JP2024050571A - ロケーションネットワークを同期するための方法及び装置 - Google Patents

ロケーションネットワークを同期するための方法及び装置 Download PDF

Info

Publication number
JP2024050571A
JP2024050571A JP2024000113A JP2024000113A JP2024050571A JP 2024050571 A JP2024050571 A JP 2024050571A JP 2024000113 A JP2024000113 A JP 2024000113A JP 2024000113 A JP2024000113 A JP 2024000113A JP 2024050571 A JP2024050571 A JP 2024050571A
Authority
JP
Japan
Prior art keywords
signal
time
positioning
difference
time difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2024000113A
Other languages
English (en)
Inventor
デイヴィッド スモール
イアン セインスベリー
Original Assignee
ロケイタ コーポレイション プロプライエタリー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2018900841A external-priority patent/AU2018900841A0/en
Application filed by ロケイタ コーポレイション プロプライエタリー リミテッド filed Critical ロケイタ コーポレイション プロプライエタリー リミテッド
Publication of JP2024050571A publication Critical patent/JP2024050571A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay
    • H04W56/0065Synchronisation arrangements determining timing error of reception due to propagation delay using measurement of signal travel time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • G01S1/20Systems for determining direction or position line using a comparison of transit time of synchronised signals transmitted from non-directional antennas or antenna systems spaced apart, i.e. path-difference systems
    • G01S1/24Systems for determining direction or position line using a comparison of transit time of synchronised signals transmitted from non-directional antennas or antenna systems spaced apart, i.e. path-difference systems the synchronised signals being pulses or equivalent modulations on carrier waves and the transit times being compared by measuring the difference in arrival time of a significant part of the modulations, e.g. LORAN systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/022Means for monitoring or calibrating
    • G01S1/024Means for monitoring or calibrating of beacon transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • G01S1/20Systems for determining direction or position line using a comparison of transit time of synchronised signals transmitted from non-directional antennas or antenna systems spaced apart, i.e. path-difference systems
    • G01S1/30Systems for determining direction or position line using a comparison of transit time of synchronised signals transmitted from non-directional antennas or antenna systems spaced apart, i.e. path-difference systems the synchronised signals being continuous waves or intermittent trains of continuous waves, the intermittency not being for the purpose of determining direction or position line and the transit times being compared by measuring the phase difference
    • G01S1/304Analogous systems in which a beat frequency, obtained by heterodyning the signals, is compared in phase with a reference signal obtained by heterodyning the signals in a fixed reference point and transmitted therefrom, e.g. LORAC (long range accuracy) or TORAN systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0075Arrangements for synchronising receiver with transmitter with photonic or optical means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Electric Clocks (AREA)

Abstract

【課題】スレーブデバイスが基準デバイスからの信号の伝播遅延の知識を欠いている状況において、例えば、デバイスのうちの一方又は両方の位置が未知又は分類されている場合、又はデバイス間の信号伝搬距離が先験的に未知である場合、スレーブデバイス信号を基準タイムベースに同期させるための装置及び方法を提供すること。【解決手段】基準信号の伝搬遅延は、デバイス間の信号の交換を使用して決定され、各デバイスは、受信機ラインバイアス及び他のハードウェア遅延の影響を排除するための差分手順を用いる。別の態様において、デバイス間の信号交換は、不正確な伝搬遅延推定から生じる時間残差を検出するのに使用される。同期方法は、同期されるロケーションネットワークを提供するため複数のスレーブデバイスに適用することができる。特定の実施形態において、信号は無線で送信されるが、他の実施形態では、固定回線を介して送信される。【選択図】図1

