータMGの回転数Nmに同期しており、カウンタCfailが大きくなるにしたがって段階的に小さくなる。
バッテリレス制御を実行している最中にイグニッションスイッチがオフされると、ステップS150で肯定的な判定がなされ、バッテリレス制御を終了し(ステップS180)、本処理を終了する。
バッテリレス制御の失敗を繰り返し、カウンタCfailが閾値Cendに至ると、ステップS120で肯定的な判定がなされ、バッテリレス制御を終了し(ステップS180)、本処理を終了する。
以上説明した実施形態の自動車20が搭載するMGECU74では、システムメインリレー42をオフとして高電圧バッテリ40を切り離した状態で、モータMGによる発電電力をDC/DCコンバータ50により降圧して低電圧電力ラインLLに供給するバッテリレス制御を実行するときには、DC/DCコンバータ50から低電圧系電力ラインLLに出力する出力電流Ioutの制限電流IlimをモータMGの回転数Nmに同期させる。これにより、DC/DCコンバータ50の出力電流Ioutに対してモータMGの発電電力の過不足することにより生じる高電圧系電力ラインLHの電圧BHの低下を抑制することができる。
実施形態の自動車20が搭載するMGECU74では、バッテリレス制御が失敗する毎に段階的に小さくなる同期係数Ilimupを用いて段階的に小さくなる制限電流Ilimを設定する。これにより、DC/DCコンバータ50の出力電流IlimをモータMGの発電電力に見合ったものとし、高電圧系電力ラインLHの電圧VHの低下を抑制することができる。
実施形態の自動車20では、エンジン22とモータMGとは、2つのプーリと両プーリに巻き掛けられるベルトとにより構成された伝達機構26を介して接続されるものとしたが、チェーン機構により接続されるものとしてもよいし、ギヤ機構を介して接続されるものとしてもよいし、直結されるものとしてもよい。
実施形態の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施形態では、エンジン22が「エンジン」に相当し、モータMGが「電動機」に相当し、高電圧バッテリ40が「高電圧バッテリ」に相当し、システムメインリレー42が「システムメインリレー」に相当し、低電圧バッテリ60が「低電圧バッテリ」に相当し、補機62が「補機」に相当し、DC/DCコンバータ50が「DC/DCコンバータ」に相当し、MGECU74が「車載用制御装置」に相当する。
なお、実施形態の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施形態が課題を解決するための手段の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施形態は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。
以上、本発明を実施するための形態について説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
本発明は、車載用制御装置の製造産業などに利用可能である。
20 自動車、22 エンジン、23 クランクシャフト、24 回転数センサ、26 伝達機構、30 自動変速装置、32 デファレンシャルギヤ、33 車軸、34a,34b 駆動輪、36 インバータ、40 高電圧バッテリ、42 システムメインリレー、44 リアクトル、46 LCフィルタ、48 電圧検出回路、50 DC/DCコンバータ、52 第1スイッチング素子、54 第2スイッチング素子、56 コイル、58 制御IC、60 低電圧バッテリ、62 補機、68 電圧検出回路、70 エンジン用電子制御ユニット(エンジンECU)、72 自動変速機用電子制御ユニット(変速ECU)、74 モータ用電子制御ユニット(モータECU)、LL 低電圧系電力ライン、LH 高電圧系電力ライン、MG モータ。

Claims (3)

  1. エンジンと、
    前記エンジンのクランクシャフトに連結された発電可能な電動機と、
    高電圧バッテリと、
    前記高電圧バッテリと前記電動機とを接続する高電圧系電力ラインに設けられたシステムメインリレーと、
    低電圧バッテリと、
    前記低電圧バッテリに接続された低電圧系電力ラインを介して電力の供給を受ける補機と、
    前記高電圧系電力ラインと前記低電圧系電力ラインとに接続されたDC/DCコンバータと、
    を備える自動車に車載される車載用制御装置であって、
    前記システムメインリレーをオフとした状態で駆動制御するバッテリレス制御を行なうときには、前記DC/DCコンバータの出力電流の上限である制限電流が前記電動機の回転数に同期するように前記DC/DCコンバータを制御する、
    ことを特徴とする車載用制御装置。
  2. 請求項1記載の車載用制御装置であって、
    前記バッテリレス制御の際に、前記高電圧系電力ラインの電圧が目標電圧に対して予め定めた閾値の範囲外となったときには、段階的に前記制限電流を低下させる、
    車載用制御装置。
  3. 請求項2記載の車載用制御装置であって、
    前記制限電流を予め定めた最小電流とした以降に前記高電圧系電力ラインの電圧が前記目標電圧に対して前記閾値の範囲外となったときには、前記DC/DCコンバータを停止してバッテリレス制御を終了する、
    車載用制御装置。
JP2022162706A 2022-10-07 2022-10-07 車載用制御装置 Pending JP2024055625A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022162706A JP2024055625A (ja) 2022-10-07 2022-10-07 車載用制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022162706A JP2024055625A (ja) 2022-10-07 2022-10-07 車載用制御装置

Publications (1)

Publication Number Publication Date
JP2024055625A true JP2024055625A (ja) 2024-04-18

Family

ID=90716113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022162706A Pending JP2024055625A (ja) 2022-10-07 2022-10-07 車載用制御装置

Country Status (1)

Country Link
JP (1) JP2024055625A (ja)

Similar Documents

Publication Publication Date Title
US10000205B2 (en) Fail-safe control apparatus for hybrid vehicles
US6687580B2 (en) Vehicle controller and vehicle control method
WO2005097536A1 (ja) 動力出力装置および自動車
WO2014091588A1 (ja) ハイブリッド車両の制御装置
US10000123B2 (en) Hybrid vehicle
US10189462B2 (en) Hybrid vehicle
US11479232B2 (en) Hybrid vehicle
US10894539B2 (en) Hybrid vehicle
JP2021054164A (ja) ハイブリッド車両の制御装置および制御方法
JP6079521B2 (ja) ハイブリッド車両
JP2024055625A (ja) 車載用制御装置
JP2011110996A (ja) 車両およびその制御方法
US20240132045A1 (en) In-vehicle controller
JP2001057705A (ja) ハイブリッド車両の駆動装置
US10507821B2 (en) Hybrid vehicle and method of controlling the same
JP2011088548A (ja) ハイブリッド車両
JP2024061938A (ja) 車載用制御装置
JP7439628B2 (ja) 車両の制御装置
JP6333533B2 (ja) ハイブリッド車両
US20230001913A1 (en) System and Method for Controlling Limp-Home Reverse Traveling of Hybrid Electric Vehicle
JP2017159680A (ja) ハイブリッド車両の制御装置
CN115071663A (zh) 汽车
JP2023101097A (ja) 車両の制御装置
JP2023117137A (ja) 電圧変換装置の異常判定装置
JP2022182876A (ja) ハイブリッド車両