TW201034493A - Base station device - Google Patents

Base station device Download PDF

Info

Publication number
TW201034493A
TW201034493A TW98138190A TW98138190A TW201034493A TW 201034493 A TW201034493 A TW 201034493A TW 98138190 A TW98138190 A TW 98138190A TW 98138190 A TW98138190 A TW 98138190A TW 201034493 A TW201034493 A TW 201034493A
Authority
TW
Taiwan
Prior art keywords
base station
synchronization
signal
unit
frequency
Prior art date
Application number
TW98138190A
Other languages
Chinese (zh)
Inventor
Takashi Yamamoto
Yoji Okada
Original Assignee
Sumitomo Electric Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009053414A external-priority patent/JP4811478B2/en
Priority claimed from JP2009064711A external-priority patent/JP5035279B2/en
Priority claimed from JP2009085727A external-priority patent/JP4983834B2/en
Priority claimed from JP2009122157A external-priority patent/JP5402234B2/en
Priority claimed from JP2009122060A external-priority patent/JP2010041712A/en
Application filed by Sumitomo Electric Industries filed Critical Sumitomo Electric Industries
Publication of TW201034493A publication Critical patent/TW201034493A/en

Links

Abstract

Even through a clock generated by a built-in clock generator is used as a reference signal for determining a carrier frequency of a transmission signal, synchronization of the frequencies is obtained among base station devices. The base station device is configured to perform wireless transmission with terminal devices. The base station device affects the accuracy of the carrier frequency of OFDM signal due to the accuracy of the clock frequency generated by the built-in clock generator 18. The base station device receives the OFDM signal transmitted from another base station device upon stopping transmission to the terminal devices, estimates a carrier frequency offset of this OFDM signal and corrects the carrier frequency of the OFDM signal transmitted to the terminal devices.

Description

201034493 六、發明說明: 【發明所屬之技術領域】 本發明係有關於基地台裝置。 【先前技術】 在 如 WiMAX(Worldwide Interoperbility f〇r _ Microwave Access)般移動終端機可通信的無線通信系統, -多個基地台被設置於各地。位於各基地台所涵蓋之區域 (cell)內的移動終端機可在和涵蓋該區域的基地台之間進 行通信° ^ 雖然藉由移動終端機移動,而成爲移動終端機之通信 對象的基地台被變更’但是基地台被變更時,移動終端機 就同時接受來自兩個基地台(服務基地台和對象基地台)的 信號。 因而,爲了圓滑地進行移動終端機的基地台間移動, 需要在相鄰的基地台間確保發送時序一致之基地台間同 步。 若取得基地台間同步’移動終端機在基地台間移動 時’移動終端機可同時接收來自2個基地台的信號,而可 圓滑地進行基地台間移動(hand 〇ver)。 在此’作爲用以在基地台間取得時序同步的技術,例 如有專利文獻1所記載者。 在專利文獻1揭示一種取得時序同步的技術,各基地 台從GPS衛星接收GPS信號,再根據GPS信號,各基地 台取得時序同步。 [專利文獻] 201034493 專利文獻1:特開昭59-6642號公報 【發明內容】 [發明所欲解決之課題] 在WiMAX,採用OFDM(正交分頻多工)方式。在OFDM - 信號,緊密地配置副載頻,因爲副載頻間隔小,所以若在 ' 信號之發送側和接收側載頻誤差大,OFDM解調特性就變 差。因而,要求載頻誤差小。 因此,在如基地台和移動終端機之間般一般所設想的 e 通信之通信裝間,必需取得載頻同步。這種載頻同步係藉 由接收側從接收信號檢測載頻誤差,再修正接收信號的載 頻誤差而達成。在此情況,利用設置於接收電路之AFC (自 動頻率控制)電路進行接收信號之載頻誤差的檢測及修正。 另一方面,以OFDM方式爲前提,考慮移動終端機的 基地台間移動(hand over)時,本發明者們得到在基地台間 亦需要載頻同步的知識。其中,根據本發明僴之知識的載 頻’同步意指在基地台間使各基地台向自區域內的移動終端 φ 機所發送之信號的載頻一致,和載頻同步相異,而載頻同 步係基地台或終端機的接收部爲了將通信之對方的信號而 檢測載頻誤差,再修正接收信號的載頻誤差。 作爲信號發送側的各基地台,爲了使發送信號的載頻 一致,各基地台需要以共同的基準信號(時脈)動作。 可是,因爲在各基地台所內建之時脈產生器(水晶振盪 器)的精度有變動,所以將各基地台的內建時脈產生器所產 生之時脈作爲基準信號,即使各基地台想要以既知的載頻 同發送信號,亦因爲時脈頻率精度的差異,而載頻在基地 201034493 台間必然相異。 因此,一般認爲內建時脈產生器所產生之時脈未適合 作爲用以在各基地台間使發送信號之載頻一致的基準信 號。 在此,如專利文獻1所示,在各基地台可從GPS衛星 接收GPS信號的情況,藉由將GPS信號所含之時脈信號作 爲載頻的基準信號,而各基地台可使發送信號的載頻一 致。因爲GPS信號是各基地台可共同利用的信號,所以適 合作爲在各台間使發送信號之載頻一致的基準信號。 可是,在利用GPS信號的情況,各基地台需要具備有 GPS接收機,而引起大型化、費用上漲。又,在設置於室 內等之無法接收GPS信號的環境之基地台的情況,無法接 收GPS信號。 又,在各基地台所連接的上階網路是ISDN等之可供 給時脈的通信線路的情況,各基地台從ISDN取得時脈, 藉由將該時脈作爲基準信號,而可在各台間使發送信號之 載頻一致。 可是,在如WiMAX般作爲上階網路被設想爲網際網 路的通信系統,無法從上階網路得到時脈。 因此,本發明之目的在於即使在將一般認爲係不適合 之內建時脈產生器所產生的時脈用作決定發送信號之載頻 的基準信號下,亦在各基地台間取得載頻的同步。 在利用分頻雙工方式進行基地台裝置和終端裝置之間 的通信的情況,因爲發送頻率和接收頻率相異,所以不必 考慮發送信號和接收信號的干涉,複數台基地台裝置一般 201034493 以非同步動作。 可是’本發明者得到一種構想,即使在採用分頻雙工 方式的情況’亦有使複數台基地台裝置同步是較佳的情況。 例如’想到如第24(a)圖所示,作成進行從複數台基地 - 台裝置BS1、BS2同時向多台終端裝置MS1、MS2、MS3 • 發送同一內容的資訊之廣播的情況。在此情況,如第24(b) 圖所示’若複數台基地台裝置BS之廣播的訊框發送時序發 生偏差,對於從複數台基地台裝置BS1、BS2接受同一內 φ 容之信號的終端裝置MS2,來自另一方的基地台裝置BS2 的信號就和來自一方之基地台裝置BS1的信號發生干涉。 又’終端裝置MS2根據從複數台基地台裝置BS卜BS2 所發送之信號進行巨分集或空間多重傳送的情況,若各基 地台裝置BS1、BS2的發送時序不一致,效果就降低。 因此’在如上述所示的情況,即使是分頻雙工方式, 亦在基地台裝置間取得同步較佳。 爲了在基地台裝置間取得同步,想到不是如專利文獻 φ 1所記載之利用G p s信號,而根據無線通信信號取得同步。 在此情況,想出想要取得同步的基地台裝置接收其他的基 地台裝置向終端裝置所發送之信號,並檢測該其他的基地 台裝置的發送時序’藉此,和該其他的基地台裝置取得同 步。此外,在以下,將根據其他的基地台裝置的發送信號 而基地台裝置取得同步的方式稱爲「無線同步」。 可是’在分頻雙工方式之基地台裝置的情況,其接收 部構成爲適合上行信號(從終端裝置向基地台裝置所發送 之信號)的頻率fu,而發送部構成爲適合下行信號(從基地 201034493 台裝置向終端裝置所發送之信號)的頻率fd。 因而,某基地台裝置即使想要接收從其他的基地台裝 置向終端裝置所發送之下行信號,亦因爲想接收之下行信 號的頻率是fd,所以在構成爲適合上行信號之頻率fu的接 收部無法接收。 如此,以往未提供用以在分頻雙工方式的基地台裝置 進行無線同步的手段。 因此,本發明之其他的目的在於提供用以在分頻雙工 方式的基地台裝置進行無線同步的手段。 又,在此,在作成某基地台裝置自律地決定成爲無線 同步的同歩對象之其他的基地台裝置(同步源)的情況,就 從位於同步源之基地台裝置的附近之複數台基地台裝置中 選擇成爲同步對象的一基地台裝置。 可是,若可自由地選擇成爲同步對象的基地台裝置, 如第33圖所示,可能發生複數台基地台裝置(BS)彼此將彼 此作爲同步對象而相參照的狀況。在此情況,因各基地台 裝置的同步時序易變動,所以不佳。 因此,以對成爲基準之一基地台裝置(母基地台裝 置),其他的基地台裝置(子基地台裝置)採用樹樹狀的階層 構造之方式決定同步對象較佳。在此情況’複數台子基地 台 地 基 。 的 致象 一 對 置步 裝同 台定 地決 基要 一 想 之’ 準造 基構 爲層 成階 和該 序用 時採 使要 可想 置若 裝 台 對技 步的 同層 定階 決之 要置 想裝 。 供台 層提地 階於基 的在的 置的 裝目 台的 地外 基另 的之 他明 其發 別本 識’ 要此地 需因基 置 的 裝 象 他 其 別 識 以 用 置 裝 台 201034493 術。 [解決課題之手段] 本發明是一種基地台裝置,其構成爲 間進行OFDM信號的無線通信,同時具備 的內建時脈產生器,因由該內建時脈產生 頻率的精度,而使OFDM信號之載頻的精 基地台裝置的特徵爲具備:接收手段,係 置停止發送中從其他的基地台裝置所發送 測手段,係根據在對終端裝置停止發运 OFDM信號,求該OFDM信號之載頻偏差 頻率修正手段,係根據該推測値,修正對 之OFDM信號的載頻。 若依據本發明,基地台裝置因由內建 生之時脈頻率的精度,而使OFDM信號之 影響。可是,該基地台裝置接收從其他的 送之OFDM信號,並推測該基地台裝置的 地台裝置之載頻的差(載頻偏差)。 然後,該基地台裝置根據該推測値, 所發送之OFDM信號的載頻。因此,該基 信號的載頻和其他的基地台裝置之發送信 同步。 因而,若依據本發明,即使在將內建 生的時脈用作決定發送信號之載頻的基準 基地台間取得載頻的同步。 而且’在基地台裝置利用分頻雙工進 在和終端裝置之 有產生動作時脈 器所產生之時脈 度受到影響,該 接收在對終端裝 之無線信號;推 ^中從所接收之 的推測値;以及 終端裝.置所發送 時脈產生器所產 載頻的精度受到 基地台裝置所發 載頻和其他的基 修正對終端裝置 地台裝置之發送 號的載頻可取得 時脈產生器所產 信號下,亦在各 行和終端裝置之 201034493 間的通信的情況,在該基地台裝置成爲接收狀態的時間帶 其他的基地台裝置亦處於接收狀態,而在該基地台裝置成 爲發送狀態的時間帶,其他的基地台裝置亦成爲發送狀態 的時間帶。因而,該基地台裝置無法接收來自其他的基地 台裝置的OFDM信號。 可是,因爲停止對終端裝置的發送,並在對終端裝置 停止發送中接收從其他的基地台裝置所發送之OFDM信 號,所以即使是分頻雙工亦可接收從其他的基地台裝置所 發送之OFDM信號。 此外,在本發明,在OFDM,當然包含將OFDM擴張 的OF DM A (正交分頻多元連接)。本發明未限定爲OFDM信 號,亦可應用於使用複數個頻率之載波信號的多載頻系統 等要求載頻精度的無線信號。 該推測手段構成爲根據在對終端裝置停止發送中從所 接收之OFDM信號,求該OFDM信號之通信時序偏差的推 測値,再根據通信時序偏差的推測値,求該OFDM信號之 載頻偏差的推測値較佳。 進而,該推測手段具有:相位旋轉量算出手段’係根 據在第1停止發送時刻所求得之通信時序偏差的第1推測 値、與在時刻爲和第1停止發送時刻相異的第2停止發送 時刻所求得之通信時序偏差的第2推測値之差分’算出在 第1停止發送時刻和第2停止發送時刻之間之OFDM信號 的相位旋轉量;及時脈誤差算出手段’係根據該相位旋轉 量,算出該時脈頻率的誤差;同時’根據所算出之該時脈 頻率的誤差,求該載頻偏差的推測値較佳。 -10 - 201034493 該基地台裝置最好還具備修正手段,其根據該通信時 序偏差的推測値,修正通信訊框時序。 在對終端裝置停止發送中從其他的基地台裝置所接收 之OFDM信號,是該其他的基地台裝置對終端裝置所發送 之前置信號信號較佳。 該頻率修正手段根據該載頻偏差的該推測値,修正所 接收之OFDM信號的載頻較佳。 又,週期性地停止對終端裝置的發送較佳。在此情況, φ 停止對終端裝置之發送的週期亦可係固定,亦可係變動。 從其他的觀點之本發明是一種基地台裝置,其利用上 行信號之頻率和下行信號之頻率相異的分頻雙工,進行和 終端裝置之間的無線通信,該基地台裝置具備:第1接收 部,係以上行信號之頻率接收來自終端裝置的上行信號; 及第2接收部,係以下行信號之頻率接收來自其他的基地 台裝置的下行信號;利用該第2接收部在對終端裝置停止 發送中接收從其他的基地台裝置所發送之OFDM信號。更 ❹ 具體而言,基地台裝置具備:同步誤差檢測部,係根據由 該第2接收部所接收之其他的基地台裝置的下行信號,檢 測該其他的基地台裝置和自裝置之間的同步誤差;及修正 部,係根據由該同步誤差檢測部所檢測的同步誤差,修正 該同步誤差》 若依據該本發明,基地台裝置除了根據上行信號頻率 接收來自終端裝置之上行信號的第1接收部以外,亦具備 根據下行信號頻率接收來自終端裝置之下行信號的第2接 收部。 201034493 因此’該基地台裝置即使採用分頻雙工方式,亦可接 收來自終端裝置的上fr信號’同時亦可爲了無線同步時序 而接收其他的基地台裝置所發送之下行信號。 而且,基地台裝置根據由第2接收部所接收之其他的 基地台裝置的下行信號’可在和其他的基地台裝置之間取 得同步。 在具備複數台基地台裝置的通信系統,可構成爲複數 台該基地台裝置同時向終端裝置發送。即使在分頻雙工, 亦藉由基地台裝置在間取得同步,而複數台該基地台裝置 即使同時向終端裝置發送同一內容的資訊,終端裝置亦可 順利地接收。因而,可進行利用來自複數台基地台裝置的 廣播發送或從複數台基地台裝置所發送之信號的巨分集或 空間分割多工傳送。 又’在具備進行該發送部所含之放大器的失真補償之 失真補償部之基地台裝置的情況,最好具備切換手段,其 用以切換該失真補償部經由該第2接收部而取得從該放大 器所輸出之下行信號的第1狀態、和該推測手段(同步誤差 檢測部)經由該第2接收部而接受來自其他的基地台裝置之 下行信號的第2狀態。在此情況,爲了失真補償,可將對 失真補償部供給在發送部之放大器的輸出之電路、和爲了 無線同步時序而對推測手段(同步誤差檢測部)供給來自其 他的基地台裝置之下行頻率的下行信號之電路共用化。 在此,失真補償部是藉由取得從發送部所含之放大器 所輸出之信號,而掌握該放大器的非線性特性’並進行失 真補償。因爲發送部所含之放大器的輸出信號成爲下行信 -12- 201034493 號,所以對失真補償部供給放大器之輸出信號的電路構成 爲適合下行信號的頻率。 因此,在本發明,係利用該第2接收部構成爲適合下 行信號的頻率,將該第2接收部亦用作對失真補償部供給 放大器之輸出信號的電路,而將電路共用化。藉由電路的 共用化,即使設置第2接收部亦可抑制電路規模增大。 又,除了失真補償以外,產生被輸入該發送部之信號 的信號處理裝置接受由發送部所產生之下行信號的回授之 Q 基地台裝置的情況,最好具備切換手段,其用以切換該信 號處理裝置經由該第2接收部而接受由該發送部所產生之 下行信號之回授的第1狀態、和該推測手段(同步誤差檢測 部)經由該第2接收部而接受來自其他的基地台裝置之下行 信號的第2狀態。 因爲第2接收部構成爲適合適合下行信號的頻率,將 該第2接收部亦用作使由發送部所產生之下行信號回授的 電路,而可將電路共用化。藉由電路的共用化,即使設置 φ 第2接收部亦可抑制電路規模增大。 變換來自終端裝置之上行信號及來自其他的基地台裝 置之下行信號中至少任一方之信號的頻率而使兩信號的頻 率一致之頻率變換部,設置於該第1接收部及該第2接收 部中之至少任一方。 該第1接收部及該第2接收部構成爲以該第1接收部 及該第2接收部彼此所共有之共有部處理頻率一致的該兩 信號較佳。在此情況,作爲接收部設置第1接收部及第2 接收部雙方,亦可簡化電路構成。 -13- 201034493 該共有部含有將該兩信號進行A/D變換的A/D變換$ 較佳。 具備由複數條天線所構成之陣列天線,該第1接& 及該第2接收部設置於各條該複數條天線,該第2接收$ 設置於該複數條天線中之一條天線或複數條天線較佳。& 陣列天線方式,亦可將第2接收部設置於該一條天線或胃 數條天線的系統。 從其他的觀點之本發明是一種基地台裝置,其利用上 行信號之頻率和下行信號之頻率相異的分頻雙工,進行和 終端裝置之間的無線通信,該基地台裝置之特徵爲具備: 第1接收部,係以上行信號之頻率接收來自終端裝置的上 行信號;發送部,係以下行信號之頻率發送對終端裝置的 下行信號;第2接收部,係以下行信號之頻率接收來自其 他的基地台裝置的下行信號;同步誤差檢測部,係根據由 該第2接收部所接收之其他的基地台裝置的下行信號,檢 測該其他的基地台裝置和自裝置之間的同步誤差;以及頻 率修正部,係根據由該同步誤差檢測部所檢測的同步誤 差’推測該基地台裝置的頻率偏差,再修正該上行信號之 頻率或下行信號之頻率。在此情況,亦可利用無線同步修 正頻率。 從其他的觀點之本發明是一種基地台裝置,其向終端 裝置發送包含可取得複數個模式的第1既知信號及可取得 複數個模式的第2既知信號之下行信號,該基地台裝置之 特徵爲:具備識別部,其在(由接收部)收到其他的基地台 裝置所發送之包含該第1既知信號及該第2既知信號的下 -14- 201034493 行信號時,根據所接收之該第1既知信號的模式和所接收 之該第2既知信號的模式之組合,識別其他的基地台裝置 在基地台裝置間同步之階層構造中所位居的階層順位。 若依據本發明,可根據第1既知信號的模式和該第2 既知信號之模式的組合,識別其他的基地台裝置的階層。 最好該識別部具備:第1識別部,係對所接收之該第 1既知信號的模式進行是第1既知信號可取得之複數個模 式中的哪一個之模式識別;及第2識別部,係對所接收之 該第2既知信號的模式進行是第2既知信號可取得之複數 個模式中的哪一個之模式識別。在此情況,可獨立地識別 第1既知信號及第2既知信號的模式。 最好以如下之方式構成,利用在該第1識別部及該第 2識別部中用以識別可取得之模式數少之既知信號的模式 之識別部,進行第1模式識別;在利用該第1模式識別來 識別模式後,利用在該第1識別部及該第2識別部中用以 識別可取得之模式數多之既知信號的模式之識別部,進行 第2模式識別。在此情況,可簡單或高速地進行模式識別。 最好具備有模式設定部,其設定基地台裝置包含於下 行信號中地發送之第1既知信號的模式及第2既知信號的 模式;該模式設定部將第1既知信號的模式及第2既知信 號的模式設定成表示階層順位比成爲在基地台間同步的同 步對象之其他的基地台裝置之階層順位更低的模式。在此 情況’即使各基地台裝置自律地決定同步對象,亦可自然 地構築階層構造。 【實施方式】 -15- 201034493 以下,一面參照附加圖面,一面說明本發明之較佳實 施形態。 [第1章關於頻率修正] 第1圖顯示將網際網路等之TCP/IP網路NW作爲上階 網路之移動體無線通信系統。 此通信系統具備對屬終端裝置之移動終端機(MS: Mobile Station)101、102、103進行無線通信的基地台裝置 (BS: Base Station)l、2、3。複數(數千)台基地台 1、2、3 和成爲存取控制裝置的ASN — GW(Access Service Network Gateway)105。又,ASN — GW105 經由 HA(Home Agent)106, 和網際網路等的上階網路NW連接。 因此,從網際網路等之上階網路NW的伺服器107、 108向終端機發送的訊息封(下連結的資料)經由基地台裝 置1、2、3,向終端裝置101、1〇2、103被發送。 此無線通信系統例如爲了實現寬頻帶無線通信而採用 依據支援正交分頻多元連接(OFDMA)方式之IEEE802.16 的「WiMAX」(mobile WiMAX)方式。 各基地台裝置1、2、3在和位於各個基地台裝置1、2、 3所涵蓋之區域(cell)內的終端裝置(移動終端機)1〇1、 1 02、1 03 通信。 如第2圖所示,在WiMAX,作成在時間方向排列並配 置一個基本訊框的下行副訊框(基地台裝置的信號發送時 間)和上行副訊框(基地台裝置的信號接收時間),並利用 TDD(分時雙工)進行發送和接收之雙工的通信系統。此外, 雙工方式未限定爲TDD,亦可係FDD(分頻雙工)。 201034493 —個基本訊框之長度是5msec。下行副訊框是基地台 裝置1、2、3向自區域內的終端裝置1〇1、102、103發送 信號的時間帶,上行副訊框是基地台裝置1、2、3接收來 自自區域內之終端裝置101、102、103的信號的時間帶。 此外,下行副訊框在前頭具備有屬既知信號的前置信 號(Preamb le)。 如第3圖所示,在本無線通信系統之複數台基地台裝 置1、2、3’包含至少一台主基地台裝置(主BS)1和複數 φ 台副基地台裝置(副BS)2、3。 在本無線通信系統,在各基地台裝置1、2、3間,進 行取得訊框時序同步及載頻同步的處理。主基地台裝置1 是訊框時序及載頻的基準台,副基地台裝置2、3對主基地 台裝置1直接或間接地經由其他的副基地台裝置取得訊框 時序同步及載頻同步。 該訊框時序同步是取得同步,使在相同的時序發送各 基地台裝置1、2、3昀通信訊框。即,如第2圖所示,藉 ❹ 訊框時序同步’可使各基地台裝置1、2、3的通信時序一 致’使在某基地台裝置(第1基地台)向終端裝置發送的時 間帶(下fl副訊框的時間帶),其他的基地台裝置(第2基地 台)亦向終端裝置發送,而在某基地台裝置(第1基地台)從 終端裝置接收的時間帶(上行副訊框的時間帶),其他的基 地台裝置(第2基地台)亦從終端裝置接收。 藉由在基地台裝置間可取得訊框時序同步,而在終端 裝置移交時等’即使成爲對複數台基地台裝置進行通信之 狀態’終端裝置亦可圓滑地和各基地台裝置進行通信。 -17- 201034493 又,該載頻同步是在各基地台裝置間使各基地台裝置 卜2、3對終端裝置發送之信號(OFDM(A)信號)的載頻一致。 藉由在基地台裝置間可取得載頻同步,而在終端裝置 移交時等,即使成爲對複數台基地台裝置進行通信之狀 態,終端裝置亦可圓滑地和各基地台裝置進行通信。 在此,各終端裝置具有AFC(自動頻率控制)功能,其 檢測從基地台裝置所接收之OFDM信號之載頻的誤差,並 修正在接收OFDM信號的載頻誤差(發送側和接收側之間 的載頻的差)。 因此,各終端裝置即使在從基地台裝置所接收之 OFDM信號的載頻有誤差,亦可在修正該誤差後,進行 OFDM解調。 可是,在終端裝置移交時等,成爲對複數台基地台裝 置進行通信之狀態時,在基地台間未取得載頻同步的情 況,即使終端裝置使用AFC功能亦很難修正載頻誤差。 即,在基地台間未取得載頻同步的情況,從某終端裝 置看,因爲關於一基地台裝置的載頻誤差和關於其他的基 地台裝置的載頻誤差相異,所以成爲和這些複數台基地台 裝置同時進行通信之狀態時,無法修正載頻誤差。 因爲該主基地台裝置1是訊框時序及載頻的基準台, 所以不必從其他的基地台裝置取得用以取得在基地台間之 訊框時序同步或載頻同步的信號。 例如,主基地台裝置1能以自走主基地台裝置構成, 而該自走主基地台裝置係根據自裝置的內建時脈產生器 (水晶振盪器)所產生之時脈而自行決定信號的發送時序。 201034493 此外,主基地台裝置1亦可係具備有GPS接收機,並使用 GPS信號決定發送時序。 而’該副基地台裝置2、3從其他的基地台裝置(主基 地台裝置或其他的副基地台裝置)取得用以取得在基地台 間之訊框時序同步或載頻同步的信號。 第4圖顯示副基地台裝置2、3之構成。 基地台裝置2、3爲了接收信號,而具有:將接收信號 放大的放大器11;正交解調器12,係對從放大器11所輸 出之接收信號進行正交解調(正交檢波)處理;以及A/D變 換部1 3,係對從正交解調器1 2所輸出之接收信號進行A/D 變換。被變換成數位信號的接收信號被供給DSP(數位信號 處理器)2 0。 又,基地台裝置2、3爲了發送信號,而具有:D/A變 換部15,係將數位發送信號進行D/A變換;正交調變器 16,係對從D/A變換部15所輸出之發送信號進行正交調變 處理;以及放大器17,係將從正交調變器16所輸出之發 送信號放大。 此外,該正交解調器、該A/D變換部13、該D/A變換 部15以及該正交調變器的動作時脈由內建時脈產生器18 所供給。內建時脈產生器18包含有水晶振盪器等,產生既 定頻率的動作時脈。此外,內建時脈產生器18的時脈經由 倍增部19a、19b被供給該A/D變換部13等》 又,內建時脈產生器18的動作時脈亦被供給DSP20, 亦成爲在在DSP20的動作時脈。 在此,供給D/A變換部15之動作時脈的精度影響發送 -19- 201034493 訊框(下行副訊框)之時間長度的精度。因此,若各基地台 裝置之內建時脈產生器18的精度相異,則所產生之發送訊 框的時間長度因各基地台裝置而稍微相異。而,重複發送 訊框時’訊框之時間長度的相異被累積,而在基地台裝置 間之訊框時序產生偏差(通信訊框的時序偏差)(參照第5 圖)。 DSP (信號處理部)20對接收信號及/或發送信號進行信 號處理。201034493 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a base station apparatus. [Prior Art] In a wireless communication system in which a mobile terminal can communicate as in a WiMAX (Worldwide Interoperbility f〇r_Microwave Access), a plurality of base stations are installed in various places. The mobile terminal located in the cell covered by each base station can communicate with the base station covering the area. ^Although the mobile station moves, the base station that becomes the communication target of the mobile terminal is Change 'When the base station is changed, the mobile terminal simultaneously receives signals from the two base stations (the service base station and the target base station). Therefore, in order to smoothly perform the inter-base station movement of the mobile terminal, it is necessary to ensure synchronization between the base stations having the same transmission timing between adjacent base stations. When the base station synchronization is obtained and the mobile terminal moves between the base stations, the mobile terminal can simultaneously receive signals from the two base stations, and the base station can be smoothly moved (hand 〇ver). Here, as a technique for obtaining timing synchronization between base stations, for example, those described in Patent Document 1 are described. Patent Document 1 discloses a technique for acquiring timing synchronization, in which each base station receives GPS signals from GPS satellites, and according to GPS signals, each base station acquires timing synchronization. [Patent Document] 201034493 Patent Document 1: JP-A-59-6642 SUMMARY OF THE INVENTION [Problems to be Solved by the Invention] In WiMAX, an OFDM (Orthogonal Frequency Division Multiplexing) method is employed. In the OFDM-signal, the subcarrier frequency is closely arranged. Since the subcarrier frequency interval is small, if the carrier frequency error is large on the transmitting side and the receiving side of the signal, the OFDM demodulation characteristic is deteriorated. Therefore, the carrier frequency error is required to be small. Therefore, it is necessary to obtain carrier frequency synchronization in a communication booth of e communication which is generally conceived between a base station and a mobile terminal. This carrier frequency synchronization is achieved by the receiving side detecting the carrier frequency error from the received signal and correcting the carrier frequency error of the received signal. In this case, the carrier frequency error of the received signal is detected and corrected by the AFC (Automatic Frequency Control) circuit provided in the receiving circuit. On the other hand, on the premise of the OFDM method, when the base station moves over the mobile terminal, the inventors have obtained knowledge that carrier frequency synchronization is also required between the base stations. The carrier frequency 'synchronization according to the knowledge of the present invention means that the carrier frequencies of the signals transmitted by the base stations to the mobile terminal φ machines in the area are consistent between the base stations, and the carrier frequency synchronization is different. The receiving unit of the frequency synchronization base station or the terminal device detects the carrier frequency error in order to detect the carrier frequency error of the signal, and corrects the carrier frequency error of the received signal. In order to match the carrier frequencies of the transmission signals, each base station on the signal transmission side needs to operate with a common reference signal (clock). However, since the accuracy of the clock generator (crystal oscillator) built in each base station varies, the clock generated by the built-in clock generator of each base station is used as a reference signal, even if each base station wants It is necessary to transmit signals with the known carrier frequency, and also because of the difference in clock frequency accuracy, and the carrier frequency is inevitably different between the bases of 201034493. Therefore, it is generally considered that the clock generated by the built-in clock generator is not suitable as a reference signal for matching the carrier frequencies of the transmission signals between the base stations. Here, as shown in Patent Document 1, when each base station can receive a GPS signal from a GPS satellite, each base station can transmit a signal by using a clock signal included in the GPS signal as a reference signal of the carrier frequency. The carrier frequency is consistent. Since the GPS signal is a signal that can be commonly used by each base station, it is suitable to be a reference signal in which the carrier frequencies of the transmission signals are matched between the stations. However, in the case of using GPS signals, each base station needs to have a GPS receiver, which causes an increase in size and cost. Further, in the case of a base station installed in an environment where the GPS signal cannot be received, such as a room, the GPS signal cannot be received. Further, when the upper-order network connected to each base station is a communication line capable of supplying a clock, such as ISDN, each base station acquires a clock from the ISDN, and can use the clock as a reference signal. The carrier frequency of the transmitted signal is made uniform. However, in a communication system such as WiMAX, which is assumed to be an Internet network as an upper-level network, it is impossible to obtain a clock from the upper-level network. Accordingly, it is an object of the present invention to obtain a carrier frequency between base stations even when a clock generated by a built-in clock generator that is generally considered unsuitable is used as a reference signal for determining a carrier frequency of a transmission signal. Synchronize. In the case of performing communication between the base station device and the terminal device by using the frequency division duplex mode, since the transmission frequency and the reception frequency are different, it is not necessary to consider the interference of the transmission signal and the reception signal, and the plurality of base station devices generally have a low Synchronous action. However, the inventors have come up with the idea that it is preferable to synchronize a plurality of base station apparatuses even in the case of using the frequency division duplex mode. For example, it is assumed that, as shown in Fig. 24(a), a broadcast is performed in which information of the same content is transmitted from a plurality of base station apparatuses BS1 and BS2 to a plurality of terminal apparatuses MS1, MS2, MS3. In this case, as shown in Fig. 24(b), if the frame transmission timing of the broadcast of the plurality of base station apparatuses BS is deviated, the terminal that receives the same inner φ signal from the plurality of base station apparatuses BS1 and BS2 The device MS2, the signal from the other base station device BS2, interferes with the signal from the base station device BS1 of one of the devices. Further, when the terminal apparatus MS2 performs macro diversity or spatial multiplex transmission based on signals transmitted from the plurality of base station apparatuses BS and BS2, if the transmission timings of the base station apparatuses BS1 and BS2 do not match, the effect is lowered. Therefore, in the case as described above, even in the frequency division duplex mode, it is preferable to achieve synchronization between the base station apparatuses. In order to synchronize between the base station apparatuses, it is conceivable that the G p s signal is not used as described in the patent document φ 1, and the synchronization is obtained based on the wireless communication signal. In this case, it is assumed that the base station apparatus that wants to acquire synchronization receives a signal transmitted from another base station apparatus to the terminal apparatus, and detects the transmission timing of the other base station apparatus, thereby using the other base station apparatus. Get synchronized. Further, hereinafter, a method in which the base station apparatus synchronizes based on the transmission signal of another base station apparatus is referred to as "wireless synchronization". However, in the case of the base station apparatus of the frequency division duplex mode, the receiving unit is configured to be a frequency fu suitable for an uplink signal (a signal transmitted from the terminal apparatus to the base station apparatus), and the transmitting unit is configured to be suitable for a downlink signal (from The frequency fd of the signal sent by the base station 201034493 to the terminal device. Therefore, even if a certain base station apparatus wants to receive a downlink signal transmitted from another base station apparatus to the terminal apparatus, the frequency of the downlink signal is fd, so that it is configured as a receiving unit suitable for the frequency fu of the uplink signal. Unable to receive. As such, conventional means for wirelessly synchronizing the base station apparatus in the frequency division duplex mode has not been provided. Accordingly, it is a further object of the present invention to provide means for wirelessly synchronizing a base station apparatus in a frequency division duplex mode. Here, in the case where a certain base station apparatus autonomously determines another base station apparatus (synchronization source) to be a wireless synchronization peer, a plurality of base stations located in the vicinity of the base station apparatus of the synchronization source are created. A base station device that is a synchronization target is selected in the device. However, if the base station device to be synchronized can be freely selected, as shown in Fig. 33, it may happen that a plurality of base station devices (BS) refer to each other as a synchronization target. In this case, since the synchronization timing of each base station apparatus is easily changed, it is not preferable. Therefore, it is preferable to determine the synchronization target by using a tree-like hierarchical structure for the other base station apparatus (sub-base station apparatus) which is a reference base station apparatus (parent base station apparatus). In this case, the number of base stations is base. The image of a pair of step-by-step installations on the same platform must be considered as a basis for the construction of the base layer and the order of the order. It is necessary to install. For the platform to raise the ground level of the base of the installation of the base of the base of the other, he clearly knows the other 'this place needs to be based on the basic installation of his own knowledge to use the installation platform 201034493 . [Means for Solving the Problem] The present invention is a base station apparatus configured to perform wireless communication of an OFDM signal therebetween, and a built-in clock generator having an OFDM signal due to accuracy of frequency generated by the built-in clock The fine base station apparatus of the carrier frequency is characterized in that: the receiving means is configured to transmit the measurement means transmitted from another base station apparatus during the stop transmission, and the OFDM signal is obtained by stopping the transmission of the OFDM signal to the terminal apparatus. The frequency deviation frequency correction means corrects the carrier frequency of the OFDM signal based on the estimation. According to the present invention, the base station apparatus affects the OFDM signal due to the accuracy of the built-in clock frequency. However, the base station apparatus receives the OFDM signal transmitted from another base station and estimates the carrier frequency difference (carrier frequency deviation) of the base station apparatus of the base station apparatus. Then, the base station device transmits the carrier frequency of the OFDM signal according to the estimation. Therefore, the carrier frequency of the base signal is synchronized with the transmission signals of other base station devices. Therefore, according to the present invention, the synchronization of the carrier frequency is obtained between the reference base stations which use the built-in clock as the carrier frequency for determining the transmission signal. Moreover, 'the pulse degree generated by the base station device using the frequency division duplex input terminal and the terminal device to generate the action clock is affected, and the reception is performed on the wireless signal attached to the terminal; It is presumed that the accuracy of the carrier frequency generated by the transmitted clock generator is generated by the carrier frequency of the base station device and other base corrections for the carrier frequency of the transmission number of the terminal device. Under the signal generated by the device, also in the case of communication between each line and the terminal device 201034493, when the base station device is in the receiving state, the other base station device is also in the receiving state, and the base station device becomes the transmitting state. The time zone, other base station devices also become the time zone for the transmission status. Therefore, the base station apparatus cannot receive OFDM signals from other base station apparatuses. However, since the transmission to the terminal device is stopped and the OFDM signal transmitted from the other base station device is received while the terminal device stops transmitting, the transmission from the other base station device can be received even if the frequency division duplexing is performed. OFDM signal. Further, in the present invention, in OFDM, of course, OF DM A (Orthogonal Frequency Division Multiple Connection) which expands OFDM is included. The present invention is not limited to an OFDM signal, and can be applied to a radio signal requiring carrier frequency accuracy such as a multi-carrier system using a carrier signal of a plurality of frequencies. The estimation means is configured to determine the carrier frequency deviation of the OFDM signal based on the estimation of the communication timing deviation of the OFDM signal from the received OFDM signal when the terminal apparatus stops transmitting. It is speculated that it is better. Further, the estimation means includes the phase rotation amount calculation means 'based on the first estimation 偏差 based on the communication timing deviation obtained at the first stop transmission time, and the second 値 different from the time at the time of the first stop transmission. The difference between the second estimated 値 of the communication timing deviation obtained at the transmission time 'calculates the phase rotation amount of the OFDM signal between the first stop transmission time and the second stop transmission time; the time pulse error calculation means' is based on the phase The amount of rotation is used to calculate the error of the clock frequency; and at the same time, it is preferable to estimate the carrier frequency deviation based on the calculated error of the clock frequency. -10 - 201034493 Preferably, the base station apparatus further includes correction means for correcting the timing of the communication frame based on the estimation of the communication timing deviation. The OFDM signal received from another base station device during the stop transmission of the terminal device is preferably the signal signal transmitted by the other base station device to the terminal device. The frequency correcting means corrects the carrier frequency of the received OFDM signal based on the estimated 値 of the carrier frequency deviation. Also, it is preferable to periodically stop the transmission to the terminal device. In this case, the period in which φ stops transmission to the terminal device may be fixed or may be changed. The present invention is a base station apparatus that performs wireless communication with a terminal device by using frequency division duplexing in which the frequency of the uplink signal and the frequency of the downlink signal are different, and the base station apparatus includes: The receiving unit receives the uplink signal from the terminal device at the frequency of the uplink signal; and the second receiving unit receives the downlink signal from the other base station device at the frequency of the downlink signal; and the second receiving unit is in the terminal device The OFDM signal transmitted from another base station device is received while the transmission is stopped. More specifically, the base station apparatus includes: a synchronization error detecting unit that detects synchronization between the other base station apparatus and the own apparatus based on downlink signals of other base station apparatuses received by the second receiving unit The error unit and the correction unit correct the synchronization error based on the synchronization error detected by the synchronization error detecting unit. According to the present invention, the base station device receives the first reception of the uplink signal from the terminal device according to the uplink signal frequency. In addition to the unit, the second receiving unit that receives the downlink signal from the terminal device based on the downlink signal frequency is also provided. 201034493 Therefore, even if the base station apparatus adopts the frequency division duplexing mode, it can receive the upper fr signal from the terminal apparatus, and can also receive the downlink signal transmitted by the other base station apparatus for the wireless synchronization timing. Further, the base station apparatus can synchronize with other base station apparatuses based on the downlink signal ' of the other base station apparatus received by the second receiving unit. In a communication system having a plurality of base station apparatuses, a plurality of base station apparatuses can be configured to simultaneously transmit to the terminal apparatus. Even in the case of frequency division duplexing, synchronization is achieved between the base station devices, and the plurality of base station devices can smoothly receive the same content information to the terminal device at the same time. Therefore, it is possible to perform macro diversity or space division multiplex transmission using broadcast transmission from a plurality of base station apparatuses or signals transmitted from a plurality of base station apparatuses. Further, in the case of a base station apparatus including a distortion compensating unit that performs distortion compensation of an amplifier included in the transmitting unit, it is preferable to include switching means for switching the distortion compensating unit to acquire the second receiving unit via the second receiving unit. The first state of the line signal output from the amplifier and the estimation means (synchronization error detecting unit) receive the second state of the downlink signal from the other base station apparatus via the second receiving unit. In this case, for the distortion compensation, the circuit for supplying the distortion compensation unit to the output of the amplifier of the transmission unit and the lowering frequency for the estimation means (synchronization error detection unit) for supplying the base station device for the wireless synchronization timing can be provided. The circuit of the downstream signal is shared. Here, the distortion compensating unit grasps the nonlinear characteristic of the amplifier by acquiring the signal output from the amplifier included in the transmitting unit, and performs distortion compensation. Since the output signal of the amplifier included in the transmitting unit becomes the downlink signal -12-201034493, the circuit for supplying the output signal of the amplifier to the distortion compensating unit is configured to be suitable for the frequency of the downlink signal. Therefore, in the present invention, the second receiving unit is configured to be a frequency suitable for the downlink signal, and the second receiving unit is also used as a circuit for supplying the output signal of the amplifier to the distortion compensating unit, and the circuit is shared. By the sharing of the circuits, even if the second receiving unit is provided, the circuit scale can be suppressed from increasing. Further, in addition to the distortion compensation, in the case where the signal processing device that generates the signal input to the transmitting unit receives the Q base station device that returns the downlink signal generated by the transmitting unit, it is preferable to provide a switching means for switching the signal. The signal processing device receives the first state of the feedback of the downlink signal generated by the transmitting unit via the second receiving unit, and the estimation means (the synchronization error detecting unit) receives the other base from the other via the second receiving unit. The second state of the signal under the station device. Since the second receiving unit is configured to be suitable for a frequency suitable for the downlink signal, the second receiving unit is also used as a circuit for feeding back the downlink signal generated by the transmitting unit, and the circuit can be shared. By the sharing of the circuits, even if the φ second receiving unit is provided, the circuit scale can be suppressed from increasing. a frequency conversion unit that converts a frequency of at least one of an uplink signal from the terminal device and a signal from at least one of the downlink signals of the other base station device to match the frequency of the two signals, and is provided in the first receiving unit and the second receiving unit At least one of them. The first receiving unit and the second receiving unit are preferably configured such that the two signals having the same processing frequency of the common portion shared by the first receiving unit and the second receiving unit are preferable. In this case, it is also possible to simplify the circuit configuration by providing both the first receiving unit and the second receiving unit as the receiving unit. -13- 201034493 This shared part preferably includes A/D conversion $ for A/D conversion of the two signals. An array antenna comprising a plurality of antennas, wherein the first connection & and the second receiving unit are disposed in each of the plurality of antennas, and the second reception $ is disposed in one of the plurality of antennas or a plurality of antennas The antenna is preferred. & Array antenna method, the second receiving unit can also be installed in the system of one antenna or several antennas. The present invention is a base station apparatus that performs wireless communication with a terminal device by using frequency division duplexing in which the frequency of the uplink signal and the frequency of the downlink signal are different, and the base station apparatus is characterized by The first receiving unit receives the uplink signal from the terminal device at the frequency of the uplink signal; the transmitting unit transmits the downlink signal to the terminal device at the frequency of the downlink signal; and the second receiving unit receives the frequency of the downlink signal from the downlink signal. a downlink signal of another base station device; the synchronization error detecting unit detects a synchronization error between the other base station device and the own device based on a downlink signal of another base station device received by the second receiving unit; And the frequency correction unit estimates the frequency deviation of the base station device based on the synchronization error detected by the synchronization error detecting unit, and corrects the frequency of the uplink signal or the frequency of the downlink signal. In this case, the wireless synchronization correction frequency can also be utilized. Another aspect of the present invention is a base station apparatus that transmits, to a terminal device, a first known signal that can acquire a plurality of modes and a second known signal downlink signal that can acquire a plurality of modes, and features of the base station device The identification unit includes: when the receiving unit receives the signal of the lower 14-201034493 including the first known signal and the second known signal transmitted by the other base station device, according to the received signal The combination of the first known signal pattern and the received second known signal pattern identifies the rank order in which the other base station apparatus is in the hierarchical structure synchronized between the base station apparatuses. According to the present invention, the hierarchy of another base station apparatus can be identified based on a combination of the mode of the first known signal and the mode of the second known signal. Preferably, the identification unit includes: a first recognition unit that recognizes, in a pattern of the received first known signal, which of the plurality of patterns that the first known signal can acquire; and a second recognition unit; The mode identification of which of the plurality of modes that the second known signal can acquire is performed on the mode of the received second known signal. In this case, the modes of the first known signal and the second known signal can be independently identified. Preferably, the first pattern recognition is performed by using an identification unit for identifying a pattern of a known signal having a small number of patterns that can be acquired by the first recognition unit and the second recognition unit; After the pattern recognition and recognition mode, the second pattern recognition is performed by the recognition unit for identifying the pattern of the known signal having the number of patterns that can be acquired by the first recognition unit and the second recognition unit. In this case, pattern recognition can be performed simply or at high speed. Preferably, the mode setting unit is configured to set a mode in which the base station device includes the first known signal and a second known signal transmitted in the downlink signal, and the mode setting unit sets the mode of the first known signal and the second known The mode of the signal is set to a mode in which the hierarchical order ratio is lower than the hierarchical order of the other base station devices that are synchronized between the base stations. In this case, even if each base station apparatus determines the synchronization target autonomously, the hierarchical structure can be naturally constructed. [Embodiment] -15-201034493 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. [Chapter 1 on Frequency Correction] Figure 1 shows a mobile wireless communication system using the TCP/IP network NW such as the Internet as the upper-order network. This communication system includes base station apparatuses (BS: Base Station) 1, 2, and 3 that perform wireless communication with mobile terminals (MS: Mobile Stations) 101, 102, and 103 of the terminal apparatuses. A plurality of (thousands) base stations 1, 2, 3 and an access service control gateway ASN - GW (Access Service Network Gateway) 105. Further, the ASN-GW 105 is connected to the upper-level network NW such as the Internet via the HA (Home Agent) 106. Therefore, the message pack (the data to be connected) transmitted from the servers 107 and 108 of the upper-order network NW such as the Internet to the terminal device passes through the base station devices 1, 2, and 3 to the terminal device 101, 1〇2. 103 is sent. This wireless communication system employs a "WiMAX" (mobile WiMAX) method based on IEEE802.16 supporting an orthogonal frequency division multiple link (OFDMA) system, for example, in order to realize broadband wireless communication. Each of the base station apparatuses 1, 2, and 3 communicates with terminal apparatuses (mobile terminals) 1〇1, 1 02, and 103 located in a cell covered by each of the base station apparatuses 1, 2, and 3. As shown in FIG. 2, in WiMAX, a downlink sub-frame (signal transmission time of the base station apparatus) and an uplink sub-frame (signal reception time of the base station apparatus) in which a basic frame is arranged and arranged in the time direction are created, And use TDD (Time Division Duplex) to transmit and receive the duplex communication system. In addition, the duplex mode is not limited to TDD, and may also be FDD (Frequency Division Duplex). 201034493 - The length of a basic frame is 5msec. The downlink sub-frame is a time zone in which the base station apparatuses 1, 2, and 3 transmit signals to the terminal apparatuses 1, 102 1, 102, and 103 in the area, and the uplink sub-frame is the base station apparatus 1, 2, and 3 receives the self-area. The time zone of the signals of the terminal devices 101, 102, 103 within. In addition, the downlink sub-frame has a pre-signal (Preamb le) with a known signal. As shown in FIG. 3, the plurality of base station apparatuses 1, 2, and 3' in the wireless communication system include at least one primary base station apparatus (primary BS) 1 and a plurality of φ secondary base station apparatuses (sub-BS) 2 , 3. In the present wireless communication system, processing for acquiring frame timing synchronization and carrier frequency synchronization is performed between each of the base station apparatuses 1, 2, and 3. The primary base station device 1 is a reference frame for frame timing and carrier frequency, and the secondary base station devices 2 and 3 directly or indirectly obtain frame timing synchronization and carrier frequency synchronization via the other secondary base station devices. The frame timing synchronization is to synchronize, so that the base station devices 1, 2, and 3 are transmitted at the same timing. In other words, as shown in Fig. 2, the timing of the frame synchronization can be made 'the communication timing of each of the base station apparatuses 1, 2, and 3 can be matched'. The time when a certain base station apparatus (first base station) transmits to the terminal apparatus With the time zone of the lower sub-frame, the other base station device (the second base station) also transmits to the terminal device, and the time zone received by the terminal device (the first base station) from the terminal device (upstream) In the time zone of the sub-frame, other base station devices (second base stations) are also received from the terminal device. By synchronizing the frame timing between the base station devices, the terminal device can smoothly communicate with the base station devices even when the terminal device is handed over, even if it is in a state of communicating with a plurality of base station devices. -17- 201034493 In addition, the carrier frequency synchronization is such that the carrier frequencies of the signals (OFDM (A) signals) transmitted by the base station apparatuses 2 and 3 to the terminal apparatuses are matched between the base station apparatuses. By acquiring the carrier frequency synchronization between the base station devices, and when the terminal device is handed over, the terminal device can smoothly communicate with each of the base station devices even if the plurality of base station devices are in communication. Here, each terminal apparatus has an AFC (Automatic Frequency Control) function that detects an error of a carrier frequency of an OFDM signal received from a base station apparatus, and corrects a carrier frequency error (a transmission side and a reception side) of the received OFDM signal. The difference in carrier frequency). Therefore, each terminal apparatus can perform OFDM demodulation after correcting the error even if there is an error in the carrier frequency of the OFDM signal received from the base station apparatus. However, when the terminal device is in communication, when the plurality of base station devices are in communication, the carrier frequency synchronization is not obtained between the base stations, and it is difficult to correct the carrier frequency error even if the terminal device uses the AFC function. In other words, when carrier frequency synchronization is not obtained between the base stations, it is seen from a certain terminal device that the carrier frequency error of one base station device is different from the carrier frequency error of the other base station device. When the base station device is in the state of simultaneous communication, the carrier frequency error cannot be corrected. Since the main base station apparatus 1 is a reference frame for the frame timing and the carrier frequency, it is not necessary to obtain signals for acquiring the frame timing synchronization or carrier frequency synchronization between the base stations from other base station apparatuses. For example, the main base station device 1 can be configured by a self-propelled main base station device, and the self-propelled main base station device determines the signal according to the clock generated by the built-in clock generator (crystal oscillator) of the device. The timing of the transmission. 201034493 In addition, the main base station apparatus 1 may be equipped with a GPS receiver and use a GPS signal to determine the transmission timing. The sub-base station devices 2, 3 acquire signals for acquiring frame timing synchronization or carrier frequency synchronization between the base stations from other base station devices (main base station devices or other sub-base station devices). Fig. 4 shows the configuration of the sub-base station devices 2, 3. The base station apparatuses 2 and 3 have an amplifier 11 that amplifies the received signal in order to receive the signal, and a quadrature demodulator 12 performs orthogonal demodulation (quadrature detection) processing on the received signal output from the amplifier 11; The A/D conversion unit 13 performs A/D conversion on the received signal output from the quadrature demodulator 12. The received signal converted into a digital signal is supplied to a DSP (Digital Signal Processor) 20 . Further, the base station apparatuses 2 and 3 have a D/A conversion unit 15 for performing D/A conversion on the digital transmission signal, and a quadrature modulator 16 for pairing the D/A conversion unit 15 in order to transmit signals. The output transmission signal is subjected to quadrature modulation processing; and the amplifier 17 amplifies the transmission signal output from the quadrature modulator 16. Further, the orthogonal demodulator, the A/D conversion unit 13, the D/A conversion unit 15, and the operation clock of the orthogonal modulator are supplied from the built-in clock generator 18. The built-in clock generator 18 includes a crystal oscillator or the like to generate an action clock of a predetermined frequency. Further, the clock of the built-in clock generator 18 is supplied to the A/D conversion unit 13 via the multiplication units 19a and 19b, and the operation clock of the built-in clock generator 18 is also supplied to the DSP 20, which is also The clock at the action of DSP20. Here, the accuracy of the operation clock supplied to the D/A conversion unit 15 affects the accuracy of the time length of the transmission -19-201034493 frame (downlink sub-frame). Therefore, if the accuracy of the built-in clock generator 18 of each base station device is different, the length of time of the generated transmission frame is slightly different for each base station device. On the other hand, when the frame is repeatedly transmitted, the difference in the length of the frame is accumulated, and the timing of the frame between the base station devices is deviated (time series deviation of the communication frame) (refer to Fig. 5). The DSP (Signal Processing Unit) 20 performs signal processing on the received signal and/or the transmitted signal.