Description

本発明は、特にネットワークデバイスの位置が未知であるか又は分類されているか、或いはデバイス間の信号伝搬距離が先験的に未知である状況において、ロケーションネットワークを同期させる方法及び装置に関する。しかしながら、本発明は、この特定の使用分野に限定されないことは明らかであろう。
(関連出願)
本出願は、2018年3月14日に出願された、オーストラリア暫定特許出願第2018900841号からの優先権を主張し、この内容は引用により全体が本明細書に組み込まれる。
本明細書全体を通じて従来技術の検討は、このような従来技術が周知であるか、又は当該技術分野における共通一般知識の一部を形成していると認められるものとして解析されるべきではない。
米国特許第7,616,682号には、既知の固定位置において、測位ユニットデバイスとして知られる地上送信機の同期化されたネットワークから送信される測位信号を用いてモバイル装置に関する正確な位置決定を行うための方法及びシステムが開示されている。これらの方法及びシステムの鍵は、これ自体が測位ユニットデバイスとすることができる指定された基準デバイスに対する各測位ユニットデバイスのタイミングエラーの測定及び補正であり、これにより基準デバイスのタイムベースに同期される測位信号を送信する測位ユニットデバイスのネットワークを確立し維持する。所与の測位ユニットデバイスが、基準デバイスのタイムベースに同期されると、基準デバイスを明確に見えていない別の測位ユニットデバイスに当該タイムベースを中継し、これにより測位ユニットデバイスの拡大ネットワークを通じて基準タイムベースを伝搬することができる。次いで、モバイル装置は、複数の測位ユニットデバイスから及び場合によっては基準デバイスから受け取った信号に対して既知のスペクトラム拡散技術を適用することにより、その位置を決定することができる。
米国特許第7,616,682号にて開示された同期技術は、各測位ユニットデバイスが基準デバイスから送信された基準信号についての伝搬遅延を考慮する必要があり、典型的には、伝搬遅延は、それぞれのアンテナ間の幾何学的距離すなわち直線距離を光の速度で除算することにより計算される。測位ユニットデバイスは、例えば、装置自身のアンテナ位置の事前調査及び基準デバイスのアンテナ位置の事前調査から先験的に幾何学的距離を認識していることが予想され、基準デバイスは、その信号のデータ成分の一部としてアンテナ位置をブロードキャストすることができる。
しかしながら、測位ユニットデバイスが、基準デバイスに対する幾何学的距離の先験的知識を有することが実現可能ではないか実施できない状況がある。例えば、基準デバイス又は測位ユニットデバイスの位置は、未知とすることができ、或いは、基準デバイスがその位置をブロードキャストすることができないか、又は望ましくない場合がある。幾何学的距離が、例えば、マルチパスに起因して基準デバイスからの信号の実際の伝搬経路を表していない場合、又は信号が固定回線を通じて伝搬される場合には、従来技術の同期法の精度が損なわれることになる。
測位ユニットデバイスの信号を基準デバイスのタイムベースに同期させるための改善された方法及び装置に対する要求がある。特に、幾何学的距離又は伝搬遅延が未知であるときに、基準デバイスから測位ユニットデバイスに送信される基準信号についての伝搬遅延を測定可能にする要求がある。
定義
本明細書における説明及び以下の特許請求の範囲において、用語「comprising」、「comprises」及び同様のものは、用語「including」、「includes」及び同様のものと同義で包含的な意味に解析するものとする。例えば、「A及びBを含む装置」という表現は、要素AとBからのみなる装置に限定されるべきではない。同様に、用語「or」は、排他的な意味ではなく包含的な意味に解析するものとする。例えば、文脈上明確に他の意味に解析すべき場合を除いて、「A又はB」は、A、又はB、もしくはA及びBの両方の意味として解析するものとする。
米国特許第7,616,682号明細書
発明の目的
本発明の目的は、従来技術の欠点の少なくとも1つを克服又は改善すること、或いは有用な代替策を提供することである。好ましい形態での本発明の目的は、デバイスのうちの一方又は両方の位置が未知又は分類されている状況、又は基準信号の伝搬遅延が先験的に未知である状況において、測位ユニットデバイスの信号を基準デバイスのタイムベースに同期させるための方法及び装置を提供することである。
本発明の第1の態様によれば、第2のデバイスによって生成されて送信された第2の信号を第1のデバイスのタイムベースに同期させる方法であって、
方法が、
(i)第1のデバイスが第1の時間情報を含む第1の信号を生成し送信するステップであって、第1の時間情報が第1のデバイスのタイムベースに従って第1の信号の送信時間を示す、ステップと、
(ii)第2のデバイスが、
(a)第1の信号を受信して解析するステップと、
(b)第2の信号の送信時間を示す第2の時間情報を含む第2の信号を生成して送信するステップと、
(c)第2の信号を受信して解析するステップと、
(d)第1の時間情報と第2の時間情報との間の第1の時間差を計算するステップと、
(e)第1の時間差に従って第2の信号の生成を調整し、これにより第2の信号及び第2の時間情報を調整するステップと、
(iii)第1のデバイスが、
(a)第1の信号及び調整された第2の信号を受信して解析するステップと、
(b)第1の時間情報と調整された第2の時間情報との間の第2の時間差を計算するステップと、
(c)第2の時間差又はこれに関連する物理量を送信するステップと、
(iv)第2のデバイスが、
(a)第2の時間差又は関連物理量を受信して、これから第1の信号の伝搬遅延の尺度を取得するステップと、
(b)伝搬遅延の尺度に従って第2の信号の生成を調整する、
ステップするステップと、
を含み、これにより第2の信号をタイムベースに同期させるようにする、方法が提供される。
ステップ(ii)(e)は、第1の時間情報と第2の時間情報との間の差を最小にするように第2の信号の生成を調整するステップを含む。
好ましくは、本方法は更に、第2の信号がタイムベースに同期された後、第1のデバイスが、
第2の信号及び第1の信号を受信して解析するステップと、
受信及び解析された第1の信号と第2の信号の間の位相差又は時間差を測定するステップと、
測定された位相差又は時間差又は関連物理量を送信するステップと、
を含み、第2のデバイスが、第2の信号の生成を調整して、第1の信号の伝搬における環境関連の変動のタイムベースへの第2の信号の同期に関する影響を軽減できるようにする。
より好ましくは、第2のデバイスは、測定された位相差又は時間差又は関連物理量に従って、第2の信号の生成を調整する。
特定の実施形態において、第1及び第2の信号は、固定回線を介して第1及び第2のデバイス間で送信される。固定回線が同軸ケーブル又は光ファイバを含むことができる。
特定の実施形態において、本方法は更に、第2のデバイスに動作可能に関連付けられた送信機から、タイムベースと同期されている第3の信号をブロードキャストするステップを更に含む。
本発明の第2の態様によれば、第2の信号を生成及び送信する第2のデバイスが、第1の信号を生成及び送信する第1のデバイスから第2のデバイスへ第1の信号の伝搬遅延の公称値を使用して、第1のデバイスのタイムベースに第2の信号を公称的に同期させる装置において、第2の信号とタイムベースとの間の時間残差を特定する方法であって、
方法は、第1のデバイスが、
(a)第1の信号及び第2の信号を受信して解析するステップと、
(b)受信された第1の信号と受信された第2の信号との間の時間差を測定し、これから時間残差を計算することができるようにするステップと、
(c)測定された時間差又は関連物理量を送信し、これにより時間残差を補正又は補償することができるようにするステップと、
を含む、方法が提供される。
好ましい実施形態において、第2のデバイスは、測定された時間差又は関連物理量を利用して第2の信号の生成を調整し、これにより第2の信号のタイムベースへの同期の精度を改善する。
他の実施形態において、第3のデバイスが、測定された時間差又は関連物理量を利用して、第2のデバイスから受信された信号に補正を適用する。
特定の実施形態において、本方法は更に、第2のデバイスが第2の信号の生成を調整した後、第1のデバイスが、
第2の信号及び第1の信号を受信して解析するステップと、
受信及び解析された第1の信号と第2の信号の間の位相差又は時間差を測定するステップと、
測定された位相差又は時間差又は関連物理量を送信するステップと、
を含み、第2のデバイスが、第2の信号の生成を調整して、第1の信号の伝搬における環境関連の変動のタイムベースへの第2の信号の同期に関する影響を軽減できるようにする。
本発明の第3の態様によれば、第2のデバイスによって生成されて送信された第2の信号を第1のデバイスのタイムベースに同期させる装置であって、
第1のタイムベースを有し、第1の時間情報を含む第1の信号を生成し送信するよう構成された第1のデバイスであって、第1の時間情報が第1のタイムベースに従って第1の信号の送信時間を示す、第1のデバイスと、
第2のデバイスであって、
第1の信号を受信して解析し、
第2の信号の送信時間を示す第2の時間情報を含む第2の信号を生成して送信し、
第2の信号を受信して解析し、
第1の時間情報と第2の時間情報との間の第1の時間差を計算し、
第1の時間差に従って第2の信号の生成を調整し、これにより第2の信号及び第2の時間情報を調整する、
ように構成された第2のデバイスと、
第1のデバイスが更に、
第1の信号及び調整された第2の信号を受信して解析し、
第1の時間情報と調整された第2の時間情報との間の第2の時間差を計算し、
第2の時間差又はこれに関連する物理量を送信する、
ように構成され、
第2のデバイスが更に、
第2の時間差又は関連物理量を受信して、これから第1の信号の伝搬遅延の尺度を取得し、
伝搬遅延の尺度に従って第2の信号の生成を調整する、
ように構成され、
これにより第2の信号をタイムベースに同期させる、装置が提供される。
好ましくは、第2のデバイスは、第1の時間情報と第2の時間情報との間の差を最小にするように、第1の時間差に従って第2の信号の生成を調整するように構成される。
好ましくは、第1のデバイスは、第2の信号がタイムベースに同期された後、
第2の信号及び第1の信号を受信して解析し、
受信及び解析された第1の信号と第2の信号の間の位相差又は時間差を測定し、
測定された位相差又は時間差又は関連物理量を送信する、
ように構成され、第2のデバイスが、第2の信号の生成を調整して、第1の信号の伝搬における環境関連の変動のタイムベースへの第2の信号の同期に関する影響を軽減できるようになる。
より好ましくは、第2のデバイスは、測定された位相差又は時間差又は関連物理量に従って、第2の信号の生成を調整するよう構成される。
特定の実施形態において、第1及び第2のデバイスは、該第1及び第2のデバイスに接続された固定回線を介して第1及び第2の信号を送信及び受信するように構成される。固定回線が同軸ケーブル又は光ファイバを含むことができる。
特定の実施形態において、本装置は、タイムベースと同期されている第3の信号をブロードキャストするため、第2のデバイスに動作可能に関連付けられた送信機を更に備える。
本発明の第4の態様によれば、第2のデバイスによって生成及び送信された第2の信号と、第1の信号を生成及び送信する第1のデバイスのタイムベースとの間の時間残差を特定する装置であって、
第2のデバイスが、第1のデバイスから第2のデバイスへの第1の信号の伝搬遅延の公称値を使用して、タイムベースに第2の信号を公称的に同期させ、