DSP20的主功能是作爲對接收信號之OFDM解調器的 功能、作爲對發送信號之OFDM調變器的功能、發送和接 收之切換功能、基地台間之訊框時序同步功以及基地台裝 置間的載頻同步功能。在第4圖,DSP20內所示的方塊是 表示這些功能。 在第4圖的載頻修正部21是修正接收信號的載頻。 又’亦設置修正發送信號之載頻的載頻修正部22。 載頻修正部2 1、22根據由推測部23所推測的載頻偏 差’而修正接收信號及/或發送信號的載頻。 接收信號之載頻修正部21的輸出經由切換開關24被 供給解調部(DEM)2 5。在解調部25,對已被修正載頻的接 收信號進行進行解調(OFDM解調)處理。 該切換開關24是在可接收來自終端裝置之信號的通 信模式之期間’對解調部25側供給接收信號,而在通信模 式被停止(中止)的同步模式,對推測部23供給接收信號。 此外,切換開關24的切換由同步控制部26進行。又, 關於通信模式及同步模式將後述。 -20- 201034493 又’ DSP20具備有對發送信號進行調變(OFDM調變) 處理的調變部(MOD)27。此外,在調變部27所產生之信號 的載頻是根據時脈產生器18的時脈頻率由正交調變器16 決定。又’因爲在正交調變器16的載頻誤差和正交解調器 12相同,如後述所示,若在載頻修正部22直接反向地挪 移由推測部23從接收信號所推測之載頻的誤差量,基地台 發送信號的載頻就正確地一致》 由此調變部27所輸出之發送信號經由切換開關28被 φ 供給載頻修正部22。 該切換開關28是作成在可對終端裝置發送信號的通 信模式之期間,對D/A變換部15供給發送信號,而在通信 模式中止的同步模式,不對D/A變換部15供給發送信號。 此切換開關28的切換亦由同步控制部26進行。 在該推測部23,從接收信號檢測係同步信號的前置信 號,再推測在和其他的基地台裝置之間的通信訊框時序偏 差、及在和其他的基地台裝置之間的載頻偏差。 φ 因而,推測部2 3具有:前置信號檢測部2 3 a,係檢測 接收信號所包含的前置信號;及時脈誤差推測部23b,係 推測在其他的基地台裝置和自裝置之間的時脈誤差。 在本實施形態,將位於其他的基地台裝置2所發送之 下行副訊框DL的前頭之前置信號用作基地台間同步所需 的同步信號。因而,該前置信號檢測部2 3 a檢測位於其他 的基地台裝置2所發送之下行副訊框DL的前頭之前置信 號的時序》 此外,作爲同步信號,亦可係中同步、引示信號等。 -21- 201034493 基地台裝置2、3在記憶體具有作爲既知模式之其他的 基地台裝置1、2有使用之可能性的前置信號模式。基地台 裝置2、3的前置信號檢測部23a使用這些既知的前置信號 模式,檢測前置信號的時序等。 在此,因爲前置信號是既知信號,所以前置信號的信 號波形亦是已知。若設取樣後之接收信號爲X(t)、在前置 信號之離散時域的信號爲Ρ(η)(η = 0.....N—1),則對第 6(a)圖所示的接收波X(t),根據下式,在時間方向取P(n) 的滑動相關。 _ [第1數學式] w=0 然後,如第6(b)圖所示,可將接收波x(t)和既知前置 信號模式P(n)之相關値取尖峰値的位置檢測爲前置信號的 時序t。 在檢測部23a,將自裝置2、3的發送時序和所檢測之 前置信號時序t的差檢測爲通信時序偏差(同步時序誤差) 的推測値。此通信時序偏差(通信訊框時序偏差)每當被檢 q 測,就被供給記憶部29,並被儲存於記憶部29。 以前置信號檢測部23a所檢測之通信訊框時序偏差被 供給訊框時序控制部30。訊框時序控制部(TDD控制部)30 係進行用以切換發送和接收的控制。 收到通信訊框時序偏差的訊框時序控制部30將自裝 置的發送時序(發送副訊框時序)朝向正方向挪移所檢測之 通信訊框時序偏差量。藉此,可使自裝置的發送時序和其 他的基地台裝置的發送時序一致,而取得在基地台裝置間 -22- 201034493 的訊框時序同步。 此外,若使發送時序和其他的基地台裝置的發送時序 一致,自然接收時序亦一致。即,成爲在和其他的基地台 裝置之間取得訊框時序同步的狀態。 又,在本實施形態,停止在和終端裝置之間進行通信 的通信模式,因爲使用其他的基地台裝置對終端裝置所發 送之同步信號(前置信號)取得同步,所以即使無用以取得 同步的控制用頻道,亦可取得同步。 〇 該時脈誤差推測部23b根據由前置信號檢測部23a所 檢測之通信訊框時序偏差,推測屬接收側之自裝置之內建 時脈產生器18的時脈頻率和屬發送側之其他的基地台裝 置之內建時脈產生器18的時脈頻率之差(時脈頻率誤差)。 該時脈誤差推測部23b在週期性地執行同步模式的狀 況下,根據在前次之同步模式所檢測之通信訊框時序偏差 tl和在本次之同步模式所檢測之通信訊框時序偏差t2,推 測時脈誤差。此外,可從記憶部29取得前次的時序偏差tl。 φ 例如在載頻是2.6 [GHz]的情況,如第7圖所示,在前 次之同步模式檢測時序偏差T1,假設已將時序修正T1量。 修正後的時序偏差是0 [msec]。然後,在τ= 10秒後之本次 的同步模式(同步時序=t2),亦再檢測時序偏差,假設該時 序偏差是 T2 = 0.1[msec]。 此時,在10秒鐘內所產生之0.1 [msec]的時序偏差是 同步源基地台的時脈週期和同步對象基地台之時脈週期的 誤差的儲存値。 即,在時序偏差和時脈週期之間以下的等式成立。 -23- 201034493 同步源基地台的時脈週期:同步對象基地台之時脈週 期=T : (Τ + Τ2)=10 : (1 0 + 0.000 1) 然後,因爲時脈頻率是時脈週期的倒數,所以 (同步源基地台的時脈頻率-同步對象基地台之時脈 頻率)=同步源基地台的時脈頻率χΤ2/(Τ + Τ2) 与同步源基地台的時脈頻率xO.OOOOl。 因此,在此情況,屬發送側之其他的基地台裝置的時 脈頻率與屬接收側之基地台裝置的時脈頻率有 0.00001 = 10[ppm]的誤差。在時脈誤差推測部23b,依上述 ^ 的方式推測時脈頻率誤差。 而且,因爲載頻和時序偏差一樣地偏差,所以在載頻 亦發生 10[ppm]的偏差,即,2.6[GHz]xlxl0-5 = 26[kHz]的 偏差。如此,在時脈誤差推測部23b,從時脈頻率誤差亦 可推測載頻誤差(載頻偏差)。 時脈誤差推測部2 3 b所推測之載頻誤差被供給載頻修 正部21、22。在本實施形態,如一般之AFC(自動頻率控 制)功能般,可不僅修正接收信號的載頻’而且亦修正發送 _ 信號的載頻。 即,從其他的基地台裝置所發送之OFDM信號的載頻 誤差的推測値亦被供給發送側的載頻修正部22,在此載頻 修正部22,修正對終端機之發送信號的載頻。結果,即使 有載頻誤差,亦在自裝置和其他的基地台裝置之間發送信 號的載頻大致一致。 又,在本實施形態,因爲不是使用一般的AFC功能, 推測接收信號的載頻誤差,而是在求得在取得訊框時序同 -24- 201034493 步上所需之通信訊框時序偏差的推測値後,利用該推測 値,推測載頻誤差,所以在構成上有利。 此外,亦可使用一般的AFC功能,求得從其他的基地 台裝置所發送之OFDM信號的載頻誤差的推測値,再將該 推測値供給發送側的載頻修正部22。 又,在本實施形態,雖然爲了簡化說明,而採用使用 類比正交調變解調器直接接收、產生射頻(RF : Radio Frequency)信號的直接變換收發機構成,但是亦可作成從 ❹ 正交調變解調器接收、產生中頻(IF : Intermediate Frequency)信號的超外差收發機構成。或者,將發送作成 直接變換,而接收作成超外差構成,亦可作成其相反構成。 進而,亦可係以數位電路實現正交調變解調器,將IF頻率 以A/D直接取樣,再以D/A產生之構成。 回到第4圖,該同步控制部26如上述所示,控制中止 通信模式的週期(同步週期),而使執行同步模式。 如以下所示執行同步模式。 Q 首先,副基地台裝置2、3在起動時,將其他的基地台 裝置(主基地台裝置或其他的副基地台裝置)中之一基地台 裝置選爲源基地台裝置,檢測該源基地台裝置所發送之信 號(前置信號;既知信號;同步信號)的接收波(源接收波), 再取得基地台裝置間的訊框時序同步和載頻同步。 此外,將在基地台裝置起動時所進行之基地台同步所 需的處理稱爲起始同步模式。起始同步模式如上述所示在 起動時被執行,更具體而言,在基地台裝置起動後至和終 端裝置的通信開始之間進行。 -25- 201034493 執行起始同步模式後,基地台裝置可和自區域內之終 端裝置進行通信。 可是’在基地台裝置間,因爲時脈精度有變動,隨著 時間的經過’而在基地台裝置間在訊框時序或載頻發生偏 差。 因此’副基地台裝置2、3在既定的時序中止(停止)和 終端裝置的通信(發送信號;下行副訊框),而成爲用以消 除同步偏差的同步模式(已中止通信的同步模式)。 第8圖顯示基地台裝置2、3用以從和終端裝置進行通 ◎ 信的(一般)通信模式切換成接收來自其他的基地台裝置之 信號的同步模式的流程圖。 如第8圖所示’基地台裝置2、3判定是否是應成爲同 步模式的同步時序(步驟S1)。同步時序例如被設爲成爲同 步模式的週期(每既定時間或每既定訊框數)。在以時間設 定週期的情況,例如可設爲約5分鐘。 在是在和終端裝置之間進行通信的一般通信模式時, 在判定到了應移往同步模式之時序的情況(步驟S2),基地 0 台裝置2、3移至同步模式(步驟S3)。同步模式結束時,再 回到一般通信模式(步驟S4)。 基地台裝置2、3藉由即使一面在和終端裝置之間進行 通信’亦一面定期地或因應於需要而隨時執行同步模式, 而即使發生同步偏差,亦可消除之。 基地台裝置2、3成爲同步模式時,和終端裝置之間的 通信(下行副訊框的發送)被停止(中止)’即使在本來成爲下 行副訊框的時間,亦成爲接收信號之狀態。 -26- 201034493 在同步模式’接收其他的基地台裝置2向終端裝置所 發送之信號(OFDM信號)。在本實施形態,將位於其他的基 地台裝置2所發送之下行副訊框DL的前頭之前置信號作 爲基地台間同步所需的同步信號,取得訊框時序同步及載 頻同步。 以上的同步模式結束時,基地台裝置2、3從同步模式 回到一般通信模式’而成爲可和終端裝置之間進行通信的 狀態。 φ 又’同步控制部26具有將使通信模式中止之周期變更 的功能。即’周期控制部26將使通信模式中止之周期,例 如有時分作5份,又有時分作6份。即,周期控制部26可 進行使通信模式中止之周期(同步時序)的適應控制。中止 通信模式之周期(同步時序的間隔)的適應控制,是在同步 偏差(時序偏差或載頻偏差)易變大的情況,縮短中止通信 模式的週期等,以免時序偏差大至頻繁地執行同步模式, 而在不太發生同步偏差的情況,延長停止(中止)通信模式 φ 的週期等,以使執行同步模式的頻次變低。 在本實施形態,同步控制部26根據過去的同步偏差(時 序偏差),而變更週期。 該記憶部29可記憶過去之既知期間量的同步偏差履 歷資訊(過去之1個或複數個時序偏差)。 同步控制部26根據同步偏差履歷資訊,而計算表示同 步偏差之過去傾向的資訊(統計量),再配合該資訊(統計量) 的大小,而變更執行同步模式的週期(頻次)。即,若過去 的同步偏差大,則縮短週期(提高頻次),而若過去的同步 -27- 201034493 偏差小,則延長週期(降低頻次)° 此外,表示同步偏差之過去傾向的資訊(統計量)’亦 可係過去之同步偏差的平均’亦可係過去之同步偏差的分 散値、標準偏差、或平方平均値。 此外,成爲同步模式之週期(間隔)的變更亦可根據對 同步偏差有影響之其他的資訊。例如’因爲環境溫度對時 脈頻率的精度有影響,所以使基地台裝置具備溫度感測 器,取得溫度資訊,再根據溫度資訊變更同步模式之週期 (間隔)。具體而言,可控制成若由溫度感測器所檢測之溫 度的變化大,縮短同步模式之週期(間隔),若溫度的變化 小,延長同步模式之週期(間隔)。 又,因爲同步精度亦受到來自主基地台裝置1之段數 影響,所以亦可因應於來自主基地台裝置1之段數,而變 更同步模式的週期。在此,關於來自主基地台裝置1之段 數,若設主基地台裝置1爲第1段,則如第3圖所示,將 主基地台裝置1作爲源基地台裝置的副基地台裝置2成爲 第2段’而將第2段之基地台裝置2作爲源基地台裝置的 副基地台裝置2成爲第3段。來自主基地台裝置1之段數 愈多的基地台裝置,因爲同步精度愈降低,所以可縮小同 步模式的週期’而段數愈少的基地台裝置,延長同步模式 的週期。 此外,來自主基地台裝置1之段數預先亦可被設定於 各基地台裝置,亦可在同步模式時,取得其他的基地台裝 置(源基地台裝置)的段數,並將對該段數加上1的値作爲 自裝置的段數。要取得其他的基地台裝置(源基地台裝置) 201034493 的段數,例如在WiMΑΧ的情況’因爲作爲前置信號模式, 規定數種,可利用之。具體而言,若對各段預先指派既定 之前置信號模式,進行同步處理的基地台裝置可根據前置 信號模式的識別,而掌握其他的基地台裝置(源基地台裝 置)的段數。 [第2章在分頻雙工的無線同步] 在本第2章所說明的基地台裝置在不矛盾之範圍採用 在第1章所說明之基地台裝置的技術。在本第2章,關於 D 未特別說明的事項,沿用第1章的說明事項。 [2.1 第1實施形態] 第9圖顯示基地台裝置2001a、2001b和終端裝置(移 動終端機;MS: Mobile St at ion)2002a、2002b 之間進行無 線通信的通信系統。在此通信系統,設置複數台基地台裝 置(BS: Base Station)200 1a、200 1 b,可在和區域(cell)內的 終端裝置2002a、2002b之間進行通信。 在此通信系統,作爲雙工方式,採用分頻雙工。在分 φ 頻雙工,藉由使上行信號(從終端裝置往基地台裝置的發送 信號)的頻率fu和下行信號(從基地台裝置往終端裝置的發 送信號)的頻率fd相異,而同時進上行通信和下行通信。作 爲這種通信系統,列舉例如LTE(Long- Term Evolution)、 WCDMA、CDMA2000等的手機系統。 在本實施形態的通信系統,在採用分頻雙工方式下, 亦進行在複數台基地台裝置2001a、2001b之間取得訊框時 序同步的基地台間同步。在本實施形態,藉由「無線同步」 而執行基地台同步,該無線同步是藉由別的基地台裝置(以 -29- 201034493 下稱爲「子BS」)2001b接收成爲母之基地台裝置(以下稱 爲「母BS」)2001a向該母BS2001a內之區域內的終端裝置 2 002a所發送的信號而取得同步。 此外’母B S亦可係還在和其他的基地台裝置之間取得 無線同步時序,利用根據GPS信號決定訊框時序等之無線 同步以外的方法,亦可決定訊框時序。 第10圖顯示子BS2001b的構成。因爲子BS2001b進 行無線通信,所以可接收來自母BS2001a的信號。子 BS2001b具備:天線2010、第1接收部2011、第2接收部 ❹ 2012以及發送部2013。該第2接收部2012的大部分兼具 檢測發送部2013所含之放大器2134之輸出的檢測電路 2016,關於這一點將後述》 又’子BS200 1 b具備有倔環器2014。此循環器2014 是用以對第1接收部2011及第2接收部2012側供給來自 天線20 10的接收信號,並對天線2010側供給從發送部2013 所輸出之發送信號。利用此循環器2014和發送部2013的 第4濾波器,防止來自天線2010的接收信號向發送部2013 ^ 側傳送。又,利用循環器20 1 4和第1接收部的第1濾波器 211〗,防止從發送部2013所輸出之發送信號向第1接收部 2011傳送。還利用僱環器2014和第5濾波器2121,防止 從發送部20 13所輸出之發送信號向第2接收部20 12傳送。 第1接收部2011是用以接收來自終端裝置20 02 b的上 行信號。此第1接收部20 11係以超外差接收機構成,並構 成爲進行IF(中頻)取樣。更具體而言,第1接收部2011具 備:第1濾波器2111、第1放大器2112、第1頻率變換部 -30- 201034493 2113'第2濾波器2114、第2放大器2115、第2頻率變換 部21 16以及A/D變換部21 17。 第1濾波器2111是用以僅使來自終端裝置2002b的上 行信號通過,由僅使上行信號之頻率“通過的帶通濾波器 所構成。通過第1濾波器2111的接收信號被第1放大器(高 頻放大器)2112放大,再由第1頻率變換部2113從頻率fu 變換成第1中頻。此外,第1頻率變換部2113由振盪器 21 13a及混合器21 13b所構成。 φ 第1頻率變換部2113的輸出經由僅使第1中頻通過的 第2濾波器2114,再被第2放大器(中頻放大器)2115放大。 第2放大器2115的輸出被第2頻率變換部2116從第1中 頻變換成第2中頻,再被A/D變換部2117變換成數位信 號。此外,第2頻率變換部2116亦由振盪器2116a及混合 器21 16b所構成。 A/D變換部2117的輸出(第1接收部2011的輸出)被 供給解調電路,而來自終端裝置2002b之接收信號被進行 φ 解調處理。 如此,第1接收部20 11係對將由天線2010所接收之 類比的上行信號變換成數位信號作爲數位信號處理裝置所 構成的解調電路供給數位的上行信號。 又,該發送部2013是經由失真補償部2015接受從調 變電路所輸出之調變信號I、Q,再使從天線2010發送信 號,作爲直接變換發送機所構成。此發送部2013具備:D/A 變換部2131a、2131b、正交調變器2132、第3濾波器2133、 第3放大器(高功率放大器:HPA)2134以及第4濾波器 -31- 201034493 2135 « 該失真補償部2015是進行發送部所含之第3放大器 2134的失真補償,對從調變電路所輸出之調變信號I、Q 進行失真補償後,對發送部供給調變信號I、Q。此外,失 真補償部2015係以數位信號處理裝置構成。此外,在數位 信號處理裝置,亦含有產生調變信號I、Q的調變電路。 該D/A變換部2131a、2131b對各個調變信號I、Q進 行D/A變換。D/A變換部2131a、2131b的輸出被供給正交 調變器2132,再由此正交調變器2132產生載頻是fd(下行 信號頻率)的發送信號。 正交調變器2132的輸出經由僅使頻率fd通過的第3 濾波器2133,被第3放大器2134放大,再經由僅使頻率 fd通過的第4濾波器,從天線20 10被發送,而成爲往終端 裝置2002b的下行信號。 該失真補償部2015要進行發送部2013所含之第3放 大器(HPA)2134的失真補償,需要檢測電路2016,其檢測 是發送部2013的輸出之第3放大器2134的輸出並供給失 真補償部20 1 5。檢測電路20 1 6經由方向性耦合器(省略圖 示)而和第3放大器2134的輸出側連接,對第3放大器2134 之輸出的檢測信號進行放大、頻率變換、A/D變換等後, 對失真補償部(信號處理裝置)2015供給該檢測信號。 更具體而言,檢測電路2016具備:第4放大器(頻率 放大器)2122、第3頻率變換部2123、第6濾波器2124、 第5放大器(中頻放大器)2125、第4頻率變換部2126以及 A/D變換部2 1 27。 201034493 第4放大器(頻率放大器)2122將第3放大器2134之輸 出的檢測信號放大,而第4放大器2122的輸出被第3頻率 變換部2123從下行信號頻率“被變換成第1中頻。此外, 第3頻率變換部2123由振盪器2123a及混合器2123b所構 成。 第3頻率變換部2123的輸出經由僅使從第3頻率變換 部2123所輸出之第1中頻通過的第6濾波器2124,再被 第5放大器(中頻放大器)2125放大。第5放大器2125的輸 φ 出被第4頻率變換部2126從第1中頻變換成第2中頻,再 被A/D變換部2127變換成數位信號。此外,第4頻率變換 部2126亦由振盪器2126a及混合器212 6b所構成。 A/D變換部2127的輸出(檢測電路2016的輸出)被供 給失真補償部2015,並用於失真補償處理。 如此,檢測電路2016構成回授部,其用以使由發送部 20 13所產生之類比的下行信號向失真補償部(信號處理裝 置)2015回授。 0 以上之第1接收部2011、發送部2013以及檢測電路 2016雖然是爲了和終端裝置之間進行通信所需要的功能, 但是在分頻雙工方式的情況,只靠這些功能,無法進行無 線通信。 即’子BS2001b爲了利用無線同步取得和母BS2001a 的同步’子BS2001b需要接收母BS2001a所發送之下行信 號。可是,下行信號的頻率是fd,因爲和上行信號的頻率 fu相異’所以第1接收部2011無法接收》 即’因爲第1接收部2011具備有僅使頻率fu之信號 -33- 201034493 通過的第1濾波器211卜或僅使從頻率fu所變換之第1中 頻通過的第2濾波器2114’所以即使頻率fu以外之頻率(下 行信號的頻率fd)的信號被供給第1接收部2011,亦無法 通過第1接收部201 1。 即’第1接收部2011利用第1接收部2011內所具備 的濾波器2111、2114,成爲適合接收上行信號頻率fu的信 號,而無法接收其他頻率的信號。 因此,在本實施形態的子BS2001b,除了第1接收部 2011以外’還具備有用以接收母BS2001a所發送之頻率fd ❹ 的信號之功能(第2接收部20 12)。 在此,發送部2013是用以發送下行信號,因爲下行信 號的頻率是fd,所以該檢測電路是適合下行信號的頻率fd 者。The main function of DSP20 is as the function of the OFDM demodulator for receiving signals, the function of the OFDM modulator for transmitting signals, the switching function of transmitting and receiving, the timing synchronization between the base stations, and the base station device. Carrier frequency synchronization. In Figure 4, the blocks shown in DSP 20 represent these functions. The carrier frequency correcting unit 21 in Fig. 4 corrects the carrier frequency of the received signal. Further, a carrier frequency correcting unit 22 that corrects the carrier frequency of the transmission signal is also provided. The carrier frequency correcting unit 2 1 and 22 corrects the carrier frequency of the received signal and/or the transmitted signal based on the carrier frequency deviation ' estimated by the estimating unit 23 . The output of the carrier frequency correcting unit 21 that receives the signal is supplied to the demodulation unit (DEM) 25 via the changeover switch 24. The demodulation unit 25 performs demodulation (OFDM demodulation) processing on the received signal of the corrected carrier frequency. The changeover switch 24 supplies a reception signal to the demodulation unit 25 side during a communication mode in which a signal from the terminal device can be received, and supplies a reception signal to the estimation unit 23 in a synchronization mode in which the communication mode is stopped (suspended). Further, the switching of the changeover switch 24 is performed by the synchronization control unit 26. Further, the communication mode and the synchronization mode will be described later. -20- 201034493 The DSP 20 is provided with a modulation unit (MOD) 27 that performs modulation (OFDM modulation) processing of a transmission signal. Further, the carrier frequency of the signal generated by the modulation unit 27 is determined by the quadrature modulator 16 in accordance with the clock frequency of the clock generator 18. Further, since the carrier frequency error of the quadrature modulator 16 is the same as that of the quadrature demodulator 12, as will be described later, the carrier frequency correcting unit 22 directly reverses the estimation by the estimation unit 23 from the received signal. The carrier frequency of the carrier frequency is correctly matched by the error amount of the carrier frequency. The transmission signal output from the modulation unit 27 is supplied to the carrier frequency correction unit 22 via the changeover switch 28 via φ. The changeover switch 28 is configured to supply a transmission signal to the D/A conversion unit 15 while the communication mode can be transmitted to the terminal device, and the synchronization mode is suspended in the communication mode, and the transmission signal is not supplied to the D/A conversion unit 15. The switching of the changeover switch 28 is also performed by the synchronization control unit 26. In the estimation unit 23, the preamble signal of the system synchronization signal is detected from the received signal, and the timing difference between the communication frame and the other base station apparatus and the carrier frequency deviation with the other base station apparatus are estimated. . φ Therefore, the estimation unit 23 has a preamble detection unit 23a that detects a preamble signal included in the reception signal, and a time-of-day error estimation unit 23b that estimates between the other base station device and the self device. Clock error. In the present embodiment, the preceding preamble signal of the downlink sub-frame DL transmitted by the other base station apparatus 2 is used as a synchronization signal required for synchronization between the base stations. Therefore, the pre-signal detecting unit 23 3 a detects the timing of the preceding pre-signal of the sub-frame DL transmitted by the other base station device 2. Further, as the synchronizing signal, the synchronizing and pilot signals may be used. Wait. -21- 201034493 The base station devices 2 and 3 have a pre-signal pattern in which the memory has other possible use of the base station devices 1 and 2 as known modes. The preamble signal detecting unit 23a of the base station devices 2 and 3 detects the timing of the preamble signal and the like using these known preamble signal patterns. Here, since the preamble signal is a known signal, the signal waveform of the preamble signal is also known. If the received signal after sampling is X(t) and the signal in the discrete time domain of the pre-signal is Ρ(η) (η = 0.....N-1), then the picture is (6) The received wave X(t) shown is taken as the sliding correlation of P(n) in the time direction according to the following equation. _ [1st mathematical formula] w=0 Then, as shown in Fig. 6(b), the position of the peak of the received wave x(t) and the known pre-signal pattern P(n) can be detected as The timing t of the pre-signal. The detecting unit 23a detects the difference between the transmission timings of the slave devices 2 and 3 and the detected pre-signal timing t as a communication timing deviation (synchronous timing error). This communication timing deviation (communication frame timing deviation) is supplied to the memory unit 29 every time it is detected, and is stored in the memory unit 29. The frame timing deviation detected by the previous signal detecting unit 23a is supplied to the frame timing control unit 30. The frame timing control unit (TDD control unit) 30 performs control for switching transmission and reception. The frame timing control unit 30 that receives the frame timing deviation shifts the detected communication frame timing deviation amount in the positive direction from the transmission timing (transmission subframe timing) of the device. Thereby, the timing of transmission from the device can be synchronized with the transmission timing of other base station devices, and the frame timing synchronization between the base station devices -22-201034493 can be obtained. In addition, if the transmission timing is matched with the transmission timing of other base station apparatuses, the natural reception timing also coincides. In other words, the frame timing synchronization is obtained between the other base station devices. Further, in the present embodiment, the communication mode for communication with the terminal device is stopped, and since the synchronization signal (preamble signal) transmitted from the terminal device is synchronized using another base station device, even if there is no synchronization for synchronization. Control channels can also be synchronized. The clock error estimating unit 23b estimates the clock frequency of the built-in clock generator 18 of the own device on the receiving side and the other side of the transmitting side based on the timing difference of the communication frame detected by the pre-signal detecting unit 23a. The difference in clock frequency (clock frequency error) of the built-in clock generator 18 of the base station device. The clock error estimating unit 23b determines the communication frame timing offset t1 detected in the previous synchronization mode and the communication frame timing deviation t2 detected in the current synchronization mode in a state where the synchronization mode is periodically executed. , guess the clock error. Further, the previous timing offset tl can be obtained from the memory unit 29. φ For example, when the carrier frequency is 2.6 [GHz], as shown in Fig. 7, the timing deviation T1 is detected in the previous synchronization mode, assuming that the timing correction T1 has been made. The corrected timing offset is 0 [msec]. Then, in the current synchronization mode (synchronous timing = t2) after τ = 10 seconds, the timing deviation is also detected again, assuming that the timing deviation is T2 = 0.1 [msec]. At this time, the timing deviation of 0.1 [msec] generated in 10 seconds is the storage 値 of the error of the clock period of the synchronization source base station and the clock period of the synchronization target base station. That is, the following equation between the timing deviation and the clock period is established. -23- 201034493 Synchronization source base station clock cycle: Synchronization target base station clock cycle = T : (Τ + Τ 2) = 10 : (1 0 + 0.000 1) Then, because the clock frequency is the clock cycle Countdown, so (synchronization source base station clock frequency - synchronization target base station clock frequency) = synchronization source base station clock frequency χΤ 2 / (Τ + Τ 2) and synchronization source base station clock frequency xO.OOOOl . Therefore, in this case, the clock frequency of the other base station apparatus on the transmitting side and the clock frequency of the base station apparatus belonging to the receiving side have an error of 0.00001 = 10 [ppm]. The clock error estimation unit 23b estimates the clock frequency error in accordance with the above ^. Further, since the carrier frequency and the timing deviation are equally varied, a deviation of 10 [ppm] occurs in the carrier frequency, that is, a deviation of 2.6 [GHz] xlxl0-5 = 26 [kHz]. As described above, the clock error estimating unit 23b can estimate the carrier frequency error (carrier frequency deviation) from the clock frequency error. The carrier frequency error estimated by the clock error estimating unit 2 3 b is supplied to the carrier frequency correcting units 21 and 22. In the present embodiment, as in the general AFC (Automatic Frequency Control) function, not only the carrier frequency of the received signal but also the carrier frequency of the transmitted signal can be corrected. In other words, the carrier frequency error of the OFDM signal transmitted from the other base station apparatus is also supplied to the carrier frequency correcting unit 22 on the transmitting side, and the carrier frequency correcting unit 22 corrects the carrier frequency of the transmission signal to the terminal. . As a result, even if there is a carrier frequency error, the carrier frequency of the signal transmitted between the self-device and the other base station devices is substantially the same. Further, in the present embodiment, since the general AFC function is not used, the carrier frequency error of the received signal is estimated, and the estimation of the timing difference of the communication frame required at the step of acquiring the frame timing -24-201034493 is obtained. After that, the estimation error is used to estimate the carrier frequency error, which is advantageous in terms of configuration. Further, the general AFC function can be used to estimate the carrier frequency error of the OFDM signal transmitted from another base station device, and the estimated 値 can be supplied to the carrier frequency correcting unit 22 on the transmitting side. Further, in the present embodiment, in order to simplify the description, a direct conversion transceiver that directly receives and generates a radio frequency (RF) signal using an analog quadrature modulation demodulator is used, but it may be orthogonally configured from ❹. The modulation demodulator is configured to receive and generate an intermediate frequency (IF: Intermediate Frequency) signal. Alternatively, the transmission may be directly converted, and the reception may be made into a super-heterodyne configuration, or the opposite configuration may be made. Further, the quadrature modulation demodulator may be implemented by a digital circuit, and the IF frequency is directly sampled by A/D and then generated by D/A. Returning to Fig. 4, the synchronization control unit 26 controls the suspension of the communication mode cycle (synchronization cycle) as described above, and causes the synchronization mode to be executed. The sync mode is executed as shown below. Q First, when the sub-base station devices 2 and 3 are activated, one of the other base station devices (the main base station device or another sub-base station device) is selected as the source base station device, and the source base is detected. The received wave (source received wave) of the signal (preamble signal; known signal; synchronization signal) transmitted by the station device, and then the frame timing synchronization and carrier frequency synchronization between the base station devices are obtained. Further, the processing required for the base station synchronization performed at the time of starting the base station apparatus is referred to as the initial synchronization mode. The initial synchronization mode is performed at the time of starting as described above, more specifically, between the start of the base station apparatus and the start of communication with the terminal apparatus. -25- 201034493 After performing the initial synchronization mode, the base station device can communicate with the terminal devices in the self zone. However, there is a variation in the timing of the frame or the carrier frequency between the base station devices due to fluctuations in clock accuracy between the base station devices. Therefore, the sub-base station devices 2, 3 stop (stop) communication with the terminal device (transmission signal; downlink sub-frame) at a predetermined timing, and become a synchronization mode for canceling the synchronization deviation (synchronization mode in which communication is aborted) . Fig. 8 is a flow chart showing the synchronization mode in which the base station devices 2, 3 switch from the (general) communication mode of the communication with the terminal device to receive signals from other base station devices. As shown in Fig. 8, the base station apparatuses 2 and 3 determine whether or not the synchronization timing is to be the synchronization mode (step S1). The synchronization timing is set, for example, to the period of the synchronization mode (per predetermined time or number of frames). In the case where the period is set by time, for example, it can be set to about 5 minutes. In the normal communication mode in which communication is performed with the terminal device, when it is determined that the synchronization mode is to be shifted (step S2), the base station devices 2, 3 move to the synchronization mode (step S3). When the synchronization mode ends, it returns to the normal communication mode (step S4). The base station devices 2, 3 can perform the synchronization mode at any time periodically or in response to the need to communicate with the terminal device, and can be eliminated even if a synchronization deviation occurs. When the base station devices 2 and 3 are in the synchronous mode, communication with the terminal device (transmission of the downlink sub-frame) is stopped (suspended), and the received signal is in a state of being received even when it is originally a downlink subframe. -26- 201034493 receives a signal (OFDM signal) transmitted from the other base station device 2 to the terminal device in the synchronous mode. In the present embodiment, the preceding preamble signal of the sub-frame DL transmitted by the other base station apparatus 2 is used as a synchronization signal required for synchronization between the base stations, and frame timing synchronization and carrier frequency synchronization are obtained. When the above synchronization mode is completed, the base station apparatuses 2, 3 return from the synchronous mode to the normal communication mode', and the communication with the terminal device is possible. The φ and 'synchronization control unit 26 has a function of changing the period in which the communication mode is suspended. In other words, the period in which the cycle control unit 26 suspends the communication mode is, for example, divided into five, and may be divided into six. In other words, the cycle control unit 26 can perform adaptive control of the cycle (synchronization timing) in which the communication mode is suspended. The adaptive control of the period in which the communication mode is suspended (interval of the synchronization timing) is a case where the synchronization deviation (timing deviation or carrier frequency deviation) tends to become large, and the period in which the communication mode is suspended is shortened, so that the timing deviation is large to be frequently performed. Mode, in the case where the synchronization deviation does not occur, the period of stopping (suspension) the communication mode φ is extended to make the frequency of executing the synchronization mode low. In the present embodiment, the synchronization control unit 26 changes the cycle based on the past synchronization deviation (chronological deviation). The memory unit 29 can memorize the synchronization deviation history information (the past one or a plurality of timing deviations) of the past known period amount. The synchronization control unit 26 calculates information (statistics) indicating the past tendency of the synchronization deviation based on the synchronization deviation history information, and changes the period (frequency) of the execution synchronization mode in accordance with the magnitude of the information (statistic). In other words, if the past synchronization deviation is large, the period is shortened (increased frequency), and if the past synchronization -27-201034493 is small, the period is shortened (reduced frequency). In addition, the information indicating the past tendency of the synchronization deviation (statistics) ) 'can also be the average of the past synchronization deviations' can also be the dispersion 标准, standard deviation, or square mean 过去 of the past synchronization deviation. Further, the change of the period (interval) in the synchronization mode may be based on other information that affects the synchronization deviation. For example, since the ambient temperature affects the accuracy of the clock frequency, the base station device is provided with a temperature sensor to obtain temperature information, and the period (interval) of the synchronization mode is changed based on the temperature information. Specifically, it is possible to control the period (interval) of the synchronization mode to be large if the temperature detected by the temperature sensor is large, and to shorten the period (interval) of the synchronization mode if the temperature changes little. Further, since the synchronization accuracy is also affected by the number of segments from the main base station device 1, the period of the synchronization mode can be changed in accordance with the number of segments from the main base station device 1. Here, regarding the number of segments from the main base station device 1, if the main base station device 1 is the first segment, the main base station device 1 is used as the sub-base station device of the source base station device as shown in FIG. 2 becomes the second stage', and the sub-base station apparatus 2 which uses the base station apparatus 2 of the second stage as the source base station apparatus becomes the third stage. The more base station devices from the main base station device 1, the more the synchronization accuracy is reduced, the smaller the number of segments in the synchronization mode can be reduced, and the period of the synchronization mode is extended. Further, the number of segments from the main base station device 1 may be set in advance to each base station device, or the number of other base station devices (source base station devices) may be acquired in the synchronous mode, and the segment will be acquired. The number plus 1 is used as the number of segments of the device. In order to obtain the number of segments of the other base station device (source base station device) 201034493, for example, in the case of WiMΑΧ, it is available as a pre-signal mode. Specifically, if a predetermined preamble signal mode is assigned to each segment in advance, the base station device that performs the synchronization process can grasp the number of segments of other base station devices (source base station devices) based on the identification of the preamble signal mode. [Chapter 2 Wireless Synchronization in Frequency Division Duplex] The base station apparatus described in this Chapter 2 uses the technology of the base station apparatus described in Chapter 1 without contradiction. In this Chapter 2, the items that are not specified in D follow the instructions in Chapter 1. [2.1 First Embodiment] Fig. 9 shows a communication system for performing wireless communication between the base station apparatuses 2001a and 2001b and the terminal apparatuses (mobile terminals: MS: Mobile Sites) 2002a and 2002b. In this communication system, a plurality of base station devices (BS: Base Station) 200 1a, 200 1 b are provided, and communication can be performed between the terminal devices 2002a and 2002b in the cell. In this communication system, as a duplex mode, frequency division duplexing is employed. In the φ frequency duplexing, the frequency fu of the uplink signal (the transmission signal from the terminal device to the base station device) and the frequency fd of the downlink signal (the transmission signal from the base station device to the terminal device) are different, while Incoming uplink communication and downlink communication. As such a communication system, for example, a mobile phone system such as LTE (Long-Terminal Evolution), WCDMA, or CDMA2000 is cited. In the communication system of the present embodiment, in the frequency division duplexing mode, the inter-base station synchronization for obtaining the frame timing synchronization between the plurality of base station apparatuses 2001a and 2001b is also performed. In the present embodiment, base station synchronization is performed by "wireless synchronization", which is received by another base station device (referred to as "sub-BS" under -29-201034493) 2001b as a base station device. (hereinafter referred to as "parent BS") 2001a acquires synchronization with a signal transmitted from the terminal device 2 002a in the area in the parent BS 2001a. In addition, the parent BS can also obtain wireless synchronization timing with other base station devices, and can determine the frame timing by using a method other than wireless synchronization such as determining the frame timing based on the GPS signal. Fig. 10 shows the configuration of the sub-BS 2001b. Since the sub BS 2001b performs wireless communication, it can receive a signal from the parent BS 2001a. The sub BS 2001b includes an antenna 2010, a first receiving unit 2011, a second receiving unit ❹ 2012, and a transmitting unit 2013. Most of the second receiving unit 2012 has a detection circuit 2016 that detects the output of the amplifier 2134 included in the transmitting unit 2013. In this regard, the sub-BS 200 1 b, which will be described later, is provided with a looper 2014. This circulator 2014 is for supplying a reception signal from the antenna 20 10 to the first reception unit 2011 and the second reception unit 2012 side, and supplies a transmission signal output from the transmission unit 2013 to the antenna 2010 side. By using the circulator 2014 and the fourth filter of the transmitting unit 2013, the reception signal from the antenna 2010 is prevented from being transmitted to the transmitting unit 2013 side. Further, the circulator 20 214 and the first filter 211 of the first receiving unit prevent transmission of the transmission signal output from the transmission unit 2013 to the first receiving unit 2011. Further, the duty ringer 2014 and the fifth filter 2121 are used to prevent the transmission signal output from the transmitting unit 203 to be transmitted to the second receiving unit 208. The first receiving unit 2011 is for receiving an uplink signal from the terminal device 20 02 b. The first receiving unit 20 11 is configured by a super-heterodyne receiver and configured to perform IF (Intermediate Frequency) sampling. More specifically, the first receiving unit 2011 includes a first filter 2111, a first amplifier 2112, a first frequency converting unit -30-201034493 2113', a second filter 2114, a second amplifier 2115, and a second frequency converting unit. 21 16 and an A/D conversion unit 21 17. The first filter 2111 is configured to pass only an uplink signal from the terminal device 2002b, and is configured by a band pass filter that passes only the frequency of the uplink signal. The received signal passing through the first filter 2111 is used as the first amplifier ( The high frequency amplifier 2112 is amplified, and is converted from the frequency fu to the first intermediate frequency by the first frequency converting unit 2113. The first frequency converting unit 2113 is composed of an oscillator 21 13a and a mixer 21 13b. The output of the conversion unit 2113 is amplified by the second amplifier 2114 that passes only the first intermediate frequency, and is further amplified by the second amplifier (intermediate frequency amplifier) 2115. The output of the second amplifier 2115 is converted from the first by the second frequency conversion unit 2116. The frequency is converted into the second intermediate frequency, and is converted into a digital signal by the A/D conversion unit 2117. The second frequency conversion unit 2116 is also composed of an oscillator 2116a and a mixer 21 16b. The output of the A/D conversion unit 2117 The output of the first receiving unit 2011 is supplied to the demodulation circuit, and the received signal from the terminal device 2002b is subjected to φ demodulation processing. Thus, the first receiving unit 20 11 is an analogous uplink signal to be received by the antenna 2010. Transform into a digital signal The digital signal is supplied to the demodulation circuit formed by the digital signal processing device. The transmission unit 2013 receives the modulated signals I and Q output from the modulation circuit via the distortion compensation unit 2015, and then causes the slave antenna 2010. The transmission signal is configured as a direct conversion transmitter. The transmission unit 2013 includes D/A conversion units 2131a and 2131b, a quadrature modulator 2132, a third filter 2133, and a third amplifier (high power amplifier: HPA) 2134. And the fourth filter-31-201034493 2135 « The distortion compensating unit 2015 performs distortion compensation of the third amplifier 2134 included in the transmitting unit, and performs distortion compensation on the modulated signals I and Q output from the modulation circuit. The modulation unit supplies the modulation signals I and Q. The distortion compensation unit 2015 is configured by a digital signal processing device. The digital signal processing device also includes a modulation circuit for generating the modulation signals I and Q. The D/A conversion units 2131a and 2131b perform D/A conversion on the respective modulated signals I and Q. The outputs of the D/A conversion units 2131a and 2131b are supplied to the quadrature modulator 2132, and the quadrature modulator 2132 is thereby provided. The generated carrier frequency is fd (downstream signal The transmission signal of the quadrature modulator 2132 is amplified by the third amplifier 2134 via the third filter 2133 through which only the frequency fd passes, and then from the antenna 20 via the fourth filter that passes only the frequency fd. 10 is transmitted and becomes a downlink signal to the terminal device 2002b. The distortion compensating unit 2015 performs distortion compensation of the third amplifier (HPA) 2134 included in the transmitting unit 2013, and the detection circuit 2016 is required, and the detection is the transmission unit 2013. The output of the third amplifier 2134 is output and supplied to the distortion compensating unit 20 15 . The detection circuit 20 16 is connected to the output side of the third amplifier 2134 via a directional coupler (not shown), and amplifies, frequency-converts, A/D-converts, etc. the detection signal output from the third amplifier 2134. The distortion compensating unit (signal processing device) 2015 supplies the detection signal. More specifically, the detection circuit 2016 includes a fourth amplifier (frequency amplifier) 2122, a third frequency conversion unit 2123, a sixth filter 2124, a fifth amplifier (intermediate frequency amplifier) 2125, a fourth frequency conversion unit 2126, and A. /D conversion unit 2 1 27 . 201034493 The fourth amplifier (frequency amplifier) 2122 amplifies the detection signal of the output of the third amplifier 2134, and the output of the fourth amplifier 2122 is "converted from the downlink signal frequency to the first intermediate frequency by the third frequency conversion unit 2123. The third frequency conversion unit 2123 is composed of an oscillator 2123a and a mixer 2123b. The output of the third frequency conversion unit 2123 passes through the sixth filter 2124 that passes only the first intermediate frequency output from the third frequency conversion unit 2123. Further, it is amplified by the fifth amplifier (intermediate frequency amplifier) 2125. The output φ of the fifth amplifier 2125 is converted from the first intermediate frequency to the second intermediate frequency by the fourth frequency converting unit 2126, and is converted into the second intermediate frequency by the A/D conversion unit 2127. The fourth bit frequency conversion unit 2126 is also composed of an oscillator 2126a and a mixer 212 6b. The output of the A/D conversion unit 2127 (the output of the detection circuit 2016) is supplied to the distortion compensating unit 2015, and is used for distortion compensation. In this way, the detection circuit 2016 constitutes a feedback unit for causing the analog downlink signal generated by the transmission unit 203 to be fed back to the distortion compensating unit (signal processing device) 2015. 0 or more of the first receiving unit 2011, The delivery unit 2013 and the detection circuit 2016 are functions required for communication with the terminal device. However, in the case of the frequency division duplex mode, wireless communication is not possible only by these functions. That is, the sub-BS 2001b uses wireless synchronization. The synchronization with the parent BS 2001a is obtained. The sub-BS 2001b needs to receive the downlink signal transmitted by the parent BS 2001a. However, the frequency of the downlink signal is fd, because it is different from the frequency fu of the uplink signal, so the first receiving unit 2011 cannot receive it. The first receiving unit 2011 includes the first filter 211 that passes only the signal of the frequency fu-33-201034493 or the second filter 2114 that passes only the first intermediate frequency converted from the frequency fu. The signal of the frequency other than the frequency (the frequency fd of the downlink signal) is supplied to the first receiving unit 2011, and the first receiving unit 201 1 cannot be used. That is, the first receiving unit 2011 uses the filter 2111 provided in the first receiving unit 2011. 2114 is a signal suitable for receiving the uplink signal frequency fu, and cannot receive signals of other frequencies. Therefore, in the sub-BS 2001b of the present embodiment, in addition to the first receiving unit In addition to 2011, there is a function of receiving a signal of the frequency fd 发送 transmitted by the parent BS 2001a (second receiving unit 20 12). Here, the transmitting unit 2013 is for transmitting a downlink signal because the frequency of the downlink signal is fd. Therefore, the detection circuit is suitable for the frequency fd of the downlink signal.