第1のデバイスが、
第1の信号及び第2の信号を受信して解析し、
受信された第1の信号と受信された第2の信号との間の時間差を測定し、これから時間残差を計算することができるようにし、
測定された時間差又は関連物理量を送信し、これにより時間残差を補正又は補償することができるようにする、
ように構成されている、装置が提供される。
好ましい実施形態において、第2のデバイスは、測定された時間差又は関連物理量を利用して第2の信号の生成を調整するように構成され、これにより第2の信号のタイムベースへの同期の精度を改善する。
他の実施形態において、本装置は、測定された時間差又は関連物理量を利用して、第2のデバイスから受信された信号に補正を適用するよう構成された第3のデバイスを備える。
特定の実施形態において、第2のデバイスが第2の信号の生成を調整した後、第1のデバイスが、
第2の信号及び第1の信号を受信して解析し、
受信及び解析された第1の信号と第2の信号の間の位相差又は時間差を測定し、
測定された位相差又は時間差又は関連物理量を送信する、
ように構成され、
第2のデバイスが、第2の信号の生成を調整して、第1の信号の伝搬における環境関連の変動のタイムベースへの第2の信号の同期に関する影響を軽減できるようにする。
本発明の第5の態様によれば、第2の信号を生成及び送信する第2のデバイスが、第1のデバイスによって生成及び送信される第1の信号を使用して、第1のデバイスに第2の信号を同期させる装置において、第1の信号の伝搬における環境関連の変動の同期に関する影響を軽減する方法であって、
本方法は、
第1のデバイスが、第2の信号及び第1の信号を受信して解析するステップと、
第1のデバイスが、受信及び解析された第1の信号と第2の信号の間の位相差又は時間差を測定するステップと、
第1のデバイスが、測定された位相差又は時間差又は関連物理量を送信するステップと、
第2のデバイスが、測定された位相差又は時間差又は関連物理量に従って、第2の信号の生成を調整し、タイムベースへの第2の信号の同期が維持されるようにするステップと、
を含む、方法が提供される。
本発明の第6の態様によれば、第1の信号を生成及び送信する第1のデバイスの第1の信号の伝搬における環境関連の変動のタイムベースに、第2のデバイスによって生成されて送信された第2の信号を同期させることに関する影響を軽減する装置であって、
第1のデバイスが、
第2の信号及び第1の信号を受信して解析し、
受信及び解析された第1の信号と第2の信号の間の位相差又は時間差を測定し、
測定された位相差又は時間差又は関連物理量を送信する、
ように構成され、
第2のデバイスが、
測定された位相差又は時間差又は関連物理量に従って、第2の信号の生成を調整し、タイムベースへの第2の信号の同期が維持されるように構成される、
ことを特徴とする装置が提供される。
本発明の第7の態様によれば、タイムベースを有する基準デバイスと、基準デバイスのタイムベースに同期された測位信号を生成及び送信する複数の測位ユニットデバイスとを備えた、ロケーションネットワークにおけるロービング位置受信機の位置を決定する方法であって、
測位ユニットデバイスの少なくとも1つは、
(i)基準デバイスが、第1の時間情報を含む基準信号を生成し送信するステップであって、第1の時間情報がタイムベースに従って基準信号の送信時間を示す、ステップと、
(ii)測位ユニットデバイスが、
(a)基準信号を受信して解析するステップと、
(b)測位信号の送信時間を示す第2の時間情報を含む測位信号を生成して送信するステップと、
(c)測位信号を受信して解析するステップと、
(d)第1の時間情報と第2の時間情報との間の第1の時間差を計算するステップと、
(e)第1の時間差に従って測位信号の生成を調整し、これにより測位信号及び第2の時間情報を調整するステップと、
(iii)基準デバイスが、
(a)基準信号及び調整された測位信号を受信して解析するステップと、
(b)第1の時間情報と調整された第2の時間情報との間の第2の時間差を計算するステップと、
(c)第2の時間差又はこれに関連する物理量を送信するステップと、
(iv)測位ユニットデバイスが、
(a)第2の時間差又は関連物理量を受信して、これから基準信号の伝搬遅延の尺度を取得するステップと、
(b)伝搬遅延の尺度に従って測位信号の生成を調整し、これにより測位信号を第1のデバイスのタイムベースに同期させるようにするステップと、
を含み、
ロービング位置受信機が、少なくとも1つの測位ユニットデバイスから受信した測位信号を含む、複数の測位ユニットデバイスから受信した測位信号の選択集合を用いて位置解を計算する、
ことによって測位信号をタイムベースに同期させる、
ことを特徴とする、方法が提供される。
本発明の第8の態様によれば、ロービング位置受信機が位置解を計算することを可能にするロケーションネットワークであって、
時間情報を含む基準信号を生成し送信するよう構成された基準デバイスであって、時間情報が基準デバイスのタイムベースに従って基準信号の送信時間を示す、基準デバイスと、
基準デバイスのタイムベースに同期された測位信号を生成及び送信する複数の測位ユニットデバイスと、
を備え、
測位ユニットデバイスの少なくとも1つが、
基準信号を受信して解析し、
測位信号の送信時間を示す第2の時間情報を含む測位信号を生成及び送信し、
測位信号を受信して解析し、
第1の時間情報と第2の時間情報との間の第1の時間差を計算し、
第1の時間差に従って測位信号の生成を調整し、これにより測位信号及び第2の時間情報を調整する、
ように構成され、
基準デバイスが、
基準信号及び調整された測位信号を受信して解析し、
第1の時間情報と調整された第2の時間情報との間の第2の時間差を計算し、
第2の時間差又はこれに関連する物理量を送信する、
ように構成され、
少なくとも1つの測位ユニットデバイスが、
第2の時間差又は関連物理量を受信して、これから基準信号の伝搬遅延の尺度を取得し、
伝搬遅延の尺度に従って測位信号の生成を調整し、これにより測位信号を第1のデバイスのタイムベースに同期させる、
ように構成され、
このようなロービング位置受信機が、少なくとも1つの測位ユニットデバイスから受信した測位信号を含む、複数の測位ユニットデバイスから受信した測位信号の選択集合を用いて位置解を計算することができる、ロケーションネットワークが提供される。
本発明の第9の態様によれば、請求項1~11、23及び25のうちの何れか一項に記載の方法を実施する、又は請求項12~22及び24のうちの何れか一項に記載の装置を動作させる、又は請求項26に記載のロケーションネットワークを動作させる、ように構成されたコンピュータ可読プログラムを有する非一時的コンピュータ使用可能媒体を含む製品が提供される。
ここで、添付図面を参照しながら、例証として本発明の好ましい実施形態を説明する。
本発明の1つの実施形態による、測位ユニットデバイス又はスレーブデバイスの信号を基準デバイスのタイムベースに同期させる装置を示す概略図である。 本発明の1つの実施形態による、測位ユニットデバイス又はスレーブデバイスの信号を基準デバイスのタイムベースに同期させる方法を描いたフローチャートを示す図である。 本発明の1つの実施形態による、測位ユニットデバイス又はスレーブデバイスの信号を基準デバイスのタイムベースに同期させる装置を示す概略図である。 固定回線リンクを用いてスレーブデバイスが基準デバイスから受信したタイムベースを別のスレーブデバイスに転送する装置の選択された構成要素を示す概略図である。 固定回線を介して基準デバイスからスレーブデバイスに転送されたタイムベースを基準デバイスから遠隔にある1又は2以上の他のデバイスに無線配布することができる装置を示す概略図である。 スレーブデバイスが、基準信号伝搬遅延に関する公称値を用いてスレーブデバイスの信号を基準デバイスのタイムベースに公称的に同期させた後に、スレーブデバイスの信号と基準デバイスのタイムベースとの間の時間残差を識別する方法を描いたフローチャートを示す図である。 ネットワーク内でデバイスから受信した信号を用いて、ロービング位置受信機がその位置を決定することが可能なロケーションネットワークを示す概略図である。
無線実施形態
図1は、例えば2.4GHzのISM帯域における無線伝送の場合において、第2のデバイスすなわちスレーブデバイス6から送信された信号4を第1のデバイスすなわち基準デバイス10のタイムベースに同期させるのに適した装置2を概略図で示す。重要なことに、2つのデバイスのアンテナ34、36間の距離12の先験的知識に対する必要性はない。
図1に示す実施形態において、基準デバイス10は、送信機14、受信機16、CPU18、及び送信機14に周波数標準を提供する発信器20を備える。図示の実施形態では、発振器20はまた、受信機16及びCPU18に給電するが、他の実施形態では、これらの構成要素は自己の発振器を利用する。CPU18は、送信機14、受信機16及び発振器20と通信するための回路及び非一時的な機械可読プログラムコードを含む。好ましい実施形態では、送信機14は、発振器20の周波数に関連する搬送周波数(例えば、発振器20の周波数の何らかの倍数又は分数)を生成するためのRF搬送波生成器と、例えば1又は2以上のスレーブデバイス6によって、同じ搬送周波数上で送信される他のコードシーケンスと区別することができる一意のコードシーケンスを生成する少なくとも1つの疑似乱数(PRN)コード生成器とを備える。そのため、基準デバイス10によって生成された基準信号8は、典型的には、搬送波成分及びPRNコード成分と、並びに基準デバイス10のタイムベースと同等とすることができる基準信号の送信時間を示す時間情報を含む、CPU18からデータを伝達するためのデータ成分とを有する。この実施形態では、基準デバイスのタイムベースは、発振器20の位相及び周波数、送信機14によって生成されるPRN成分、及びCPU18によって生成されるデータ成分に加えて、基準デバイス10から基準信号8が発生する前の何らかのハードウェア遅延によって決定されることになる。
特定の実施形態では、例えば、自己完結型同期ロケーションネットワークで使用する場合、基準発振器20の絶対精度及び安定性は重要ではなく、例えば温度補償水晶発振器(TCXO)を使用することができる。別の実施形態では、基準発振器20は、GPS信号又は同様のものを介して協定世界時(UTC)にステアリングすることができる原子時計などの外部周波数基準22によって置き換えられる。この外部周波数基準22は、例えば10MHzの基準信号及びパルス毎秒(PPS)を送信機14に提供し、更に時間情報を基準CPU18に提供して、タイムベースを基準デバイス10に転送することができる。
スレーブデバイス6は、典型的には、受信機24、ステアリング発振器28を有する送信機26、及びCPU30を備える。好ましくは、スレーブデバイス6はまた、他の構成要素に共通の周波数を提供するための発振器32を備える。CPU30は、送信機26、受信機24、及びステアリング発振器28と通信するための回路及び非一時的な機械可読プログラムコードを含む。好ましい実施形態では、ステアリング発振器は、デジタル制御発振器、フラクショナルN位相ロックループ、又は直接デジタル合成(DDS)技術を使用してデジタル領域で生成される。これらのデジタル生成発振器は、μHzの精度で周波数制御することができ、従って、以下に説明する同期プロセスにおいてスレーブ信号4を基準デバイスのタイムベースに正確に「スレーブ」させることができる。好ましい実施形態では、スレーブ送信機26は、ステアリング発信器28の周波数に関連する搬送波周波数(例えば、発振器20の周波数の何らかの倍数又は分数)を生成するためのRF搬送波発生器と、例えば、ロケーションネットワーク内の基準デバイス又は他のスレーブデバイスによって、同じ搬送周波数上で送信される他のコードシーケンスと区別することができる一意のコードシーケンスを生成する少なくとも1つの疑似乱数(PRN)コード生成器とを備える。そのため、スレーブデバイス6によって生成された信号4は、典型的には、搬送波成分及びPRNコード成分と、並びに信号の送信時間を示す時間情報と共に、CPU30からデータを伝達するためのデータ成分とを有する。一般に、スレーブ信号4の送信時間は、ステアリング発振器28の位相及び周波数、送信機26によって生成されたPRN成分、及びCPU30によって生成されたデータ成分に加えて、スレーブ信号4がスレーブデバイス6から発生する前の何らかのハードウェア遅延によって決定されることになる。