即,用以接收母BS2001a所發送之下行信號的電路(第 1接收部20 11)、檢測從發送部2013所輸出之發送信號的 檢測電路(回授部)2016都成爲適合下行信號的頻率fd者。 又,檢測電路2 0 1 6的功能是將所檢測之信號變換成數位信 號,和將所接收之信號變換成數位信號之接收部的功能類 似。 因此,在本實施形態,該檢測電路(回授部)2016亦兼 具作爲用以接收母BS2 001a所發送之頻率fd的下行信號之 第2接收部20 12的功能。 因爲將檢測電路20 1 6亦用作第2接收部20 1 2,所以 在本實施形態,分別於檢測電路20 1 6的輸入側和輸出側設 置切換開關SW1、SW2。第1切換開關SW1配置於檢測電 -34- 201034493 路20 16之第4放大器2122的輸入側。藉由這些切換開關 SW1、SW2的切換,而可將從第4放大器2122至A/D變換 部2127的電路用作第2接收部20 12及檢測電路20 16。 此外,因爲從發送部2013所輸出之信號由僱環器2014 將大部分向天線2010側輸出,所以不會被供給第2接收部 20 12 側。 第1切換開關SW1將發送部2013之第4濾波器2135 的輸出和從循環器2014所輸出之接收信號選擇性地供給 〇 第4放大器21 22。又,在循環器2014和第1切換開關SW1 之間,配置僅使頻率fd之信號通過的第5濾波器2121,僅 使在從循環器20 14所輸出之接收信號中頻率匕之下行信 號通過向第1切換開關SW1側輸出。 第2切換開關SW2選擇性地向失真補償部2015或訊 框同步誤差檢測部2017供給在檢測電路(第2接收部 20 1 2)20 1 6之A/D變換部2127的輸出。 在將從第4放大器2122至A/D變換部2127的電路用 φ 作檢測電路(回授部)2016的情況,第1切換開關SW1被切 換成對第4放大器21 22供給發送部20 13之第3放大器2134 的輸出,同時第2切換開關SW2被切換成對失真補償部 2015供給A/D變換部2127的輸出。將此時之狀態稱爲第1 狀態。 另一方面,在將從第4放大器2122至A/D變換部2127 的電路用作第2接收部2012的情況,第1切換開關SW1 被切換成對第4放大器2122供給由天線2010所接收之信 號,同時第2切換開關SW2被切換成對訊框同步誤差檢測 -35- 201034493 部2017供給A/D變換部2127的輸出。此外,將此時之狀 態稱爲第2狀態。 第1及第2切換開關SW1、SW2的切換控制由子 BS2001b的控制部(省略圖示)所進行。第11圖顯示第1及 第2切換開關SW1、SW2的控制方法。子BS2001b雖然平 常位於和終端裝置2 0 02b進行通信之一般通信之狀態,但 是成爲週期性地進行無線通信的無線同步之狀態(第2狀 態)。 如第U圖所示,在無線同步之狀態,第1切換開關 @ SW1被切換至天線2010側,同時第2切換開關SW2被切 換至訊框同步誤差檢測部20 1 7側。 因而,訊框同步誤差檢測部 2017可取得來自母 BS2001a的下行信號。訊框同步誤差檢測部2017利用下行 信號所含之前置信號等的既知信號,檢測母BS2001a的訊 框發送時序,同時檢測和在自裝置2001b之訊框發送時序 的誤差(訊框同步誤差)。具體而言,子BS2001b檢測位於 所接收之下行訊框中的既知位置之既知信號的時序,並檢 q 測母BS200 1 a的訊框發送時序。然後,比較所檢測之母 BS2001a的訊框發送時序和自裝置2001b的訊框發送時 序,而檢測訊框同步誤差。 所檢測之訊框同步誤差被供給訊框計數器修正部 2018。訊框計數器修正部2018因應於所檢測之訊框同步誤 差而修正決定訊框發送時序之訊框計數器的値。藉此,子 BS2001b可變成和母BS2001a同步。此外,同步誤差的檢 測、修正對象未限定爲訊框時序,亦可係符號時序或儲存 -36- 201034493 格(slot)時序。 無線同步結束時,第1切換開關SW1被切換至第3放 大器(HPA)2 134側,同時第2切換開關SW2被切換至失真 補償部2015側。因而,子BS200 lb回到一般通信狀態。此 外,在第11圖,雖然在下行一個訊框量的時間進行無線同 步,但是亦可使用複數個訊框量的時間進行無線同步。 如上述所示,雖然除了無線同步時以外,檢測第3放 大器2134之輸出的信號被供給失真補償部2015,但是失 φ 真補償部2015並不是一直需要第3放大器2134之輸出, 而如第12圖所示,週期性地取得第3放大器2134輸出的 檢測信號。此外,失真補償部2015 —直進行失真補償本身。 因爲失真補償所需的檢測信號取得處理和無線同步處 理完全是不同的控制,所以各自在獨自的時序被執行,而 在本實施形態,因爲將檢測電路2016和第2接收部2012 共用化,所以需要作成不同時進行兩處理。 因此,在子BS2001b的控制部(省略圖示),如第12圖 φ 所示,設定兩處理的執行時序,以免同時進行失真補償所 需的檢測信號取得處理和無線同步處理。 第1 2圖雖然以失真補償所需之檢測信號取得處理和 無線同步處理的執行週期都是固定爲前提,但是在任一方 或雙方之處理的執行週期不是固定的情況,亦有同時執行 兩處理的可能性。在此情況,該控制部進行第13圖之無線 同步互斥處理,以免同時執行失真補償所需之檢測信號取 得處理和無線同步處理的執行週期。 無線同步互斥處理如第13圖所示,在想要執行無線同 -37- 201034493 步的情況,預先判定是否和失真補償所需之檢測信號取得 時序一致。在不一致的情況,將第1及第2切換開關SW1、 SW2切換成第2狀態,並執行無線同步。又,在一致的情 況,在使藉失真補償部2015之檢測信號取得中止後,將第 1及第2切換開關SW1、SW2切換成第2狀態,並執行無 線同步。因而,可在失真補償部2015無法取得檢測信號之 狀態,防止算出失真補償所需的參數,而可防止以後之失 真補償的精度降低。 此外,如第12圖所示,在比無線同步更頻繁地進行失 _ 真補償所需之檢測信號取得的情況,使頻次少的無線同步 優先,可將對兩處理的影響抑制爲比較低。可是,在比失 真補償所需之檢測信號取得更頻繁地進行無線同步的情 況,使失真補償優先或中止無線同步都可。 依上述之方式,在母BS2001a和子BS2001b之間可取 得同步時,即使進行從兩基地台裝置2001a、2001b同時向 多台終端裝置發送同一內容之資訊的廣播發送,亦可防止 來自兩基地台裝置2001a、2001b的信號發生干涉。 Λ 〇 又,因爲可取得兩基地台裝置2001a、2001b的同步, 所以若從兩基地台裝置2001a、2001b發送同一內容的信 號,可在終端裝置2002a、2002b側進行巨分集(macro diversity)或空間多工傳送》 [2.2 第2實施形態] 第14圖顯示第2實施形態之子BS2001b的構成。在本 第2實施形態,是不使第2接收部2012兼作檢測電路 2016’而作成不同的電路。在檢測電路2016之各元件 -38- 201034493 2162〜2167是和在第2接收部2012之各元件2122~2127 — 樣。又,在變形例,對於和第2圖的電路共用之構成附加 相同的符號。 若依據此變形例,可同時進行無線同步所需的接收和 失真補償所需之檢測信號取得。此外,亦可省略檢測電路 20 16或失真補償部2015,而將從調變電路所輸出之調變信 號I、Q直接供給D/A變換部2131a、2131b。 [2.3 第3實施形態] φ 第15圖顯示第3實施形態之子BS2001b的構成。在本 第3實施形態,係在第10圖所示之第1實施形態的電路, 省略失真補償部2015,而構成爲將檢測電路(回授部)2016 的輸出供給調變電路(數位信號處理裝置)2020,並將由發 送部20 13所產生之下行信號向調變電路(數位信號處理裝 置)2020回授。 下行信號的回授例如是用以因應於回授量而修正由調 變電路2020所產生之調變信號I、Q的時序誤差等。其中, φ 下行信號之回授的目的未特別受到限定,只要在數位信號 處理裝置2020產生供給發送部2013之輸入側的信號(調變 信號I、Q),由發送部2013所產生之類比下行信號的檢測 値被回授,其回授量(檢測値)被利用於產生供給發送部 2013之輸入側的信號(調變信號I、Q)者即可。 又,在第3實施形態,被供給檢測電路(回授部)2016 的下行信號不是從第3放大器2134所輸出,而是從第3濾 波器2133所輸出(輸入第3放大器2134)。 在此,如第1實施形態所示,爲了在第3放大器2134 -39- 201034493 的失真補償而進行下行信號之回授的情況,需要對調變電 路2020供給檢測第3放大器2134之輸出者。 另一方面,若放大器之失真補償不是目的,只要對調 變電路(信號處理裝置)20 20供給檢測第3濾波器2133的輸 出(正交調變器2132的輸出)者即可。此外,即使是不以放 大器之失真補償爲目的的情況,亦可將檢測第3放大器 2134的輸出者供給調變電路(信號處理裝置)2020。 在第3實施形態,和第1實施形態一樣,除了無線同 步時以外,第1切換開關SW1被切換至發送部2013側, 同時第2切換開關 SW2被切換至調變電路(信號處理裝 置)2020側,以成爲由發送部2013所產生之下行信號的檢 測信號被供給調變電路2 020的第1狀態(一般通信狀態)。 又,無線同步時,第1切換開關SW1被切換至天線2010 側,同時第2切換開關S W2被切換至訊框同步誤差檢測部 2 0 1 7 側。 因而,訊框同步誤差檢測部 2017可取得來自母 BS200 1 a的下行信號。 此外,關於在第3實施形態未特別說明的事項,是和 第1實施形態一樣。 [2.4 第4實施形態] 第16圖顯示第4實施形態之子BS2001b的構成。此子 BS2001b亦和上述之實施形態的子BS2001b —樣,爲了進 行無線同步,而可接收來自母BS2001a的信號。子BS2001b 具備:天線2010、第1接收部(超外差接收機)2011、第2 接收部(超外差接收機)2012以及發送部 2013。又,子 201034493 BS2 00 lb具備僱環器2014。此外,關於在第4實施形態未 特別說明的事項,是和上述的實施形態一樣。 如此,第4實施形態之子BS2001b的基本構成是和上 述之實施形態的子BS2001b —樣。尤其,和第14圖之第2 實施形態的子BS2001b類似。其中,在第4實施形態,不 是如第14圖的第2實施形態所示,獨立地設置第1接收部 2011和第2接收部2012,而是第1接收部2011和第2接 收部2012共用那些之電路構成的一部分。即,第〗接收部 〇 2011及第2接收部2012具有由第1接收部2011及第2接 收部2012之雙方所使用的共有部2023。 在此,第1接收部2011是用以接收來自終端裝置200 2b 的上行信號(頻率fu),第2接收部2012是用以接收來自母 BS200 1 a的下行信號(頻率fd)。 即,第1接收部2011作爲第1接收部2011特有的電 路元件,具備:濾波器(帶通濾波器)2111,係僅使頻率fu 之信號通過;及放大器2112,係將從濾波器2111所輸出 ^ 之信號放大。 又,第2接收部2012作爲第2接收部2012特有的電 路元件,具備:濾波器(帶通濾波器)2121,係僅使頻率fd 之信號通過;及放大器2122,係將從濾波器2121所輸出 之信號放大。 如上述所示,雖然可通過兩接收部2011、2012之信號 的頻率相異,但是爲了以係共用之電路的後段共有部2〇23 處理頻率相異的兩信號.,第1接收部2011及第2接收部 2〇12還各自具備頻率變換部2113、2123。第1接收部2011 -41- 201034493 的頻率變換部2113是將頻率fu的上行信號頻率變換成共 同頻率fe的信號。又,第2接收部2012的頻率變換部2123 是將頻率fd的下行信號頻率變換成共同頻率fe的信號。這 些頻率變換部2113、2123各自由振盪器2113a、2123a及 混合器21 13b、2123b所構成。 該共同頻率fc是fe = fu—ful=fd—fdl,在此,ful是第1 接收部2011之頻率變換部2113之振盪器2113a的頻率, fdl是第2接收部20 12之頻率變換部2123之振盪器2123a 的頻率。如此,可藉由適當地設定頻率變換部2113、2123 H 之振盪器2113a、2123a各自的頻率,而使從各頻率變換部 2113、2123輸出共同頻率fe的信號。 該共有部2023是共用第14圖之在第2實施形態之由 第1接收部2011的濾波器2114、放大器2115、頻率變換 部2116以及A/D變換部2117所構成的部分、及第14圖之 在第2實施形態之由第2接收部2012的濾波器2124、放 大器2125、頻率變換部2126以及A/D變換部2127所構成 的部分’並具備:濾波器2234、放大器2235、頻率變換部 q 2236以及A/D變換部2237。 共有部2023的濾波器2234以僅使共同頻率(第1中 頻)匕之信號通過的帶通濾波器構成。濾波器2234的輸出 被放大器2235放大,而放大器2235的輸出由頻率變換部 2236變換成別的頻率(第2中頻),再被A/D變換部223 7 變換成數位信號。此外,頻率變換部2236亦由振盪器2236a 及混合器2236b所構成。 此外’亦可省略在共有部2023的放大器2235或頻率 -42- 201034493 變換部2236。又’亦可省略濾波器2234。即,亦可係第1 接收部2011及第2接收部2〇12僅共用a/d變換部22 3 7 之形態。 此外,該共有部2 02 3.具備切換開關2231,其用以選 擇性受理第1接收部2011之頻率變換部2113的輸出(頻率 fc)和第2接收部2012之頻率變換部2123的輸出(頻率fc)。 共有部2023的切換開關2231被切換至第1接收部 2011的頻率變換部2113側時,上行信號(頻率f。)由濾波器 φ 2234等之共有部2023的各元件處理。又,切換開關2231 被切換至第2接收部2012的頻率變換部2123側時,下行 信號(頻率fe)由濾波器2234等之共有部2023的各元件處 理。 共有部2023之A/D變換部2237的輸出被供給解調電 路2021及訊框同步誤差檢測部2017。受理A/D變換部2237 之輸出的解調電路在切換開關2231切換成受理下行信號 的時序(無線同步之狀態;第2狀態),中止解調處理。 φ 另一方面,受理A/D變換部22 37之輸出的訊框同步誤 差檢測部2017,雖然在切換開關223 1切換成受理下行信 號的時序(無線同步之狀態;第2狀態),進行訊框同步誤 差的檢測處理,但是在切換開關223 1切換成受理上行信號 的時序(無線同步以外之一般通信狀態;第1狀態),中止 訊框同步誤差的檢測處理。 第17圖顯示切換開關2231之切換時序。此外,此切 換由子BS2001b的控制部所進行。在無線同步之時序(第2 狀態),切換開關2231被切換至第2接收部側’接收來自 -43- 201034493 母BS200la的下行信號,再由同步誤差檢測部2〇17及修正 部2018檢測和修正同步誤差。 此外’如第17圖所示,在無線同步的時序,控制發送 部2013及/或調變電路2020,使不送出來自發送部2013 的下行信號。又,在無線同步的時序,子BS2001b對終端 裝置20 0 2b進行使用者分配,使從在和子BS2〇〇 lb之間進 行通信的終端裝置2002b不發送上行信號。 此外,在第4實施形態的發送部2013,雖然和第14 圖所示之第2實施形態的發送部2013相比,追加頻率變換 部2136及放大器213 7,但是亦可係和第14圖一樣之構成。 [2.5 第5實施形態] 第18圖顯示第5實施形態之子BS2001b的構成。在第 5實施形態,和第14圖所示之第2實施形態的子BS200 lb 一樣,獨立地設置第1接收部2011和第2接收部2012, 並以超外差接收機構成第1接收部2011及第2接收部 2012。即,第1接收部2011及第2接收部2012具備:帶 通濾波器2111、2121,係僅使天線天線20 10所接收之上 行信號或下行信號通過;及放大器2112、2122,係將通過 濾波器21U、2121的信號放大。還具備:正交解調器2118、 2128,係將放大器2112、2122的輸出解調成解調信號I、 Q ;及 A/D 變換部 2117a、2117b、2117c、2117d,係將解 調信號I、Q各自變換成數位信號;這些解調信號I、Q被 供給解調電路2021或同步誤差檢測部2017。 如此,第1接收部2011及第2接收部2012的種類未 特別受到限定。 -44- 201034493 此外,第5實施形態的發送部2 0 1 3係和第 之第4實施形態的發送部2013 —樣。 [2.6 第6實施形態] 第19圖顯示第6實施形態之子BS2001b的 第6實施形態’係對第1 8圖所示之第5實施形態 換方式的第1接收部2011及第2接收部2012, 第16圖所示之第4實施形態之第1接收部2011 收部2012的共有部2023 —樣的共有部2023。 φ 第6實施形態的第1接收部20U,作爲第1接 之特有的電路元件,具備:濾波器(帶通濾波器) 僅使頻率fu之信號通過;及放大器2112,係將 2111所輸出之信號放大。 又,第2接收部2012作爲第2接收部2012 路元件,具備:濾波器(帶通濾波器)2121,係僅. 之信號通過;及放大器2122,係將從濾波器21: 之信號放大。 φ 此外,第2接收部2012具備有頻率變換部 用以將頻率fd的信號變換成頻率fu的信號。在此 部2123之振盪器2123a的頻率fdl被設定成fu = f 用此頻率變換部2123,而在第2接收部2012之 的頻率和在第1接收部2011之上行信號的頻率 即,在第6實施形態,頻率fu成爲共同頻率,共 的信號被供給共有部2023。 第6實施形態的共有部2023具備:切換開 帶通濾波器2234,係僅使共同頻率f。通過;正 1 6圖所示 奪成。在本 的直接變 設置和在 及第2接 收部201 1 2 1 1 1,係 從濾波器 特有的電 使頻率fd Π所輸出 2123 > 其 頻率變換 d - f d 1。利 下行信號 fu —致。 同頻率fc Μ 2231; 交解調器 -45- 201034493 2238,係從濾波器2234的輸出產生解調信號I、Q;及a/D 變換部2237a、2237b,係各自將解調信號I、Q各自變換 成數位信號。A/D變換部2237a、2237b的輸出各自被供給 解調電路2021及同步誤差檢測部2017。 而,切換開關2231的切換及其他的處理和第5實施形 態一樣地進行。 [2.7 第7實施形態] 第20圖顯示第7實施形態之子BS2001b的構成。此子 BS2001b具備陣列天線,其具有複數個(K個)天線2010 — 1〜2 010-K。在複數個天線的各個,設置一般通信(下行信 號發送及上行信號發送)所需的發送部20 13及第1接收部 2011,對各天線可收發。此外,在各發送部2013,各自從 調變電路2020被供給調變信號,並被供給各發送部2013 所輸出之接收信號。 在第7實施形態,在複數個天線收發系統中,僅在一 個天線2010 - 1的收發系統設置第2接收部2012,而在其 他天線的收發系統未設置第2接收部2012。此外,第1接 收部2011、第2接收部2012以及發送部2013之構成可採 用上述之實施形態的任一個。又,在第20圖,雖然畫成第 1接收部2011及第2接收部2012分開,但是亦可設置共 有部2023,如第16圖及第19圖所示。 陣列天線方式的情況,因爲子BS2001b具有複數個天 線2010—1〜2010— K,所以雖然在全天線的系統設置第2 接收部2012時費用增加,但是藉由僅在一個天線的系統或 是全天線中之一部分的複數個天線的系統設置第2接收部 -46- 201034493 20 12,而可抑制費用增加。 [2.8 第8實施形態] 第21圖之第8實施形態的子BS2001b和第7實施形態 相異,是在陣列天線方式之全天線的系統設置第2接收部 2012。藉由在全天線的系統或是全天線中之一部分的複數 個天線的系統設置第2接收部2012,而可實現來自母 BS200 la之下行信號的分集接收,同步誤差檢測精度提 高。此外,作爲接收分集的實現方式,可採用選擇性分集、 0 最大比合成等。 又’如第7實施形態或第8實施形態般,子BS200 lb 是陣列天線方式時,具有即使在進行無線同步的時序,亦 可使一般通信(來自終端裝置的接收)繼續而不會中止的優 點。 例如,如第22圖所示,預先將第2接收部2012設置 於在陣列天線方式之複數個天線2010 - 1〜2010 — K中之第 1天線2010— 1的系統,在無線同步時,亦可一面以第1 Q 天線2010— 1的系統接收來自母BS2001a的下行信號,同 時以第2天線2010— 2之系統(有無第2接收部2012都可) 的第1接收部2011接收來目終端裝置2〇〇2b的上行信號。 此外’雖然第22圖畫成使和表示第16圖所示之第4 實施形態之子BS2001b的處理時序的第17圖對應,但是陣 列天線方式之該優點未限定爲第4實施形態。 [2-9 第9實施形態] 第23圖表示第9實施形態。第23圖所示者是根據從 第2接收部2012所輸出之來自母BS2001a的下行信號進行 -47- 201034493 同步處理之同步處理部20 3 0(相當於在其他的實施形態之 訊框同步誤差檢測部2017及訊框計數器修正部2018)的變 形例。此同步處理部203 0是在其他的實施形態全部可採 用。 同步處理部203 0除了在其他的實施形態之訊框同步 誤差檢測部2017及訊框計數器修正部2018以外,還具備: 頻率偏差推測部203卜頻率修正部2032以及記憶部2033。In other words, the circuit (the first receiving unit 20 11) for receiving the downlink signal transmitted from the parent BS 2001a and the detecting circuit (the feedback unit) 2016 for detecting the transmission signal output from the transmitting unit 2013 are all suitable for the frequency fd of the downlink signal. By. Further, the function of the detecting circuit 2 0 16 is to convert the detected signal into a digital signal, and the function of converting the received signal into a receiving portion of the digital signal is similar. Therefore, in the present embodiment, the detection circuit (return unit) 2016 also functions as the second receiving unit 20 12 that receives the downlink signal of the frequency fd transmitted from the parent BS2 001a. Since the detecting circuit 216 is also used as the second receiving unit 20 1 2, in the present embodiment, the switching switches SW1 and SW2 are provided on the input side and the output side of the detecting circuit 20 16 respectively. The first changeover switch SW1 is disposed on the input side of the fourth amplifier 2122 of the detection circuit -34 - 201034493 way 20 16 . By switching these switches SW1 and SW2, the circuits from the fourth amplifier 2122 to the A/D converter 2127 can be used as the second receiving unit 20 12 and the detecting circuit 20 16 . Further, since the signal output from the transmitting unit 2013 is mostly output to the antenna 2010 side by the duty ringer 2014, it is not supplied to the second receiving unit 20 12 side. The first changeover switch SW1 selectively supplies the output of the fourth filter 2135 of the transmitting unit 2013 and the received signal output from the circulator 2014 to the fourth amplifier 21 22 . Further, between the circulator 2014 and the first changeover switch SW1, the fifth filter 2121 that passes only the signal of the frequency fd is arranged, and only the signal of the frequency 匕 is passed through the received signal output from the circulator 20 14 It is output to the first changeover switch SW1 side. The second change-over switch SW2 selectively supplies the output of the A/D conversion unit 2127 of the detection circuit (second receiving unit 20 1 2) 20 16 to the distortion compensating unit 2015 or the frame synchronization error detecting unit 2017. When the circuit φ from the fourth amplifier 2122 to the A/D conversion unit 2127 is used as the detection circuit (feedback unit) 2016, the first changeover switch SW1 is switched to supply the fourth amplifier 21 22 to the transmission unit 20 13 . The output of the third amplifier 2134 is switched while the second changeover switch SW2 is switched to the output of the A/D conversion unit 2127 to the distortion compensating unit 2015. The state at this time is referred to as the first state. On the other hand, when the circuit from the fourth amplifier 2122 to the A/D conversion unit 2127 is used as the second receiving unit 2012, the first changeover switch SW1 is switched to supply the fourth amplifier 2122 to the antenna 2010. At the same time, the second changeover switch SW2 is switched to the frame synchronization error detection-35-201034493, and the 2017 is supplied to the output of the A/D conversion unit 2127. Further, the state at this time is referred to as a second state. The switching control of the first and second changeover switches SW1 and SW2 is performed by a control unit (not shown) of the sub-BS 2001b. Fig. 11 shows a method of controlling the first and second changeover switches SW1 and SW2. The sub-BS 2001b is normally in a state of general communication in communication with the terminal device 2062, but is in a state of wireless synchronization (second state) in which wireless communication is periodically performed. As shown in Fig. U, in the state of wireless synchronization, the first changeover switch @SW1 is switched to the antenna 2010 side, and the second changeover switch SW2 is switched to the frame synchronization error detecting section 20 17 side. Therefore, the frame synchronization error detecting unit 2017 can acquire the downlink signal from the parent BS2001a. The frame synchronization error detecting unit 2017 detects the frame transmission timing of the parent BS 2001a by using the known signal such as the preamble signal included in the downlink signal, and detects the error of the frame transmission timing (frame synchronization error) in the frame 2001b. Specifically, the sub-BS 2001b detects the timing of the known signal located at the known location in the received frame, and checks the frame transmission timing of the parent BS 200 1 a. Then, the frame transmission timing of the detected parent BS2001a and the frame transmission timing of the device 2001b are compared, and the frame synchronization error is detected. The detected frame synchronization error is supplied to the frame counter correcting unit 2018. The frame counter correcting unit 2018 corrects the frame counter of the frame timing for determining the frame transmission in response to the detected frame synchronization error. Thereby, the sub BS 2001b can become synchronized with the parent BS 2001a. In addition, the detection and correction of the synchronization error is not limited to the frame timing, or the symbol timing or the -36-201034493 slot timing. When the wireless synchronization is completed, the first changeover switch SW1 is switched to the third amplifier (HPA) 2 134 side, and the second changeover switch SW2 is switched to the distortion compensation unit 2015 side. Thus, the sub BS 200 lb returns to the normal communication state. In addition, in Fig. 11, although wireless synchronization is performed at the time of one frame loss, wireless synchronization can be performed using a plurality of frames. As described above, the signal for detecting the output of the third amplifier 2134 is supplied to the distortion compensating unit 2015 except for the wireless synchronization. However, the loss of the true compensation unit 2015 does not always require the output of the third amplifier 2134, and is the 12th. As shown in the figure, the detection signal output from the third amplifier 2134 is periodically obtained. Further, the distortion compensating unit 2015 performs the distortion compensation itself. Since the detection signal acquisition processing and the wireless synchronization processing required for the distortion compensation are completely different control, each of them is executed at a unique timing. In the present embodiment, since the detection circuit 2016 and the second reception unit 2012 are shared, the detection circuit 2016 and the second reception unit 2012 are shared. It is necessary to make two treatments at different times. Therefore, in the control unit (not shown) of the sub-BS 2001b, as shown in Fig. 12, φ, the execution timing of the two processes is set so as not to simultaneously perform the detection signal acquisition processing and the wireless synchronization processing required for the distortion compensation. In the first embodiment, although the execution period of the detection signal acquisition processing and the wireless synchronization processing required for the distortion compensation is fixed, the execution period of the processing of either or both of them is not fixed, and the two processes are simultaneously performed. possibility. In this case, the control section performs the wireless synchronization mutual exclusion processing of Fig. 13 to avoid the execution of the detection signal acquisition processing and the wireless synchronization processing required for the distortion compensation. As shown in Fig. 13, the wireless synchronization mutex processing determines in advance whether or not the detection signal acquisition timing required for distortion compensation coincides with the case where the wireless synchronization is performed with the -37-201034493 step. In the case of inconsistency, the first and second changeover switches SW1 and SW2 are switched to the second state, and wireless synchronization is performed. In the case where the detection signal acquisition by the distortion compensation unit 2015 is suspended, the first and second changeover switches SW1 and SW2 are switched to the second state, and the wireless synchronization is executed. Therefore, the state in which the detection signal cannot be obtained by the distortion compensating unit 2015 can prevent the parameter required for the distortion compensation from being calculated, and the accuracy of the subsequent distortion compensation can be prevented from being lowered. Further, as shown in Fig. 12, in the case where the detection signal required for the loss of true compensation is acquired more frequently than the wireless synchronization, the wireless synchronization with less frequent frequency is prioritized, and the influence on the two processes can be suppressed to be relatively low. However, in the case where the detection signal required for the distortion compensation is obtained more frequently for wireless synchronization, the distortion compensation may be prioritized or the wireless synchronization may be suspended. As described above, when synchronization can be obtained between the parent BS 2001a and the child BS 2001b, even if broadcast transmission of information of the same content is simultaneously transmitted from the two base station apparatuses 2001a and 2001b to a plurality of terminal apparatuses, the two base station apparatus can be prevented from being transmitted. The signals of 2001a and 2001b interfered. In addition, since the synchronization of the two base station apparatuses 2001a and 2001b can be obtained, if the signals of the same content are transmitted from the two base station apparatuses 2001a and 2001b, macro diversity or space can be performed on the terminal apparatuses 2002a and 2002b. Multiplex Transmission>> [Second Embodiment] Fig. 14 shows the configuration of the sub-BS 2001b of the second embodiment. In the second embodiment, the second receiving unit 2012 is not used as the detecting circuit 2016' to create a different circuit. The respective elements -38 - 201034493 2162 to 2167 of the detecting circuit 2016 are the same as the respective elements 2122 to 2127 of the second receiving unit 2012. Further, in the modified example, the same reference numerals are given to the configurations common to the circuits of Fig. 2 . According to this modification, the detection signal required for reception and distortion compensation required for wireless synchronization can be simultaneously performed. Further, the detection circuit 216 or the distortion compensating unit 2015 may be omitted, and the modulation signals I and Q output from the modulation circuit may be directly supplied to the D/A conversion units 2131a and 2131b. [2.3. Third embodiment] φ Fig. 15 shows the configuration of the sub-BS 2001b of the third embodiment. In the circuit of the first embodiment shown in FIG. 10, the distortion compensating unit 2015 is omitted, and the output of the detecting circuit (feedback unit) 2016 is supplied to the modulation circuit (digital signal). The processing device 2020 returns the downlink signal generated by the transmitting unit 20 13 to the modulation circuit (digital signal processing device) 2020. The feedback of the downlink signal is, for example, a correction of the timing error of the modulated signals I and Q generated by the modulation circuit 2020 in response to the feedback amount. However, the purpose of the feedback of the φ downlink signal is not particularly limited, and the digital signal processing device 2020 generates a signal (modulated signal I, Q) supplied to the input side of the transmitting unit 2013, and the analogy generated by the transmitting unit 2013 is downward. The detection of the signal is feedback, and the feedback amount (detection 値) is used to generate a signal (modulation signal I, Q) supplied to the input side of the transmission unit 2013. Further, in the third embodiment, the downlink signal supplied to the detection circuit (feedback unit) 2016 is not output from the third amplifier 2134, but is output from the third filter 2133 (input to the third amplifier 2134). Here, as shown in the first embodiment, in order to perform the feedback of the downlink signal in the distortion compensation of the third amplifier 2134 - 39 - 201034493, it is necessary to supply the output of the third amplifier 2134 to the modulation circuit 2020. On the other hand, if the distortion compensation of the amplifier is not an object, the output of the third filter 2133 (the output of the quadrature modulator 2132) may be supplied to the modulation circuit (signal processing device) 2020. Further, even in the case where the distortion compensation of the amplifier is not performed, the output of the third amplifier 2134 can be supplied to the modulation circuit (signal processing device) 2020. In the third embodiment, as in the first embodiment, the first changeover switch SW1 is switched to the transmission unit 2013 side, and the second changeover switch SW2 is switched to the modulation/deformation circuit (signal processing device). The 2020 side is supplied to the first state (general communication state) of the modulation circuit 2 020 by a detection signal which is a downlink signal generated by the transmission unit 2013. Further, in the wireless synchronization, the first changeover switch SW1 is switched to the antenna 2010 side, and the second changeover switch S W2 is switched to the frame synchronization error detecting unit 2 0 1 7 side. Therefore, the frame synchronization error detecting unit 2017 can acquire the downlink signal from the parent BS 200 1 a. Further, the matters not specifically described in the third embodiment are the same as those in the first embodiment. [2.4. Fourth Embodiment] Fig. 16 shows the configuration of the sub-BS 2001b of the fourth embodiment. Similarly to the sub-BS 2001b of the above-described embodiment, the sub-BS 2001b can receive a signal from the parent BS 2001a for wireless synchronization. The sub BS 2001b includes an antenna 2010, a first receiving unit (superheterodyne receiver) 2011, a second receiving unit (superheterodyne receiver) 2012, and a transmitting unit 2013. Further, the child 201034493 BS2 00 lb has the employee ringer 2014. Further, matters not specifically described in the fourth embodiment are the same as those of the above-described embodiment. As described above, the basic configuration of the sub-BS 2001b of the fourth embodiment is the same as that of the sub-BS 2001b of the above-described embodiment. In particular, it is similar to the sub-BS 2001b of the second embodiment of Fig. 14. In the fourth embodiment, as shown in the second embodiment of FIG. 14, the first receiving unit 2011 and the second receiving unit 2012 are separately provided, but the first receiving unit 2011 and the second receiving unit 2012 are shared. Part of the circuit composition of those. In other words, the first receiving unit 〇 2011 and the second receiving unit 2012 have a shared unit 2023 used by both the first receiving unit 2011 and the second receiving unit 2012. Here, the first receiving unit 2011 is for receiving an uplink signal (frequency fu) from the terminal device 200 2b, and the second receiving unit 2012 is for receiving a downlink signal (frequency fd) from the parent BS 200 1 a. In other words, the first receiving unit 2011 is a circuit element unique to the first receiving unit 2011, and includes a filter (band pass filter) 2111 for transmitting only a signal of the frequency fu, and an amplifier 2112 for filtering the filter 2111. The signal of the output ^ is amplified. Further, the second receiving unit 2012 is a circuit element peculiar to the second receiving unit 2012, and includes a filter (bandpass filter) 2121 for transmitting only a signal of the frequency fd, and an amplifier 2122 for filtering the filter 2121. The output signal is amplified. As described above, although the frequencies of the signals of the two receiving units 2011 and 2012 can be different, the first receiving unit 2011 and the first signals are processed in order to process the signals having different frequencies at the rear shared portion 2〇23 of the shared circuit. The second receiving unit 2〇12 further includes frequency converting units 2113 and 2123. The frequency converting unit 2113 of the first receiving unit 2011-41-201034493 is a signal for converting the upstream signal frequency of the frequency fu into the common frequency fe. Further, the frequency converting unit 2123 of the second receiving unit 2012 is a signal that converts the frequency of the downlink signal of the frequency fd into the common frequency fe. These frequency converting sections 2113 and 2123 are each composed of oscillators 2113a and 2123a and mixers 21 13b and 2123b. The common frequency fc is fe = fu_ful=fd_fdl, where ful is the frequency of the oscillator 2113a of the frequency converting unit 2113 of the first receiving unit 2011, and fdl is the frequency converting unit 2123 of the second receiving unit 2012. The frequency of the oscillator 2123a. In this manner, by appropriately setting the frequencies of the oscillators 2113a and 2123a of the frequency converting sections 2113 and 2123H, the signals of the common frequency fe can be output from the respective frequency converting sections 2113 and 2123. The shared unit 2023 is a portion including the filter 2114, the amplifier 2115, the frequency converting unit 2116, and the A/D converting unit 2117 of the first receiving unit 2011 in the second embodiment, and the fourth drawing. In the second portion of the filter 2124, the amplifier 2125, the frequency conversion unit 2126, and the A/D conversion unit 2127 of the second receiving unit 2012, the filter 2234, the amplifier 2235, and the frequency conversion unit are provided. q 2236 and A/D conversion unit 2237. The filter 2234 of the shared portion 2023 is configured by a band pass filter that passes only a signal of a common frequency (first intermediate frequency). The output of the filter 2234 is amplified by the amplifier 2235, and the output of the amplifier 2235 is converted into a different frequency (second intermediate frequency) by the frequency converting unit 2236, and converted into a digital signal by the A/D converting unit 223 7 . Further, the frequency converting unit 2236 is also constituted by an oscillator 2236a and a mixer 2236b. Further, the amplifier 2235 or the frequency -42 - 201034493 conversion unit 2236 in the shared portion 2023 may be omitted. Further, the filter 2234 can be omitted. In other words, the first receiving unit 2011 and the second receiving unit 2〇12 may share only the a/d converting unit 22 3 7 . Further, the shared unit 2 02 3. includes a changeover switch 2231 for selectively receiving the output (frequency fc) of the frequency converting unit 2113 of the first receiving unit 2011 and the output of the frequency converting unit 2123 of the second receiving unit 2012 ( Frequency fc). When the changeover switch 2231 of the shared unit 2023 is switched to the frequency conversion unit 2113 side of the first reception unit 2011, the uplink signal (frequency f) is processed by each element of the shared unit 2023 such as the filter φ 2234. When the changeover switch 2231 is switched to the frequency conversion unit 2123 side of the second reception unit 2012, the downlink signal (frequency fe) is processed by each element of the shared unit 2023 such as the filter 2234. The output of the A/D conversion unit 2237 of the shared unit 2023 is supplied to the demodulation circuit 2021 and the frame synchronization error detecting unit 2017. The demodulation circuit that receives the output of the A/D conversion unit 2237 switches the switching switch 2231 to a timing at which the downlink signal is received (the state of the wireless synchronization; the second state), and the demodulation processing is suspended. φ On the other hand, the frame synchronization error detecting unit 2017 that has received the output of the A/D conversion unit 22 37 switches to the timing at which the downlink signal is received (the state of the wireless synchronization; the second state), and the signal is transmitted. In the detection processing of the frame synchronization error, the switching switch 223 1 switches to the timing of receiving the uplink signal (general communication state other than the wireless synchronization; the first state), and the detection processing of the frame synchronization error is suspended. Fig. 17 shows the switching timing of the changeover switch 2231. Further, this switching is performed by the control unit of the sub BS 2001b. At the timing of the wireless synchronization (second state), the changeover switch 2231 is switched to the second receiving unit side 'receives the downlink signal from the -43-201034493 parent BS 2001a, and the synchronization error detecting unit 2〇17 and the correcting unit 2018 detect the sum. Correct the synchronization error. Further, as shown in Fig. 17, at the timing of wireless synchronization, the transmission unit 2013 and/or the modulation circuit 2020 are controlled so that the downlink signal from the transmission unit 2013 is not sent. Further, at the timing of the wireless synchronization, the sub-BS 2001b assigns the user to the terminal device 20 0 2b so that the terminal device 2002b that communicates between the slave BSs 2b does not transmit the uplink signal. In addition, in the transmission unit 2013 of the fourth embodiment, the frequency conversion unit 2136 and the amplifier 2137 are added as compared with the transmission unit 2013 of the second embodiment shown in FIG. The composition. [2.5. Fifth embodiment] Fig. 18 shows the configuration of the sub-BS 2001b of the fifth embodiment. In the fifth embodiment, the first receiving unit 2011 and the second receiving unit 2012 are independently provided in the same manner as the sub-BS 200 lb of the second embodiment shown in Fig. 14, and the first receiving unit is configured by a super-heterodyne receiver. 2011 and 2nd reception department 2012. In other words, the first receiving unit 2011 and the second receiving unit 2012 include band-pass filters 2111 and 2121 for passing only the uplink signal or the downlink signal received by the antenna antenna 20 10; and the amplifiers 2112 and 2122 are filtered. The signals of the devices 21U and 2121 are amplified. Further, a quadrature demodulator 2118, 2128 is provided for demodulating the outputs of the amplifiers 2112 and 2122 into demodulated signals I and Q; and A/D converting sections 2117a, 2117b, 2117c, and 2117d for demodulating the signal I. And Q are each converted into a digital signal; these demodulated signals I and Q are supplied to a demodulation circuit 2021 or a synchronization error detecting unit 2017. Thus, the types of the first receiving unit 2011 and the second receiving unit 2012 are not particularly limited. -44- 201034493 The transmission unit 2 0 1 3 of the fifth embodiment is similar to the transmission unit 2013 of the fourth embodiment. [2.6. Sixth Embodiment] FIG. 19 shows a sixth embodiment of the sub-BS 2001b of the sixth embodiment. The first receiving unit 2011 and the second receiving unit 2012 of the fifth embodiment shown in FIG. The first receiving unit 2011 of the fourth embodiment shown in Fig. 16 is a shared unit 2023 of the shared unit 2023 of the receiving unit 2012. φ The first receiving unit 20U of the sixth embodiment is a circuit element unique to the first connection, and includes a filter (band pass filter) for transmitting only the signal of the frequency fu, and an amplifier 2112 for outputting the 2111. Signal amplification. Further, the second receiving unit 2012 serves as a second receiving unit 2012 element, and includes a filter (band pass filter) 2121 for transmitting only the signal, and an amplifier 2122 for amplifying the signal from the filter 21:. φ Further, the second receiving unit 2012 includes a signal having a frequency converting unit for converting a signal of the frequency fd into a frequency fu. The frequency fdl of the oscillator 2123a in this unit 2123 is set to fu = f by the frequency converting unit 2123, and the frequency of the second receiving unit 2012 and the frequency of the uplink signal of the first receiving unit 2011 are In the embodiment, the frequency fu becomes a common frequency, and a common signal is supplied to the sharing unit 2023. The sharing unit 2023 of the sixth embodiment includes switching the band-pass filter 2234 so that only the common frequency f is obtained. Passed; as shown in Figure 16. The direct change setting of the present and the second receiving unit 201 1 2 1 1 1 are output from the filter specific frequency fd Π 2123 > its frequency is transformed by d - f d 1 . Benefit Down signal fu. The same frequency fc Μ 2231; the intermodulator -45-201034493 2238, the demodulated signals I, Q are generated from the output of the filter 2234; and the a/D conversion units 2237a, 2237b each demodulate the signals I, Q Each is transformed into a digital signal. The outputs of the A/D converters 2237a and 2237b are supplied to the demodulation circuit 2021 and the synchronization error detecting unit 2017, respectively. On the other hand, the switching of the changeover switch 2231 and other processing are performed in the same manner as in the fifth embodiment. [2.7 Seventh Embodiment] Fig. 20 shows the configuration of the sub-BS 2001b of the seventh embodiment. This sub-BS2001b is provided with an array antenna having a plurality of (K) antennas 2010-1~2 010-K. The transmitting unit 20 13 and the first receiving unit 2011, which are required for general communication (downlink signal transmission and uplink signal transmission), are provided for each of the plurality of antennas, and can be transmitted and received for each antenna. Further, in each of the transmission units 2013, a modulation signal is supplied from the modulation circuit 2020, and is supplied to the reception signal output from each of the transmission units 2013. In the seventh embodiment, in the plurality of antenna transmission/reception systems, the second receiving unit 2012 is provided only in the transmission/reception system of one antenna 2010-1, and the second receiving unit 2012 is not provided in the transmission/reception system of the other antenna. Further, the first receiving unit 2011, the second receiving unit 2012, and the transmitting unit 2013 may be configured as described above. Further, in Fig. 20, the first receiving unit 2011 and the second receiving unit 2012 are shown as separate, but the shared portion 2023 may be provided as shown in Figs. 16 and 19. In the case of the array antenna method, since the sub-BS 2001b has a plurality of antennas 2010-1 to 2010-K, although the cost is increased when the second receiving unit 2012 is provided in the system of the full antenna, by only the system of one antenna or The system of the plurality of antennas in one of the full antennas is provided with the second receiving portion -46 - 201034493 20 12, and the increase in cost can be suppressed. [2.8. Eighth embodiment] The sub-BS 2001b of the eighth embodiment of the twenty-first embodiment differs from the seventh embodiment in that the second receiving unit 2012 is provided in the system of the full antenna of the array antenna system. By providing the second receiving unit 2012 in a system of a plurality of antennas in one antenna system or one of the full antennas, diversity reception from the downlink signal of the parent BS 200 la can be realized, and the synchronization error detection accuracy is improved. In addition, as the implementation of the receive diversity, selective diversity, 0-maximum ratio synthesis, or the like can be employed. Further, when the sub-BS 200 lb is the array antenna system as in the seventh embodiment or the eighth embodiment, even when the wireless synchronization is performed, the general communication (reception from the terminal device) can be continued without being suspended. advantage. For example, as shown in FIG. 22, the second receiving unit 2012 is provided in advance in the system of the first antenna 2010-1 in the plurality of antennas 2010-1 to 2010-K of the array antenna system, and in the case of wireless synchronization, The downlink signal from the parent BS 2001a can be received by the system of the first Q antenna 2010-1, and the first receiving unit 2011 of the second antenna 2010-2 (with or without the second receiving unit 2012) can receive the destination terminal. The upstream signal of device 2〇〇2b. Further, the twenty-second drawing corresponds to the seventeenth diagram showing the processing sequence of the sub-BS 2001b of the fourth embodiment shown in Fig. 16, but the advantage of the array antenna method is not limited to the fourth embodiment. [2-9 ninth embodiment] Fig. 23 shows a ninth embodiment. The figure 23 is a synchronization processing unit 203 that performs the synchronization processing of -47-201034493 based on the downlink signal from the parent BS 2001a output from the second receiving unit 2012 (corresponding to the frame synchronization error in other embodiments). A modification of the detecting unit 2017 and the frame counter correcting unit 2018). This synchronization processing unit 203 0 is available in all other embodiments. In addition to the frame synchronization error detecting unit 2017 and the frame counter correcting unit 2018 of the other embodiments, the synchronization processing unit 203 0 further includes a frequency difference estimating unit 203, a frequency correcting unit 2032, and a storage unit 2033.

訊框同步誤差檢測部20 1 7利用下行信號所含之前置 信號等的既知信號,檢測母BS200 1 a的訊框發送時序,同 時檢測和在自裝置2 0 0 lb之訊框發送時序的誤差(訊框同步 誤差、通信時序偏差)。 由訊框同步誤差檢測部20 1 7所檢測之同步誤差被供 給訊框計數器修正部2018,並被用於修正訊框時序同步誤 差以外,每被檢測,就被供給記億部203 3,並被記憶部2033 儲存。 該頻率偏差推測部203 1根據由訊框同步誤差檢測部 2017所檢測的同步誤差,推測屬接收側之子BS200 1 b本身 _ 〇 所內建之內建時脈產生器(省略圖示)的時脈頻率、和屬發 送側之母BS2001 a之內建時脈產生器之時脈頻率的差(時 脈頻率誤差),再從該時脈頻率誤差推測載頻誤差(載頻偏 差)。 該頻率偏差推測部203 1係在週期性執行無線同步的 狀況下,根據在前次的無線同步所檢測之訊框同步誤差 tl、和在本次的無線同步所檢測之訊框同步誤差t2,推測 時脈誤差。此外,可從記憶部20 3 3取得前次的訊框同步誤 •48- 201034493 差tl。 例如’在載頻是2.6 [GHz]的情況,假設在前次之無線 同步的時序(同步時序=tl),作爲訊框同步誤差,檢測到 T1,並已修正時序T1量。修正後的同步誤差是〇[msec]。 然後,在T= 10秒後之本次之無線同步的時序(同步時序 =t 2),亦再檢測同步誤差(時序偏差),假設該同步誤差(時 序偏差)是 T2 = 0.1[msec]。 此時,在10秒鐘內所產生之0.1[msec]的同步誤差(時 φ 序偏差)是母BS200 1 a的時脈週期和子BS2001b之時脈週 期的誤差的儲存値。 良P,在同步誤差(時序偏差)和時脈週期之間以下的等 式成立。 同步源基地台的時脈週期:同步對象基地台之時脈週 期=T : (Τ + Τ2)=10 : (1 0 + 0.0001) 然後,因爲時脈頻率是時脈週期的倒數,所以 (同步源基地台的時脈頻率一同步對象基地台之時脈 φ 頻率)=同步源基地台的時脈頻率χΤ2/(Τ + Τ2) 与同步源基地台的時脈頻率xO.OOOOl。 因此,在此情況,屬發送側之母BS200 1 a的時脈頻率 與屬接收側之子BS200 1b的時脈頻率有0.0000 1 = 1 0[ppm] 的誤差。在頻率偏差推測部203 1,依上述的方式推測時脈 頻率誤差。 而且,因爲載頻和同步誤差(時序偏差)一樣地偏差, 所以在載頻亦發生l〇[ppm]的偏差,即,2.6[GHz]xlxl(T 5 =26 [kHz]的偏差。如此,在頻率偏差推測部2031,從時脈 -49- 201034493 頻率誤差亦可推測載頻誤差(載頻偏差)。 頻率偏差推測部203 1所推測之載頻誤差被供給頻率 修正部203 2。可不僅對上行信號的載頻,而且對下行信號 的載頻,進行載頻的修正。 [第3章基地台裝置的階層識別] 在本第3章所說明的基地台裝置,在技術上不矛盾之 範圍採用在第1章或第2章所說明之基地台裝置的技術。 在本第3章,關於未特別說明的事項,沿用第1章及 第2章的說明事項。 ^ [3.1 通信系統之構成] 第 25 圖顯示具有複數台基地台裝置(Base Station)3001a、 3002a、 3002b、 3003a、 3003b、 3003c、 3003d 的無線通信系統。各基地台裝置可和位於基地台裝置之通 信區域(cell)內之未圖示的終端裝置(移動終端機;MS: Mobile Station)之間進行通信。 此通信系統例如是應用LTE的手機用系統。在LTE, 可採用分頻雙工(FDD),在以下,以採用分頻雙工方式者說 ◎ 明在第3章的本通信系統。此外,作爲雙工方式,亦可採 用分時雙工。又,作爲通信系統,未限定爲LTE,亦可採 用 WCDMA ' CDMA2000 » 在第3章的通信系統,在複數台基地台裝置間進行取 得同步的基地台間同步。基地台裝置間同步是利用「無線 同步」來執行,該無線同步是成爲同步對象之基地台裝置 藉由別的基地台裝置接收向該基地台裝置之cell內的終端 裝置所發送之信號而取得同步。 -50- 201034493 在第3章的通信系統,至少一台基地台裝置3001和其 他的基地台裝置不相依,而利用基地台裝置的時脈或GPS 信號等無線同步以外的方法決定通信時序等。以下將這種 基地台裝置3 00 1稱爲「母BS」。其他的基地台裝置(以下 稱爲「子 BS j )3002a、3 002b、3 003a、3003b、3003c 在和 母BS3001之間直接或間接地取得同步。 第25圖顯示在這種無線同步的階層構造。在第25圖, 基地台裝置3001成爲母BS,此母BS3001的階層順位是 φ L=1。又,存在將此母BS3 00 1作爲同步對象的2台子 BS3002a、 3002b,這些子BS3002a、 3002b的階層順位是 L = 2。又,存在將2台子BS3002a、3002b作爲同步對象的 3 台子 BS3003a、 3003b、 3003c,這些子 BS3003a、 3003b、 3 003 c的階層順位是L = 3。 藉由複數台基地台裝置採用以母BS3001爲頂點之如 第25圖所示的樹狀階層構造,而可防止因複數台基地台裝 置的同步對象連接成環狀而同步變成不安定。 φ [3.2 LTE之訊框構造] 如上述所示,在本實施形態的通信系統所依據的LTE 可採用的分頻雙工,藉由使上行信號(從終端裝置往基地台 裝置的發送信號)的頻率fu和下行信號(從基地台裝置往終 端裝置的發送信號)的頻率fd相異,而同時進上行通信和下 行通信。 第26圖顯示在LTE之上行及下行各自的訊框構造。 在LTE之下行訊框(DL訊框)及上行訊框(UL訊框)各自的 時間長度是l〇ms’並由#1〜#19之20個儲存格(si〇t)所構 201034493 成。又,在LTE,將2個儲存格的組合稱爲副訊框。此外, 這些下行訊框和上行訊框的時序一致。 在基地台裝置同步,進行使這些訊框的時序在各基地 台裝置同步、及在各基地台裝置使上行信號的頻率fu及下 行信號的頻率fd同步之動作。 如第27圖所示,構成下行訊框(DL訊框)的儲存格各 自由 7 個(I = 0~6)OFDM 符號所構成(Normal Cyclic Prefix 的情況)。 而,在構成下行訊框之〜#19的20個儲存格中之第0 個(#)及第10個(#1〇)儲存格,作爲基地台裝置的識別符 號,設置 Primary Synchronization Signal 及 Secondary Synchronization Signal 〇The frame synchronization error detecting unit 20 17 detects the frame transmission timing of the parent BS 200 1 a by using the known signal such as the preamble signal included in the downlink signal, and detects the error of the timing of the frame transmission at the frame of the device 200 lb. (frame synchronization error, communication timing deviation). The synchronization error detected by the frame synchronization error detecting unit 20 17 is supplied to the frame counter correcting unit 2018, and is used for correcting the frame timing synchronization error, and is supplied to the unit 203 3 every time it is detected, and It is stored by the storage unit 2033. The frequency deviation estimating unit 203 1 estimates the time when the built-in clock generator (not shown) built in the sub-BS 200 1 b itself of the receiving side is based on the synchronization error detected by the frame synchronization error detecting unit 2017. The pulse frequency and the clock frequency difference (clock frequency error) of the built-in clock generator of the parent BS2001 a on the transmitting side, and then the carrier frequency error (carrier frequency deviation) is estimated from the clock frequency error. The frequency offset estimation unit 203 1 is based on the frame synchronization error t1 detected in the previous wireless synchronization and the frame synchronization error t2 detected in the current wireless synchronization in a state where the wireless synchronization is periodically performed. Predict the clock error. Further, the previous frame synchronization error • 48 - 201034493 difference t1 can be obtained from the storage unit 203. For example, in the case where the carrier frequency is 2.6 [GHz], it is assumed that the timing of the previous wireless synchronization (synchronization timing = t1), as the frame synchronization error, T1 is detected, and the timing T1 amount has been corrected. The corrected synchronization error is 〇[msec]. Then, at the timing of the current wireless synchronization (synchronization timing = t 2) after T = 10 seconds, the synchronization error (timing deviation) is also detected, assuming that the synchronization error (chronological deviation) is T2 = 0.1 [msec]. At this time, the synchronization error (time φ sequence deviation) generated in 10 seconds is the storage 误差 of the error of the clock period of the parent BS 200 1 a and the clock period of the sub-BS 2001b. Good P, the following equation between the synchronization error (timing deviation) and the clock period is established. Synchronization source base station clock cycle: Synchronization target base station clock cycle = T : (Τ + Τ 2) = 10 : (1 0 + 0.0001) Then, because the clock frequency is the reciprocal of the clock cycle, so (synchronization The clock frequency of the source base station is the clock φ frequency of the synchronization target base station) = the clock frequency of the synchronization source base station χΤ 2 / (Τ + Τ 2) and the clock frequency of the synchronization source base station x 0. OOOOl. Therefore, in this case, the clock frequency of the parent BS 200 1 a on the transmitting side has an error of 0.0000 1 = 1 0 [ppm] with the clock frequency of the sub-BS 200 1b on the receiving side. The frequency deviation estimating unit 203 1 estimates the clock frequency error in the above manner. Further, since the carrier frequency and the synchronization error (timing deviation) are equally deviated, a deviation of 10 〇 [ppm] occurs in the carrier frequency, that is, a deviation of 2.6 [GHz] x lxl (T 5 = 26 [kHz]. The frequency deviation estimation unit 2031 can estimate the carrier frequency error (carrier frequency deviation) from the frequency error of the clock-49-201034493. The carrier frequency error estimated by the frequency deviation estimation unit 203 1 is supplied to the frequency correction unit 2032. The carrier frequency of the uplink signal and the carrier frequency of the downlink signal are corrected. [Chapter 3: Hierarchical identification of the base station apparatus] The base station apparatus described in this Chapter 3 is technically non-contradictory. The range is based on the technology of the base station unit described in Chapter 1 or Chapter 2. In Chapter 3, the items described in Chapters 1 and 2 are used for matters that are not specified. ^ [3.1 Communication System Fig. 25 shows a wireless communication system having a plurality of base stations 3001a, 3002a, 3002b, 3003a, 3003b, 3003c, 3003d. Each base station device can communicate with a communication unit located in the base station device. Unillustrated Communication between the end devices (mobile terminal; MS: Mobile Station). This communication system is, for example, a mobile phone system using LTE. In LTE, frequency division duplex (FDD) can be used, and in the following, a frequency division double is used. The worker said that the communication system is described in Chapter 3. In addition, as the duplex mode, time division duplexing can also be used. Also, as the communication system, it is not limited to LTE, and WCDMA 'CDMA2000» can also be used. In the communication system of Chapter 3, synchronization between the base stations is performed between a plurality of base station apparatuses. The synchronization between the base station apparatuses is performed by "wireless synchronization", and the wireless synchronization is a base station apparatus to be synchronized. The base station device receives the signal transmitted to the terminal device in the cell of the base station device and synchronizes it. -50- 201034493 In the communication system of Chapter 3, at least one base station device 3001 and other base station devices do not Depending on the method, the communication sequence and the like are determined by a method other than wireless synchronization such as a clock of a base station device or a GPS signal. Hereinafter, the base station device 300 1 is referred to as a "parent BS". The base station apparatus (hereinafter referred to as "sub-BS j" 3002a, 3 002b, 3 003a, 3003b, 3003c synchronizes directly or indirectly with the parent BS 3001. Fig. 25 shows the hierarchical structure of such wireless synchronization. In Fig. 25, the base station apparatus 3001 becomes the parent BS, and the hierarchical order of the parent BS 3001 is φ L = 1. Further, there are two sub-BSs 3003a and 3002b which are the synchronization target of the parent BS3 00 1 , and the sub-BSs 3002a and 3002b of these sub-BSs 3002a and 3002b The rank order is L = 2. Further, there are three sub-BSs 3003003a, 3003b, and 3003c that are to be synchronized by the two sub-BSs 3002a and 3002b, and the hierarchical order of these sub-BSs 3003a, 3003b, and 3003c is L = 3. By using the tree-like hierarchical structure shown in Fig. 25 with the parent BS 3001 as the apex, the plurality of base station apparatuses can prevent the synchronization objects from being connected to the ring shape by the plurality of base station apparatuses, and the synchronization becomes unstable. φ [3.2 Frame structure of LTE] As described above, the frequency division duplex that can be used in the LTE system according to the present embodiment is based on the uplink signal (the transmission signal from the terminal device to the base station device). The frequency fu and the frequency fd of the downlink signal (the transmission signal from the base station device to the terminal device) are different, and the uplink communication and the downlink communication are simultaneously performed. Figure 26 shows the respective frame structure for the uplink and downlink of LTE. Under LTE, the duration of each frame (DL frame) and uplink frame (UL frame) is l〇ms' and is constructed by 20 cells (si〇t) of #1~#19. . Also, in LTE, a combination of two cells is referred to as a subframe. In addition, the timing of these downlink frames and uplink frames are the same. In synchronization with the base station apparatus, the timing of the frames is synchronized with each base station apparatus, and the frequency fu of the uplink signal and the frequency fd of the downlink signal are synchronized in each base station apparatus. As shown in Fig. 27, the cells constituting the downlink frame (DL frame) are composed of seven (I = 0 to 6) OFDM symbols (in the case of Normal Cyclic Prefix). The 0th (#) and the 10th (#1〇) cells of the 20 cells constituting the downlink frame ##19 are set as the identification symbols of the base station device, and the Primary Synchronization Signal and the Secondary are set. Synchronization Signal 〇

Primary Synchronization Signal 配置於構成儲存格之 7個OFDM符號中的最後符號(1 = 6)。此Signal,本來是終 端裝置用以識別分割基地台裝置之通信區域(cell)的複數 個(3個)sector之各個的資訊,有3個模式。The Primary Synchronization Signal is configured in the last symbol (1 = 6) of the 7 OFDM symbols that make up the cell. The Signal, which is originally used by the terminal device to identify the plurality of (three) sectors of the communication area of the divided base station device, has three modes.