図示の実施形態では、基準デバイス10及びスレーブデバイス6は各々、信号4、8の送信及び受信の両方を行うための無指向性アンテナなどの単一素子アンテナ34、36と、送信モードと受信モードの間でそれぞれのデバイスを切り替えるためのTx/Rxスイッチ38、40とを備えている。代替の実施形態では、Tx/Rxスイッチの代わりに、RFサーキュレータ又は同様の構成要素が使用される。共通アンテナ34を介して信号を送受信する基準デバイス10の能力、及び共通アンテナ36を介して信号を送信及び受信するスレーブデバイス6の能力は、基準信号8とスレーブ信号4が対称パスを通過するのを確実にするので有利である。そのため、基準信号8及びスレーブ信号4の飛行時間遅延又は伝搬遅延は両方とも、信号がマルチパスの影響を受けるかどうかに関係なく、往復伝搬遅延の半分に等しいと見なすことができる。代替の実施形態では、別個の送信アンテナ及び受信アンテナ(図示せず)が基準デバイス10又はスレーブデバイス6に使用されるが、この場合、マルチパスは対称的ではない可能性がある。
基準信号の伝搬遅延が先験的に未知である状況では、好ましい実施形態において、スレーブ信号4の基準デバイス10のタイムベースへの同期、又はより正確には、スレーブ信号4の送信時間と基準デバイスから送信される基準信号8の送信時間、すなわち基準デバイス10のタイムベースとの同期は、以下のステージで達成される。
ステージ1:基準信号の取得とスレーブ信号の送信
スレーブデバイス6は、基準信号の送信の時間、すなわち基準デバイスタイムベースを示す時間情報を含む基準信号8を受信する。スレーブデバイス6は、スレーブ送信機26の時間及び周波数を、受信された基準信号8の時間及び周波数に大まかに設定し、その後、スレーブ信号4を生成及び送信する。スレーブ送信機26は、スレーブ信号4において、送信時間を示す時間情報を含み、これは、この段階では受信された基準信号8に対して粗く整合されている。スレーブ信号4はまた、スレーブデバイス6が初期整列モードにあることを基準デバイス10及び他の何れかの受信デバイスに通知するデータを含む。
ステージ2:スレーブ信号の基準信号への微調整周波数整合
スレーブ受信機24は、フィードバックループ42によって示されるようにスレーブ信号4並びに基準信号8を受信し、これらの信号をそれぞれの搬送波位相、PRNコード及びデータ成分に従って別々のチャネルで解析し、これらの信号間の周波数差を測定する。次に、スレーブCPU30は、測定された周波数差から導出された量だけ、ステアリング発振器28の周波数を調整する。好ましい実施形態では、測定された周波数差は、積分搬送波位相(ICP)差の形式であり、スレーブCPU30は、受信機24内の両方の信号のICP測定結果をゼロにし、次いでステアリング発振器28に連続的に補正を適用する閉ICP制御ループを連動させてICP差をゼロに維持し、スレーブ信号4の周波数を基準信号8の周波数にロックする。
ステージ3:ミラーモード
スレーブ信号4が基準信号8と微調整周波数整合されると、それぞれの信号の搬送波位相、PRNコード及びデータ成分から導出された時間情報をフィルタリング及び測定することができる。スレーブCPU30は、スレーブ信号4と基準信号8のそれぞれの時間情報の間の時間差である第1の時間差を計算し、次いで、計算された第1の時間差に従ってスレーブ信号4の生成を調整する。好ましくは、スレーブCPU30は、スレーブ信号4と基準信号8のそれぞれの時間情報の間の差を最小にするように、スレーブ信号4の生成を調整する。すなわち、スレーブ信号4の生成は、好ましくは、送信されたスレーブ信号4を搬送波位相、PRNコード及び受信基準信号8とのデータ整合状態にするために、計算された第1の時間差に等しい量だけ調整される。この調整に続いて、スレーブ信号4は、いまだに未知の基準信号伝搬遅延によってのみ基準デバイスのタイムベースから時間オフセットされることになる。従って、調整されたスレーブ信号4に含まれる時間情報は、スレーブデバイス6によって受信される基準信号8の時間情報と実質的に同じになる。このステージでは、スレーブ信号4は、本質的に基準信号8の能動反射であり、受信した基準信号と同じ搬送波位相、コード位相及びデータ成分のブロードキャスト時間情報を含むが、固有のPRNコード及びデータ成分を含む。スレーブデバイス6は、その後、いわゆる「ミラーモード」で基準信号をメタファ的に反映していることをブロードキャストし、基準デバイス10からの更なる情報を待機する。
ステージ4:基準信号の伝搬遅延の計算とブロードキャスト
基準受信機16は、調整されたスレーブ信号4をフィードバックループ44で表される基準信号8と共に受信し、次いで、それぞれの搬送波位相、PRNコード、及びデータ成分に従って別々のチャネルでスレーブ信号及び基準信号を解析する。基準CPU18は、スレーブデバイス6がミラーモードであることを確認し、次いで、スレーブ信号4と基準信号8のそれぞれの時間情報間の時間差である第2の時間差を計算する。調整されたスレーブ信号4の時間情報は、スレーブデバイス6によって受信されて基準デバイスに「反射」された元の基準信号8の送信時間に相当するので、基準CPU18は、この第2の時間差を基準デバイス10とスレーブデバイス6の間の信号の往復伝搬遅延として解析することができる。好ましい実施形態では、基準CPU18は、計算された第2の時間差に適切なスケーリング係数を適用して、基準信号伝搬遅延の尺度を取得し、当該情報を好ましくは基準信号8のデータ成分の一部としてスレーブデバイス6に送信する。対称信号経路の場合、計算された2番目の時間差に適用されるスケーリングは、基準信号の伝搬遅延が往復伝搬遅延の半分であると予想されるので、通常は、約2倍の除算又は約2分の1の乗算を含む。代替の実施形態では、基準デバイス10は、計算された第2の時間差をスレーブデバイス6に送信し、スレーブデバイス6は、次いで、適切なスケーリング係数を適用して基準信号伝搬遅延の尺度を取得する。一般的に言えば、基準デバイス10は、第2の時間差、すなわち往復伝搬遅延又はこれに関連する物理量を測定してスレーブデバイス6に送信し、スレーブデバイス6が基準信号の伝搬の測定値を取得できるようにする。
ステージ5:基準信号の伝搬遅延の補正
スレーブデバイス6が、基準デバイス10から送信された第2の時間差又は関連の物理量を受信し、基準信号伝搬遅延の尺度を取得すると、スレーブデバイス6は整合モードに再度入り、基準信号伝搬遅延の尺度をステアリング発信器28への更なる調整として適用し、これによってスレーブ信号4を基準デバイスタイムベースに同期させる。換言すると、スレーブ信号4の生成は、測定された基準信号の伝搬遅延によって進み、基準デバイスのタイムベースと整合して、基準デバイスのタイムベースをスレーブデバイス6に効率的に転送する。
次に、スレーブデバイス6は、スレーブ信号4のデータ成分を更新して、基準デバイスタイムベースへの同期が達成されたことを示す。図中の他のスレーブデバイスは、スレーブ信号4を使用して、これらの信号を基準デバイスのタイムベースに同期させる段階に進むことができる。好ましい実施形態では、基準デバイスのタイムベースのこの中継は、上記の同期手順を繰り返すことによって「デイジーチェーン」することができ、その結果、基準デバイスとして現在機能しているスレーブデバイス6は、その位置を後続のスレーブデバイスにブロードキャストする必要がない。特定の実施形態では、クロスチェックの目的で、同期されたスレーブデバイス6は、それ自体の信号4のデータ成分にて決定された基準信号伝搬遅延を含む。
特定の実施形態では、スレーブ信号の生成は、指定された時間期間にわたってステアリング発振器28に周波数オフセットを適用することによって調整され、スレーブ信号4を時間的にスルーする。他の実施形態では、スレーブ信号の生成は、指定された期間にわたってスレーブ送信機26のPRNコード生成器にクロックオフセットを適用することによって調整され、スレーブ信号4を時間的にスルーする。閉ICP制御ループを使用してスレーブ信号4の周波数を基準信号8の周波数にロックする場合、ループは、好ましくは一時的に開かれて、周波数オフセットをステアリング発振器28に適用する。ステアリング発信器28の周波数がオフセットされた後、スレーブCPU30は、好ましくは、閉ICP制御ループに再連動してスレーブ信号4の調整を維持する。
スレーブデバイスの信号を基準デバイスのタイムベースに同期させる方法が、図2のフローチャートに要約される。ステップ46において、基準デバイスは、基準デバイスのタイムベースに従って基準信号の送信時間を示す第1の時間情報を含む基準信号を生成し送信する。ステップ48において、スレーブデバイスは、基準信号を受信して解析し、次いで、ステップ50において、スレーブデバイスは、スレーブ信号の送信時間を示す第2の時間情報を含むスレーブ信号を生成し送信する。ステップ52において、スレーブデバイスは、スレーブ信号を受信し解析する。スレーブデバイスは、ステップ54において、第1の時間情報と第2の時間情報との間の第1の時間差を計算し、次にステップ56において、スレーブデバイスは、第1の時間差に従ってスレーブ信号の生成を調整し、これによりスレーブ信号及び第2の時間情報を調整する。ステップ58において、基準デバイスは、基準信号と調整されたスレーブ信号を別々のチャネルにおいて受信して解析し、次にステップ60において、基準デバイスは、第1の時間情報と調整された第2の時間情報との間の第2の時間差を計算する。ステップ62において、基準デバイスは、計算された第2の時間差又はこれに関連する物理量を送信する。ステップ64において、スレーブデバイスは、計算された第2の時間差又は関連物理量を受信し、これから基準信号の伝搬遅延の尺度を取得する。最後に、ステップ66において、スレーブデバイスは、伝搬遅延尺度に従ってスレーブ信号の生成を調整し、これによりスレーブ信号を基準デバイスのタイムベースに同期させる。好ましい実施形態では、基準デバイスは、ステップ62で計算された第2の時間差を送信し、ステップ64において、スレーブデバイスは、第2の時間差を約2のスケーリング係数で除算することにより基準信号伝搬遅延の尺度を取得する。
ステップ56においてスレーブデバイス6によってスレーブ信号の生成に適用される調整は、好ましくは、送信されたスレーブ信号4を搬送波位相、PRNコード及び受信した基準信号8とのデータ整合状態にすることによって第1の時間情報と第2の時間情報との間の差を最小限にするように選択される。このようにすることで、スレーブデバイス6は、基準信号伝搬遅延の影響を本質的に無視している。しかしながら、調整が基準デバイス10に通信されるという条件下では、スレーブデバイス6が信号の生成に対して異なる調整を適用することも可能である。例えば、スレーブデバイス6は、基準信号伝搬遅延の推定を適用すること、例えば、初期の粗い同期を達成することを選択することができ、この場合、基準デバイス10によって計算された第2の時間差は、この伝搬遅延推定の不正確さから生じる、時間残差の尺度すなわち同期誤差である。基準信号8とスレーブ信号4の信号経路が対称であると仮定すると、基準信号伝搬遅延の誤差は、この値の半分になると見なすことができる。