Secondary Synchronization Signal 配置於構成儲存格 之7個OFDM符號中之從最後開始第2個(1 = 5)的符號。此 Signal,本來是終端裝置用以識別複數台基地台裝置之通 信區域(cell)之各個的資訊,有168個模式。 利用 Primary Synchronization Signal 及 Secondary Synchronization Signal 之 2 個構成 504 種(168x3)識別符 號。終端裝置藉由取得從基地台裝置所發送之這些 Signal,而自終端機可識別位於哪一台基地台裝置的哪一 個 sector ° 201034493 該各Signal可取得的複數種模式是在通信規格所預先 規定’在各基地台裝置及各終端裝置是已知。即,該各 Signal各自是可取得複數種模式的既知信號。在以下,將 Primary Synchronization Signal 稱爲第 1 既知信號,而將 Secondary Synchronization Signal 稱爲第 2 既知信號。 在本實施形態,第1既知信號及第2既知信號除了終 端裝置和基地台裝置取得同步的情況以外,亦用作上述之 基地台裝置間同步所需的信號,關於這一點將後述。 Q [3-3 基地台裝置之構成] 第28圖顯示基地台裝置(尤其是子BS)的構成例。子 BS具備:天線3010、第1接收部3011、第2接收部3012 以及發送部3013。第1接收部3011是用以接收來自終端 裝置的上行信號,第2接收部3012是用以接收來自其他的 基地台裝置的下行信號。發送部3013是用以向終端裝置發 送下行信號。 又,子BS具備有僱環器3014。此循環器3014是用以 φ 對第1接收部3011及第2接收部3012側供給來自天線3010 的接收信號,並對天線3010側供給從發送部3013所輸出 之發送信號。利用此循環器3014和發送部3013的第4濾 波器3 1 3 5,防止來自天線3 0 1 0的接收信號向發送部3 0 1 3 側傳送。 又,利用循環器3014和第1接收部的第1濾波器 3111,防止從發送部3013所輸出之發送信號向第1接收部 3011傳送》還利用循環器3014和第5濾波器3121,防止 從發送部3013所輸出之發送信號向第2接收部3012傳送。 -53- 201034493 此第1接收部3011係以超外差接收機構成,並構成爲 進行IF (中頻)取樣。更具體而言,第1接收部3011具備: 第1濾波器3111、第1放大器3112、第1頻率變換部3113、 第2濾波器3114、第2放大器3115、第2頻率變換部3116 以及A/D變換部3 1 1 7。 第1濾波器3111是用以僅使來自終端裝置的上行信號 通過,由僅使上行信號之頻率“通過的帶通濾波器所構 成。通過第1濾波器3111的接收信號被第1放大器(高頻 放大器)3112放大,再由第1頻率變換部3113從頻率匕變 換成第1中頻。此外,第1頻率變換部3113由振盪器3113a 及混合器31 13b所構成。 第1頻率變換部3113的輸出經由僅使第1中頻通過的 第2濾波器3114,再被第2放大器(中頻放大器)3115放大。 第2放大器3115的輸出被第2頻率變換部3116從第1中 頻變換成第2中頻,再被A/D變換部3117變換成數位信 號。此外,第2頻率變換部3116亦由振盪器3116a及混合 器31 16b所構成。 A/D變換部3117的輸出(第1接收部3011的輸出)被 供給解調電路(數位信號處理裝置)3021,而來自終端裝置 之接收信號被進行解調處理。 如此,第1接收部3011係對將由天線3010所接收之 類比的上行信號變換成數位信號作爲數位信號處理裝置所 構成的解調電路3021供給數位的上行信號。 又,該發送部3013是接受從調變電路(數位信號處理 裝置)3020所輸出之調變信號I、Q,再使從天線3010發送 201034493 信號,作爲直接變換發送機所構成。此發送部3013具備: D/A變換器3131a、3131b、正交調變器3132、第3濾波器 3133、第3放大器(高功率放大器:ΗΡΑ) 3134以及第4濾 波器3135 。 該D/Α變換器3131a、3131b對各個調變信號I、Q進 行D/A變換。D/A變換器3131a、3131b的輸出被供給正交 調變器3132,再由此正交調變器3132產生載頻是fd(下行 信號頻率)的發送信號。 ❹ 正交調變器3132的輸出經由僅使頻率匕通過的第3 濾波器3133,被第3放大器3134放大,再經由僅使頻率 fd通過的第4濾波器3135,從天線3010被發送,而成爲 往終端裝置的下行信號。 以上之第1接收部3011、發送部3013雖然是爲了和 終端裝置之間進行本來之通信所需要的功.能,但是本實施 形態的子BS3001b還具備第2接收部3012。此第2接收部 3012爲了取得無線同步,而接收其他的基地台裝置所發送 φ 之下行信號。 在此,子BS爲了利用無線同步取得和其他的基地台裝 置的同步,子BS3001b需要接收其他的基地台裝置所發送 之下行信號。可是,下行信號的頻率是fd,因爲和上行信 號的頻率fu相異,所以第1接收部3011無法接收。 即,因爲第1接收部3011具備有僅使頻率fu之信號 通過的第1濾波器3111、或僅使從頻率fu所變換之第1中 頻通過的第2濾波器3114,所以即使頻率fu以外之頻率(下 行信號的頻率fd)的信號被供給第1接收部3011,亦無法 -55- 201034493 通過第1接收部301 1。 即,第1接收部301 1利用第1接收部3011內所具備 的濾波器3111、3114,成爲適合接收上行信號頻率fu的信 號,而無法接收其他頻率的信號。 因此,在本實施形態的子BS,除了第1接收部3011 以外,還具備有用以接收其他的基地台裝置所發送之頻率 fd的下行信號之第2接收部3012。 此第2接收部3012具備:第5濾波器3121、第4放 大器(高頻放大器)31 22、第3頻率變換部3123、第6濾波 器3124、第5放大器(中頻放大器)3125、第4頻率變換部 3126以及A/D變換部3127。 第5濾波器3121是用以僅使來自其他的基地台裝置之 下行信號通過,並由僅使下行信號的頻率fd通過的帶通濾 波器所構成。通過第5濾波器3121的接收信號被第4放大 器(高頻放大器)3122放大,而第4放大器3122的輸出被第 3頻率變換部3123從下行信號頻率匕變換成第1中頻。此 外,第3頻率變換部3123由振盪器3123a及混合器3123b 所構成。 第3頻率變換部3123的輸出經由僅使從第3頻率變換 部3123所輸出之第1中頻通過的第6濾波器3124,再被 第5放大器(中頻放大器)3125放大。第5放大器3125的輸 出被第4頻率變換部3126從第1中頻變換成第2中頻,再 被A/D變換部3127變換成數位信號。此外,第4頻率變換 部3126亦由振盪器3126a及混合器312 6b所構成。 從A/D變換部3127所輸出的信號被供給同步處理部 201034493 3030。藉此,同步處理部3030可取得來自其他的基地台裝 置的下行信號。 同步處理部3030根據從母BS3001a所取得之下行信號 的訊框所含之第1既知信號(Primary Synchronization Signal)及第 2 既知信號(Secondary Synchronization Signal),進行用以取得基地台裝置3 00 1 b的通信時序及通 信頻率之同步的處理。 如第29圖所示,同步處理部3030具有:識別部3034、 Q 訊框同步誤差檢測部3017、訊框計數器修正部3018、頻率 偏差推測部3031、頻率修正部3032、記憶部3033以及模 式設定部303 5。 該識別部3034係用以根據兩既知信號的模式,識別其 他的基地台裝置在基地台裝置間同步的階層構造所存在之 階層順位L的値。又,識別部303 4亦有係識別階層順位L 的値最小之其他的基地台裝置,並將該其他的基地台裝置 識別成同步對象。 Q 識別部3 034具備:第1識別部3034a,係從第2接收 部3012所接收之信號(下行信號)檢測第1既知信號;及第 2識別部3 0 3 4b,係從第2接收部3012所接收之信號檢測 第2既知信號。識別部3 〇34根據接收信號所含之第1既知 信號的模式和第2既知信號的模式,識別其他的基地台裝 置的階層順位L。 第1識別部3034a在第2接收部3012的接收信號識別 是否含有第1既知信號可取得之3個模式中之任一個模 式。此識別是藉由取係已知之各個3個模式和接收信號(下 -57- 201034493 行信號)的相關而進行。 更具體而言,第1既知信號可取得之各個3個模式被 記憶於第1模式記憶部3034c,第1識別部3034a依序讀 出第1模式記憶部3 034c所記億的模式,並探索既知時間 內的接收信號中是否含有所讀出之模式,藉此,識別接收 信號含有哪一個模式。又,在此探索時,取接收信號和模 式的相關(滑動相關),並將該兩者之相關變大的時序識別 成在接收信號之第1既知信號的時序。 第2識別部3 03 4b在第2接收部3012的接收信號識別 q 是否含有第2既知信號可取得之168個模式中之任一個模 式。此識別方法係和在第1識別部3 034a的識別大致相同。 其中,第2識別部3034b從記憶第2既知信號可取得之168 個模式的第2模式記憶部303 4d依序讀出第2既知信號可 取得的模式,並識別接收信號含有168個模式中之哪一個 模式。又,在第2識別部3034b,亦可識別在接收信號之 第2既知信號的時序。 此外,因爲第2既知信號可取得之模式數比第2既知 0 信號可取得的模式數多,所以第2識別部3 03 4b之模式的 識別處理和第1識別部3 034a之模式的識別處理相比,平 均上需要更多的時間。 又,識別部3 034具有控制部3 0 34e,其用以控制在第 1識別部3034a及第2識別部3 034b的識別。關於藉此控 制部3034e的控制將後述。 該訊框同步誤差檢測部3017利用由該識別部3 03 4所 識別之第1既知信號的時序,檢測成爲同步對象之其他的 -58- 201034493 基地台裝置之訊框發送時序,同時檢測和在基地台裝置之 訊框發送時序的誤差(訊框同步誤差)。 所檢測之訊框同步誤差被供給訊框計數器修正部 3018。訊框計數器修正部3018因應於所檢測之訊框同步誤 差而修正決定訊框發送時序之訊框計數器的値。藉此,子 BS可變成和母BS3 00 la同步。此外,同步誤差的檢測、修 正對象未限定爲訊框時序,亦可係符號時序或儲存格(slot) 時序。 φ 由該訊框同步誤差檢測部3017所檢測之同步誤差每 當被檢測,就被供給記憶部3 03 3,並被儲存於記憶部3 03 3。 該頻率偏差推測部3 03 1根據由檢測部3017所檢測的 同步誤差,推測靥接收側之基地台裝置本身所內建之內建 時脈產生器(省略圖示)的時脈頻率、和屬發送側之同步對 象基地台裝置之內建時脈產生器之時脈頻率的差(時脈頻 率誤差),再從該時脈頻率誤差推測載頻誤差(載頻偏差)。 該頻率偏差推測部3 03 1係在週期性執行無線同步的 φ 狀況下,根據在前次的無線同步所檢測之訊框同步誤差 tl、和在本次的無線同步所檢測之訊框同步誤差t2,推測 時脈誤差。此外,可從記億部3033取得前次的訊框同步誤 差tl。 例如,在下行信號之載頻fd是2.6 [GHz]的情況,假設 在前次之無線同步的時序(同步時序=tl),作爲訊框同步誤 差,檢測到T1,並已修正時序T1量。修正後的同步誤差(時 序偏差)是〇 [msec]。然後,在T=10秒後之本次之無線同步 的時序(同步時序=t2),亦再檢測同步誤差(時序偏差),假 -59- 201034493 設該同步誤差(時序偏差)是T2 = 0.1[msec]。 此時,在10秒鐘內所產生之0.1 [msec]的同步誤差(時 序偏差)是母BS3001a的時脈週期和子BS之時脈週期的誤 差的儲存値。 良口,在同步誤差(時序偏差)和時脈週期之間以下的等 式成立。 同步源基地台裝置的時脈週期:同步對象基地台裝置 之時脈週期=τ: (T + T2)=10: (10 + 0.0001) 然後,因爲時脈頻率是時脈週期的倒數,所以 (同步源基地台裝置的時脈頻率-同步對象基地台裝 置之時脈頻率)=同步源基地台裝置的時脈頻率χΤ2/(Τ + Τ2) 与同步源基地台的時脈頻率x〇.00001。 因此,在此情況,屬發送側之同步對象基地台裝置的 時脈頻率與屬接收側之基地台裝置的時脈頻率有 0.00001 = 10[ppm]的誤差。在頻率偏差推測部3031,依上述 的方式推測時脈頻率誤差。 而且,因爲載頻和同步誤差(時序偏差)一樣地偏差, 所以在載頻亦發生10[ppm]的偏差,即,2.6[GHz]xlxi〇-5 = 26 [kHz]的偏差。如此,在頻率偏差推測部3031,從時脈 頻率誤差亦可推測載頻誤差(載頻偏差)。 頻率偏差推測部3 03 1所推測之載頻誤差被供給頻率 修正部3032。可不僅對上行信號的載頻,而且對下行信號 的載頻,進行載頻的修正。 依上述之方式,在同步對象和同步源之兩基地台裝置 之間可取得同步時,即使進行從兩基地台裝置同時向多g -60- 201034493 終端裝置發送同一內容之資訊的廣播發送,亦可防止來自 兩基地台裝置的信號發生干涉。 又,因爲可取得兩基地台裝置的同步,所以若從兩基 地台裝置發送同一內容的信號,可在終端裝置側進行巨分 集(macro diversity)或空間多工傳送。 此外,第2接收部3012如第28圖所示,亦可不必和 第1接收部3011完全獨立地設置,而共用可共用的元件。 又,在基地台裝置是分時雙工方式的情況,亦可利用第1 〇 接收部3011進行無線同步用的接收。 又,模式設定部3 03 5根據由識別部3034所識別之同 步對象之基地台裝置的階層順位L,決定基地台裝置的階 層順位L,再設定表示該階層順位L之第1既知信號模式 及第2既知信號模式的組合。已被模式設定部3 03 5設定模 式的第1既知信號及第2既知信號用作在向終端裝置發送 之下行信號的第1既知信號及第2既知信號。 [3.4在階層構造之階層順位和既知信號的關係] φ 對應於第1既知信號(3個模式)和第2既知信號(168 個模式)之組合數是5 04,作爲在本實施形態的通信系統的 階層順位L,可取1~504的値。 在此,以n(n: 0〜2)表示第1既知信號可取之3個模式, 以m(m: 0〜167)表示第2既知信號可取之168個模式。 如第30圖所示,對504種階層順位L中的L=1〜168, 分配第1既知信號之模式n = 0和168個模式之第2既知信 號的組合。對L=169~3 3 6,分配第1既知信號之模式n=l 和168個模式之第2既知信號的組合。而,對L = 3 37~5 04, -61- 201034493 分配第1既知信號之模式n = 2和168個模式之第2既知信 號的組合。 結果,第1既知信號之模式(主碼)n愈小階層順位愈高 (L愈小),η愈大階層順位愈低(L愈大)。又,即使第1既 知信號之模式(主碼)η相同,亦第2既知信號之模式(副碼)m 愈小階層順位愈高(L愈小),m愈大階層順位愈低(L愈大)。 因爲如以上所示,規定階層順位L和第1既知信號之 模式(主碼)n及第2既知信號之模式(副碼)m的關係,所以 若在識別部3 0 3 4可判別其他的基地台裝置所發送的下行 @ 信號所含之第1既知信號之模式(主碼)n及第2既知信號之 模式(副碼)m,就可識別該其他的基地台裝置的階層順位 L。 又,第1既知信號和第2既知信號在相異的時序被發 送,如此藉由2個既知信號在相異的時序被發送》而既知 信號之識別所需的處理變得容易。 此外,亦可第3 0圖所示的關係被記憶於基地台裝置所 具有的記憶部,識別部3 034藉由參照第30圖所示的關係,0 而求得階層順位L。 [3.5 無線同步處理] 如第28圖所示,基地台裝置具備有無線同步控制部 3040,其控制進行無線同步的時序。無線同步控制部3040 週期性或因應於需要而不定期地執行無線同步處理。在進 行無線同步處理之間,使發送部3013中止發送,並使第2 接收部3012接收其他的基地台裝置所發送之下行信號。然 後,同步處理部3030根據由第2接收部3012所接收之信 -62- 201034493 號,執行無線同步處理。 第31圖顯示應進行無線同步處理之基地台裝置的識 別部3034用以選擇成爲同步對象之其他的基地台裝置的 處理。此外,在第31圖,處理之最初,n = 0、m = 0。 在無線同步時,首先,識別部3 0 3 4的控制部3 03 4e使 第1識別部3 0 3 4a探索是主碼n = 0的基地台裝置(步驟S3 —1)。即,第1識別部3034a識別在第2接收部3012所接 收的信號中是否含有對應於主碼η = 0之第1既知信號的模 φ 式。在所接收的信號中未含有對應於主碼η = 0之第1既知 信號的模式的情況,使探索是主碼η = 0的基地台裝置(步驟 S3-1、S3— 2、S3-3)。 在都未發現該主碼η = 0~2之任一個的情況,可成爲同 步對象之其他的基地台裝置就不存在。在此情況,此基地 台裝置不是無線同步,而成爲以本身的時脈決定發送時序 等的自走模式(步驟S3— 4)。 在第2接收部3012所接收的信號中含有對應於主碼 φ η = 0〜2的任一個之第1既知信號的模式的情況,控制部 3〇34e接著使第2識別部3 03 4b探索在該信號的副碼(第2 既知信號的模式)m是否是0〜167的任一個(步驟S3— 5、S3 -6)。 根據此探索,得知其他的基地台裝置的副碼m時,控 制部3034e將具有因應於碼(n,m)之階層順位L(參照第30 圖)之該其他的基地台裝置選爲無線同步的同步對象(步驟 S3 - 7)。 於是,根據從同步對象所發送的信號所含之第1既知 -63- 201034493 信號(或第2既知信號)的時序,訊框同步誤差檢測部3〇17 檢測同步對象和基地台裝置的同步誤差,再根據該同步誤 差,由訊框計數器修正部3018修正訊框計數器,再由頻率 修正部3032修正基地台裝置的收發頻率。 此外,在第31圖,雖然作成在發現了主碼η小之基地 台裝置的情況,不探索比其更大之主碼η的基地台裝置, 但是亦考慮發現複數台基地台裝置的情況,亦可一度對複 數個主碼η = 0〜2全部探索後,選擇具有接收電力最大之主 碼η的基地台裝置。 藉由進行如上述所示的探索,即使其他的基地台裝置 可取的階層順位多,亦可簡單或快速地進行既知信號的識 別處理。例如,在一個既知信號取5 04個模式的情況,在 識別部3 034,每當無線同步,需要使用最多50 4種的既知 模式進行模式識別,而處理時間變長。 另一方面,在本實施形態,因爲先進行模式數之第1 既知信號的模式識別後,進行第2既知信號的模式識別, 所以在識別部 3034,在無線同步時,只是使用最多 171 ( = 3 + 1 68)種既知模式進行模式識別,可識別同步對象的 階層順位L,而可縮短處理時間。 依上述的方式選擇成爲同步對象之其他的基地台裝置 時,模式設定部3 03 5決定基地台裝置向終端裝置所發送的 下行信號應含之第1既知信號模式及第2既知信號模式的 組合。 即,如第32圖所示,在同步對象碼(階層順位L)是(n,m) 的情況,若在該同步對象碼的m是167,則將基地台裝置 -64 - 201034493 的碼設爲(η+1,0)(步驟S3 — 11、步驟S3 - 12),若m是167 以外,則將基地台裝置的碼設爲(n,m+l)(步驟S3 — n、步 驟S3— 13)。即,將比同步對象的階層順位L更低1個的 階層順位L+1作爲基地台裝置的階層順位,使基地台裝置 之往通信區域內之終端裝置的下行信號含有具有對應於該 階層順位之模式的第1既知信號及第2既知信號並發送。 藉由進行以上所示的處理,基地台裝置被設定比同步 對象更低一個的階層順位,將基地台裝置作爲同步對象的 φ 基地台裝置被設定比基地台裝置更低一個的階層順位。結 果,即使各基地台裝置自律地決定同步對象,亦自然地構 築如第25圖所示的階層構造。 [第4章無線同步所需的資源分配] 在本第4章所說明的基地台裝置,在技術上不矛盾之 範圍採用在第1章、第2章、或第3章所說明之基地台裝 置的技術。在本第4章,關於未特別說明的事項,沿用第 1章、第2章以及第3章的說明事項。 Q [4.1 無線同步所需之資源分配的必要性] 想要進行無線同步時,因爲想要和其他的基地台裝置 取得同步的基地台裝置需要接收其他的基地台裝置對移動 終端機所發送之信號,所以在該接收中,可能因本身無法 進行在和移動終端機之間的發送或接收,而阻礙圓滑的通 信。 因此,要求用以使得即使進行無線同步亦儘量不會阻 礙圓滑之通信的技術。 [4.2 無線同步所需之資源分配技術的揭示] -65- 201034493 (1)在此所揭示的發明是一種基地台裝置,其具備在和 使用者終端機之通信所使用的通信用頻道進行資源分配的 資源分配控制部’該基地台裝置的特徵爲:該資源分配控 制部具備:判定部,係判定在該通信用頻道成爲分配對象 的資源是否是被包含於應接收爲了和其他的基地台裝置之 同步而從其他的基地台裝置所發送之信號的同步區間者; 及分配部’係對在該判定部被判定被同步區間所包含的資 源進行資源分配的處理,使得不分配使用者終端機、或可 分配給該資源的使用者終端機數比在非同步區間可分配給 @ 該資源的使用者終端機數更少。 係使用者終端機之通信對象的基地台裝置,在接收爲 了和其他的基地台裝置之同步而從其他的基地台裝置所發 送之信號之間,本身無法向使用者終端機發送信號。 因此,在不進行如上述所示之使用者終端機的分配控 制的情況,在同步區間,使用者終端機即使未被進行資源 分配,亦無法和基地台裝置進行通信。結果,使用者終端 機可能爲了尋找基地台裝置而無益地進行掃瞄,或識別發 _ 生了某種異常。 可是,同步區間只不過是在和使用者終端機之通信中 暫時發生者,若同步區間結束,因爲基地台裝置可如平常 般正常地進行通信,應避免發生無益的掃瞄或識別異常的 發生。 在此,若使用者終端機未被分配通信頻道的資源,則 無法獲得和基地台裝置進行通信的機會。 因此,在同步區間,亦若使用者終端機未被分配通信 -66- 201034493 頻道的資源,則使用者終端機即使在同步區間和基地台裝 置無法通信’亦不會爲了尋找基地台裝置而無益地進行掃 瞄,或識別發生了某種異常。 該發明是根據該構想而開發者,若依據該發明,對在 通信頻道成爲分配對象的資源中之同步區間所含的資源, 不分配使用者終端機’或可分配給該資源的使用者終端機 數比非同步區間時更少》 藉由作成對同步區間所含之資源不分配使用者終端 ® 機,而基地台裝置之通信區域內的使用者終端機即使在同 步區間和基地台裝置無法通信,亦不會爲了尋找基地台裝 置而無益地進行掃瞄,或識別發生了某種異常,而對通信 區域內之全部的使用者終端機可保持圓滑的通信。 又,藉由使對同步區間所含之資源所分配的使用者終 端機數比非同步區間(同步區間以外的區間;基地台裝置和 使用者終端機進行通信之狀態)時更少,因爲在同步區間和 基地台裝置無法通信,所以可使爲了尋找基地台裝置而無 Φ 益地進行掃瞄,或識別發生了某種異常之使用者終端機變 少,而可抑制圓滑的通信受到阻礙。 (2)該分配部構成爲在下行的通信頻道,對在該判定部 被判定同步區間所含之資源不分配使用者終端機,而在上 行的通信頻道,對在該判定部被判定同步區間所含之資源 分配使用者終端機較佳。 在此情況,在同步區間,在下行(從基地台裝置往使用 者終端機的發送)的通信頻道,不分配使用者終端機’而在 上行(從使用者終端機往基地台裝置的發送)的通信頻道’ -67- 201034493 分配使用者終端機。 因此,可進行適合在同步區間中止下行通信,而上行 通信不進行通信之情況的資源分配。 (3) 該分配部構成爲在下行的通信頻道及上行的通信 頻道,對在該判定部被判定同步區間所含之資源不分配使 用者終端機較佳。 在此情況,在同步區間,下行及上行都不分配使用者 終端機。 因此,可進行適合在同步區間下行通信及上行通信都 @ 中止的情況。 (4) 具有由複數個天線所構成之陣列天線,該分配部因 應於該複數個天線中在該同步區間被分配給和該使用者終 端機之通信的天線數,而控制在該判定部被判定同步區間 所含之資源的分配較佳。 在具有陣列天線之基地台裝置的情況,在同步區間, 不必將複數個天線全部用於接收從其他的基地台裝置所發 送的信號,而可將複數個天線中之一部分的天線分配給和 q 使用者終端機的通信。 在同步區間,僅將複數個天線中之一部分的天線用於 和使用者終端機的通信時,天線數比在非同步區間將複數 個天線全部用於和使用者終端機之通信的情況更少。 因此,如上述所示,藉由因應於複數個天線中在同步 區間被分配給和使用者終端機之通信的天線數,控制資源 的分配,而即使在同步區間被分配給和使用者終端機之通 信的天線數變少,亦可進行適當的資源分配。 -68- 201034493 (5)最好還具備調整部,其調整該複數個天線中在該同 步區間用於和該使用者終端機之通信的天線數、與用以接 收從其他的基地台裝置所發送之信號的天線數。 在此情況,可調整在同步區間用於和使用者終端機之 通信的天線數、與用以接收從其他的基地台裝置所發送之 信號的天線數。 [4-3 無線同步時序所需之資源分配技術的實施形態] [4.3.1 通信系統之構成] φ 第34圖顯示在基地台裝置4001a、4001b和使用者終 端機(移動終端機;MS : Mobile Station)4002a、4002b 之間 進行無線通信的通信系統。在此通信系統,設置複數台基 地台裝置(BS: Base Station)4001a、4001b,可在和 cell 內 的使用者終端機4002a、4002b之間進行通信。 此通信系統例如和在第3章的通信系統一樣,是應用 LTE(Long— Term Evolution)的系統。 [4.3.2 基地台裝置之構成(第1例)] Q 第35圖顯示基地台裝置(子BS)4001 b的構成(第1 例)。此子BS4001b具備和第28圖所示之子BS大致一樣 的構成。 其中,如第36圖所示構成第35圖的同步處理部4030。 第36圖的同步處理部4030雖然相當於從第29圖的同步處 理部3030除去識別部3034及模式設定部3035者,但是亦 可設置和識別部3034及模式設定部3035 —樣之構成。 在第36圖的同步處理部4030,亦根據從母BS4001a 所取得之下行信號的訊框所含之Primary Synchronization -69- 201034493The Secondary Synchronization Signal is configured from the last 2nd (1 = 5) symbols in the 7 OFDM symbols that make up the cell. This Signal, originally used by the terminal device to identify the communication cells of a plurality of base station devices, has 168 modes. Two of the Primary Synchronization Signal and Secondary Synchronization Signal are used to form 504 (168x3) identification symbols. The terminal device can identify which sector of the base station device is located from the terminal device by acquiring the signals transmitted from the base station device. 2010104493 The plurality of modes that can be obtained by each signal are predetermined in the communication specifications. 'It is known to each base station device and each terminal device. That is, each of the Signals is a known signal that can acquire a plurality of modes. In the following, the Primary Synchronization Signal is referred to as the 1st known signal, and the Secondary Synchronization Signal is referred to as the 2nd known signal. In the present embodiment, the first known signal and the second known signal are used as signals necessary for synchronization between the above-described base station apparatuses, in addition to the case where the terminal apparatus and the base station apparatus are synchronized, and this will be described later. Q [3-3 Configuration of Base Station Apparatus] Fig. 28 shows an example of the configuration of a base station apparatus (particularly, a sub-BS). The sub BS includes an antenna 3010, a first receiving unit 3011, a second receiving unit 3012, and a transmitting unit 3013. The first receiving unit 3011 is for receiving an uplink signal from the terminal device, and the second receiving unit 3012 is for receiving a downlink signal from another base station device. The transmitting unit 3013 is configured to transmit a downlink signal to the terminal device. Further, the sub-BS is provided with a hire ringer 3014. The circulator 3014 is configured to supply a reception signal from the antenna 3010 to the first receiving unit 3011 and the second receiving unit 3012 side, and to supply a transmission signal output from the transmitting unit 3013 to the antenna 3010 side. The circulator 3014 and the fourth filter 3 1 3 5 of the transmitting unit 3013 prevent the reception signal from the antenna 3001 from being transmitted to the transmitting unit 3 0 1 3 side. Further, the circulator 3014 and the first filter 3111 of the first receiving unit prevent the transmission signal output from the transmitting unit 3013 from being transmitted to the first receiving unit 3011. The circulator 3014 and the fifth filter 3121 are also used to prevent the slave The transmission signal output from the transmission unit 3013 is transmitted to the second reception unit 3012. -53- 201034493 The first receiving unit 3011 is configured by a superheterodyne receiver and configured to perform IF (Intermediate Frequency) sampling. More specifically, the first receiving unit 3011 includes a first filter 3111, a first amplifier 3112, a first frequency converting unit 3113, a second filter 3114, a second amplifier 3115, a second frequency converting unit 3116, and A/. D conversion unit 3 1 1 7 . The first filter 3111 is configured to pass only an uplink signal from the terminal device, and is configured by a band pass filter that passes only the frequency of the uplink signal. The received signal transmitted through the first filter 3111 is the first amplifier (high The frequency amplifier 3112 is amplified and converted from the frequency 匕 to the first intermediate frequency by the first frequency converting unit 3113. The first frequency converting unit 3113 is composed of an oscillator 3113a and a mixer 31 13b. The first frequency converting unit 3113 The output is amplified by the second amplifier 3115 that passes only the first intermediate frequency, and is further amplified by the second amplifier (intermediate frequency amplifier) 3115. The output of the second amplifier 3115 is converted from the first intermediate frequency by the second frequency converting unit 3116. The second intermediate frequency is further converted into a digital signal by the A/D conversion unit 3117. The second frequency conversion unit 3116 is also composed of an oscillator 3116a and a mixer 31 16b. The output of the A/D conversion unit 3117 (first The output of the receiving unit 3011 is supplied to the demodulation circuit (digital signal processing device) 3021, and the received signal from the terminal device is subjected to demodulation processing. Thus, the first receiving unit 3011 is in the analogy of the analogy received by the antenna 3010. Signal transformation The digitizing signal is supplied to the demodulating circuit 3021 constituted by the digital signal processing device to supply a digital up signal. Further, the transmitting unit 3013 receives the modulated signals I and Q output from the modulation circuit (digital signal processing device) 3020. The 201034493 signal is transmitted from the antenna 3010 and configured as a direct conversion transmitter. The transmitting unit 3013 includes D/A converters 3131a and 3131b, a quadrature modulator 3132, a third filter 3133, and a third amplifier ( High power amplifier: ΗΡΑ) 3134 and fourth filter 3135. The D/Α converters 3131a and 3131b perform D/A conversion on the respective modulated signals I and Q. The outputs of the D/A converters 3131a and 3131b are supplied positively. The intermodulation transformer 3132 generates a transmission signal whose carrier frequency is fd (downlink signal frequency) by the quadrature modulator 3132. 输出 The output of the quadrature modulator 3132 passes through the third filter 3133 which only passes the frequency 匕. It is amplified by the third amplifier 3134, and transmitted from the antenna 3010 via the fourth filter 3135 that passes only the frequency fd, and becomes a downlink signal to the terminal device. The first receiving unit 3011 and the transmitting unit 3013 described above are In order to The sub-BS 3001b of the present embodiment further includes a second receiving unit 3012. The second receiving unit 3012 receives the transmission by another base station device in order to acquire wireless synchronization. The downlink signal of φ. Here, the sub-BS 3001b needs to receive the downlink signal transmitted by another base station apparatus in order to acquire synchronization with other base station apparatuses by wireless synchronization. However, the frequency of the downlink signal is fd, and since the frequency fu of the uplink signal is different, the first receiving unit 3011 cannot receive it. In other words, the first receiving unit 3011 includes the first filter 3111 that passes only the signal of the frequency fu, or the second filter 3114 that passes only the first intermediate frequency converted from the frequency fu. The signal of the frequency (frequency fd of the downlink signal) is supplied to the first receiving unit 3011, and the first receiving unit 3011 cannot pass through -55-201034493. In other words, the first receiving unit 301 1 uses the filters 3111 and 3114 provided in the first receiving unit 3011 to obtain a signal suitable for receiving the uplink signal frequency fu, and cannot receive signals of other frequencies. Therefore, in addition to the first receiving unit 3011, the sub-BS of the present embodiment further includes a second receiving unit 3012 for receiving a downlink signal of the frequency fd transmitted by another base station device. The second receiving unit 3012 includes a fifth filter 3121, a fourth amplifier (high frequency amplifier) 31 22, a third frequency converting unit 3123, a sixth filter 3124, a fifth amplifier (intermediate frequency amplifier) 3125, and a fourth. The frequency conversion unit 3126 and the A/D conversion unit 3127. The fifth filter 3121 is configured to pass only a downlink signal from another base station device, and is configured by a band pass filter that passes only the frequency fd of the downlink signal. The received signal of the fifth filter 3121 is amplified by the fourth amplifier (high frequency amplifier) 3122, and the output of the fourth amplifier 3122 is converted by the third frequency converting unit 3123 from the downstream signal frequency 第 to the first intermediate frequency. Further, the third frequency converting unit 3123 is composed of an oscillator 3123a and a mixer 3123b. The output of the third frequency converting unit 3123 is amplified by the fifth amplifier (intermediate frequency amplifier) 3125 via the sixth filter 3124 that passes only the first intermediate frequency output from the third frequency converting unit 3123. The output of the fifth amplifier 3125 is converted from the first intermediate frequency to the second intermediate frequency by the fourth frequency converting unit 3126, and is converted into a digital signal by the A/D converting unit 3127. Further, the fourth frequency converting unit 3126 is also constituted by an oscillator 3126a and a mixer 312 6b. The signal output from the A/D conversion unit 3127 is supplied to the synchronization processing unit 201034493 3030. Thereby, the synchronization processing unit 3030 can acquire the downlink signal from the other base station device. The synchronization processing unit 3030 performs the acquisition of the base station device 3 00 1 b based on the first known signal (Primary Synchronization Signal) and the second known signal (Secondary Synchronization Signal) included in the frame of the downlink signal acquired from the parent BS 3001a. The processing of communication timing and communication frequency synchronization. As shown in Fig. 29, the synchronization processing unit 3030 includes an identification unit 3034, a Q frame synchronization error detecting unit 3017, a frame counter correcting unit 3018, a frequency offset estimating unit 3031, a frequency correcting unit 3032, a memory unit 3033, and a mode setting. Part 303 5. The identification unit 3034 is configured to recognize the level of the hierarchical level L in which the hierarchical structure of the other base station devices is synchronized between the base station devices based on the patterns of the two known signals. Further, the recognition unit 303 4 also has another base station device that recognizes that the hierarchy L is the smallest, and recognizes the other base station devices as synchronization targets. The Q recognition unit 3 034 includes a first recognition unit 3034a that detects a first known signal from a signal (downlink signal) received by the second receiving unit 3012, and a second recognition unit 3 0 3 4b from the second receiving unit. The signal received by 3012 detects the second known signal. The recognition unit 3 识别34 recognizes the hierarchical order L of the other base station device based on the mode of the first known signal and the mode of the second known signal included in the received signal. The first recognition unit 3034a recognizes whether or not the received signal of the second receiving unit 3012 includes any of the three modes that the first known signal can acquire. This identification is performed by taking the correlation of each of the three modes known to the system and the received signal (the lower -57-201034493 line signal). More specifically, each of the three modes in which the first known signal is available is stored in the first mode storage unit 3034c, and the first recognition unit 3034a sequentially reads the mode of the first mode storage unit 3 034c and searches for Whether or not the received signal is included in the received signal for a known time, thereby identifying which mode the received signal contains. Further, at this time, the correlation between the received signal and the mode (sliding correlation) is taken, and the timing at which the correlation between the two is increased is recognized as the timing of the first known signal of the received signal. The second recognition unit 3 03 4b recognizes whether or not the received signal of the second receiving unit 3012 contains any of the 168 patterns that the second known signal can acquire. This identification method is substantially the same as the identification of the first recognition unit 3 034a. The second recognition unit 3034b sequentially reads out the mode that the second known signal can acquire from the 168-mode second mode storage unit 303 4d that can be obtained by storing the second known signal, and recognizes that the received signal contains 168 patterns. Which mode? Further, the second recognition unit 3034b can recognize the timing of the second known signal of the received signal. In addition, since the number of modes that can be acquired by the second known signal is larger than the number of modes that can be acquired by the second known 0 signal, the pattern recognition processing of the second recognition unit 3 03 4b and the recognition processing of the pattern of the first recognition unit 3 034a are performed. In comparison, it takes more time on average. Further, the recognition unit 3 034 has a control unit 3 0 34e for controlling the recognition of the first recognition unit 3034a and the second recognition unit 3 034b. The control by the control unit 3034e will be described later. The frame synchronization error detecting unit 3017 detects the frame transmission timing of the other -58-201034493 base station device to be synchronized by using the timing of the first known signal identified by the identification unit 403, and simultaneously detects and The error of the frame transmission timing of the base station device (frame synchronization error). The detected frame synchronization error is supplied to the frame counter correcting unit 3018. The frame counter correcting unit 3018 corrects the frame counter for determining the frame transmission timing in response to the detected frame synchronization error. Thereby, the sub BS can become synchronized with the parent BS3 00 la. In addition, the detection and correction of the synchronization error is not limited to the frame timing, and may be a symbol timing or a slot timing. The synchronization error detected by the frame synchronization error detecting unit 3017 is supplied to the memory unit 3 03 3 and stored in the memory unit 3 03 3 every time it is detected. The frequency deviation estimating unit 3 03 1 estimates the clock frequency and the genus of the built-in clock generator (not shown) built in the base station device itself on the receiving side based on the synchronization error detected by the detecting unit 3017. The difference (clock frequency error) of the clock frequency of the built-in clock generator of the synchronization target base station apparatus on the transmitting side, and the carrier frequency error (carrier frequency deviation) is estimated from the clock frequency error. The frequency deviation estimating unit 3 03 1 is based on the frame synchronization error t1 detected in the previous wireless synchronization and the frame synchronization error detected in the current wireless synchronization in the φ state in which the wireless synchronization is periodically performed. T2, guess the clock error. In addition, the previous frame synchronization error tl can be obtained from the Eiji unit 3033. For example, in the case where the carrier frequency fd of the downlink signal is 2.6 [GHz], it is assumed that the timing of the previous wireless synchronization (synchronization timing = t1), as the frame synchronization error, T1 is detected, and the timing T1 amount has been corrected. The corrected synchronization error (chronological deviation) is 〇 [msec]. Then, after T=10 seconds, the timing of the current wireless synchronization (synchronous timing = t2), the synchronization error (timing deviation) is also detected again, and false-59-201034493 sets the synchronization error (timing deviation) to be T2 = 0.1. [msec]. At this time, the synchronization error (chronological deviation) of 0.1 [msec] generated in 10 seconds is the storage 値 of the error of the clock period of the parent BS 3001a and the clock period of the sub-BS. Good, the following equation between the synchronization error (timing deviation) and the clock cycle is established. Synchronization source base station device clock cycle: Synchronization target base station device clock cycle = τ: (T + T2) = 10: (10 + 0.0001) Then, because the clock frequency is the reciprocal of the clock cycle, Synchronization source base station device clock frequency - synchronization target base station device clock frequency) = synchronization source base station device clock frequency χΤ 2 / (Τ + Τ 2) and synchronization source base station clock frequency x 〇 .00001 . Therefore, in this case, the clock frequency of the synchronization target base station apparatus on the transmitting side and the clock frequency of the base station apparatus belonging to the receiving side have an error of 0.00001 = 10 [ppm]. The frequency deviation estimating unit 3031 estimates the clock frequency error in the above manner. Further, since the carrier frequency and the synchronization error (timing deviation) are equally varied, a deviation of 10 [ppm] occurs in the carrier frequency, that is, a deviation of 2.6 [GHz] xlxi 〇 -5 = 26 [kHz]. As described above, the frequency deviation estimating unit 3031 can estimate the carrier frequency error (carrier frequency deviation) from the clock frequency error. The carrier frequency error estimated by the frequency deviation estimating unit 3 03 1 is supplied to the frequency correcting unit 3032. The carrier frequency can be corrected not only for the carrier frequency of the uplink signal but also for the carrier frequency of the downlink signal. According to the above manner, when synchronization can be obtained between the two base station apparatuses of the synchronization target and the synchronization source, even if the broadcast transmission of the same content information from the two base station apparatuses to the multi-g-60-201034493 terminal apparatus is simultaneously performed, Signal interference from the two base station devices can be prevented. Further, since the synchronization of the two base station apparatuses can be obtained, if the signals of the same content are transmitted from the two base station apparatuses, macro diversity or space multiplex transmission can be performed on the terminal apparatus side. Further, as shown in Fig. 28, the second receiving unit 3012 does not have to be provided completely independently of the first receiving unit 3011, and shares common elements. Further, when the base station apparatus is in the time division duplex mode, the first 接收 receiving unit 3011 can also perform reception for wireless synchronization. Further, the mode setting unit 3 03 5 determines the hierarchical order L of the base station device based on the hierarchical order L of the base station device to be synchronized by the identification unit 3034, and sets the first known signal pattern indicating the hierarchical order L and The second known combination of signal patterns. The first known signal and the second known signal that have been set by the mode setting unit 3 03 5 are used as the first known signal and the second known signal of the downlink signal transmitted to the terminal device. [3.4 Relationship between hierarchical order and known signal in hierarchical structure] The number of combinations of φ corresponding to the first known signal (three modes) and the second known signal (168 modes) is 504, which is the communication in the present embodiment. The hierarchical level of the system is L, which can take 1~504. Here, n (n: 0 to 2) indicates three modes in which the first known signal can be obtained, and m (m: 0 to 167) indicates 168 patterns in which the second known signal can be obtained. As shown in Fig. 30, for L = 1 to 168 in 504 hierarchical order L, a combination of the mode n = 0 of the first known signal and the second known signal of 168 patterns is assigned. For L=169~3 3 6, a combination of the mode n=l of the first known signal and the second known signal of 168 modes is assigned. However, for L = 3 37~5 04, -61- 201034493, the combination of the mode 1 of the first known signal and the 2nd known signal of the 168 modes is assigned. As a result, the smaller the mode (main code) n of the first known signal, the higher the level of the higher order (the smaller the L), and the larger the η, the lower the level (the larger the L). Further, even if the mode (main code) η of the first known signal is the same, the mode of the second known signal (subcode) m is smaller, the higher the level of the level is (the smaller the L is), the larger the m is, the lower the level is. Big). Since the relationship between the hierarchical order L and the mode (main code) n of the first known signal and the mode (subcode) m of the second known signal is defined as described above, other components can be discriminated in the identification unit 3 0 3 4 . The mode (main code) n of the first known signal and the mode (subcode) m of the second known signal included in the downlink @ signal transmitted by the base station apparatus can identify the hierarchical order L of the other base station apparatus. Further, the first known signal and the second known signal are transmitted at different timings, and thus the two known signals are transmitted at different timings, and the processing required for the recognition of the signal is facilitated. Further, the relationship shown in Fig. 30 can be memorized in the memory unit of the base station device, and the recognition unit 3 034 can obtain the hierarchical order L by referring to the relationship shown in Fig. 30. [3.5 Wireless Synchronization Processing] As shown in Fig. 28, the base station apparatus is provided with a radio synchronization control unit 3040 that controls the timing of performing radio synchronization. The wireless synchronization control section 3040 performs wireless synchronization processing periodically or in response to the necessity. Between the wireless synchronization processing, the transmitting unit 3013 stops the transmission, and causes the second receiving unit 3012 to receive the downlink signal transmitted by the other base station apparatus. Then, the synchronization processing unit 3030 performs wireless synchronization processing based on the letter -62-201034493 received by the second receiving unit 3012. Fig. 31 shows the processing of the identification unit 3034 of the base station apparatus to perform the wireless synchronization processing for selecting another base station apparatus to be synchronized. In addition, in Fig. 31, at the beginning of the process, n = 0, m = 0. In the case of wireless synchronization, first, the control unit 303 4e of the recognition unit 3 0 3 4 causes the first recognition unit 3 0 3 4a to search for the base station device whose master code is n = 0 (step S3 - 1). In other words, the first identifying unit 3034a recognizes whether or not the signal received by the second receiving unit 3012 includes the modulo φ of the first known signal corresponding to the main code η = 0. In the case where the received signal does not include a pattern corresponding to the first known signal of the main code η = 0, the base station apparatus that searches for the main code η = 0 (steps S3-1, S3-2, S3-3) ). When none of the main codes η = 0 to 2 is found, the other base station devices that can be synchronized are not present. In this case, the base station apparatus is not in wireless synchronization, but is a self-propelled mode in which the transmission timing and the like are determined by its own clock (step S3-4). When the signal received by the second receiving unit 3012 includes a mode corresponding to the first known signal of any one of the main codes φ η = 0 to 2, the control unit 3〇34e then causes the second identifying unit 3 03 4b to search. Whether or not the sub code (the mode of the second known signal) m of the signal is any one of 0 to 167 (steps S3-5, S3-6). According to this investigation, when the subcode m of the other base station apparatus is known, the control unit 3034e selects the other base station apparatus having the hierarchical level L (see FIG. 30) corresponding to the code (n, m) as the wireless unit. Synchronized synchronization object (steps S3-7). Then, based on the timing of the first known -63-201034493 signal (or the second known signal) included in the signal transmitted from the synchronization target, the frame synchronization error detecting unit 3〇17 detects the synchronization error of the synchronization target and the base station device. Then, based on the synchronization error, the frame counter correcting unit 3018 corrects the frame counter, and the frequency correcting unit 3032 corrects the transmission and reception frequency of the base station device. Further, in Fig. 31, in the case where the base station apparatus having the small main code η is found, the base station apparatus having the larger main code η is not searched, but the case of finding the plurality of base station apparatuses is also considered. It is also possible to select all of the plurality of main codes η = 0 to 2, and then select the base station device having the main code η that receives the largest power. By performing the above-described search, even if other base station apparatuses have a higher level of hierarchy, the recognition processing of the known signal can be performed simply or quickly. For example, in the case where one known signal takes 5 04 patterns, in the recognition unit 3 034, it is necessary to use up to 50 known patterns for pattern recognition every time wireless synchronization, and the processing time becomes long. On the other hand, in the present embodiment, since the pattern recognition of the second known signal is performed after the pattern recognition of the first known signal of the number of patterns is performed, the recognition unit 3034 uses only a maximum of 171 in the wireless synchronization. 3 + 1 68) The pattern recognition is performed in the known mode, and the hierarchical order L of the synchronization object can be identified, and the processing time can be shortened. When the other base station device to be synchronized is selected as described above, the mode setting unit 390 determines the combination of the first known signal pattern and the second known signal pattern to be included in the downlink signal transmitted by the base station device to the terminal device. . That is, as shown in Fig. 32, when the synchronization target code (hierarchy order L) is (n, m), if m of the synchronization target code is 167, the code of the base station device -64 - 201034493 is set. (η+1, 0) (step S3-11, step S3-12), if m is 167, the code of the base station apparatus is set to (n, m + 1) (step S3 - n, step S3) — 13). In other words, the hierarchical level L+1 which is one level lower than the hierarchical level L of the synchronization target is used as the hierarchical order of the base station apparatus, and the downlink signal of the terminal apparatus in the communication area of the base station apparatus has the corresponding level corresponding to the hierarchical level. The first known signal and the second known signal of the mode are transmitted. By performing the above-described processing, the base station apparatus is set to have a lower rank than the synchronization target, and the φ base station apparatus that uses the base station apparatus as the synchronization target is set to have a lower rank than the base station apparatus. As a result, even if each base station apparatus autonomously determines the synchronization target, the hierarchical structure as shown in Fig. 25 is naturally constructed. [Chapter 4 Resource Allocation Required for Wireless Synchronization] In the base station apparatus described in this Chapter 4, the base station described in Chapter 1, Chapter 2, or Chapter 3 is used in a technically non-contradictory range. The technology of the device. In Chapter 4, the items described in Chapter 1, Chapter 2, and Chapter 3 are used for matters that are not specified. Q [4.1 Necessity of resource allocation required for wireless synchronization] When wireless synchronization is desired, the base station device that wants to synchronize with other base station devices needs to receive other base station devices to transmit to the mobile terminal. The signal, so in this reception, it is possible to prevent the smooth communication by transmitting or receiving between the mobile terminal and the mobile terminal itself. Therefore, a technique is required to make communication that does not hinder smoothness as much as possible even if wireless synchronization is performed. [4.2 Revelation of Resource Allocation Technology Required for Wireless Synchronization] -65- 201034493 (1) The invention disclosed herein is a base station apparatus having resources for communication channels used for communication with a user terminal. The allocated resource allocation control unit is characterized in that the resource allocation control unit includes a determination unit that determines whether or not the resource to be allocated to the communication channel is included in the base station to be received and other base stations. The synchronization section of the signal transmitted from the other base station apparatus in synchronization with the apparatus; and the allocation unit' is a process of performing resource allocation on the resource included in the synchronization section determined by the determination unit, so that the user terminal is not allocated The number of user terminals that can be assigned to the resource, or the number of user terminals that can be assigned to the resource, is less than the number of user terminals that can be assigned to the resource in the non-synchronized interval. The base station device that is the communication target of the user terminal can transmit a signal to the user terminal itself without receiving a signal transmitted from another base station device in synchronization with another base station device. Therefore, in the case where the distribution control of the user terminal as described above is not performed, in the synchronization section, the user terminal cannot communicate with the base station apparatus even if the resource allocation is not performed. As a result, the user terminal may scan unnecessarily for the purpose of finding the base station device, or identify an abnormality. However, the synchronization interval is only temporarily occurred in the communication with the user terminal. If the synchronization interval ends, since the base station device can communicate normally as usual, unhelpful scanning or recognition of abnormalities should be avoided. . Here, if the user terminal is not allocated resources of the communication channel, the opportunity to communicate with the base station device cannot be obtained. Therefore, in the synchronization interval, if the user terminal is not allocated the resources of the communication channel -66-201034493, the user terminal does not communicate with the base station device even in the synchronization interval, and it does not benefit from finding the base station device. Scan the ground or identify an abnormality. According to the invention, according to the present invention, the user terminal device or the user terminal that can be allocated to the resource is not allocated to the resource included in the synchronization section in the resource to which the communication channel is to be allocated. The number of machines is less than that in the non-synchronization interval." The user terminal is not allocated to the resources included in the synchronization interval, and the user terminal in the communication area of the base station device cannot be used even in the synchronization interval and the base station device. Communication does not scan unnecessarily for the purpose of finding a base station device, or recognizes that an abnormality has occurred, and maintains smooth communication for all user terminals in the communication area. Further, when the number of user terminals allocated to the resources included in the synchronization section is smaller than the asynchronous section (the section other than the synchronization section; the state in which the base station apparatus and the user terminal communicate with each other), Since the synchronization section and the base station apparatus cannot communicate, it is possible to scan the target station apparatus without Φ, or to identify that the number of user terminals in which an abnormality has occurred is small, and it is possible to suppress smooth communication. (2) The allocating unit is configured such that, in the downlink communication channel, the user terminal is not allocated to the resource included in the synchronization section determined by the determination unit, and the synchronization channel is determined in the determination unit in the uplink communication channel. The resource allocation user terminal included is preferred. In this case, in the synchronization section, the communication channel on the downlink (transmission from the base station apparatus to the user terminal) is not allocated to the user terminal' and is uplinked (transmission from the user terminal to the base station apparatus). The communication channel '-67- 201034493 allocates user terminals. Therefore, it is possible to perform resource allocation suitable for the case where the downlink communication is suspended in the synchronization section and the uplink communication is not performed. (3) The allocating unit is configured to be a downlink communication channel and an uplink communication channel, and it is preferable that the resource included in the synchronization section is not allocated to the user terminal. In this case, no user terminal is allocated in the synchronization interval, both downlink and uplink. Therefore, it is possible to perform a situation in which both the downlink communication and the uplink communication are suspended in the synchronization section. (4) Having an array antenna composed of a plurality of antennas, the distribution unit being controlled in the determination unit by the number of antennas allocated to the user terminal in the synchronization section in the plurality of antennas It is determined that the allocation of resources included in the synchronization interval is better. In the case of a base station apparatus having an array antenna, in the synchronization section, it is not necessary to use all of the plurality of antennas for receiving signals transmitted from other base station apparatuses, and an antenna of one of the plurality of antennas may be allocated to the q. User terminal communication. In the synchronization interval, when only one of the plurality of antennas is used for communication with the user terminal, the number of antennas is less than the case where the plurality of antennas are all used for communication with the user terminal in the asynchronous interval. . Therefore, as described above, the allocation of resources is controlled by the number of antennas allocated to the communication with the user terminal in the synchronization section in response to the plurality of antennas, even if the synchronization section is assigned to the user terminal The number of antennas for communication is reduced, and appropriate resource allocation can also be performed. -68- 201034493 (5) preferably further comprising an adjustment unit that adjusts the number of antennas used for communication with the user terminal in the synchronization section of the plurality of antennas, and for receiving from other base station apparatuses The number of antennas that send the signal. In this case, the number of antennas used for communication with the user terminal in the synchronization section and the number of antennas for receiving signals transmitted from other base station apparatuses can be adjusted. [4-3 Embodiment of Resource Allocation Technology Required for Wireless Synchronization Timing] [4.3.1 Configuration of Communication System] φ Figure 34 shows the base station devices 4001a and 4001b and the user terminal (mobile terminal; MS: Mobile Station) A communication system for wireless communication between 4002a and 4002b. In this communication system, a plurality of base station devices (BS: Base Station) 4001a and 4001b are provided to communicate with the user terminals 4002a and 4002b in the cell. This communication system is, for example, a system to which LTE (Long Term Evolution) is applied, as in the communication system of Chapter 3. [4.3.2 Configuration of Base Station Apparatus (First Example)] Q Figure 35 shows the configuration of the base station apparatus (sub-BS) 4001 b (first example). This sub-BS 4001b has substantially the same configuration as the sub-BS shown in Fig. 28. Here, as shown in Fig. 36, the synchronization processing unit 4030 of Fig. 35 is constructed. The synchronization processing unit 4030 of Fig. 36 corresponds to the removal of the recognition unit 3034 and the mode setting unit 3035 from the synchronization processing unit 3030 of Fig. 29, but may be configured similarly to the identification unit 3034 and the mode setting unit 3035. The synchronization processing unit 4030 of Fig. 36 also includes Primary Synchronization -69- 201034493 included in the frame of the downlink signal obtained from the parent BS 4001a.

Signal 及 Secondary Synchronization Signal,進行用以取 得自裝置4001b的通信時序及通信頻率之同步的處理。 [4.3.3 基地台裝置之構成(第2例)] 第37圖顯示子BS4001b之構成的第2例。第37圖所 示的子BS4001b和第1例之子BS4001b類似。 在第2例之子BS4001b,不是獨立地設置第1接收部 4011及第2接收部4012,而是共用那些之電路構成的一部 分。即,第1接收部4011及第2接收部4012具有由第1 接收部401 1及第2接收部4012之雙方所使用的共有部 0 4 023。關於這一點,和第16圖所示之電路構成共同。 [4.3.4 基地台裝置之構成(第3例)] 第38圖顯示子BS4001b之構成的第3例。在第3例的 子BS4001b,和第35圖所示之第1例的子BS4001b —樣, 是獨立地設置第1接收部4011及第2接收部4012,並以 直接變換接收機構成第1接收部4011及第2接收部4012。 即’第1接收部4011及第2接收部4012與第18圖所示之 電路構成共同。 _ [4.3.5 基地台裝置之構成(第4例)] 第39圖表示子BS4001b之構成的第4例。在本第4 例的子BS4001b’係對在第38圖所示的第3例之直接變換 方式的第1接收部4011及第2接收部4012,設置和在第 37圖所示的第2例之第丨接收部4〇1ι及第2接收部4012 的共有部4023 —樣的共有部4〇23。即,第1接收部4011 及第2接收部4012與第19圖所示之電路構成共同。 [4.3.6 基地台裝置之構成(第5例)] -70- 201034493 第40圖顯示子BS4001b之構成的第5例。此第5例的 子BS400 1 b具備有具有複數個(K個)天線4010-1〜4010-K的陣列天線,並和第20圖所示的電路構成共同。 [4.3.7 基地台裝置之構成(第6例)] 第41圖之第6例的子BS4001b和第5例相異,是將第 2接收部4012設置於在陣列天線方式之全天線的系統,並 和第20圖所示的電路構成共同。 [4.3.8 關於無線同步和資源分配] φ 該第1~第6例的各子BS4001b各自具備無線同步控制 部4040和資源分配控制部4041。 如第42圖所示,資源分配控制部4041具備:判定部 4041a,係判定是否是無線同步區間;及分配部4041b,係 將在由複數台使用者終端機4 002b所共有之共有通信頻道 的資源方塊分配給各使用者終端機400 2b。 在該調變電路4020,根據自資源分配控制部404 1所 接受之資源方塊分配資訊,將從上階網路所接受之資料交 φ 給發送部4013。此外,資源方塊亦可係訊框單位、儲存格 單位、或符號單位的任一個。 如第43圖所示,在LTE,將被稱爲PDCCH(Physical Downlink Control Channel)之控制頻道設置於下行(DL)副 訊框的前頭。 此外,在此,在下行(DL)副訊框,將PDCCH以外的區 域作爲共有通信頻道(PDSCH: Physical Downlink Shared Channel)。又,在上行(UL)副訊框,亦在前頭確保控制頻 道,而除此以外的區域成爲共有通信頻道(PUS CH: Physical -71- 201034493The Signal and Secondary Synchronization Signal perform processing for taking the synchronization of the communication timing and the communication frequency of the device 4001b. [4.3.3 Configuration of Base Station Apparatus (Second Example)] Fig. 37 shows a second example of the configuration of the sub BS 4001b. The sub-BS 4001b shown in Fig. 37 is similar to the sub-BS 4001b of the first example. In the sub- BS 4001b of the second example, the first receiving unit 4011 and the second receiving unit 4012 are not provided independently, but a part of the circuit configuration is shared. In other words, the first receiving unit 4011 and the second receiving unit 4012 have a shared unit 0 4 023 used by both the first receiving unit 4011 and the second receiving unit 4012. In this regard, it is common with the circuit shown in Fig. 16. [4.3.4 Configuration of Base Station Apparatus (3rd Example)] Fig. 38 shows a third example of the configuration of the sub-BS 4001b. In the sub-BS 4001b of the third example, as in the sub-BS 4001b of the first example shown in FIG. 35, the first receiving unit 4011 and the second receiving unit 4012 are provided independently, and the first receiving unit is configured by the direct conversion receiver. The unit 4011 and the second receiving unit 4012. In other words, the first receiving unit 4011 and the second receiving unit 4012 are configured in common with the circuit shown in Fig. 18. _ [4.3.5 Configuration of Base Station Apparatus (Fourth Example)] Fig. 39 shows a fourth example of the configuration of the sub BS 4001b. In the sub-BS 4001b' of the fourth example, the first receiving unit 4011 and the second receiving unit 4012 of the direct conversion type of the third example shown in Fig. 38 are provided and the second example shown in Fig. 37 is provided. The second receiving unit 4〇1i and the shared unit 4023 of the second receiving unit 4012 are the same as the shared unit 4〇23. In other words, the first receiving unit 4011 and the second receiving unit 4012 are configured in common with the circuit shown in FIG. [4.3.6 Configuration of base station apparatus (fifth example)] -70- 201034493 Fig. 40 shows a fifth example of the configuration of sub-BS4001b. The sub BS 400 1 b of the fifth example is provided with an array antenna having a plurality of (K) antennas 4010 to 4010-K, and is configured in common with the circuit shown in Fig. 20. [4.3.7 Configuration of base station apparatus (sixth example)] The sub-BS 4001b of the sixth example of Fig. 41 differs from the fifth example in that the second receiving unit 4012 is provided in the entire antenna of the array antenna system. The system is identical to the circuit shown in Figure 20. [4.3.8 Wireless synchronization and resource allocation] φ Each of the sub-BSs 4001b of the first to sixth examples includes a radio synchronization control unit 4040 and a resource allocation control unit 4041. As shown in Fig. 42, the resource allocation control unit 4041 includes a determination unit 4041a for determining whether or not it is a wireless synchronization section, and a distribution unit 4041b for sharing a communication channel shared by a plurality of user terminals 4 002b. Resource blocks are assigned to each user terminal 400 2b. The modulation circuit 4020 transfers the information received from the upper-order network to the transmitting unit 4013 based on the resource block allocation information received from the resource allocation control unit 404 1 . In addition, the resource block can also be any one of a frame unit, a cell unit, or a symbol unit. As shown in Fig. 43, in LTE, a control channel called a PDCCH (Physical Downlink Control Channel) is placed in front of the downlink (DL) subframe. Here, in the downlink (DL) subframe, a region other than the PDCCH is used as a shared downlink channel (PDSCH: Physical Downlink Shared Channel). In addition, in the uplink (UL) sub-frame, the control channel is also ensured in the front, and the other areas become the shared communication channel (PUS CH: Physical -71- 201034493)

Uplink Shared Channel) 〇 共有通信頻道是由複數台使用者終端機爲了通信所共 有的區域(資源),並構成爲具有複數個成爲對使用者終端 機之分配之最小單位的資源方塊。資源方塊是將共有通信 頻道分割成複數個的小區域,一個或複數個資源方塊被分 配給一台使用者終端機,複數台使用者終端機可同時利用 一個共有通信頻道(副訊框)進行通信(Multiple Access)。 在DL副訊框所含之該PDCCH,包含係在下行連結之 資源方塊之分配資訊的 Downlink Scheduling Q Information、係在上行連結之資源方塊之分配資訊的Uplink Shared Channel) The shared communication channel is an area (resource) shared by a plurality of user terminals for communication, and is configured as a resource block having a plurality of minimum units that are allocated to the user terminal. The resource block divides the shared communication channel into a plurality of small areas, and one or a plurality of resource blocks are allocated to one user terminal, and the plurality of user terminals can simultaneously use a common communication channel (sub-frame). Communication (Multiple Access). The PDCCH included in the DL sub-frame includes the Downlink Scheduling Q Information of the allocation information of the resource blocks in the downlink connection, and the allocation information of the resource blocks in the uplink connection.

Uplink Scheduling Grant以及其他的控制資訊_。 如第 43 圖戶斤示,Downlink Scheduling Information(以 下稱爲「DSI」)規定在具有包含該DSI之PDCCH的DL副 訊框之共有通信頻道的資源方塊分配。例如,在第43圖之 DL副訊框#4之PDCCH的DSI,規定在該#4的DL副訊框 之共有通信頻道的資源方塊分配。Uplink Scheduling Grant and other control information. As shown in Fig. 43, the Downlink Scheduling Information (hereinafter referred to as "DSI") specifies the resource block allocation of the shared communication channel of the DL subframe having the PDCCH including the DSI. For example, the DSI of the PDCCH of DL subframe #4 in Fig. 43 specifies the resource block allocation of the shared communication channel in the DL subframe of #4.

又,Uplink Scheduling Grant(以下稱爲「USG」)規定 在具有包含該USG之PDCCH的DL副訊框之3個前面的 UL副訊框之共有通信頻道的資源方塊分配。例如,在第 43圖之DL副訊框#1之PDCCH的USG,規定在#4的UL 副訊框之共有通信頻道的資源方塊分配。 雖然下行及上行之資源方塊的分配由該資源分配控制 部4041的分配部4041b所進行,但是本實施形態的分配部 404 1 b對無線同步區間內之資源方塊的分配,除了進行一 般之資源分配以外,還進行特殊的處理。 -72- 201034493 第43圖及第44圖顯示在第35圖所示之第1例及在第 38圖所示之第3例的基地台裝置4001b之資源分配的方法 例。 此外,在第1例及第3例的基地台裝置4 0 01b,無線 同步所需的第2接收部4012是和用以接收來自使用者終端 機4002b之上行信號的第1接收部4011獨立地設置。 如第44圖所示,首先,資源分配控制部4〇41的判定 部4041a判定分配對象的資源方塊是否是屬於無線同步區 φ 間內者(步驟S4 — 1)。資源分配控制部404 1從無線同步控 制部4040取得表示無線同步之時序的資訊(無線同步區間 資訊),再判定分配對象之資源方塊是否是屬於以無線同步 區間資訊所7K之時間內者,藉此進行判定。 此外,無線同步控制部4040根據固定的週期而定期 地、或因應於需要而中止爲了無線同步而對使用者終端機 4002b之下行信號的發送,而成爲接收母BS4001a所發送 之下行信號的無線同步狀態。表示成爲此無線同步狀態之 φ 時間帶的資訊是該無線同步區間資訊。 在步驟S4— 1,判定分配對象的資源方塊不屬於無線 同步區間內的情況,作爲一般之資源分配動作,不管下行、 上行,對該資源方塊進行使用者終端機的分配(步驟S4 — 2)。即,對該資源方塊進行使用者終端機的分配,再將表 示該分配的資訊(DSI、USG)儲存於PDCCH。 另一方面,在步驟S4 - 1,判定分配對象的資源方塊(之 一部分或全部)屬於無線同步區間內的情況,若該資源方塊 是下行(DL),不進行使用者終端機的分配(步驟S4 - 3),而 -73- 201034493 若該資源方塊是上行(UL),進行使用者終端機的分配(步驟 S4 - 4)。 結果,如第43圖所示,在副訊框#4中存在無線同步 區間的情況,對應於該無線同步區間的區域被當作非分配 區域處理,在具有對下行(DL)副訊框#4之共有通信頻道的 資源分配資訊(DSI)之下行DL副訊框#4的PDCCH,對含有 無線同步區間之上行(UL)副訊框#4之共有通信頻道整體的 資源分配資訊存在。 另一方面,在具有關於上行(UL)副訊框#4之共有通信 q 頻道的資源分配資訊(USG)的下行DL副訊框#4之PDCCH 中存在,包含無限同步區間,關於上行(UL)副訊框#4之共 有通信頻道全體的資源分配資訊。 依以上之方式所決定的資源分配資訊被供給調變電路 4 020,調變電路4020根據資源分配資訊,將從上階網路所 接受的資料進行調變,並交給發送部4013。 藉由如上述所示進行分配,在無線同步區間,因爲在 無線同步區間,在下行(DL)不進行對使用者終端機4002b &Further, the Uplink Scheduling Grant (hereinafter referred to as "USG") specifies the resource block allocation of the shared communication channel of the three UL sub-frames having the DL sub-frame including the PDCCH of the USG. For example, in the USG of the PDCCH of DL subframe #1 in Fig. 43, the resource block allocation of the shared communication channel of the UL subframe of #4 is specified. Although the allocation of the downlink and uplink resource blocks is performed by the allocation unit 4041b of the resource allocation control unit 4041, the allocation unit 404 1b of the present embodiment allocates resource blocks in the wireless synchronization interval, in addition to performing general resource allocation. In addition, special handling is also carried out. -72- 201034493 Figs. 43 and 44 show an example of a method of resource allocation in the first example shown in Fig. 35 and the base station apparatus 4001b in the third example shown in Fig. 38. Further, in the base station apparatus 4 0 01b of the first and third examples, the second receiving unit 4012 required for wireless synchronization is independent of the first receiving unit 4011 for receiving the uplink signal from the user terminal 4002b. Settings. As shown in Fig. 44, first, the determination unit 4041a of the resource allocation control unit 4〇41 determines whether or not the resource block to be allocated belongs to the wireless synchronization area φ (step S4-1). The resource allocation control unit 404 1 acquires information indicating the timing of the wireless synchronization (wireless synchronization section information) from the wireless synchronization control unit 4040, and determines whether or not the resource block to be allocated belongs to the time period of the wireless synchronization section information 7K. This is determined. Further, the wireless synchronization control unit 4040 periodically stops the transmission of the downlink signal to the user terminal 4002b for wireless synchronization, or becomes the wireless synchronization of the downlink signal transmitted by the receiving parent BS 4001a, in accordance with a fixed cycle. status. The information indicating the φ time band that becomes the wireless synchronization state is the wireless synchronization interval information. In step S4-1, it is determined that the resource block to be allocated does not belong to the wireless synchronization interval. As a general resource allocation operation, the user terminal is allocated to the resource block regardless of the downlink or uplink (step S4-2). . That is, the resource block is allocated to the user terminal, and the information (DSI, USG) indicating the allocation is stored in the PDCCH. On the other hand, in step S4-1, it is determined that the resource block (partial or all) of the allocation target belongs to the wireless synchronization section, and if the resource block is the downlink (DL), the allocation of the user terminal is not performed (step S4 - 3), and -73- 201034493 If the resource block is uplink (UL), the user terminal is allocated (step S4 - 4). As a result, as shown in FIG. 43, in the case where the wireless synchronization section exists in the subframe #4, the area corresponding to the wireless synchronization section is treated as the non-allocation area, and has the pair downlink (DL) subframe # The resource allocation information (DSI) of the shared communication channel of 4 shares the PDCCH of the DL sub-frame #4, and the resource allocation information of the entire shared communication channel including the uplink (UL) subframe #4 of the wireless synchronization section exists. On the other hand, there is a PDCCH in the downlink DL subframe #4 having resource allocation information (USG) for the shared communication q channel of the uplink (UL) subframe #4, including an infinite synchronization interval, regarding uplink (UL) ) Resource allocation information for the entire communication channel of sub-frame #4. The resource allocation information determined in the above manner is supplied to the modulation circuit 4 020, and the modulation circuit 4020 modulates the data received from the upper network based on the resource allocation information, and passes it to the transmitting unit 4013. By performing the allocation as described above, in the wireless synchronization section, in the wireless synchronization section, the downlink (DL) is not performed on the user terminal 4002b &