目的が基準デバイス10からスレーブデバイス4への信号8の伝搬遅延を単に決定することである代替の実施形態では、図2のフローチャートに示される方法は、ステップ60の後に終了することができる。
図2に要約されている同期手順で極めて有利なことは、図1を参照すると、スレーブデバイス6及び基準デバイス10の各々が同じ回路を通じてスレーブ信号4及び基準信号8を受信し解析できるようにするフィードバックループ42、44である。好ましくは、各デバイス内で、スレーブ信号4及び基準信号8が実質的に同時に受信され解析される。スレーブ信号と基準信号は通常、TDMAスキームにおいてそれぞれのデバイスから送信されることに留意すると、異なる信号の「実質的に同時の」受信及び解析は、TDMAスキームの詳細に依存することが理解されるであろう。基準デバイス又はスレーブデバイスの電子機器に関連する発振器ドリフト、温度又は電圧誘起の遅延変動、及び受信機ラインバイアスなどのコモンモードエラーが差分手順において排除され、往復伝搬遅延を決定するための既知の測距方法に対する大幅な進歩を表し、多くの場合数ナノ秒、場合によっては数マイクロ秒にもなり得るハードウェアエラーの原因を排除する。有利なことに、同期プロセスは、スレーブデバイス6と基準デバイス10との間の信号の単一の交換のみを必要とし、これらそれぞれの信号のデータ成分に最小限の負荷を課す。ループ42、44に必要なフィードバックは、Tx/Rxスイッチ40、38での不完全なポート分離により好都合に提供することができ、通常のRF Tx/Rxスイッチ又はRFサーキュレータなどの他の信号ルーティングコンポーネントの30~40dBのポート分離は、一般に、送信機26、16が信号4、8を送信しているときに十分な信号強度をそれぞれの受信機24、14に提供する。
それぞれのTx/Rxスイッチ38、40とアンテナ34、36との間のケーブル長72、74もまた、基準デバイス10とスレーブデバイス6との間の信号の交換におけるコモンモードである。従って、Tx/Rxスイッチ38、40の位置は重要ではないことになる。これらは、例えば、図1に示されるようにアンテナ34、36に近接するか、又は図3に示されるように基準デバイス10又はスレーブデバイス6の送信機、受信機及び他のコンポーネントに近接することができる。
前述のように、スレーブ信号4の周波数が基準信号8の周波数にロックされていた場合、スレーブデバイス信号4の基準デバイスタイムベースへの同期は、スレーブデバイスの電子機器におけるハードウェアのドリフトの影響を受けずに、長い時間期間にわたって極めて安定化することができる。しかしながら、一般に温度、圧力及び相対湿度の変動に関連する対流圏遅延の変化により、スレーブデバイス6が正確な同期からドリフトする可能性がある。特に、対流圏遅延の変動は、スレーブデバイス6にて受信される基準信号8の位相及びその後の時間に漸次的に影響することになる。スレーブデバイスのICP制御ループは、この位相変化に追従することになり、基準発振器20に対するステアリング発振器28のドリフトという望ましくない結果が生じる。時間の経過に伴って、スレーブ信号4のタイミングが基準デバイスのタイムベースから外れるにつれて同期の低下が生じることになる。環境の変化もまた、例えば、地面の含水率の変化を介してマルチパスに影響を与える可能性があり、この場合もスレーブデバイスで受信された基準信号8の位相に影響を与える。
基準信号の伝搬における環境関連の変動の基準デバイスタイムベースに対するスレーブ信号4の同期への影響を緩和するために、特定の実施形態では、基準デバイス10は、スレーブデバイスが基準デバイスタイムベースへの同期を宣言した後、スレーブデバイス6を監視し続ける。この目的のために、基準受信機16は、着信スレーブ信号4と発信基準信号8の両方を受信し解析し続ける。好ましい実施形態では、基準デバイス10は、基準信号8とスレーブ信号4との間の位相又は時間差を連続的又は定期的に測定し、基準信号8のデータ成分又は幾つかの他の通信リンク(図示せず)を介してスレーブデバイス6に位相又は時間補正を定期的に送信する。基準デバイス10によって測定された位相又は時間差は、対称的な信号経路を想定すると、必要な補正の2倍にほぼ等しい「往復」伝搬遅延残差となる。2分割は、基準デバイス10又はスレーブデバイス6により行うことができる。対流圏遅延は、一般に漸次的にのみ変化するので、通常は数分又は数十分のタイムスケールで、基準デバイス10は、時折、例えば毎分又は10分ごとに位相又は時間補正を提供する必要があるだけである。勿論、補正は、データリンクの制約を受けてより頻繁に、例えば毎秒提供することができる。基準デバイス10が、例えば、共同設置の測候ステーションからローカルの気象データにアクセスできる場合、例えば、温度、圧力又は相対湿度が所定の量だけ変化したときに、位相又は時間の補正を測定し提供することを選択することができる。代替の実施形態では、基準デバイス10が、周波数などの基準信号8及びスレーブ信号4の他の特性間の差を測定して、適切な補正を送信することも可能である。
スレーブデバイス6が基準デバイス10から位相又は時間補正を受信すると、スレーブデバイス4は、これらの補正を適用して、基準信号のタイムベースに対するスレーブ信号4の同期を維持又は改善することができる。対流圏又は他の環境変化は一般に漸次的であるので、何れの補正も小さいと予想され、よって必要な調整は、好ましくは、積分搬送波位相(ICP)制御ループに直接適用される。
所与の基準デバイス10が複数のスレーブデバイス6と通信している又は複数のスレーブデバイス6を追跡しているネットワークでは、基準デバイス10は一般に、位相又は時間補正に関連する関連スレーブデバイス6のデバイス識別情報を含む。
図7に概略的に示される位置ネットワーク68を同期するために、上述の同期プロセスは、指定された基準デバイス10と、複数の「スレーブ」測位ユニットデバイス6-1、6-2の1又は2以上との間で実行でき、デバイスの何れもがデバイスの位置を認識又はブロードキャストしていないことは理解されるであろう。次いで、ロービング位置受信機70は、既知のスペクトラム拡散技術を使用して、同期された「スレーブ」測位ユニットデバイス6-1、6-2から受信した信号4-1、4-2及び場合によっては基準デバイス10からの信号8に基づいて位置解を計算することができる。これらの計算では、ロービング位置受信機70が信号4-1、4-2、8を受信するデバイス6-1、6-2、10の場所を知る必要がある。例えば、基準デバイス10又は「スレーブ」測位ユニットデバイス6-1、6-2の場所が機密扱いされる状況では、これは、許可されたロービング位置受信機70を関連デバイスの位置で事前にプログラミングすることによって達成することができる。
固定回線の実施形態
図1は、スレーブデバイス6が、基準デバイスからの信号8の伝搬遅延についての先験的知識なしに、スレーブ信号4を基準デバイス10のタイムベースに同期させることができる無線装置を示す。この同期プロセスは、ハードウェア遅延変動などのコモンモードエラーを排除する差分計算により、未知又は不正確に知られた長さの固定回線を介した信号伝送にも好適である。固定回線は、例えば、同軸ケーブル又は光ファイバリンクを備えることができる。無線よりも優れた固定回線の1つの利点は、マルチパスの排除である。第2の利点は、何らかの理由で無線信号を確実に受信できない場所にタイムベースを転送できることである。光ファイバリンクの特別な利点は、例えば、広く分離されたロケーションネットワークを共通のタイムベースに同期するために、国境を越えた距離又は大陸を横断する距離にわたるタイムベース同期の可能性である。
図3は、固定回線78を介して送信する場合において、第2のスレーブデバイス6の信号4を第1の基準デバイス10のタイムベースに同期させるのに好適な装置76を示す概略図である。特定の実施形態では、固定回線78は、好適なRF帯域で動作するように選択された基準デバイス10及びスレーブデバイス6の送信機14、26及び受信機16、24を備えた同軸ケーブルを含む。一般的に言えば、周波数が低いほど、同軸ケーブルの伝搬損失が低くなり、長い距離にわたる信号の同期に好適となる。
他の実施形態では、固定回線78は、光ファイバ、好ましくはシングルモード光ファイバを含むが、マルチモード光ファイバが比較的短い距離には好適とすることができる。通信グレードのシングルモード光ファイバを使用した約1550nmの動作では、典型的には、増幅なしで最大80又は100kmの伝送距離が可能となる。より長い距離の場合、固定回線78は、1又は2以上の増幅器を含むことができ、これは、好ましい実施形態では完全に双方向で、各方向で対称信号経路を確保する。各送信機14、26は、例えば、RF送信機とRF-光(E→O)変換器との組み合わせを含むことができる。或いは、トランスミッタは、直接又は電気光学変調器などの外部変調器を介して変調された半導体レーザを備えることができる。好ましくは、2つのトランスミッタ14、26は、光ファイバに沿った信号の伝搬速度が通常は波長に伴って変化することに注目して、対称的な伝搬を確保するためにほぼ同一の波長の光を放射する。波長が大幅に異なる場合、結果として生じる伝搬の非対称性は、光ファイバの分散特性の知識を使用してある程度補償することができる。特定の実施形態では、受信機16、24は各々、光-RF(O→E)変換器とRF受信機の組み合わせを含み、他の実施形態では、受信機は、好適な信号処理電子機器と組み合わされた高速フォトダイオードを含む。
固定回線78の形式が何であれ、その長さは未知であることが多いが、少なくともナノ秒レベルでの信号又はデバイスの同期に必要な精度を有する。例えば、屈折率がおよそ1.5を有した2メートルの長さの光ファイバは、10nsに相当する。これは、図1を参照して上述したように、未知の距離12にわたる無線伝送の場合に類似している。この問題を解決するために、上記の同期プロセスを固定回線リンクに適用することができ、周波数整合、アクティブ反射、往復伝搬遅延測定、及び時間整合の同じ一般的なステップを有する。
図3に示す基準デバイス10とスレーブデバイス6は各々、デバイスを固定回線78に接続するRF又は光スイッチ80、82を含む。これらのスイッチは、図1に示すTx/Rxスイッチ38、40と類似の方式で機能し、基準デバイス又はスレーブデバイスが送信モード又は受信モードのどちらで動作しているかを選択し、不完全なポート分離によりフィードバックループ44、42を提供する。好適なRFスイッチは、半導体スイッチを含む。光学機械式スイッチ、電気光学スイッチ、音響光学スイッチ、及び全反射に基づくスイッチを含む、ある範囲のスイッチング速度を有する複数のタイプの光スイッチが当技術分野で知られている。他の実施形態では、アクティブRFスイッチ80又は光スイッチ82は、RFハイブリッド直交カプラ又は光サーキュレータなどの受動素子によって置き換えられる。何れの方法でも、基準デバイス及びスレーブデバイスの各々は、上述のように、基準信号8及びスレーブ信号4の両方を受信して解析することができる。