Q 的分配本身,所以在無線同步區間,即使作成中止發送部 4013的信號發送本身,以免和來自母BS4001a的下行信號 發生干涉,亦因爲對使用者終端機4002b無資源分配,所 以即使使用者終端機4002b從基地台裝置4001b無法接收 信號,亦可防止識別是異常。 又,在第1例及第3例,因爲除了第1接收部4011以 外’還設置第2接收部4012,所以即使在無線同步區間內, 亦可如平常進行來自使用者終端機40 02b的接收。因此, -74- 201034493 如第43圖所示,對上行,即使在無線同步區間內,亦可進 行資源分配。 此外,亦可作成對該非分配區域,除了完全不分配使 用者終端機以外,分配比在一般的分配動作所分配的使用 者終端機更少的使用者終端機。在此情況,被分配到非分 配區域之資源方塊的使用者終端機,在無線同步區間第1 接收部發送部4013之信號發送本身中止時,雖然具有識別 在該無線同步區間被進行資源分配的使用者終端機4002b 〇 是異常的可能性,但是因爲在該無線同步區間被進行資源 分配之使用者終端機4 0 02b的數量少,所以可抑制不良影 響。 第45圖及第46圖顯示在第36圖所示之第2例及在第 39圖所示之第4例的基地台裝置4001b之資源分配的方法 例。 此外,在第2例及第4例的基地台裝置4 0 0 1b,無線 同步所需的第2接收部4012是和用以接收來自使用者終端 φ 機4002b之上行信號的第1接收部4011具有共有部4023, 而第1接收部40 11及第2接收部4012之構成部分共用化。 在第46圖的資源分配處理和第44圖所示的資源分配 處理大致相同,而相異的是步驟S4。 在第44圖的步驟S4- 4,判定分配對象的資源方塊屬 於無線同步區間內,在該資源方塊是上行(UL)的情況,進 行使用者終端機的分配,相對地,在第46圖的步驟S4- 4, 判定分配對象的資源方塊(之一部分或全部)屬於無線同步 區間內’在該資源方塊是下行(DL)的情況,不進行使用者 -75- 201034493 終端機的分配》 即,在第2例及第4例的基地台裝置4001b,如第45 圖所示,在爲了無線同步而第2接收部4012接收來自母 BS4001a的下行信號之間,因爲第1接收部4011無法接收 來自使用者終端機4 00 2b的上行信號,所以屬於無線同步 區間內之上行的資源方塊亦成爲非分配區域。 因而,爲了無線同步,在基地台裝置4001b無法接收 來自使用者終端機4002 b之上行信號的區間,使用者終端 機4002b就使用所分配到的資源方塊向基地台裝置400 1 b 發送資訊,而可防止基地台裝置4001b無法接收該資訊的 情形發生。 第47圖及第48圖顯示在第41圖所示之第6例的基地 台裝置4001 b之資源分配。 如第47圖所示,第41圖所示之基地台裝置4001b的 資源分配控制部4041具備有調整部4041c。 此調整部404 1c是調整在陣列天線之複數個天線2010 —1〜2 010-K中用以在無線同步區間接收從母BS4001a所 發送之下行信號的天線數。 此調整部4 04 1c決定用以接收來自母BS4001a的下行 信號之充分且最少之數量的天線數。該天線數可在和母 BS4001a之間的傳輸路線環境差的情況增多,而在傳輸路 線環境良好的情況減少。傳輸路線環境例如可從第2接收 部4012取得由第2接收部4012所接收之信號的SNR(信號 雜訊比)等之表示傳輸路線環境的指標,再推測。 由調整部404 1 c所決定之數量的天線用以接收來自母 201034493 BS4001a的下行信號,剩下的天線用以接收來自使用者終 端機4002b的上行信號。 具有第47圖之構成的資源分配控制部4〇41如第48圖 所示,在步驟S4- 1〜S4 — 3進行和第44圖所示之處理步驟 —樣的處理。 另一方面,在48圖之步驟S4— 4 — 1及步驟S4— 4_ 2,調整部4 04 1c將複數個天線分配成接收來自母BS4〇〇la 之下行信號的無線同步用天線、和接收來自使用者終端機 0 400 2b之上行信號的通信用天線(步驟S4-4 - 1)。 只要所分配到之通信用天線的數量不是0,即使是無 線同步區間中,基地台裝置4001b亦可接收來自使用者終 端機40 0 2b之上行信號。又,若通信用天線的數量多,藉 由空間多工等之多工化而可有效地應用資源。若通信用天 線的數量變多,亦可將很多使用者分配給相同的資源方塊。 因而,分配部4041b因應於分配給無線同步用天線後 所剩下的通信用天線的數量,進行考慮到空間多工等之多 φ 工化之資源方塊的分配(步驟S4-4-2)。 若依據上述,可動態調整無線同步用天線的數量,一 面確實地進行無線同步,一面以所剩下的通信用天線繼續 進行和使用者終端機的通信。 此外,亦可無線同步用天線的數量不必動態調整,而 在設置基地台裝置等時,預設爲固定値。 [第5章抑制同步精度之降低] 在本第5章所說明的基地台裝置在不矛盾之範圍採用 在第1章、第2章、第3章或第4章所說明之基地台裝置 -77- 201034493 的技術。在本第5章,關於未特別說明的事項,沿用第1 章、第2章、第3章以及第4章的說明事項。 [5.1 關於同步精度之降低] 即使進行無線同步,亦因爲基地台所具有之各個時脈 產生裝置之精度誤差的差異,而隨著時間的經過,在同步 發生偏差。 第57圖係顯示其他基地台裝置之時脈頻率相對一基 地台裝置的時脈頻率之偏差之隨時間變化之一例的圖形。 如第57圖所示,一基地台裝置的時脈頻率和其他的基地台 Q 裝置之間之時脈頻率的偏差値隨著時間的經過在緩慢地變 化下接近穩態。 因爲基地台根據本身之時脈產生裝置的振盪而動作, 所以即使在基地台起動時在和其他的基地台取得同步,亦 在以後和移動終端機(終端裝置)進行通信而經過一段時間 時,由於如上述所示之由時脈產生裝置之精度的差異所引 起之偏差値的存在,而發生相對的計値偏差,並發生同步 偏差。 . 因而,例如想到暫時中止和終端裝置的通信,並進行 和其他的基地台之同步處理,藉此消除如上述所示的同步 偏差。在此情況,該基地台裝置在停止和終端裝置的通信 之間,再對和其他的基地台裝置之同步偏差的程度,使用 接收波所含之既知信號,檢測該其他的基地台的發送時 序,而可在該發送時序取得同步。 在此’因爲其他的基地台的發送時序是根據來自該其 他的基地台之接收波所含的既知信號而檢測,所以所得之 -78- 201034493 其他的基地台的發送時序是經由接收波所間接取得的推測 値。 即’在基地台接收應取得同步之相鄰之其他的基地台 的信號時’受到雜訊或延遲匯流排等之接收路徑所引起的 影響的情況,該基地台可能無法正確地接收其他的基地台 的信號。若無法正確地接收其他的基地台的信號,在從來 自其他的基地台的接收波所檢測之其他的基地台的發送時 序就含有大的誤差,而發生同步精度降低的問題。 〇 因此,要求可抑制基地台間同步之精度降低的基地台 裝置。 [5.2 用以抑制同步精度之降低之技術的揭#] (1)在此所揭示的發明是一種基地台裝置,其從其他的 基地台裝置所發送之信號取得該其他的基地台裝置的通信 時序,再修正和該其他的基地台裝置的同步偏差,該基地 台裝置之特徵爲:具有:同步偏差推測部,係求得該其他 的基地台裝置的通信時序和本身的通信時序之間的同步偏 Q 差的推測値;修正部,係根據由該同步偏差推測部所得之 該推測値,求得抑制該推測値所含之誤差的修正値;以及 同步修正部,係根據該修正値修正同步偏差。 若依據如上述所示構成的基地台裝置,因爲修正部求 得抑制推測値所含之誤差的修正値,再根據該修正値修正 同步偏差,所以即使因來自其他的基地台裝置之信號的接 收狀況而在推測値含有大的誤差,亦可抑制該誤差。結果, 在修正同步偏差時可抑制誤差的影響,而可抑制同步偏差 之修正精度的降低。 -79- 201034493 (2) 該修正部亦可係根據現在及過去的推測値求得該 修正値,在此情況,藉由考慮過去的推測値,而可得到有. 效地抑制現在的推測値所含之誤差的修正値。 (3) 更具體而言,該修正部藉由將現在的推測値和至少 一個過去的推測値平均而求得該修正値較佳。在此情況, 即使現在的推測値含有大的誤差,亦藉由將和至少一個過 去的推測値之平均値作爲修正値,而可得到抑制現在的推 測値所含之誤差的修正値。 (4) 又,該修正部亦可係藉由對該推測値乘以大於〇且 @ 小於1的係數而求得該修正値,利用該係數可抑制推測値 所含之誤差。 (5) 亦可該修正部判定該推測値是否大於臨限値,在該 推測値大於臨限値的情況,將該臨限値以下的値作爲該修 正値。 在此情況,即使所得之推測値含有極大的誤差,亦因 爲是大於臨限値的値時將該臨限値以下的値作爲修正値, 所以可防止在修正値含有極大之誤差的狀態被修正。 _ [5.3 同步精度之降低抑制技術的實施形態] [5.3.1 第1實施形態] 第 49圖顯示具有複數台基地台裝置(BS: Base Stati〇n)500 1、5002、5003、…的無線通信系統。在此無線 通信系統,例如爲了實現寬頻無線通信而採用依據由支援 正交分頻多元連接(OFDMA)方式的IEEE802.1 6所規定之 「WiMAX」的方式。此外,WiMAX的訊框構造是如第 2 圖所示。 -80- 201034493 各基地台裝置5001、5002、5003可在和位於各個基地 台裝置5001、5002、5003所涵蓋之區域(cell)內的終端裝 置(移動終端機MS: Mobile Station)之間進行通信。 複數台基地台裝置5001、5002、5003包含:至少一台 的主基地台裝置、及副基地台裝置。 主基地台裝置是不必從其他的基地台裝置所發送之信 號的接收波檢測並取得基地台間同步所需之時序的基地台 裝置。例如,主基地台裝置能以根據自裝置所產生之同步 Q 信號(時脈)而決定信號之發送時序的自走主基地台裝置構 成。此外,主基地台裝置亦可係具備有GPS接收機,並使 用GPS信號決定信號之發送時序者。 副基地台裝置是從其他的基地台裝置所發送之信號的 接收波檢測並取得基地台間同步所需之時序的基地台裝 置。 在以下,將第1圖所示的第1基地台裝置5001作爲主 基地台裝置,而將第2基地台裝置5 002及第3基地台裝置 0 5003作爲副基地台裝置。 第2及第3基地台裝置50 02、5003在起動時,將其他 的基地台裝置中之一基地台裝置(主基地台裝置或其他的 副基地台裝置)選爲源基地台裝置,檢測作爲其他的基地台 裝置之源基地台裝置所發送之信號(前置信號;既知信號; 同步信號)的接收波(源接收波),再取得基地台間同步所需 的時序(信號的發送時序)。此外,將基地台裝置起動時所 進行之基地台間同步所需的處理稱爲起始同步處理。起始 同步處理如上述所示在起動時被執行,更具體而言,基地 -81 - 201034493 台裝置起動後’至和終端裝置之通信開始之間所進行。又, 此起始同步處理的具體內容是和在後述之「中止通信的同 步模式」的處理大致相同。 此外,在本實施形態’假設第2基地台裝置5 002將第 1基地台裝置5001選爲源基地台裝置,而第3基地台裝置 5003將第2基地台裝置5002選爲源基地台裝置。 副基地台裝置一面和源基地台裝置之發送時序取得同 步’一面和自區域內的終端裝置進行通信。即,在起始同 步處理後’副基地台裝置在和終端裝置之間進行通信(通信 模式)的時序和源基地台裝置(其他的基地台裝置)的發送 時序及接收時序(通信時序)一致。 其中’因爲副基地台裝置之時脈產生器的精度不充 分、或在基地台裝置間時脈精度有變動時,隨著時間的經 過,發生同步偏差。即,基地台裝置和終端裝置進行通信 時,逐漸和其他的基地台裝置之收發時序(通信時序)發生 偏差(同步偏差)。 即’因爲在基地台裝置間存在基地台裝置所具備之時 脈產生器之時脈頻率的誤差,所以根據該時脈頻率(基準信 號)所產生之一個通信訊框(下行副訊框)的時間長度(例如 規格上是5msec)在基地台裝置間稍微相異。即使一個訊框 之時間長度的誤差很小,重複對終端裝置發送訊框時’該 誤差亦累積,而可能成爲比較大的同步偏差(例如約1μ sec) ° 如此,即使在起始同步處理使基地台裝置間的通信時 序一致’亦在和終端裝置的通信之間,同步偏差逐漸變大。 -82- 201034493 因而,第2及第3基地台裝置5002、5003具有在 的時序執行同步模式(中止通信的同步模式)的功能, 步模式係中止(停止)和終端裝置進行通信(發送信號; 副訊框)的通信模式,同時檢測並消除同步偏差。 此外,關於此通信模式和同步模式之切換的形態 述。 第5〇圖係顯示在第2及第3基地台裝置5002、 之接收部及發送部之構成的方塊圖。在第50圖,接 φ 5010具備:放大器5011,係將接收信號放大;A/D變 5012,係將接收信號進行 A/D變換;以及解 (DEM)5013,係將被變換成數位信號的接收信號進行解 又,發送部5020具備:調變部(MOD)5021,係將 位信號的發送信號進行調變;D/A變換部5 022,係將 信進行D/A變換;以及放大器5 023,係將發送信號放 各基地台裝置爲了以TDD(分時雙工)和終端裝置 通信,而具備有切換開關(SW)5031,其將和天線5 03 0 φ 接切換至接收部5010側和發送部5020側。即,在發 框(下行副訊框)的時序,切換開關5 0 3 1被切換至發 5020惻,而在接收訊框(上行副訊框)的時序,切換開關 被切換至接收部5 0 1 0側。 此外,該A/D變換部5012及D/A變換部5022的 時脈由基準信號產生器5 040所供給。基準信號產生器 包含有水晶振盪器等時脈產生裝置,產生既定頻率的 時脈。此外,當然該動作時脈亦成爲後述之訊框時序 器5032等在第2及第3基地台裝置5002、5003之其 既定 該同 下行 將後 5003 收部 換部 調部 P調。 是數 發送 〔大。 進行 的連 送訊 送部 503 1 動作 5 040 動作 計數 他的 -83- 201034493 數位電路的動作時脈。 在此,D/A變換部5022之動作時脈的精度影響發送訊 框(下行副訊框)之時間長度的精度。因此,如上述所示, 在各基地台裝置基準信號產生器的精度相異時,在各基地 台裝置間的動作時脈發生誤差,所產生之發送訊框的時間 長度因各基地台裝置而稍微相異。 收發的切換係根據在訊框時序計數器5032之計數値 而進行。即,發送訊框的時間長度、接收訊框的時間長度 以及那些訊框間的時間間隔係預定,若該計數値和既定之 收發切換時序一致,由切換開關5 03 1進行收發的切換。 在和源基地台裝置發生同步偏差的情況,藉由修正此 訊框時序計數器5032的計數値,而可修正同步偏差。即, 訊框時序計數器5032從後述的同步誤差檢測部503 3及修 正部5 03 6收到用以修正同步偏差(同步誤差)的修正値時, 求得和此修正値之時間寬對應的計數器修正値,再根據該 求得之計數器修正値將計數値朝向正確方向挪移而修正。 因而,可使收發之切換時序和其他的基地台裝置一致。 第2及第3基地台裝置5002、5003具有同步誤差檢測 部5 0 3 3,其用以檢測同步偏差(同步誤差)。同步誤差檢測 部5033從接收信號(接收波)檢測同步信號(前置信號),再 檢測其時序。進而,同步誤差檢測部5033從訊框時序計數 器5032取得自己之前置信號的時序,再求所檢測之源基地 台裝置之前置信號的時序和自己之前置信號的時序的同步 偏差(時序偏差)。在此,同步誤差檢測部5033所求得之同 步偏差是可將所檢測之同步信號的時序看成源基地台裝置 -84- 201034493 之時序的値’可說是對和源基地台裝置之間之實際的同步 偏差的推測値。以下’將同步誤差檢測部5 〇 3 3所檢測之同 步偏差稱爲同步偏差推測値。 同步誤差檢測部503 3向修正部5036輸出所檢測之同 步偏差推測値。收到同步偏差推測値的修正部5036向訊框 時序計數器5032輸出對同步偏差推測値已進行既定之修 正的修正値。訊框時序計數器5032收到該修正値時,如上 述所示進行同步偏差(同步誤差)的修正,再進行同步處 ® 理。即,訊框時序計數器5032構成根據該修正値修正同步 偏差的同步修正部。 又’同步誤差檢測部5033亦向同步誤差履歷記憶部 5 03 5輸出所求得之同步偏差推測値。同步誤差履歷記憶部 5 03 5逐次記憶在各同步模式所求得之同步偏差推測値,同 時對應於需要,向修正部5 03 6輸出所記憶之過去所求得的 同步偏差推測値。修正部5 03 6在考慮過去的同步偏差推測 値下求修正値的情況,要求同步誤差履歷記憶部5 03 5輸出 〇 過去的同步偏差推測値》 爲了使用從源基地台裝置所發送的信號求同步偏差推 測値,接收部5010具備有切換開關5014,其用以將接收 信號切換至解調部5013側或同步誤差檢測部5 03 3側。此 切換開關5014在可接收來自終端裝置之信號的通信模式 之間,對解調部5013側供給接收信號,而在通信模式被中 止的同步模式,對同步誤差檢測部5 03 3側供給接收信號。 又,發送部502 0亦具有切換開關5024。此切換開關 5 02 4在可對終端裝置發送信號的通信模式之間,對D/A變 -85- 201034493 換部5022供給發送信號,而在通信模式被中止的同步模 式,不對D/A變換部5022供給發送信號。 接收部5010及發送部5 02 0之切換開關5014、切換開 關502 4的切換是由週期控制部5〇34進行。即,週期控制 部5 03 4是控制中止通信模式的週期(同步時序),在是和終 端裝置之間進行通信的通信模式時,若判定應移至同步模 式的時序到了時,進行切換開關5014、5024的切換,而切 換成同步模式。然後,同步模式結束時,再切換成通信模 式。 其次,說明該構成之第2及第3基地台裝置5002、5003 從和終端裝置進行通信的(一般)通信模式切換成接收來自 源基地台裝置(第1及第2基地台裝置5001、5002)之信號 的同步模式時的形態。 第51圖顯示第2及第3基地台裝置50 02、5 00 3從通 信模式切換成同步模式時的流程圖。 如第51圖所示,第2及第3基地台裝置5002、5003 使週期控制部5034判定是否是應成爲同步模式的同步時 序(步驟S5 — 1)。同步時序例如被設爲成爲同步模式的週期 (每既定時間或每既定訊框數)。在以時間設定週期的情 況,例如可設爲約5分鐘。 在是和終端裝置之間進行通信的一般通信模式時,被 判定應移往同步模式的時序到了的情況(步驟S5— 2),週期 控制部5034進行切換開關5014、5 024的切換。因而,第 2及第3基地台裝置5002、5003移至同步模式(步驟S5_ 3)。同步模式結束時,第2及第3基地台裝置5002、5〇〇3 201034493 回到步驟S5—1、步驟S5— 2,至判斷下次的時序爲止,再 回到一般通信模式(步驟S5 - 4)。 第2及第3基地台裝置5002、5003 —般在和終端裝置 之間進行通信,一面定期地或對應於需要而隨時執行同步 信號,藉此,即使在和源基地台裝置之間發生同步偏差, 亦可消除之。 第52圖係顯示第51圖中之同步模式之處理的流程圖。 如第52圖所示,第2及第3基地台裝置5002、5003 © 成爲同步模式時,首先,在使同步處理(步驟S5— 12〜S5-14)開始之前,以廣播向自區域內之全終端裝置進行用以使 終端裝置變成睡眠模式或空轉模式(省電模式)的通知(步 驟 S5 - 1 1)。 終端裝置從第2及第3基地台裝置5002、5003收到睡 眠模式等的通知時,移至睡眠模式。因爲睡眠模式等是終 端裝置未執行通信時的管理模式,所以抑制耗電力。 睡眠時間被設定成終端裝置的睡眠模式至少在第2及 H 第3基地台裝置5002、5003進行同步處理之間繼續。 終端裝置因爲在第2及第3基地台裝置5002、5003進 行同步處理之間位於睡眠模式等,所以即使無法接收來自 第2及第3基地台裝置5 002、5 003的信號,亦不會被判斷 是異常。 第2及第3基地台裝置5002、5003在對終端裝置通知 睡眠模式等後,移至同步處理(已中止通信的同步處理)。 在此同步處理之間’和終端裝置之間的通信(下行副訊框的 發送)被中止,本來即使在成爲下行副訊框的時間亦成爲接 -87- 201034493 收信號之狀態。 在同步處理(已中止通信的同步處理),第2及第3基 地台裝置5002、5003首先接收來自源基地台裝置的信號(步 驟S5 — 12)。在本實施形態,將位於源基地台裝置(第1及 第2基地台裝置5001、5002)所發送之下行副訊框DL的前 前之前置信號用作基地台間同步所需的同步信號。因而, 第2及第3基地台裝置5002、5003檢測位於源基地台裝置 所發送之下行副訊框DL的前前之前置信號的時序。 此外,作爲同步信號,亦可係中同步、引示信號等。 第2及第3基地台裝置5002、5003的同步誤差檢測部 5 03 3爲了檢測前置信號的時序,而具有掃描來自和自裝置 相鄰之源基地台裝置的接收波之功能。 基地台裝置5002、5003將源基地台裝置具有使用之可 能性的前置信號模式作爲既知信號並儲存於記憶體。第2 及第3基地台裝置5002、5003使用這些既知的前置信號模 式,檢測前置信號的時序(步驟S5- 13)。前置信號之時序 檢測例如可依第9圖所示的方式進行。 檢測到前置信號的時序t時,第2及第3基地台裝置 5002、5 003的同步誤差檢測部503 3接著求同步偏差推測 値(步驟S5 — 1)。 同步誤差檢測部503 3首先從訊框時序計數器5 03 2取 得自己之前置信號的時序。然後,將所檢測之源基地台裝 置之前置信號的時序t當作該源基地台裝置之前置信號的 時序,再求得所檢測之源基地台裝置之前置信號的時序t 和自己之前置信號的時序的同步偏差,作爲推測値。 -88- 201034493 第53圖係顯示源基地台裝置和接收源基地台裝置之 信號的基地台裝置之間之前置信號的時序之關係的模式 圖。此外’在第53圖,僅著眼於作爲源基地台裝置的第1 基地台裝置5001和第2基地台裝置50〇2之間的關係來表 示。 在第53圖,同步誤差檢測部5033如上述所示求在該 步驟S5 - 13所檢測之第1基地台裝置5001之前置信號的 時序(通信時序)tl和自己(第2基地台裝置5002)之前置信 φ 號的時序(通信時序)t2的差,作爲同步偏差推測値△ τ。 另一方面,同步誤差檢測部5 03 3所檢測之該前置信號 的時序tl是根據第2基地台裝置5002所接收之接收波, 而間接地作爲第1基地台裝置5001的時序tl所得的,有 相對於第1基地台裝置5001之實際的時序tr發生偏差的 情況。 即,因爲第2基地台裝置5 0 02所接收之接收波受到在 第1基地台裝置5 00 1和第2基地台裝置5 002之間的接收 Λ 路徑的影響,而根據接收波檢測時序tl時,相對於第1基 地台裝置5001之實際的時序tl·發生一些偏差。雖然只要 可大致正常地接收第1基地台裝置5001的接收波,此偏差 不會很大,但是在接收路徑因雜訊或延遲匯流排等而大爲 受到影響時,如第53圖所示,有根據接收波之時序tl相 對於實際之時序tl'的偏差變大的情況。 因此,有同步誤差檢測部503 3所求得之同步偏差推測 値ΔΤ不僅是第1基地台裝置5001之實際的時序tl’和自 己之時序t2的差之實際的同步偏差値ATs,還含有所檢測 -89- 201034493 之時序tl和實際的時序UI之間的偏差的情況,此偏差成 爲在同步偏差推測値ΛΤ之對實際的同步偏差値Ah的誤 差。 回到第52圖’同步誤差檢測部5033求得該同步偏差 推測値△ T時,向修正部5036輸出該同步偏差推測値ΛΤ。 收到同步偏差推測値△ Τ的修正部5 0 3 6判定同步偏差推測 値ΔΤ是否是所預定的臨限値S以上(步驟S5-i5)。判定 . 同步偏差推測値ΛΤ小於臨限値S時,修正部5036對同步 偏差推測値△ Τ進行修正,根據該同步偏差推測値△ τ求修 0 正値△ Τ·(步驟S5 — 16) » 另一方面’判定同步偏差推測値ΛΤ是臨限値S以上 時’修正部5 03 6將臨限値S作爲同步偏差推測値△ Τ(步驟 S5— 17),求修正値(步驟S5-16)。此外,關於在此 步驟S5— 16及步驟S5 — 17修正部5036所進行之修正的形 態將後述。 求得修正値ΔΤ·時,修正部5036向訊框時序計數器 5032輸出此修正値△ Τ1。訊框時序計數器5 03 2收到修正値 · △ Τ'時’進行同步偏差的修正(步驟S5_i8)。 發送訊框的時間長度、接收訊框的時間長度以及那些 訊框間的時間間隔係根據訊框時序計數器5 0 3 2的計數値 所決定。因而’訊框時序計數器5032可求對應於修正値△ T1之時間寬的計數器修正値,再根據該求得的計數器修正 値朝正確方向挪移計數値而修正。 因而,第2及第3基地台裝置5002、5003可將自己的 發送時序修正成接近源基地台裝置的發送時序。換言之, -90- 201034493 藉由根據從所檢測之同步信號的時序所得之修正値△ Τ', 在正確方向挪移自裝置的發送時序(訊框時序),而可修正 同步偏差。 此外,若修正第2及第3基地台裝置5 002、5 003的發 送時序和源基地台裝置的發送時序之間的同步偏差,自然 亦修正接收時序的同步偏差。即,成爲在第2及第3基地 台裝置5002、5003和源基地台裝置之間可修正訊框之同步 偏差的狀態。 φ 如此,在本實施形態的第2及第3基地台裝置5002、 5 00 3,因爲中止在和終端裝置之間進行通信的通信模式, 並使用來自源基地台裝置的同步信號取得同步,所以即使 無用以取得同步的控制用頻道,亦可取得同步。 以上的同步處理結束時,第2及第3基地台裝置5002、 5003結束同步模式’回到第51圖中的步驟S5 — 1,因成爲 一般通信模式,而成爲可和終端裝置之間進行通信的狀態。 又’位於睡眠模式等的終端裝置經過所設定的睡眠時 φ 間(空轉時間)時’自動地成爲和第2及第3基地台裝置 5002、5003進行通信的一般通信模式。即,第2及第3基 地台裝置5002、5 003及終端裝置都回到一般通信模式時, 兩者的通信再開始。 如以上所示’本實施形態的第2及第3基地台裝置 5002、5003隨時或以既定的時間間隔中止通信模式,重複 地進行同步模式’藉由修正在通信模式中所產生的同步偏 差,而保持和源基地台裝置的同步。 其次’說明在第52圖中之步騾S5_ μ及步驟S5 — 17 -91 - 201034493 修正部5036所進行之修正的形態》 修正部5 0 3 6判定從同步誤差檢測部5 0 3 3所收到之同 步偏差推測値△ T小於臨限値S時(步驟S5 - 1 5),根據如 下第(2)式,對同步偏差推測値△ T進行修正,求抑制該同 步偏差推測値△ T的修正値△ Τ’(步驟S5 - 16)。 Δ Τ'= α χΔ Τ (2) 該第(2)式中的係數α被設定成0<α<1之範圍的値。 修正部5036如上述所示藉由對同步偏差推測値△ τ乘以係 數α,而求修正値ΔΤ、結果,修正部5036得到修正値△ · 其數値被抑制成小於同步偏差推測値λτ的値。 第54圖係顯示基地台裝置重複進行通信模式和同步 模式時對源基地台裝置之實際的同步偏差値△[之隨時間 變化之一例的圖。在第54圖’橫軸表示經過時間,縱軸表 示實際的同步偏差値ATs。此外,在第54圖,作爲在對作 爲源基地台裝置的第1基地台裝置5001取得同步之第2基 地台裝置5002的實際的同步偏差値,加以說明。 在第54圖’顯示第2基地台裝置5002重複在執行既Since the assignment of Q itself is made, even in the wireless synchronization section, even if the signal transmission itself of the transmission unit 4013 is suspended, so as not to interfere with the downlink signal from the parent BS 4001a, and since there is no resource allocation to the user terminal 4002b, even the user terminal The device 4002b cannot receive a signal from the base station device 4001b, and can prevent the recognition from being abnormal. Further, in the first example and the third example, since the second receiving unit 4012 is provided in addition to the first receiving unit 4011, reception from the user terminal unit 40 02b can be performed as usual even in the wireless synchronization section. . Therefore, as shown in Fig. 43, as shown in Fig. 43, for the uplink, resource allocation can be performed even in the wireless synchronization interval. Further, it is also possible to allocate a user terminal device that is smaller than the user terminal device allocated in the normal allocation operation except that the user terminal is not allocated at all. In this case, the user terminal allocated to the resource block in the non-allocated area has the identification of the resource allocation in the wireless synchronization section when the signal transmission itself of the wireless synchronization section first receiving unit transmitting unit 4013 is suspended. The user terminal 4002b is likely to be abnormal. However, since the number of user terminals 4 0 02b to which resources are allocated in the wireless synchronization section is small, adverse effects can be suppressed. Figs. 45 and 46 show an example of a method of resource allocation in the second example shown in Fig. 36 and the base station apparatus 4001b in the fourth example shown in Fig. 39. Further, in the base station apparatus 4 0 0 1b of the second and fourth examples, the second receiving unit 4012 required for wireless synchronization is the first receiving unit 4011 for receiving the uplink signal from the user terminal φ unit 4002b. The shared unit 4023 is provided, and the components of the first receiving unit 40 11 and the second receiving unit 4012 are shared. The resource allocation processing in Fig. 46 is substantially the same as the resource allocation processing shown in Fig. 44, and the difference is step S4. In step S4-1 of Fig. 44, it is determined that the resource block to be allocated belongs to the wireless synchronization section, and when the resource block is uplink (UL), the user terminal is allocated, and in Fig. 46, Steps S4 - 4, determining that the resource block (partial or all) of the allocated object belongs to the wireless synchronization interval, 'in the case where the resource block is downlink (DL), and the user-75-201034493 terminal is not allocated, ie, In the base station device 4001b of the second and fourth examples, as shown in FIG. 45, the second receiving unit 4012 receives the downlink signal from the parent BS 4001a for wireless synchronization, because the first receiving unit 4011 cannot receive the received signal from the first receiving unit 4011. Since the user terminal 4 00 2b has an uplink signal, the resource block belonging to the uplink in the wireless synchronization section also becomes a non-allocation area. Therefore, for wireless synchronization, the base station device 4001b cannot receive the uplink signal from the user terminal 4002b, and the user terminal 4002b transmits the information to the base station device 400 1 b using the allocated resource block. It is possible to prevent the base station device 4001b from receiving the information. Fig. 47 and Fig. 48 show the resource allocation of the base station device 4001b of the sixth example shown in Fig. 41. As shown in Fig. 47, the resource allocation control unit 4041 of the base station device 4001b shown in Fig. 41 is provided with an adjustment unit 4041c. The adjustment unit 404 1c adjusts the number of antennas for receiving the downlink signal transmitted from the parent BS 4001a in the wireless synchronization section in the plurality of antennas 2010-1 to 010-K of the array antenna. The adjustment unit 4 04 1c determines the number of antennas for receiving a sufficient and minimum number of downlink signals from the parent BS 4001a. The number of antennas can be increased in the case where the transmission path environment with the parent BS 4001a is poor, and the case where the transmission path environment is good is reduced. In the transmission route environment, for example, an index indicating the transmission route environment such as the SNR (signal noise ratio) of the signal received by the second receiving unit 4012 can be obtained from the second receiving unit 4012, and it is estimated. The number of antennas determined by the adjustment unit 404 1 c is for receiving downlink signals from the parent 201034493 BS4001a, and the remaining antennas are for receiving uplink signals from the user terminal 4002b. As shown in Fig. 48, the resource allocation control unit 4A having the configuration of Fig. 47 performs the processing similar to the processing procedure shown in Fig. 44 in steps S4-1 to S4-3. On the other hand, in step S4-4-1 of FIG. 48 and step S4-4_2, the adjusting unit 4 04 1c allocates a plurality of antennas to the wireless synchronization antenna for receiving the downlink signal from the parent BS4〇〇la, and receives A communication antenna from the uplink signal of the user terminal 0 400 2b (step S4-4 - 1). As long as the number of communication antennas allocated is not zero, even in the wireless synchronization interval, the base station device 4001b can receive an uplink signal from the user terminal 40 0 2b. Further, if the number of communication antennas is large, resources can be efficiently applied by multiplexing of space multiplexing or the like. If the number of communication antennas is increased, many users can be assigned to the same resource block. Therefore, the allocating unit 4041b allocates resource blocks in consideration of the multiplexing of the space multiplex or the like in accordance with the number of communication antennas remaining after being allocated to the wireless synchronization antenna (step S4-4-2). According to the above, the number of wireless synchronization antennas can be dynamically adjusted, and wireless synchronization is surely performed on one side, and communication with the user terminal is continued with the remaining communication antennas. In addition, the number of antennas for wireless synchronization does not have to be dynamically adjusted, and when the base station device or the like is set, the preset is fixed. [Chapter 5 Reduction of Synchronization Accuracy] The base station device described in this Chapter 5 uses the base station device described in Chapter 1, Chapter 2, Chapter 3, or Chapter 4 in a non-contradictory range. 77-201034493's technology. In Chapter 5, the items described in Chapter 1, Chapter 2, Chapter 3, and Chapter 4 are used for matters that are not specified. [5.1 Reduction of Synchronization Accuracy] Even if wireless synchronization is performed, there is a difference in the accuracy error of each clock generation device of the base station, and the deviation occurs in synchronization with the passage of time. Fig. 57 is a graph showing an example of temporal variation of the clock frequency of other base station devices with respect to the clock frequency of a base station device. As shown in Fig. 57, the deviation of the clock frequency of a base station device from the clock frequency between other base station Q devices 接近 approaches steady state with a slow change over time. Since the base station operates according to the oscillation of the clock generating device itself, even when the base station is synchronized with other base stations, it is communicated with the mobile terminal (terminal device) for a while, Due to the existence of the deviation 値 caused by the difference in the accuracy of the clock generating device as described above, the relative misalignment occurs and the synchronization deviation occurs. Thus, for example, it is thought that the communication with the terminal device is temporarily suspended, and synchronization processing with other base stations is performed, thereby eliminating the synchronization deviation as described above. In this case, the base station apparatus detects the transmission timing of the other base station using the known signal included in the received wave between the stop and the communication between the terminal devices and the degree of synchronization deviation with the other base station devices. And synchronization can be achieved at this transmission timing. Here, since the transmission timing of other base stations is detected based on the known signals contained in the received waves from the other base stations, the transmission timing of the other base stations is -78-201034493. The speculation obtained. That is, when the base station receives the signal of the other base station that is to be synchronized, it is affected by the reception path of the noise or the delayed bus, etc., the base station may not be able to correctly receive other bases. The signal of the station. If the signals of the other base stations cannot be correctly received, the transmission timing of the other base stations detected by the received waves from the other base stations contains a large error, and the synchronization accuracy is lowered. 〇 Therefore, a base station apparatus capable of suppressing a decrease in the accuracy of synchronization between base stations is required. [5.2. Technique for suppressing reduction in synchronization accuracy] (1) The invention disclosed herein is a base station apparatus that acquires communication of the other base station apparatus from signals transmitted from other base station apparatuses. Timing, and correcting the synchronization deviation from the other base station apparatus, the base station apparatus is characterized in that: the synchronization deviation estimation unit is configured to obtain the communication timing between the other base station apparatus and the communication timing of itself The correction unit generates a correction 値 based on the estimation 所得 obtained by the synchronization deviation estimation unit, and obtains a correction 抑制 for suppressing the error included in the estimation 値; and the synchronization correction unit corrects the correction based on the correction 値Synchronization deviation. According to the base station apparatus configured as described above, since the correction unit obtains the correction 抑制 which suppresses the error included in the estimation 値, and corrects the synchronization deviation based on the correction ,, even if the signal is received from another base station apparatus In the case of the situation, it is estimated that there is a large error, and the error can be suppressed. As a result, the influence of the error can be suppressed when the synchronization deviation is corrected, and the reduction in the correction accuracy of the synchronization deviation can be suppressed. -79- 201034493 (2) The correction unit may obtain the correction based on current and past speculations. In this case, by considering the past estimation, it is possible to effectively suppress the current estimation. Correction of the error contained. (3) More specifically, the correction unit preferably obtains the correction 値 by averaging the current estimation 値 and at least one past estimation 値. In this case, even if the current speculation contains a large error, the correction 値 which suppresses the error contained in the current estimation 可 can be obtained by using the average 値 of at least one of the past estimators as the correction 値. (4) Further, the correction unit may obtain the correction 値 by multiplying the estimated 値 by a coefficient larger than 〇 and @ is less than 1, and the error included in the estimation 値 can be suppressed by the coefficient. (5) The correction unit may determine whether the estimated 値 is greater than the threshold 値, and if the estimated 値 is greater than the threshold ,, the 値 below the threshold 値 is used as the correction 値. In this case, even if the estimated 値 has a large error, it is a correction 値 when the 临 is greater than the threshold 値, so that the state in which the correction 値 contains a large error is prevented from being corrected. . _ [5.3 Embodiment of Synchronization Reduction Reduction Technique] [5.3.1 First Embodiment] Fig. 49 shows a wireless device having a plurality of base station devices (BS: Base Stati〇n) 500 1, 5002, 5003, ... Communication Systems. In the wireless communication system, for example, in order to realize wideband wireless communication, a method of "WiMAX" defined by IEEE802.16 supporting an orthogonal frequency division multiple link (OFDMA) system is employed. In addition, the frame structure of WiMAX is as shown in Figure 2. -80- 201034493 Each base station device 5001, 5002, 5003 can communicate with a terminal device (mobile terminal MS: Mobile Station) located in a cell covered by each base station device 5001, 5002, 5003 . The plurality of base station devices 5001, 5002, and 5003 include at least one primary base station device and a secondary base station device. The primary base station apparatus is a base station apparatus that does not need to detect the received waves of signals transmitted from other base station apparatuses and acquires the timing required for synchronization between base stations. For example, the master base station apparatus can be constructed by a self-propelled master base station apparatus that determines the transmission timing of the signal based on the synchronous Q signal (clock) generated by the own apparatus. Further, the main base station apparatus may be provided with a GPS receiver, and the GPS signal is used to determine the timing of transmission of the signal. The sub-base station device is a base station device that detects the received waves of signals transmitted from other base station devices and acquires the timing required for synchronization between the base stations. Hereinafter, the first base station device 5001 shown in Fig. 1 is used as the primary base station device, and the second base station device 5 002 and the third base station device 0 5003 are used as the sub-base station devices. When the second and third base station devices 50 02 and 5003 are activated, one of the other base station devices (the main base station device or another sub-base station device) is selected as the source base station device, and the detection is performed as The received wave (source received wave) of the signal (preamble signal; known signal; synchronization signal) transmitted by the source base station device of the other base station device, and the timing required for synchronization between the base stations (signal transmission timing) . Further, the processing required for the synchronization between the base stations performed when the base station apparatus is started is referred to as the initial synchronization processing. The initial synchronization processing is performed at the time of starting as described above, more specifically, between the start of the base-81 - 201034493 device and the start of communication with the terminal device. Further, the specific content of the initial synchronization processing is substantially the same as the processing of the "synchronization mode for aborting communication" which will be described later. Further, in the present embodiment, it is assumed that the second base station device 5 002 selects the first base station device 5001 as the source base station device, and the third base station device 5003 selects the second base station device 5002 as the source base station device. The sub-base station device communicates with the terminal device in the area on the same side as the transmission timing of the source base station device. That is, after the initial synchronization processing, the timing of the communication (communication mode) between the sub-base station device and the terminal device is the same as the transmission timing and reception timing (communication timing) of the source base station device (other base station device). . In the case where the accuracy of the clock generator of the sub-base station device is insufficient or the clock accuracy between the base station devices varies, the synchronization deviation occurs as time passes. In other words, when the base station device and the terminal device communicate, the transmission/reception timing (communication timing) of the other base station devices gradually deviates (synchronization deviation). That is, because there is an error in the clock frequency of the clock generator provided in the base station device between the base station devices, a communication frame (downlink sub-frame) generated based on the clock frequency (reference signal) The length of time (for example, 5 msec in size) is slightly different between base station devices. Even if the error of the length of time of a frame is small, the error is accumulated when the frame is repeatedly transmitted to the terminal device, and may become a relatively large synchronization deviation (for example, about 1 μsec). Thus, even at the start of synchronization processing The communication timing between the base station devices is the same. 'The synchronization deviation is also gradually increased between the communication with the terminal device. -82- 201034493 Therefore, the second and third base station apparatuses 5002, 5003 have a function of executing the synchronization mode (synchronization mode for suspending communication) in the sequence, and the step mode is suspended (stopped) and the terminal device performs communication (transmission of the signal; The communication mode of the sub-frame) detects and eliminates the synchronization deviation at the same time. Further, a description will be given of the mode of switching between this communication mode and the synchronization mode. The fifth diagram shows a block diagram showing the configuration of the receiving unit and the transmitting unit of the second and third base station devices 5002. In Fig. 50, the φ 5010 is provided with an amplifier 5011 for amplifying the received signal, A/D for 5012, for A/D conversion of the received signal, and a solution (DEM) 5013 for being converted into a digital signal. The transmission unit 5020 includes a modulation unit (MOD) 5021 that modulates a transmission signal of a bit signal, a D/A conversion unit 5 022 that performs a D/A conversion of the signal, and an amplifier 5 023, in which the transmission signal is placed in each base station device, in order to communicate with the terminal device by TDD (time division duplex), a switching switch (SW) 5031 is provided, which is switched to the receiving portion 5010 side with the antenna 503 0 φ And the transmitting unit 5020 side. That is, at the timing of the frame (downlink subframe), the switch 5 0 3 1 is switched to the transmission 5020 恻, and at the timing of receiving the frame (uplink subframe), the switch is switched to the receiving unit 50. 1 0 side. Further, the clocks of the A/D conversion unit 5012 and the D/A conversion unit 5022 are supplied from the reference signal generator 5 040. The reference signal generator includes a clock generator such as a crystal oscillator to generate a clock of a predetermined frequency. Further, of course, the operation timing is also set to the frame timing device 5032, which will be described later, and the second and third base station devices 5002 and 5003 are set to the same state, and the rear 5003 is changed. Yes number send [large. The connected transmission unit 503 1 operates 5 040 action Counts the operating clock of his -83- 201034493 digital circuit. Here, the accuracy of the operation clock of the D/A conversion unit 5022 affects the accuracy of the time length of the transmission frame (downlink sub-frame). Therefore, as described above, when the accuracy of each base station device reference signal generator is different, an error occurs in the operation clock between the base station devices, and the length of the generated transmission frame is caused by each base station device. Slightly different. The switching of the transceiving is performed based on the count of the frame timing counter 5032. That is, the length of the transmission frame, the length of the received frame, and the time interval between the frames are predetermined. If the count 一致 is consistent with the predetermined transmission and reception switching timing, the switching is performed by the switch 503 1 . In the case of a synchronous deviation from the source base station apparatus, the synchronization deviation can be corrected by correcting the count 値 of the frame timing counter 5032. In other words, when the frame timing counter 5032 receives a correction 用以 for correcting the synchronization deviation (synchronization error) from the synchronization error detecting unit 5033 and the correction unit 056 6 which will be described later, a counter corresponding to the time width of the correction 求 is obtained. After the correction is made, the correction is performed according to the obtained counter correction, and the count 値 is moved in the correct direction to be corrected. Therefore, the switching timing of transmission and reception can be made to coincide with other base station apparatuses. The second and third base station apparatuses 5002, 5003 have synchronization error detecting sections 5 0 3 3 for detecting synchronization deviation (synchronization error). The synchronization error detecting unit 5033 detects the synchronization signal (preamble signal) from the received signal (received wave) and detects the timing. Further, the synchronization error detecting unit 5033 acquires the timing of the own preamble signal from the frame timing counter 5032, and obtains the synchronization deviation (timing deviation) between the timing of the detected source base station apparatus preamble signal and the timing of the own preamble signal. Here, the synchronization deviation obtained by the synchronization error detecting unit 5033 is such that the timing of the detected synchronization signal can be regarded as the timing of the source base station device-84-201034493, which can be said to be between the pair and the source base station device. The actual synchronization deviation is estimated. Hereinafter, the synchronization deviation detected by the synchronization error detecting unit 5 〇 3 3 is referred to as a synchronization deviation estimation 値. The synchronization error detecting unit 5033 outputs the detected synchronization deviation estimation 向 to the correcting unit 5036. The correction unit 5036 that has received the synchronization deviation estimation 输出 outputs, to the frame timing counter 5032, a correction 对 that has been corrected for the synchronization deviation estimation. When the frame timing counter 5032 receives the correction, the synchronization deviation (synchronization error) is corrected as described above, and then the synchronization is performed. That is, the frame timing counter 5032 constitutes a synchronization correcting unit that corrects the synchronization deviation based on the correction 。. Further, the synchronization error detecting unit 5033 also outputs the obtained synchronization deviation estimation 向 to the synchronization error history storage unit 503. The synchronization error history storage unit 5 03 5 sequentially memorizes the synchronization deviation estimation 求 obtained in each synchronization mode, and outputs the synchronization deviation estimation 求 obtained in the past in the memory to the correction unit 5 03 6 in response to the necessity. The correction unit 5 03 6 requests the synchronization error history storage unit 5 03 5 to output the past synchronization deviation estimation 考虑 in consideration of the past synchronization deviation estimation, and to obtain the signal transmitted from the source base station device. In the synchronization deviation estimation, the receiving unit 5010 is provided with a changeover switch 5014 for switching the reception signal to the demodulation unit 5013 side or the synchronization error detection unit 533 3 side. The changeover switch 5014 supplies a reception signal to the demodulation unit 5013 side between communication modes capable of receiving signals from the terminal device, and supplies a reception signal to the synchronization error detection unit 533 side in a synchronization mode in which the communication mode is suspended. . Further, the transmitting unit 502 0 also has a changeover switch 5024. The switch 5 04 4 supplies a transmission signal to the D/A variable-85-201034493 change unit 5022 between the communication modes in which the signal can be transmitted to the terminal device, and the synchronous mode in which the communication mode is suspended, and the D/A conversion is not performed. The unit 5022 supplies a transmission signal. The switching between the receiving unit 5010 and the switching unit 5014 of the transmitting unit 520 0 and the switching switch 504 4 is performed by the cycle control unit 5〇34. In other words, the cycle control unit 504 is a cycle (synchronization timing) for controlling the suspension of the communication mode, and when it is determined that the timing to shift to the synchronization mode has expired, the switching switch 5014 is performed when the communication mode is communicated with the terminal device. Switch to 5024 and switch to synchronous mode. Then, when the sync mode ends, switch to communication mode. Next, the second and third base station apparatuses 5002 and 5003 having the configuration described above are switched from the (normal) communication mode to the terminal apparatus to receive the source base station apparatus (the first and second base station apparatuses 5001 and 5002). The form of the signal in the synchronous mode. Fig. 51 is a flow chart showing the case where the second and third base station apparatuses 50 02 and 500 3 are switched from the communication mode to the synchronous mode. As shown in Fig. 51, the second and third base station devices 5002, 5003 cause the cycle control unit 5034 to determine whether or not the synchronization timing should be the synchronization mode (step S5 - 1). The synchronization timing is set, for example, to the period of the synchronization mode (per predetermined time or number of frames). In the case of setting the period by time, for example, it can be set to about 5 minutes. In the normal communication mode in which communication is performed with the terminal device, it is determined that the sequence to be moved to the synchronization mode has expired (step S5-2), and the cycle control unit 5034 switches the switches 5014 and 5024. Therefore, the second and third base station apparatuses 5002, 5003 move to the synchronous mode (step S5_3). When the synchronization mode is completed, the second and third base station apparatuses 5002, 5〇〇3, 201034493 return to step S5-1 and step S5-2, and return to the normal communication mode until the next timing is determined (step S5 - 4). The second and third base station apparatuses 5002 and 5003 generally perform synchronization with the terminal apparatus, and perform synchronization signals at regular intervals or correspondingly as needed, thereby causing synchronization deviation even between the source and base station apparatuses. Can also eliminate it. Fig. 52 is a flow chart showing the processing of the synchronous mode in Fig. 51. As shown in Fig. 52, when the second and third base station apparatuses 5002 and 5003 © are in the synchronous mode, first, before the synchronization processing (steps S5 - 12 to S5 - 14) is started, the broadcast is performed in the self-region. The all-terminal device performs notification for causing the terminal device to change to the sleep mode or the idle mode (power saving mode) (step S5 - 1 1). When the terminal device receives the notification of the sleep mode or the like from the second and third base station devices 5002 and 5003, the terminal device shifts to the sleep mode. Since the sleep mode or the like is a management mode when the terminal device does not perform communication, power consumption is suppressed. The sleep time is set such that the sleep mode of the terminal device continues at least between the second and H third base station devices 5002, 5003. Since the terminal device is in the sleep mode or the like between the second and third base station devices 5002 and 5003, it is not possible to receive signals from the second and third base station devices 5 002 and 5 003. The judgment is abnormal. After notifying the terminal device of the sleep mode or the like, the second and third base station devices 5002 and 5003 move to the synchronization process (synchronization processing for aborting the communication). The communication between the "synchronization processing" and the terminal device (transmission of the downlink sub-frame) is suspended, and the time when the downlink sub-frame is turned on is the state of receiving the signal from -87 to 201034493. In the synchronization processing (synchronization processing for discontinuing communication), the second and third base station apparatuses 5002, 5003 first receive signals from the source base station apparatus (step S5-12). In the present embodiment, the preceding preamble signals transmitted by the source base station apparatus (the first and second base station apparatuses 5001, 5002) are used as synchronization signals required for synchronization between the base stations. Therefore, the second and third base station apparatuses 5002 and 5003 detect the timing of the pre-front preamble signal of the sub-frame DL transmitted by the source base station apparatus. Further, as the synchronization signal, a synchronization, a pilot signal, or the like may be used. The synchronization error detecting unit 503 3 of the second and third base station devices 5002, 5003 has a function of scanning a received wave from a source base station device adjacent to the own device in order to detect the timing of the preamble signal. The base station devices 5002, 5003 store the preamble signal pattern of the source base station device with the possibility of use as a known signal and store it in the memory. The second and third base station apparatuses 5002, 5003 detect the timing of the preamble signal using these known preamble patterns (step S5-13). The timing detection of the pre-signal can be performed, for example, in the manner shown in Fig. 9. When the timing t of the preamble signal is detected, the synchronization error detecting unit 5033 of the second and third base station apparatuses 5002, 5003 successively obtains the synchronization deviation estimation 値 (step S5-1). The synchronization error detecting unit 503 3 first obtains the timing of the own pre-signal from the frame timing counter 503. Then, the timing t of the detected signal of the source base station device is regarded as the timing of the signal of the source base station device, and then the timing t of the signal of the detected source base station device and the signal of the preamble are obtained. The synchronization deviation of the timing is taken as a guess. -88- 201034493 Figure 53 is a pattern diagram showing the relationship between the timing of the pre-signal between the source base station device and the base station device receiving the signal from the source base station device. Further, in Fig. 53, attention is paid only to the relationship between the first base station device 5001 and the second base station device 50A2 which are source base station devices. In Fig. 53, the synchronization error detecting unit 5033 obtains the timing (communication sequence) t1 and the self (the second base station device 5002) of the signal before the first base station device 5001 detected in the step S5-13 as described above. The difference between the timing (communication timing) t2 of the previous φ signal is estimated as ΔΔτ as the synchronization deviation. On the other hand, the timing t1 of the preamble signal detected by the synchronization error detecting unit 503 is obtained indirectly from the timing t1 of the first base station device 5001 based on the received wave received by the second base station device 5002. There is a case where the actual timing tr of the first base station device 5001 varies. In other words, the received wave received by the second base station device 500 is affected by the reception path between the first base station device 5 00 1 and the second base station device 5 002, and is based on the received wave detection timing tl. At the time, some deviation occurs with respect to the actual timing t1 of the first base station device 5001. Although the received wave of the first base station device 5001 can be received substantially normally, the deviation is not large, but when the receiving path is greatly affected by noise or delayed bus, etc., as shown in FIG. There is a case where the deviation from the actual timing t1' according to the timing t1 of the received wave becomes large. Therefore, the synchronization deviation estimation 値ΔΤ obtained by the synchronization error detecting unit 503 3 is not only the actual synchronization deviation 値ATs of the difference between the actual timing t1 of the first base station device 5001 and the own timing t2, but also includes When the deviation between the timing t1 of -89-201034493 and the actual timing UI is detected, this deviation becomes an error of the actual synchronization deviation 値Ah in the synchronization deviation estimation 値ΛΤ. Returning to Fig. 52, when the synchronization error detecting unit 5033 obtains the synchronization deviation estimation 値ΔT, the synchronization deviation estimation 値ΛΤ is output to the correcting unit 5036. The correction unit 5 0 3 6 that has received the synchronization deviation estimation 値 Δ 判定 determines whether or not the synchronization deviation estimation 値ΔΤ is equal to or greater than the predetermined threshold 値S (step S5-i5). When the synchronization deviation estimation 値ΛΤ is smaller than the threshold 値S, the correction unit 5036 corrects the synchronization deviation estimation 値Δ Τ, and estimates 値 Δ τ based on the synchronization deviation to correct 0 値 Τ ( (step S5-16) » On the other hand, when the "determination synchronization deviation estimation 値ΛΤ is the threshold 値 S or more", the correction unit 5 03 6 estimates the threshold 値 S as the synchronization deviation 値 Δ Τ (step S5-17), and corrects 値 (step S5-16). ). The state of correction by the correction unit 5036 in this step S5-16 and step S5-17 will be described later. When the correction 値ΔΤ· is obtained, the correcting unit 5036 outputs the correction 値Δ Τ1 to the frame timing counter 5032. The frame timing counter 5 03 2 receives the correction 値 · Δ Τ ' when the correction of the synchronization deviation is performed (step S5_i8). The length of time that the frame is sent, the length of time that the frame is received, and the time interval between those frames are determined by the count 値 of the frame timing counter 5 0 3 2 . Therefore, the frame timing counter 5032 can obtain a counter correction 对应 corresponding to the time width of the correction 値 Δ T1, and correct it based on the obtained counter correction 挪 shifting the count 正确 in the correct direction. Therefore, the second and third base station apparatuses 5002 and 5003 can correct their own transmission timings to be close to the transmission timing of the source base station apparatus. In other words, -90-201034493 can correct the synchronization deviation by shifting the transmission timing (frame timing) of the self-device in the correct direction based on the correction 値 Δ Τ ' obtained from the timing of the detected synchronization signal. Further, if the synchronization deviation between the transmission timings of the second and third base station devices 5 002 and 5 003 and the transmission timing of the source base station device is corrected, the synchronization deviation of the reception timing is naturally corrected. In other words, the synchronization deviation of the frame can be corrected between the second and third base station devices 5002 and 5003 and the source base station device. φ As described above, in the second and third base station apparatuses 5002 and 5003 of the present embodiment, since the communication mode for communication with the terminal device is suspended and the synchronization signal from the source base station device is used for synchronization, Synchronization can be achieved even if there is no control channel to synchronize. When the above-described synchronization processing is completed, the second and third base station apparatuses 5002 and 5003 end the synchronization mode 'return to step S5-1 in Fig. 51, and the communication can be performed with the terminal apparatus because of the general communication mode. status. Further, when the terminal device such as the sleep mode passes the set sleep time φ (idle time), it automatically becomes a general communication mode for communicating with the second and third base station devices 5002 and 5003. That is, when both the second and third base station devices 5002, 5 003 and the terminal device return to the normal communication mode, communication between the two starts again. As described above, the second and third base station apparatuses 5002 and 5003 of the present embodiment suspend the communication mode at any predetermined time interval, and repeatedly perform the synchronization mode 'by correcting the synchronization deviation generated in the communication mode. And keep in sync with the source base station device. Next, the description of the step S5_μ in the Fig. 52 and the correction performed by the correcting unit 5036 in the steps S5-17-91 - 201034493 will be described. The correction unit 5 0 3 6 determines the reception from the synchronization error detecting unit 5 0 3 3 When the synchronization deviation estimation 値 Δ T is less than the threshold 値 S (step S5 - 15), the synchronization deviation estimation 値 Δ T is corrected according to the following formula (2), and the synchronization deviation estimation 値 Δ T is suppressed. Correct 値△ Τ' (steps S5-16). Δ Τ' = α χ Δ Τ (2) The coefficient α in the equation (2) is set to 値 in the range of 0 < α < As described above, the correction unit 5036 multiplies the synchronization deviation estimation 値Δτ by the coefficient α to obtain the corrected 値ΔΤ, and the correction unit 5036 obtains the correction 値Δ. The number 値 is suppressed to be smaller than the synchronization deviation estimation 値λτ. value. Fig. 54 is a view showing an example of the temporal change in the actual synchronization deviation 値 Δ of the source base station apparatus when the base station apparatus repeats the communication mode and the synchronous mode. In Fig. 54, the horizontal axis represents the elapsed time, and the vertical axis represents the actual synchronization deviation 値ATs. Further, in Fig. 54, the actual synchronization deviation 第 of the second base station device 5002 that synchronizes with the first base station device 5001 as the source base station device will be described. In Fig. 54', it is shown that the second base station device 5002 repeats execution.