図1を参照して上述した無線信号を用いた実施形態では、スレーブが同期を宣言した後に基準デバイス10がスレーブデバイス6を監視し続けて、例えば対流圏遅延の変化によって引き起こされる可能性があるスレーブステアリング発振器28のドリフトを補正することができる方法を説明した。同様に、固定回線の環境変化、特に温度変化の影響により、固定回線78を介してスレーブデバイス6にて受信される基準信号8の位相及びその後の時間が変化することになる。温度変化は、例えば、固定回線の長さ及び当該回線に沿った信号の伝搬速度の両方に影響を与える可能性がある。結果として生じるドリフトは、本質的に同じ監視手順で補正することができる。好ましい実施形態では、基準デバイス10は、基準信号8とスレーブ信号4の間の位相又は時間差を連続的又は定期的に測定し、位相又は時間補正をスレーブデバイス6に定期的に送信する。上述のように、スレーブデバイス6は、受信信号又は時間補正を適用して、信号4のタイムベースへの基準デバイスの同期を維持又は改善することができる。
上述の無線実施形態と同様に、スレーブデバイスが、基準デバイスのタイムベースに同期されると、当該タイムベースを1又は2以上の別の又は2次スレーブデバイスにカスケード接続又は中継することができる。図4は、固定回線78に沿って基準デバイス10から受信したタイムベースを別の固定回線78Aを介して2次スレーブデバイス6Aにカスケード接続できるようにする1x2スプリッタ84の形態の追加構成要素を備えたスレーブデバイス6を概略的に示している。この実施形態では、1次スレーブ信号4は、新しい基準信号8Aとなり、1次スレーブデバイス6は、2次スレーブデバイス6Aから信号4Aを受信する。1x2スプリッタ84は、好ましくは、アクティブスイッチではなく受動素子であり、1次スレーブデバイス6は、信号4及び8Aを基準デバイス10及び2次スレーブデバイス6Aに順次的ではなく同時に送信することができる。
一般的に言えば、2次スレーブデバイス6Aは、1次スレーブデバイス6が基準デバイス10との同期を宣言した場合にのみ信号8Aを利用すべきである。代替的に又はこれに加えて、1次スレーブデバイス6は、1次スレーブデバイスが同期を宣言する前に、固定回線78Aに沿った信号伝送を防ぐために、CPU30の制御下にある分離スイッチ86を含むことができる。好ましくは、このような任意選択的な構成要素は、コモンモードになるように信号経路で対称である必要がある。
代替の実施形態では、基準デバイスへの同期を介して取得されたタイムベースは、例えば1x2スプリッタ84を1xNスプリッタに置き換えることによるか、又はカスケード接続された1x2スプリッタを使用することにより、複数の2次スレーブデバイスに配布される。RF又は光ドメインの何れかで動作するための様々な値Nに対する1×Nスプリッタは、当技術分野で知られている。必然的に、1xNスプリッティングに関連する電力損失により、好ましくは経路の対称性のために双方向増幅器を使用して信号が増幅されない限り、所与の1次スレーブデバイスからタイムベースを受信できる2次スレーブデバイスの数が制限されることになる。
図5は、図3に示される固定回線装置の変形形態を概略図で示しており、ここで、シングルモード光ファイバなどの固定回線78を介して基準デバイス10からスレーブデバイス6に転送されるタイムベースは、基準デバイスから遠隔にある他の何れかの数のデバイス88に無線で配布することができる。この実施形態では、装置は更に、第2のスレーブタイムベースと同期される第3の信号94をブロードキャストするためにスレーブデバイス6と動作可能に関連付けられた送信機92を含む。一般に、基準デバイスのタイムベースは、既にスレーブデバイスに転送されており、この場合、第3の信号94もまた、基準タイムベースと同期されることになる。特定の実施形態では、送信機92は、例えば、同軸ケーブル又はデータケーブルとすることができるリンク90を用いてスレーブデバイス6に動作可能に関連付けられ、このリンクを介して、スレーブデバイスは、例えば10MHz基準信号などの周波数基準に加えて、パルス/秒(PPS)及び時間情報を提供する。従って、スレーブデバイス6は、図1に関して上記で説明した任意選択的な外部周波数基準22と類似の方法で機能している。
公称同期の精度の向上
本発明の別の態様によれば、再び図1を参照すると、スレーブデバイス6と基準デバイス10との間の信号の交換を用いて、米国特許第7,616,682号に記載されている同期プロセスの精度を改善する。特に、これにより、スレーブデバイス6によって使用される基準信号8の伝搬遅延の先験的な値が不正確に仮定されることから生じる、時間残差又は同期エラーに対する補正を基準デバイス10が検出及び送信可能になる。従来技術では、スレーブデバイスがデバイス間の距離12を光速で除算することによって基準信号の伝搬遅延を計算することを想起されたい。そのため、例えば、マルチパス又は測量エラー又は想定信号速度の不正確さに起因して、例えば対流圏遅延に起因して、想定距離の不正確さから誤差が生じる可能性がある。
本発明のこの態様では、スレーブデバイス6が、基準信号伝搬遅延の想定値又は公称値を使用して、米国特許第7,616,682号に記載の手順を介して信号4を基準デバイス10のタイムベースに公称的に同期させたと想定される。この公称値は、例えば、測量されたデバイスアンテナの位置又は近似マップ座標から取得されたデバイス間距離12の値から導出され、より高い又はより低い精度である場合がある。しかしながら、不正確さにより、スレーブ信号4と基準デバイスのタイムベースとの間に時間残差又は同期エラーが発生し、これは、スレーブデバイスが「公称」同期手順に従った後も依然として残る。今の時間残差又は同期誤差が特定又は確定されると補正又は補償することができ、これにより同期精度が向上する。
この目的のために、基準デバイス10のCPU18は、スレーブ信号4を監視するための非一時的な機械可読プログラムコードで構成される。上述の実施形態のステージ4と同様に、基準デバイス10は、Tx/Rxスイッチ38での不完全な分離又は他の形態の選択的信号ルーティング構成要素によって可能になるフィードバックループ44により表されるように、公称的に同期されたスレーブ信号4並びに基準信号8を受信し、基準CPU18における解析のために受信機16にて信号8、4をサンプリングする。基準CPUは、搬送波位相、PRN、及び基準信号8及びスレーブ信号4のデータ成分のうちの1又は2以上間の時間差を測定する。この測定された時間差から、スレーブ信号4と基準デバイスのタイムベースとの間の時間残差を計算することができる。スレーブデバイス6がその位置をブロードキャストした場合、又は信号4に基準信号伝搬遅延の公称値を含んでいた場合、又はこの公称値を伝達した場合、基準デバイス10は、測定された時間差から公称伝搬遅延を減算し、スレーブ信号4と基準信号8が対称経路を通過するときに約2にほぼ等しい適切なスケーリング係数でこの結果を除算することにより時間残差を決定することができる。次いで、基準デバイス10は、通常は信号8のデータ成分に含めることによって時間残差をブロードキャストすることができる。他の実施形態では、基準デバイス10は、測定された時間差をブロードキャストし、スレーブデバイス6又は別の受信者デバイスが時間残差を計算できるようにする。更に別の実施形態では、計算は2つのデバイス間で分割される。例えば、基準デバイス10は、時間差から伝搬遅延結果を差し引いたものをブロードキャストし、スレーブデバイス6が適切なスケーリング係数を適用することを可能にすることができる。スレーブデバイス6が時間残差を受信又は計算すると、上述の実施形態のステージ5と同様にこれに応じて信号4の生成を調整することができ、これにより基準デバイスタイムベースへの同期の精度が向上する。特定の実施形態では、信号の交換は、例えば、時間残差が所定の閾値を下回るまで1又は2以上の回数繰り返される。
スレーブデバイスが基準信号伝搬遅延の公称値を使用して基準デバイスのタイムベースにスレーブデバイスの信号を公称的に同期させたときに、スレーブデバイス信号と基準デバイスのタイムベースとの間の時間残差を特定する方法が、図6のフローチャートに要約されている。追加の任意選択的な手順は、破線のボックスで示されている。ステップ100において、基準デバイスは、基準信号と公称同期されたスレーブ信号を別々のチャネルで受信して解析し、ステップ102において、基準デバイスは、受信した基準信号と受信した公称同期スレーブ信号との間の時間差を測定する。時間残差は、測定された時間差から計算できる点に留意して、ステップ104において、基準デバイスは、測定された時間差又はこれに関連する物理量を送信する。これにより、受信デバイスは、時間残差を補正又は補償することが可能となる。好ましい実施形態では、スレーブデバイスは、ステップ106において、測定時間差又は関連物理量を受信し、次いで、ステップ108において、測定時間差又は関連物理量を利用して、スレーブ信号の生成を調整し、これにより基準デバイスのタイムベースへのスレーブ信号の同期を改善する。他の実施形態では、基準デバイス10によって送信された測定時間差又は関連物理量は、別のスレーブデバイスによって、独自の同期手順を実行するときに時間残差を補償するのに利用される。更に他の実施形態では、図7を参照すると、測定時間差又は関連物理量は、ロービング位置受信機70によって、位置解における不完全に同期された「スレーブ」測位ユニットデバイス6-1から信号4-1を使用するときの時間残差を補償するのに使用することができる。
図6に要約された時間残差を識別する方法は、図1に示される無線ベースの構成の観点で説明してきたが、例えば図3に示すように、基準デバイス10及びスレーブデバイス6が固定回線を介して通信する構成にも適用可能である。この場合、信号の交換により、例えば、スレーブデバイスの固定線78の長さ又は固定線に沿った信号の伝搬速度に関する不完全な知識から生じる時間残差を特定することができる。
特定の実施形態では、スレーブデバイス6は、例えば信号4のデータ成分では、基準デバイス10からの更なる情報を待機している間は「公称的に同期された」状態にあることをブロードキャストする。スレーブデバイス6は、基準デバイス10から受信した情報を使用してスレーブ信号4の生成を調整した後、同期を宣言することができる。次いで、スレーブ信号4は、ネットワークに参加しようとしている他のデバイスによって、又は位置解を計算するためにロービング位置受信機によって使用することができる。
所与の基準デバイス10が複数の「スレーブ」測位ユニットデバイス6と通信又はこれを追跡しているロケーションネットワークでは、基準デバイス10は一般に、測定時間差又は関連物理量を用いた関連の「スレーブ」測位ユニットデバイス6のデバイス識別を含む。
上述の実施形態と同様に、基準デバイス10は、スレーブが同期を宣言した後もスレーブデバイス6を引き続き監視し、例えば環境変動によって引き起こされる可能性がある、例えば、無線伝送の対流圏遅延の変化、又は固定回線伝送のリンク長又は信号伝搬速度の温度誘起の変化など、基準デバイスタイムベースに対するスレーブ信号4のドリフトを補正することができる。例えば、基準デバイス10は、基準信号8とスレーブ信号4の間の位相又は時間差を連続的又は定期的に測定し、位相又は時間補正をスレーブデバイス6に定期的に送信することができる。次いで、スレーブデバイスは、これらの位相又は時間補正を適用して、上述の技法の何れかを使用してスレーブ信号4の生成を調整することができる。
本発明について特定の実施例を参照しながら説明してきたが、本発明は、他の多くの形態で具現化することができることは当業者には理解されるであろう。
2 装置
4 信号
6 スレーブデバイス
8 信号
10 基準デバイス
12 距離
14 送信機
16 受信機
18 CPU
20 発信器
22 外部周波数基準
24 受信機
26 送信機
28 ステアリング発振器
30 CPU
32 発振器
34 アンテナ
36 アンテナ
38 Tx/Rxスイッチ
40 Tx/Rxスイッチ
42 ループ
44 ループ
72 ケーブル長
74 ケーブル長

Claims (27)

  1. 第2のデバイスによって生成されて送信された第2の信号を第1のデバイスのタイムベースに同期させる方法であって、
    前記方法が、
    (i)前記第1のデバイスが第1の時間情報を含む第1の信号を生成し送信するステップであって、前記第1の時間情報が前記第1のデバイスのタイムベースに従って前記第1の信号の送信時間を示す、ステップと、
    (ii)前記第2のデバイスが、
    (a)前記第1の信号を受信して解析するステップと、
    (b)前記第2の信号の送信時間を示す第2の時間情報を含む前記第2の信号を生成して送信するステップと、
    (c)前記第2の信号を受信して解析するステップと、
    (d)前記第1の時間情報と前記第2の時間情報との間の第1の時間差を計算するステップと、
    (e)前記第1の時間差に従って前記第2の信号の生成を調整し、これにより前記第2の信号及び前記第2の時間情報を調整するステップと、
    (iii)前記第1のデバイスが、
    (a)前記第1の信号及び調整された前記第2の信号を受信して解析するステップと、
    (b)前記第1の時間情報と調整された前記第2の時間情報との間の第2の時間差を計算するステップと、
    (c)前記第2の時間差又はこれに関連する物理量を送信するステップと、
    (iv)前記第2のデバイスが、
    (a)前記第2の時間差又は前記関連物理量を受信して、これから前記第1の信号の伝搬遅延の尺度を取得するステップと、
    (b)前記伝搬遅延の尺度に従って前記第2の信号の生成を調整する、
    ステップするステップと、
    を含み、これにより前記第2の信号を前記タイムベースに同期させるようにする、方法。
  2. 前記ステップ(ii)(e)は、前記第1の時間情報と前記第2の時間情報との間の差を最小にするように前記第2の信号の生成を調整するステップを含む、請求項1に記載の方法。
  3. 前記第2の信号が前記タイムベースに同期された後、前記第1のデバイスが、
    前記第2の信号及び前記第1の信号を受信して解析するステップと、
    受信及び解析された前記第1の信号と前記第2の信号の間の位相差又は時間差を測定するステップと、
    測定された前記位相差又は時間差又は関連物理量を送信するステップと、
    を含み、前記第2のデバイスが、前記第2の信号の生成を調整して、前記第1の信号の伝搬における環境関連の変動の前記タイムベースへの前記第2の信号の同期に関する影響を軽減できるようにする、
    請求項1又は2に記載の方法。
  4. 前記第2のデバイスは、測定された位相差又は時間差又は関連物理量に従って、前記第2の信号の生成を調整する、請求項3に記載の方法。
  5. 前記第1及び前記第2の信号は、固定回線を介して前記第1及び前記第2のデバイス間で送信される、請求項1~4の何れか一項に記載の方法。
  6. 前記固定回線が同軸ケーブル又は光ファイバを含む、請求項5に記載の方法。
  7. 前記第2のデバイスに動作可能に関連付けられた送信機から、前記タイムベースと同期されている第3の信号をブロードキャストするステップを更に含む、請求項5又は6に記載の方法。
  8. 第2の信号を生成及び送信する第2のデバイスが、第1の信号を生成及び送信する第1のデバイスから前記第2のデバイスへ前記第1の信号の伝搬遅延の公称値を使用して、前記第1のデバイスのタイムベースに前記第2の信号を公称的に同期させる装置において、前記第2の信号と前記タイムベースとの間の時間残差を特定する方法であって、
    前記方法は、前記第1のデバイスが、
    前記第1の信号及び前記第2の信号を受信して解析するステップと、
    受信された前記第1の信号と受信された前記第2の信号との間の時間差を測定し、これから前記時間残差を計算することができるようにするステップと、
    測定された前記時間差又は関連物理量を送信し、これにより前記時間残差を補正又は補償することができるようにするステップと、
    を含む、方法。
  9. 前記第2のデバイスは、前記測定された時間差又は前記関連物理量を利用して前記第2の信号の生成を調整し、これにより前記第2の信号の前記タイムベースへの同期の精度を改善する、請求項8に記載の方法。
  10. 第3のデバイスが、前記測定された時間差又は前記関連物理量を利用して、前記第2のデバイスから受信された信号に補正を適用する、請求項8に記載の方法。
  11. 前記第2のデバイスが前記第2の信号の生成を調整した後、前記第1のデバイスが、
    前記第2の信号及び前記第1の信号を受信して解析するステップと、
    受信及び解析された前記第1の信号と前記第2の信号の間の位相差又は時間差を測定するステップと、
    測定された前記位相差又は時間差又は関連物理量を送信するステップと、
    を含み、前記第2のデバイスが、前記第2の信号の生成を調整して、前記第1の信号の伝搬における環境関連の変動の前記タイムベースへの前記第2の信号の同期に関する影響を軽減できるようにする、請求項9に記載の方法。
  12. 第2のデバイスによって生成されて送信された第2の信号を第1のデバイスのタイムベースに同期させる装置であって、
    第1のタイムベースを有し、第1の時間情報を含む第1の信号を生成し送信するよう構成された第1のデバイスであって、前記第1の時間情報が前記第1のタイムベースに従って前記第1の信号の送信時間を示す、第1のデバイスと、
    第2のデバイスであって、
    前記第1の信号を受信して解析し、
    前記第2の信号の送信時間を示す第2の時間情報を含む前記第2の信号を生成して送信し、
    前記第2の信号を受信して解析し、
    前記第1の時間情報と前記第2の時間情報との間の第1の時間差を計算し、
    前記第1の時間差に従って前記第2の信号の生成を調整し、これにより前記第2の信号及び前記第2の時間情報を調整する、
    ように構成された第2のデバイスと、
    前記第1のデバイスが更に、
    前記第1の信号及び調整された前記第2の信号を受信して解析し、
    前記第1の時間情報と調整された前記第2の時間情報との間の第2の時間差を計算し、
    前記第2の時間差又はこれに関連する物理量を送信する、
    ように構成され、
    前記第2のデバイスが更に、
    前記第2の時間差又は前記関連物理量を受信して、これから前記第1の信号の伝搬遅延の尺度を取得し、
    前記伝搬遅延の尺度に従って前記第2の信号の生成を調整する、
    ように構成され、
    これにより前記第2の信号を前記タイムベースに同期させる、ことを特徴とする装置。
  13. 前記第2のデバイスは、前記第1の時間情報と前記第2の時間情報との間の差を最小にするように、前記第1の時間差に従って前記第2の信号の生成を調整するように構成される、請求項12に記載の装置。
  14. 前記第1のデバイスは、前記第2の信号が前記タイムベースに同期された後、
    前記第2の信号及び前記第1の信号を受信して解析し、
    受信及び解析された前記第1の信号と前記第2の信号の間の位相差又は時間差を測定し、
    測定された前記位相差又は時間差又は関連物理量を送信する、
    ように構成され、前記第2のデバイスが、前記第2の信号の生成を調整して、前記第1の信号の伝搬における環境関連の変動の前記タイムベースへの前記第2の信号の同期に関する影響を軽減できるようになる、請求項12又は13に記載の装置。
  15. 前記第2のデバイスは、測定された前記位相差又は時間差又は関連物理量に従って、前記第2の信号の生成を調整するよう構成される、請求項14に記載の装置。
  16. 前記第1及び第2のデバイスは、該第1及び第2のデバイスに接続された固定回線を介して前記第1及び前記第2の信号を送信及び受信するように構成される、請求項12~15の何れか一項に記載の装置。
  17. 前記固定回線が同軸ケーブル又は光ファイバを含む、請求項16に記載の装置。
  18. 前記タイムベースと同期されている第3の信号をブロードキャストするため、前記第2のデバイスに動作可能に関連付けられた送信機を更に備える、請求項16又は17に記載の装置。
  19. 第2のデバイスによって生成及び送信された第2の信号と、第1の信号を生成及び送信する第1のデバイスのタイムベースとの間の時間残差を特定する装置であって、
    前記第2のデバイスが、前記第1のデバイスから前記第2のデバイスへの前記第1の信号の伝搬遅延の公称値を使用して、前記タイムベースに前記第2の信号を公称的に同期させ、
    前記第1のデバイスが、
    前記第1の信号及び前記第2の信号を受信して解析し、
    受信された前記第1の信号と受信された前記第2の信号との間の時間差を測定し、これから前記時間残差を計算することができるようにし、
    測定された前記時間差又は関連物理量を送信し、これにより前記時間残差を補正又は補償することができるようにする、
    ように構成されている、ことを特徴とする装置。
  20. 前記第2のデバイスは、前記測定された時間差又は前記関連物理量を利用して前記第2の信号の生成を調整するように構成され、これにより前記第2の信号の前記タイムベースへの同期の精度を改善する、請求項19に記載の装置。
  21. 前記装置が、前記測定された時間差又は前記関連物理量を利用して、前記第2のデバイスから受信された信号に補正を適用するよう構成された第3のデバイスを備える、請求項19に記載の装置。
  22. 前記第2のデバイスが前記第2の信号の生成を調整した後、前記第1のデバイスが、
    前記第2の信号及び前記第1の信号を受信して解析し、
    受信及び解析された前記第1の信号と前記第2の信号の間の位相差又は時間差を測定し、
    測定された前記位相差又は時間差又は関連物理量を送信する、
    ように構成され、
    前記第2のデバイスが、前記第2の信号の生成を調整して、前記第1の信号の伝搬における環境関連の変動の前記タイムベースへの前記第2の信号の同期に関する影響を軽減できるようにする、請求項20に記載の装置。
  23. 第2の信号を生成及び送信する第2のデバイスが、第1のデバイスによって生成及び送信される第1の信号を使用して、前記第1のデバイスに前記第2の信号を同期させる装置において、前記第1の信号の伝搬における環境関連の変動の同期に関する影響を軽減する方法であって、
    前記方法は、
    前記第1のデバイスが、前記第2の信号及び前記第1の信号を受信して解析するステップと、
    前記第1のデバイスが、受信及び解析された前記第1の信号と前記第2の信号の間の位相差又は時間差を測定するステップと、
    前記第1のデバイスが、測定された前記位相差又は時間差又は関連物理量を送信するステップと、
    前記第2のデバイスが、測定された前記位相差又は時間差又は関連物理量に従って、前記第2の信号の生成を調整し、前記タイムベースへの前記第2の信号の同期が維持されるようにするステップと、
    を含む、方法。
  24. 第1の信号を生成及び送信する第1のデバイスの前記第1の信号の伝搬における環境関連の変動のタイムベースに、第2のデバイスによって生成されて送信された第2の信号を同期させることに関する影響を軽減する装置であって、
    前記第1のデバイスが、
    前記第2の信号及び前記第1の信号を受信して解析し、
    受信及び解析された前記第1の信号と前記第2の信号の間の位相差又は時間差を測定し、
    測定された前記位相差又は時間差又は関連物理量を送信する、
    ように構成され、
    前記第2のデバイスが、
    測定された前記位相差又は時間差又は関連物理量に従って、前記第2の信号の生成を調整し、前記タイムベースへの前記第2の信号の同期が維持されるように構成される、
    ことを特徴とする装置。
  25. タイムベースを有する基準デバイスと、前記基準デバイスの前記タイムベースに同期された測位信号を生成及び送信する複数の測位ユニットデバイスとを備えた、ロケーションネットワークにおけるロービング位置受信機の位置を決定する方法であって、
    前記測位ユニットデバイスの少なくとも1つは、
    (i)前記基準デバイスが、第1の時間情報を含む基準信号を生成し送信するステップであって、前記第1の時間情報が前記タイムベースに従って前記基準信号の送信時間を示す、ステップと、
    (ii)前記測位ユニットデバイスが、
    (a)前記基準信号を受信して解析するステップと、
    (b)前記測位信号の送信時間を示す第2の時間情報を含む前記測位信号を生成して送信するステップと、
    (c)前記測位信号を受信して解析するステップと、
    (d)前記第1の時間情報と前記第2の時間情報との間の第1の時間差を計算するステップと、
    (e)前記第1の時間差に従って前記測位信号の生成を調整し、これにより前記測位信号及び前記第2の時間情報を調整するステップと、
    (iii)前記基準デバイスが、
    (a)前記基準信号及び調整された前記測位信号を受信して解析するステップと、
    (b)前記第1の時間情報と調整された前記第2の時間情報との間の第2の時間差を計算するステップと、
    (c)前記第2の時間差又はこれに関連する物理量を送信するステップと、
    (iv)前記測位ユニットデバイスが、
    (a)前記第2の時間差又は前記関連物理量を受信して、これから前記基準信号の伝搬遅延の尺度を取得するステップと、
    (b)前記伝搬遅延の尺度に従って前記測位信号の生成を調整し、これにより前記測位信号を前記第1のデバイスのタイムベースに同期させるようにするステップと、
    を含み、
    前記ロービング位置受信機が、前記少なくとも1つの測位ユニットデバイスから受信した測位信号を含む、前記複数の測位ユニットデバイスから受信した測位信号の選択集合を用いて位置解を計算する、
    ことによって前記測位信号を前記タイムベースに同期させる、
    ことを特徴とする、方法。
  26. ロービング位置受信機が位置解を計算することを可能にするロケーションネットワークであって、
    時間情報を含む基準信号を生成し送信するよう構成された基準デバイスであって、前記時間情報が前記基準デバイスのタイムベースに従って前記基準信号の送信時間を示す、基準デバイスと、
    前記基準デバイスのタイムベースに同期された測位信号を生成及び送信する複数の測位ユニットデバイスと、
    を備え、
    前記測位ユニットデバイスの少なくとも1つが、
    前記基準信号を受信して解析し、
    前記測位信号の送信時間を示す第2の時間情報を含む測位信号を生成及び送信し、
    前記測位信号を受信して解析し、
    前記第1の時間情報と前記第2の時間情報との間の第1の時間差を計算し、
    前記第1の時間差に従って前記測位信号の生成を調整し、これにより前記測位信号及び前記第2の時間情報を調整する、
    ように構成され、
    前記基準デバイスが、
    前記基準信号及び調整された前記測位信号を受信して解析し、
    前記第1の時間情報と調整された前記第2の時間情報との間の第2の時間差を計算し、
    前記第2の時間差又はこれに関連する物理量を送信する、
    ように構成され、
    前記少なくとも1つの測位ユニットデバイスが、
    前記第2の時間差又は前記関連物理量を受信して、これから前記基準信号の伝搬遅延の尺度を取得し、
    前記伝搬遅延の尺度に従って前記測位信号の生成を調整し、これにより前記測位信号を前記第1のデバイスのタイムベースに同期させる、
    ように構成され、
    このようなロービング位置受信機が、前記少なくとも1つの測位ユニットデバイスから受信した測位信号を含む、前記複数の測位ユニットデバイスから受信した測位信号の選択集合を用いて位置解を計算することができる、ロケーションネットワーク。
  27. 請求項1~11、23及び25のうちの何れか一項に記載の方法を実施する、又は請求項12~22及び24のうちの何れか一項に記載の装置を動作させる、又は請求項26に記載のロケーションネットワークを動作させる、ように構成されたコンピュータ可読プログラムを有する非一時的コンピュータ使用可能媒体を含む製品。
JP2024000113A 2018-03-14 2024-01-04 ロケーションネットワークを同期するための方法及び装置 Pending JP2024050571A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AU2018900841 2018-03-14
AU2018900841A AU2018900841A0 (en) 2018-03-14 Improved Method and Apparatus for Synchronising a Location Network
JP2020548745A JP7416704B2 (ja) 2018-03-14 2019-03-14 ロケーションネットワークを同期するための方法及び装置
PCT/AU2019/050229 WO2019173875A1 (en) 2018-03-14 2019-03-14 Method and apparatus for synchronising a location network

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020548745A Division JP7416704B2 (ja) 2018-03-14 2019-03-14 ロケーションネットワークを同期するための方法及び装置

Publications (1)

Publication Number Publication Date
JP2024050571A true JP2024050571A (ja) 2024-04-10

Family

ID=67908648

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020548745A Active JP7416704B2 (ja) 2018-03-14 2019-03-14 ロケーションネットワークを同期するための方法及び装置
JP2024000113A Pending JP2024050571A (ja) 2018-03-14 2024-01-04 ロケーションネットワークを同期するための方法及び装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020548745A Active JP7416704B2 (ja) 2018-03-14 2019-03-14 ロケーションネットワークを同期するための方法及び装置

Country Status (9)

Country Link
US (2) US11375468B2 (ja)
EP (1) EP3766192A4 (ja)
JP (2) JP7416704B2 (ja)
KR (1) KR20200131869A (ja)
CN (1) CN111869280B (ja)
AU (1) AU2019235617B2 (ja)
IL (1) IL277231B2 (ja)
SG (1) SG11202008665WA (ja)
WO (1) WO2019173875A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11375468B2 (en) * 2018-03-14 2022-06-28 Locata Corporation Pty Ltd Method and apparatus for synchronising a location network
KR20210136156A (ko) * 2019-06-17 2021-11-16 엘지전자 주식회사 Nr v2x에서 사이드링크 rtt를 이용한 포지셔닝 방법 및 장치
US11503563B2 (en) * 2020-02-04 2022-11-15 Alibaba Group Holding Limited Distance estimation using signals of different frequencies
US11792750B2 (en) * 2020-05-15 2023-10-17 Qualcomm Incorporated Reference timing for multiple transmission and reception points in multi-radio dual connectivity
JP7384137B2 (ja) 2020-09-22 2023-11-21 株式会社Soken 測位装置

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6133876A (en) * 1998-03-23 2000-10-17 Time Domain Corporation System and method for position determination by impulse radio
EP1103156B1 (en) * 1998-08-07 2011-11-30 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Improvements in downlink observed time difference measurements
US6310576B1 (en) * 1998-12-30 2001-10-30 Motorola, Inc. Method of identifying location using a master clock to synchronize time of arrival signals
US7649925B2 (en) * 1999-06-14 2010-01-19 Time Domain Corporation Time transfer utilizing ultra wideband signals
US6453168B1 (en) * 1999-08-02 2002-09-17 Itt Manufacturing Enterprises, Inc Method and apparatus for determining the position of a mobile communication device using low accuracy clocks
US6397147B1 (en) * 2000-06-06 2002-05-28 Csi Wireless Inc. Relative GPS positioning using a single GPS receiver with internally generated differential correction terms
US6473030B1 (en) * 2001-02-28 2002-10-29 Seiko Epson Corporation Infrastructure-aiding for satellite navigation receiver and method
US6567041B1 (en) * 2001-04-18 2003-05-20 Sprint Spectrum, L.P. Network system and method for a remote reference receiver system
AUPR863401A0 (en) * 2001-11-02 2001-11-29 Qx Corporation Pty Ltd A method & device for precision time-lock
US6944540B2 (en) * 2002-03-28 2005-09-13 Motorola, Inc. Time determination in satellite positioning system receivers and methods therefor
NZ537902A (en) * 2002-08-08 2005-08-26 Tait Electronics Ltd Improvements relating to radio communication systems
EP1450555A1 (en) * 2003-02-18 2004-08-25 Thomson Licensing S.A. Video device and method for synchronising time bases of video devices
AU2003904083A0 (en) 2003-08-05 2003-08-21 Locata Corporation A method & device for providing assistance data within a chronologically synchronized location network
US7132866B2 (en) * 2003-09-03 2006-11-07 Broadcom Corporation Method and apparatus for glitch-free control of a delay-locked loop in a network device
US7298324B2 (en) * 2005-06-03 2007-11-20 Novatel, Inc. Apparatus for and method of improving position and time estimation of radio location devices using calibrated pulse shapes
CN101310555B (zh) * 2005-09-27 2013-03-06 高通股份有限公司 使用具有定时偏移及相位调整的发射机的位置定位
ES2350270T3 (es) * 2007-12-18 2011-01-20 Thales Alenia Space Italia S.P.A. Procedimiento de sincronización de nodos de una red, sistema y dispositivo correspondientes.
GB2459334B (en) * 2008-04-24 2012-07-25 Nordnav Technologies Ab Method of positioning using satellites
US20090296866A1 (en) * 2008-06-03 2009-12-03 Hsiang-Tsuen Hsieh Efficient mechanisms for local cluster network synchonization
KR20110026479A (ko) * 2008-07-07 2011-03-15 스미토모덴키고교가부시키가이샤 기지국 장치
US7876791B2 (en) * 2008-07-24 2011-01-25 Samsung Electronics Co., Ltd. Synchronizing apparatus and method in packet network
TW201034493A (en) * 2008-11-12 2010-09-16 Sumitomo Electric Industries Base station device
US8326319B2 (en) * 2009-01-23 2012-12-04 At&T Mobility Ii Llc Compensation of propagation delays of wireless signals
JP5285497B2 (ja) 2009-03-12 2013-09-11 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法及び無線基地局
WO2011074529A1 (ja) * 2009-12-18 2011-06-23 日本電気株式会社 時刻同期システム、スレーブノード、時刻同期方法及び時刻同期用プログラム
US20120177027A1 (en) * 2011-01-06 2012-07-12 Atheros Communications, Inc. System and method for time synchronizing wireless network access points
EP2525236B1 (en) * 2011-05-16 2017-08-02 Nanotron Technologies GmbH Method and System for multipath reduction for wireless synchronizing and/or locating
DE102011087472B4 (de) * 2011-11-30 2016-10-20 Continental Automotive Gmbh Verfahren zur Synchronisation von Uhren in Knoten eines Fahrzeugnetzes und zur Durchführung des Verfahrens eingerichteter Knoten
US20140269667A1 (en) * 2013-03-15 2014-09-18 Qualcomm Incorporated Method and apparatus for dynamic configuration of packet preambles for synchronization-based transmissions
EP2984901A4 (en) * 2013-04-07 2016-12-14 Ziva Corp DISTRIBUTED COOPERATION N UDS USING TIME INVERSION
JP2014239270A (ja) 2013-06-06 2014-12-18 京セラ株式会社 エア同期方法および基地局同期システム
WO2015024599A1 (en) * 2013-08-22 2015-02-26 Telefonaktiebolaget L M Ericsson (Publ) A method for detecting timing references affected by a change in path delay asymmetry between nodes in a communications network
US9112631B2 (en) * 2013-09-11 2015-08-18 Khalifa University of Science, Technology, and Research Method and devices for frequency distribution
CN106662654B (zh) * 2014-07-25 2020-02-28 洛克达股份有限公司 用于在时间上同步动态位置网络的方法和设备
CN104202812A (zh) * 2014-08-14 2014-12-10 杭州绿宇通信技术有限公司 一种适用于精确定位系统的高精度时间同步的方法
US9220078B1 (en) * 2014-09-12 2015-12-22 Voll, Inc. Mobile device utilizing time of flight for localization
CN105071914B (zh) * 2015-07-27 2018-02-02 深圳思凯微电子有限公司 基于数字调频广播的时钟同步方法和调频广播接收机
US9668101B2 (en) * 2015-08-10 2017-05-30 Qualcomm Incorporated Partial timing synchronization function (TSF) synchronization in fine timing measurement (FTM) protocol
JP6374440B2 (ja) * 2016-06-15 2018-08-15 東京エレクトロニツクシステムズ株式会社 測位端末
WO2018017468A1 (en) * 2016-07-18 2018-01-25 Phluido, Inc. Synchronization of radio units in radio access networks
EP3564921B1 (en) * 2016-12-28 2021-12-01 Nippon Telegraph and Telephone Corporation Sensing system and time synchronization method
KR101836837B1 (ko) * 2017-09-25 2018-03-09 주식회사 엔토소프트 측위 시스템 내 시간 차이 보상 방법 및 그에 따른 측위 시스템
US11375468B2 (en) * 2018-03-14 2022-06-28 Locata Corporation Pty Ltd Method and apparatus for synchronising a location network

Also Published As

Publication number Publication date
US11375468B2 (en) 2022-06-28
EP3766192A1 (en) 2021-01-20
US11974247B2 (en) 2024-04-30
CN111869280B (zh) 2023-10-03
JP2021517643A (ja) 2021-07-26
IL277231B1 (en) 2023-11-01
KR20200131869A (ko) 2020-11-24
US20210007075A1 (en) 2021-01-07
IL277231B2 (en) 2024-03-01
AU2019235617B2 (en) 2022-10-20
AU2019235617A1 (en) 2020-10-29
IL277231A (en) 2020-10-29
US20220286992A1 (en) 2022-09-08
WO2019173875A1 (en) 2019-09-19
SG11202008665WA (en) 2020-10-29
CN111869280A (zh) 2020-10-30
EP3766192A4 (en) 2021-12-29
JP7416704B2 (ja) 2024-01-17

Similar Documents

Publication Publication Date Title
JP7416704B2 (ja) ロケーションネットワークを同期するための方法及び装置
Deschênes et al. Synchronization of distant optical clocks at the femtosecond level
US11909852B1 (en) Frequency and gain calibration for time synchronization in a network
EP1700407B1 (en) Temperature compensation for transmission between nodes coupled by a unidirectional fiber ring
JP5425870B2 (ja) 遠隔クロックの同期
CN115225247B (zh) 相位调制环回时间同步装置、方法和系统
US20170034716A1 (en) A first network node, a second network node and methods therein
CN103916204A (zh) 一种光纤网络高精度授时系统的云同步方法
Śliwczyński et al. Picoseconds-accurate fiber-optic time transfer with relative stabilization of lasers wavelengths
US10945223B2 (en) Method for detecting synchronization deviation between communication stations
US5469467A (en) Method for synchronizing the reference frequency oscillator of a metallic-based microcell to a master oscillator
Krehlik et al. Fiber-optic UTC (k) timescale distribution with automated link delay cancelation
CN115225246B (zh) 相位调制双向时间同步装置、方法和系统
CN113098623B (zh) 基于光学主动补偿的光纤相位同步系统
JP6823568B2 (ja) 時刻管理装置、基準時刻管理システム、および基準時刻管理方法
Wu et al. Absolutely consistent fiber-optic phase synchronization based on fixed-phase-reference optical active compensation
Xu et al. High-precision time transfer over a local ring fiber link
US11368215B2 (en) Method of estimating a propagation delay difference of an optical link and apparatus for same
Hou et al. Dispersion-free quantum clock synchronization via fiber link
Krehlik ELSTAB-electronically stabilized time and frequency distribution over optical fiber-an overview
Clark et al. Picosecond-precision clock synchronized radio access networks using optical clock distribution and clock phase caching
US8432536B1 (en) Multi-functional optical links
CN113612541B (zh) 基于tdoa的目标模拟信号光子链路传输延时测量装置
Pottié et al. Time and frequency comparisons with optical fiber links
Schreiber et al. All optical time and frequency distribution for space geodesy

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240131