_ Q 定時間寬的通信模式後進行同步模式的形態。又,在第54 圖,在同步偏差値ATs爲0時,表示第1基地台裝置5001 和第2基地台裝置5002之間的同步一致。 在通信模式,因爲第2基地台裝置5002在和終端裝置 之間進行通信,所以在和第1基地台裝置5 0 0 1的關係,分 別獨立動作,是自由運轉之狀態。因此,實際的同步偏差 値兩基地台裝置5001、5002間彼此之動作時脈的誤 差而逐漸發生偏差。 -92- 201034493 第2基地台裝置5002成爲同步模式時,使同步誤差檢 測部5033及修正部5036求同步偏差推測値ΔΤ及修正値 △ Τ',再據此修正同步偏差。 例如,在第54圖中同步偏差推測値△ Τ2時之同步模 式(同步處理)的情況,同步誤差檢測部5033得到和實際的 同步偏差値大致一致的同步偏差推測値ΛΤ2。對此同 步偏差推測値ΛΤ2,修正部5036求乘以係數α (0<α <1)之 修正値ΛΤ1,如第54圖所示,不會修正成和實際的同步偏 ® 差値ΔΤ5 —致,而根據由係數α決定的比例修正同步偏差。 又,在第54圖中同步偏差推測値AT3時之同步模式 (同步處理)的情況,同步誤差檢測部5033得到大於實際的 同步偏差値ATs的同步偏差推測値△h。這種情況,在同 步偏差推測値ΛΤ3,因受到在接收路徑之雜訊或延遲匯流 排等的影響,而可能含有上述的誤差。 對此,第2基地台裝置5002的修正部5036和上述一 樣求根據係數α之修正値△ T1,如第54圖所示,根據由係 φ 數α決定的比例修正同步偏差。 即,若依據本實施形態的第2基地台裝置5 0 02(第3 基地台裝置5003),因爲修正部5036求抑制同步偏差推測 値ΔΤ的修正値△Τ’’再根據此修正値修正同步偏差, 所以即使因來自源基地台裝置之信號的接收狀況而在同步 偏差推測値ΛΤ含有大的誤差,亦使該誤差變小,而可抑 制在修正値ΛΤ1的誤差。結果,在修正同步偏差時可抑制 誤差的影響,並可抑制同步偏差之修正精度的降低。 又,在該實施形態’因爲修正部5036藉由對同步偏差 -93- 201034493 推測値△ τ乘以係數α而求得修正値△ Τ’,所以可得到有 效地抑制同步偏差推測値△Τ所含之誤差的修正値△π。 此外,可因應於源基地台裝置和基地台裝置之間的接 收路徑而適當地設定該係數α。例如,若預先得知穩定地 受到雜訊的影響,則可設定成可抑制該雜訊之影響之程度 的値。 又,亦可修正部5036預先記憶所預設的係數α,亦可 構成爲因應於來自源基地台裝置之信號的接收狀況(例如 CINR等)而適當地調整。在此情況,因爲可因應於和源基 q 地台裝置之間之現狀的接收環境而設定係數α,所以可更 有效地抑制同步偏差推測値△ Τ所含的誤差,而可抑制同 步處理之精度降低。 又,亦可修正部5 03 6構成爲根據同步誤差履歷記憶部 5 0 3 5所記憶之過去的同步偏差推測値△ Τ而設定係數α。 另一方面,修正部5 03 6判定從同步誤差檢測部503 3 所收到之同步偏差推測値△ Τ是臨限値S以上時(步驟S 5 -1 5 ),如上述所示,將臨限値S作爲同步偏差推測値△ Τ (步 ^ ❹ 驟S5 — 17),求修正値ΛΤ'(步驟S5 — 16)。 第55圖係顯示基地台裝置重複進行通信模式和同步 模式時對源基地台裝置之實際的同步偏差値^Ts之隨時間 變化之別例的圖。在此第5 5圖,表示得到比該臨限値s更 大之相對於過去的同步偏差推測値極大之値的同步偏差推 測値△ Tn。 —般,同步誤差檢測部5 0 3 3所檢測之同步偏差推測値 △ Τ幾乎不會發生極端的數値變動。這是因爲由基地台裝 -94- 201034493 置間之動作時脈的誤差所引起的偏差是逐漸變動,同時在 彼此固定的基地台裝置間,在彼此的通信路徑發生大變動 可能性少。 可是,因突發性地受到延遲匯流排等的影響,而得到 極大値之同步偏差推測値△ Τη的情況,即使根據係數α求 修正値ΛΤ·,亦發生無法有效地抑制修正値△ Τ·所含之誤 差的情形。根據未抑制此誤差之狀態的修正値修正同步偏 差時,如第50圖所示,就遠超過實際的同步偏差値ATs, 〇 反而修正成產生大的偏差。 如上述所示,在得到極大値之同步偏差推測値△ τη的 情況,本實施形態的修正部5 03 6將臨限値S作爲同步偏差 推測値△ Τ,並對其乘以係數α,藉此求修正値△ Τ'。結果, 因爲修正部5 03 6將臨限値S以下的値作爲修正値△ Τ'η, 所以可防止在修正値△ Τ'含有極大之誤差的狀態進行同步 處理。 此外,該臨限値S可根據在實際的同步偏差値ATs所 φ 容許的數値範圍大小決定。在此情況,可防止實際的同步 偏差値ATs突然超出該容許的數値範圍。 又,可預先記憶過去的同步偏差推測値ΔΤ,再根據該 過去的同步偏差推測値ΛΤ決定。在此情況,可根據實際 的通信狀況設定適當的臨限値S。 又,在本實施形態,雖然採用在同步偏差推測値ΔΤη 爲臨限値S以上的情況,藉由將臨限値S作爲同步偏差推 測値ΔΤ,而將修正値△ Τ'η設定成臨限値S以下的値’但 是亦可例如預先決定臨限値S以下的値,並將該値用作修 -95- 201034493 正値△ τ'。進而,亦可忽略現在之同步偏差推測値△ τ,而 直接採用過去的同步偏差推測値ΔΤ。 [5.3.2 第2實施形態] 第56圖係顯示在第5章之第2實施形態的基地台裝置 重複進行通信模式和同步模式時對源基地台裝置之實際的 同步偏差値之隨時間變化之一例的圖。 本實施形態在修正部5036所進行之修正値△ Τ'的求法 (第52圖中的步驟S5- 16),和第1實施形態相異。關於其 他的事項,因爲和第1實施形態一樣,所以省略說明。 本實施形態的修正部5036判定從同步誤差檢測部 5 03 3所收到之同步偏差推測値△ Τ小於臨限値S時(步驟 S5-15),根據如下第(3)式求修正値ΔΤ、。 ΔΤ'η = (ΔΤη + ΔΤ„ - ι + ΔΤ„-2)/3 (3) 即,在本實施形態,修正部5 03 6是在考慮過去的同步 偏差推測値△ Τ下求修正値△ Τ',具體而言,修正部503 6 從同步誤差履歷記憶部5 03 5取得在前次的同步模式所求 得之同步偏差推測値△ Τη - !、及在上前次的同步模式所求 得之同步偏差推測値△ Tn- 2,再求現在的推測値△ Tn及過 去的同步偏差推測値ΛΤη-!、ΔΤη-2的平均値,作爲修正 値△ Τ,。 在此情況,即使現在的同步偏差推測値△ Τη含有大的 誤差,亦藉由將和過去之同步偏差推測値△Τη-ι、△Td-z 的平均値作爲修正値△ Ί-,而可得到抑制現在的同步偏差 推測値ΔΤη所含之誤差的修正値ΛΤ'。如此,藉由在考慮 過去的同步偏差推測値ΔΤη-ι、ΛΤη-ζ下求修正値ΛΤ·, -96- 201034493 在修正同步偏差時可抑制誤差的影響,而可抑制同步處理 之精度降低。 此外,雖然在該實施形態,構成爲藉由對現在的同步 偏差推測値△ τη及前次、上前次之同步偏差推測値△ Τη -i、ΛΤη— 2取平均値而求修正値△ τ',但是可藉由將現在的 同步偏差推測値及至少一個過去之同步偏差推測値取平均 値而求修正値△ Τ·。 又,亦可考慮更多個過去的同步偏差推測値ΔΤ,在此 情況,即使在現在的同步偏差推測値△ Τη含有大的誤差, 亦可有效地抑制該誤差的影響。 又,在本實施形態,雖然藉由將現在的同步偏差推測 値ΔΤη和過去之同步偏差推測値ΛΤ的平均値作爲修正値 △ Τ',而考慮過去的同步偏差推測値ΛΤ,但是亦可例如將 現在的同步偏差推測値ΛΤη和過去之同步偏差推測値ΔΤ 的最小平方平均値作爲修正値△ Τ·。 又,亦可如以下之第(4)式所示,對在本實施形態所求 得之現在的同步偏差推測値ΛΤη和過去之同步偏差推測値 △ Τ的平均値乘以在該第1實施形態所示之忘却係數者作 爲修正値△ Τ’。在此情況,可抑制修正値△ Τ’所含之誤差 的影響,而可更有效地抑制同步處理之精度降低。 Δ Ί' η = α χ(Δ Τη + Δ Τη - 1 + Δ Τη - 2)/3 (4) 進而,亦可如以下之第(5 )式所示,根據在本實施形態 所求得之現在的同步偏差推測値和過去之同步偏差推 測値△ Τ n - i,使用忘却係數β求修正値△ τ ·。 ΔΤ'η=/3 χΔΤη + (1— β )χΔΤη-ι (5) -97- 201034493 在此情況,亦可有效地抑制在修正同步偏差時之誤差 的影響。 此外,雖然在該第(5)式,使用現在的同步偏差推測値 △ Tn和最近之過去之同步偏差推測値△Tn-!求修正値八 Τ’,但是亦可使用更多個過去的同步偏差推測値計算。 又,忘却係數/3和該係數α —樣,可因應於源基地台 裝置和基地台裝置之間的接收路徑而適當地設定。例如, 若預先得知穩定地受到雜訊的影響,則可設定成可抑制該 雜訊之影響之程度的値。 又,亦可修正部503 6預先記憶所預設的忘却係數点, 亦可構成爲因應於來自源基地台裝置之信號的接收狀況 (例如CINR等)而適當地調整。在此情況,因爲可因應於和 源基地台裝置之間之現狀的接收環境而設定忘却係數点, 所以可更有效地抑制同步偏差推測値△ T所含的誤差,而 可抑制同步處理之精度降低。 又,亦可修正部503 6構成爲根據同步誤差履歷記憶部 5 03 5所記億之過去的同步偏差推測値△ T而設定忘却係數 β。 [5.3.3 第3實施形態] 第58圖係在第5章之第3實施形態的無線通信系統之 整體構成圖。在第58圖,基地台裝置5101a、5101b和使 用者終端機(移動終端機;MS: Mobile St at ion) 5102a、5102b 之間進行無線通信的通信系統。在此通信系統,設置複數 台基地台裝置(BS: Base St at ion)5101a、5101b,可在和 cell 內的使用者終端機5102a、510 2b之間進行通信。 201034493 此通信系統例如是應用LTE(L〇ng-Term EvolutiorO 的系統。在LTE,可採用分頻雙工(FDD),在以下,以採用 分頻雙工方式者說明本通信系統。又,通信系統除了 LTE 以外,亦可採用WCDMA、CDMA2000。 在本實施形態的通信系統,在複數台基地台裝置 5101a、5101b間進行取得同步的基地台間同步。在本實施 形態,基地台裝置間同步是利用「無線同步」來熟行,該 無線同步是成爲母之作爲其他的基地台裝置之基地台裝置 © (以下稱爲「母BS」)5101a,藉由別的基地台裝置(以下稱 爲「子BS」)5101b接收該母BS5101a向cell內的終端裝 置5102a所發送之信號而取得同步。 此外,母BS亦可係還在和其他的基地台裝置之間取得 無線同步者’亦可係利用根據GPS信號取得同步等無線同 步以外的方法,決定訊框時序者。 第59圖顯示基地台裝置(子BS)5101b的構成。第59 圖的電路例如和第35圖的電路類似。在第59圖,從A/D Q 變換部51 27所輸出之信號被供給同步處理部51 70。因而, 同步處理部5170可取得來自母BS5101a的下行信號。 同步處理部5170根據從母BS5101a所取得之下行信號 的訊框所含之 Primary Synchronization Signal 及 Secondary Synchronization Signal,進行用以取得自裝置 5101b的通信時序及通信頻率之同步的處理。 同步處理部5170由無線同步控制部5180控制。無線 同步控制部5180根據固定週期而定期地或因應於需要,爲 了無線同步,而設爲中止對使用者終端機5102b發送下行 -99- 201034493 信號的通信模式,並接收母BS5101a所發送之下行信號的 無線同步狀態(同步模式)。無線同步控制部5180藉由向調 變電路5160及同步處理部5170輸出是表示成爲此無線同 步狀態之時間帶的資訊之無線同步區間資訊,而進行該調 變電路5160及同步處理部5170的控制。 第60圖係同步處理部的構成圖。如第60圖所示,同 步處理部51 70具備:同步誤差檢測部517卜修正部5172、 同步修正部5173以及記憶部5174 »_ Q The mode of the synchronization mode is performed after the communication mode of the time width is set. Further, in Fig. 54, when the synchronization deviation 値ATs is 0, it indicates that the synchronization between the first base station device 5001 and the second base station device 5002 coincides. In the communication mode, since the second base station device 5002 communicates with the terminal device, the relationship with the first base station device 5001 is independently operated and is in a free running state. Therefore, the actual synchronization deviation 逐渐 gradually deviates from the error of the operating clocks between the two base station devices 5001, 5002. -92- 201034493 When the second base station device 5002 is in the synchronous mode, the synchronization error detecting unit 5033 and the correcting unit 5036 determine the synchronization deviation estimation 値ΔΤ and the correction 値 Δ Τ ', and correct the synchronization deviation accordingly. For example, in the case of the synchronization pattern (synchronization processing) when the synchronization deviation is estimated 値 Δ Τ 2 in Fig. 54, the synchronization error detecting unit 5033 obtains the synchronization deviation estimation 値ΛΤ2 which substantially coincides with the actual synchronization deviation 値. For this synchronization deviation estimation 値ΛΤ2, the correction unit 5036 multiplies the correction 値ΛΤ1 of the coefficient α (0<α <1), as shown in Fig. 54, and does not correct the difference with the actual synchronization deviation 値ΔΤ5 — Therefore, the synchronization deviation is corrected according to the ratio determined by the coefficient α. Further, in the case of the synchronization pattern (synchronization processing) when the synchronization deviation is estimated to be 3AT3 in Fig. 54, the synchronization error detecting unit 5033 obtains the synchronization deviation estimation 値Δh larger than the actual synchronization deviation 値ATs. In this case, the synchronization deviation is estimated to be 値ΛΤ3, and may be affected by the noise in the reception path or the delayed bus, etc., and may contain the above error. On the other hand, the correction unit 5036 of the second base station device 5002 obtains the correction 値 ΔT1 according to the coefficient α as described above, and corrects the synchronization deviation based on the ratio determined by the number θ of the system φ as shown in Fig. 54. In other words, according to the second base station device 500 (the third base station device 5003) of the present embodiment, the correction unit 5036 seeks to correct the synchronization deviation estimation 値ΔΤ, and correct the synchronization based on the correction. Since the deviation is estimated to be large due to the reception condition of the signal from the source base station device, the error is reduced, and the error in the correction 値ΛΤ1 can be suppressed. As a result, the influence of the error can be suppressed when the synchronization deviation is corrected, and the reduction in the correction accuracy of the synchronization deviation can be suppressed. Further, in the above-described embodiment, the correction unit 5036 obtains the corrected 値 Δ Τ ' by multiplying the coefficient Δ Δ τ by the coefficient Δ τ by the synchronization deviation -93 - 201034493, so that the synchronization deviation estimation 値 Δ 有效 can be effectively suppressed. Correction of the error 値 Δπ. Further, the coefficient α can be appropriately set in accordance with the reception path between the source base station device and the base station device. For example, if it is known in advance that it is stably affected by noise, it can be set to a degree that suppresses the influence of the noise. Further, the correction unit 5036 may store the preset coefficient α in advance, or may be appropriately adjusted in accordance with the reception status (e.g., CINR) of the signal from the source base station device. In this case, since the coefficient α can be set in accordance with the current receiving environment between the source and the base station, the error contained in the synchronization deviation estimation 値 Δ 可 can be more effectively suppressed, and the synchronization processing can be suppressed. Reduced accuracy. Further, the correction unit 503 may be configured to set the coefficient α based on the past synchronization deviation estimated 値ΔΤ stored in the synchronization error history storage unit 5 0 3 5 . On the other hand, the correcting unit 506 determines that the synchronization deviation estimation 値Δ 收到 received from the synchronization error detecting unit 5033 is equal to or greater than the threshold 値S (step S5 - 15), as shown above, The limit S is estimated as the synchronization deviation 値 Δ Τ (steps S5-17), and the correction 値ΛΤ ' is performed (step S5-16). Fig. 55 is a view showing an example of the time-dependent change of the actual synchronization deviation 値^Ts of the source base station apparatus when the base station apparatus repeats the communication mode and the synchronous mode. In Fig. 5, it is shown that the synchronization deviation estimation 値 Δ Tn which is larger than the threshold 値 s and which is estimated to be the maximum value of the past synchronization deviation is obtained. In general, the synchronization deviation estimation 値 Δ 检测 detected by the synchronization error detecting unit 5 0 3 3 hardly causes extreme digital fluctuations. This is because the deviation caused by the error of the operation clock of the base station-94-201034493 is gradually changed, and there is little possibility that the communication path between the base station devices fixed to each other greatly changes. However, it is estimated that 同步Δ Τη is obtained by the influence of the delay bus bar or the like, and the maximum deviation is estimated. Even if the correction is made based on the coefficient α, the correction 値Δ Τ can not be effectively suppressed. The situation of the error involved. When the synchronization deviation is corrected based on the correction of the state in which the error is not suppressed, as shown in Fig. 50, the actual synchronization deviation 値ATs is far exceeded, and 〇 is corrected to cause a large deviation. As described above, in the case where the maximum deviation synchronization deviation estimation 値 Δ τη is obtained, the correction unit 506 6 of the present embodiment estimates the threshold 値 S as the synchronization deviation 値 Δ Τ and multiplies it by the coefficient α. This correction is corrected 値 Τ Τ '. As a result, since the correction unit 503 6 sets the 以下 below the threshold 値S as the correction 値 Δ Τ 'η, it is possible to prevent the synchronization processing from being performed in a state where the correction 値 Δ Τ ' contains a large error. In addition, the threshold 値S can be determined according to the range of the number of 容许 allowed in the actual synchronization deviation 値ATs φ. In this case, it is possible to prevent the actual synchronization deviation 値ATs from suddenly exceeding the allowable number range. Further, it is possible to preliminarily remember the past synchronization deviation estimation 値ΔΤ, and then estimate the 同步 based on the past synchronization deviation. In this case, an appropriate threshold 値S can be set according to the actual communication condition. Further, in the present embodiment, when the synchronization deviation estimation 値ΔΤη is equal to or greater than the threshold 値S, the correction 値Δ Τ'η is set to the threshold by estimating the 値ΔΤ as the synchronization deviation S as the synchronization deviation.値S below 値', but it is also possible to predetermine, for example, the 以下 below the threshold 値S, and use the 値-95- 201034493 値 値 τ'. Furthermore, it is also possible to ignore the current synchronization deviation estimation 値 Δ τ and directly estimate the 値ΔΤ using the past synchronization deviation. [5.3.2 Second Embodiment] Fig. 56 is a diagram showing the temporal change of the actual synchronization deviation 源 of the source base station apparatus when the base station apparatus of the second embodiment of the fifth embodiment repeats the communication mode and the synchronous mode. A diagram of an example. In the present embodiment, the correction 値 Δ Τ ' performed by the correcting unit 5036 (step S5 - 16 in Fig. 52) is different from that of the first embodiment. Since the other matters are the same as those of the first embodiment, the description thereof is omitted. The correcting unit 5036 of the present embodiment determines that the synchronization deviation estimation 値Δ 收到 received from the synchronization error detecting unit 503 3 is smaller than the threshold 値S (step S5-15), and corrects 値ΔΤ according to the following formula (3). ,. ΔΤ'η = (ΔΤη + ΔΤ„ - ι + ΔΤ„-2)/3 (3) In other words, in the present embodiment, the correction unit 506 6 corrects 値 Δ considering the past synchronization deviation estimation 値 Δ Τ Specifically, the correcting unit 5036 obtains the synchronization deviation estimation 値Δ Τ η - ! obtained in the previous synchronization mode from the synchronization error history storage unit 503 5 and obtains the synchronization pattern in the previous previous synchronization mode. The obtained synchronization deviation is estimated as 値 Δ Tn - 2 , and the current estimation 値 Δ Tn and the past synchronization deviation are estimated as the average 値 - η ! ! Τ 。 。 。 。 。 。 。 。 。 。 In this case, even if the current synchronization deviation estimation 値 Δ Τ η contains a large error, it is estimated that the average 値 of 値ΔΤη-ι and ΔTd-z is corrected 値Δ Ί- by the synchronization deviation from the past. The correction 値ΛΤ' of the error contained in the 同步ΔΤη is estimated to suppress the current synchronization deviation. In this way, by considering the past synchronization deviation estimation 値ΔΤη-ι, ΛΤη-ζ, the correction 値ΛΤ·, -96-201034493 can suppress the influence of the error when correcting the synchronization deviation, and can suppress the accuracy of the synchronization processing from being lowered. Further, in this embodiment, it is configured to correct 値 Δ τ by estimating the 同步 Δ τ η of the current synchronization deviation and estimating the 値 Δ Τ η -i and ΛΤ η 2 from the previous and previous synchronization deviations. ', but the correction 値 Τ Τ can be corrected by estimating the current synchronization deviation estimate and at least one past synchronization deviation estimate. Further, it is also possible to estimate more of the past synchronization deviation estimation 値ΔΤ. In this case, even if the current synchronization deviation estimation 値ΔΤη contains a large error, the influence of the error can be effectively suppressed. Further, in the present embodiment, the current synchronization deviation estimation 値ΔΤη and the past synchronization deviation estimation 値ΛΤ are calculated as the corrected 値ΔΤ', and the past synchronization deviation estimation 考虑 is considered. The current synchronization deviation estimation 値ΛΤη and the past synchronization deviation estimation 値ΔΤ have the least square mean 値 as the correction 値Δ Τ·. Further, as shown in the following formula (4), the average value of the current synchronization deviation estimation 値ΛΤ η obtained in the present embodiment and the past synchronization deviation estimation 値 Δ Τ may be multiplied by the first implementation. The forgetting coefficient shown in the form is corrected as 値△ Τ'. In this case, the influence of the error contained in the correction 値 Δ Τ ' can be suppressed, and the accuracy of the synchronization processing can be more effectively suppressed. Δ Ί ' η = α χ (Δ Τ η + Δ Τ η - 1 + Δ Τ η η 2) / 3 (4) Further, as shown in the following formula (5), it can be obtained according to the present embodiment. The current synchronization deviation estimation 値 and the past synchronization deviation are estimated 値 Δ Τ n - i, and the forgetting coefficient β is used to correct 値 Δ τ ·. ΔΤ'η=/3 χΔΤη + (1 - β ) χ ΔΤη-ι (5) -97- 201034493 In this case, the influence of the error in correcting the synchronization deviation can also be effectively suppressed. Further, in the equation (5), the current synchronization deviation estimation 値 ΔTn and the recent past synchronization deviation estimation 値 ΔTn-! are corrected 値 Τ Τ, but more past synchronizations can be used. The deviation is estimated 値 calculation. Further, the forgetting coefficient /3 and the coefficient ? can be appropriately set in accordance with the reception path between the source base station device and the base station device. For example, if it is known in advance that it is stably affected by noise, it can be set to a degree that suppresses the influence of the noise. Further, the correction unit 5036 may memorize the preset forgetting coefficient point in advance, or may be appropriately adjusted in accordance with the reception status (e.g., CINR) of the signal from the source base station device. In this case, since the forgetting coefficient point can be set in accordance with the current receiving environment between the source base station device and the source base station device, the error included in the synchronization deviation estimation 値ΔT can be more effectively suppressed, and the accuracy of the synchronization processing can be suppressed. reduce. Further, the correction unit 503 6 may be configured to set the forgetting coefficient β based on the synchronization deviation estimation 値ΔT of the past in the synchronization error history storage unit 503. [5.3.3 Third embodiment] Fig. 58 is a view showing the overall configuration of a wireless communication system according to a third embodiment of Chapter 5. In Fig. 58, a communication system for performing wireless communication between the base station devices 5101a and 5101b and the user terminals (mobile terminals: MS: Mobile Sites) 5102a and 5102b. In this communication system, a plurality of base station devices (BS: Base Stations) 5101a and 5101b are provided to communicate with the user terminals 5102a and 510 2b in the cell. 201034493 This communication system is, for example, a system using LTE (L〇ng-Term Evolutior O. In LTE, frequency division duplexing (FDD) can be employed, and in the following, the communication system is explained by using a frequency division duplex mode. In addition to LTE, the system can also use WCDMA or CDMA2000. In the communication system of the present embodiment, synchronization between base stations is performed between a plurality of base station apparatuses 5101a and 5101b. In this embodiment, synchronization between base station apparatuses is It is familiar with "Wireless Synchronization", which is a base station device © (hereinafter referred to as "parent BS") 5101a which is a base station device of another mother station, and is used by another base station device (hereinafter referred to as " The sub-BS") 5101b receives the signal transmitted by the parent BS5101a to the terminal device 5102a in the cell, and synchronizes it. The parent BS may also obtain a wireless synchronization with another base station device. The frame timing is determined by a method other than wireless synchronization such as synchronization by acquiring a GPS signal. Fig. 59 shows the configuration of the base station device (sub-BS) 5101b. The circuit of Fig. 59 is, for example, The circuit of Fig. 35 is similar. In Fig. 59, the signal output from the A/DQ conversion unit 51 27 is supplied to the synchronization processing unit 51 70. Therefore, the synchronization processing unit 5170 can acquire the downlink signal from the parent BS 5101a. 5170 performs processing for obtaining synchronization of communication timing and communication frequency from the device 5101b based on the Primary Synchronization Signal and the Secondary Synchronization Signal included in the frame of the downlink signal obtained from the parent BS 5101a. The synchronization processing unit 5170 is controlled by wireless synchronization. The unit 5180 controls the wireless synchronization control unit 5180 to stop the communication mode of transmitting the downlink-99-201034493 signal to the user terminal 5102b periodically or in response to the fixed period, and to receive the parent BS5101a. The wireless synchronization state (synchronization mode) of the downlink signal is transmitted. The wireless synchronization control unit 5180 outputs the wireless synchronization section information indicating the information of the time zone of the wireless synchronization state to the modulation circuit 5160 and the synchronization processing unit 5170. The control of the modulation circuit 5160 and the synchronization processing unit 5170 is performed. . FIG configuration as in the first step processing unit 60 shown in FIG., The synchronization processing unit 5170 includes: a synchronization error detection unit 517 BU correction section 5172, the synchronization correction unit 5173, and memory unit 5174 >>

同步處理部5170根據從無線同步控制部51 80所供給 的無線同步區間資訊,而識別自裝置5 1 0 1 b係通信模式或 同步模式,再決定是否進行無線同步》 同步誤差檢測部5171在決定進行無線同步時,取得來 自母BS5101a的下行信號,利用下行信號所含之Primary Synchronization Signal 及 Secondary Synchronization Signal(以下將兩Signal總稱爲「同步信號」),檢測母 BS5101a的訊框發送時序,同時檢測是和在自裝置51〇ibThe synchronization processing unit 5170 identifies the self-device 5 1 0 1 b communication mode or the synchronization mode based on the wireless synchronization section information supplied from the wireless synchronization control unit 510, and determines whether or not to perform wireless synchronization. The synchronization error detecting unit 5171 determines When performing wireless synchronization, the downlink signal from the parent BS5101a is obtained, and the frame synchronization timing of the parent BS5101a is detected by using the Primary Synchronization Signal and the Secondary Synchronization Signal included in the downlink signal (hereinafter referred to as "synchronization signal"). It is in the self-device 51〇ib

之訊框發送時序之誤差(訊框同步誤差)的同步偏差推測 値。 具體而言’子BS5 10 lb檢測位於所接收之下行訊框中 的既知位置之該同步信號的時序,並檢測母BS5 101a的訊 框發送時序。然後,比較所檢測之母BS5101a的訊框發送 時序和自裝置5101b的訊框發送時序,而檢測同步偏差推 測値。 由同步誤差檢測部5 1 7 1所檢測之同步偏差推測値每 當被檢測,就被供給記憶部5 1 7 4,並被儲存於記憶部5 1 7 4。 -100- 201034493 在本實施形態的同步誤差檢測部5 1 7 1、修正部5 1 72、 同步修正部5173以及記憶部5174各自和在該第1實施形 態的同步誤差檢測部503 3、修正部5036、訊框時序計數器 5 03 2以及同步誤差履歷記憶部503 5對應,藉由和這些相 同的處理,而從同步偏差推測値求修正値,再修正同步偏 差。於是,藉由和該第1實施形態相同的處理,而可抑制 在修正同步偏差時之誤差的影響,並可抑制同步偏差之修 正精度的降低。 ❹ 此外,同步誤差(同步偏差)的檢測、修正對象未限定 爲訊框時序,亦可係符號時序或儲存格(slot)時序。 同步處理部5170還具備:頻率偏差推測部5175及頻 率修正部5 1 7 6。 頻率偏差推測部5 1 75根據由同步誤差檢測部5 1 7 1所 檢測之同步偏差推測値,推測屬接收側之子BS5101b本身 所內建之內建時脈產生器(省略圖示)的時脈頻率、和屬發 送側之母BS5101a之內建時脈產生器之時脈頻率的差(時 φ 脈頻率誤差),再從該時脈頻率誤差推測載頻誤差(載頻偏 差)。 又,在本實施形態,子BS5101b亦可採用第37圖〜第 42圖所示之構成。 [第6章分割成複數次的同步修正] 在本第6章所說明的基地台裝置在不矛盾之範圍採用 在第1章、第2章、或第3章、第4章或第5章所說明之 基地台裝置的技術。在本第6章,關於未特別說明的事項, 沿用第1章、第2章、第3章、第4章以及第5章的說明 -101- 201034493 事項。 [6.1 分割成複數次之同步修正的必要性] 如上述所示,在一基地台裝置的時脈頻率和其他的基 地台裝置的時脈頻率之間,隨時間之經過而緩慢地變化的 偏差値以穩態存在。此偏差値雖然亦因周圍之溫度變化等 的外在要因而變化,但是若無外在要因,具有因彼此之時 脈產生裝置之精度誤差的差異而線性地逐漸增加之傾向。 因爲基地台根據本身之時脈產生裝置的振盪而取得該 發送時序或載頻’所以若在彼此的時脈頻率存在偏差値, ❹ 在和其他的基地台裝置之間,在發送時序或載頻發生同步 偏差。 因而,例如想到暫時中止和終端裝置的通信,並進行 和其他的基地台之同步處理,藉此消除如上述所示的同步 偏差。在此情況,該基地台裝置在停止和終端裝置的通信 之間,再從其他的基地台裝置之接收波所含之前置信號波 等的既知信號波檢測和其他的基地台裝置之同步偏差的程 度,而可取得同步。 β 可是’該基地台裝置間之時脈頻率的偏差値如上述所 示具有線性地逐漸增加之傾向。因而,在基地台裝置,即 使中止和終端裝置的通信並取得和其他的基地台裝置之間 的同步,在以後使和終端裝置的通信開始時,具有上述之 傾向之時脈頻率的偏差値逐漸增加,而在兩基地台裝置間 發生同步偏差。 即,雖然藉同步處理暫時可變成取得基地台裝置間之 同步的狀態,但是以後在和終端裝置進行通信之間再發生 -102- 201034493 同步偏差。而且,因爲該同步偏差隨著時間的經過而逐漸 增加’所以若在和終端裝置進行通信之間的通信時間長, 在此通信時間之間的同步偏差增大,在基地台裝置之經過 時間整體上,即使週期性地進行同步處理,同步偏差亦依 然存在。 相對地,若縮短進行同步處理的週期,並在同步偏差 變大前取得同步,則可抑制同步偏差變大。可是,爲了進 行同步處理,因爲必須停止和終端裝置之間的通信,所以 ❹ 若縮短同步處理的週期,則使和終端裝置之間的通信量降 低。 因此,要求一面抑制通信量降低,一面抑制基地台間 之同步偏差的技術。 [6-2 分割成複數次之同步修正技術的揭示] (1)在此所揭示的發明,其特徵爲:具有控制部,係切 換通信模式和同步模式並執行,該通信模式是發送通信信 號並在和終端裝置之間進行通信,該同步模式是停止和該 φ 終端裝置之間的通信,接收來自其他的基地台裝置的通信 信號,並和該其他的基地台裝置之間進行基地台間同步; 推測部,係根據在該同步模式所接收之該其他的基地台裝 置的通信信號,求在該其他的基地台裝置的通信信號和自 己的通信信號之間之同步偏差的推測値;以及修正部,係 根據該推測部所求得之同步偏差的推測値,進行同步修 正’其使自己所發送之通信信號對該其他的基地台裝置的 通信信號同步;該修正部在至下一切換成同步模式之該通 信模式之間,分成複數次進行該同步修正。 -103- 201034493 若依據如上述所示構成的基地台裝置,因爲在至下一 切換成同步模式之該通信模式之間,分成複數次進行在通 信模式自己所發送之通信信號的同步修正,所以可在通信 模式全區域抑制大的同步偏差之產生。因此,因爲不僅利 用在同步模式所進行之基地台間同步抑制同步偏差,而且 即使在通信模式時亦抑制同步偏差,所以可有效地抑制同 步偏差。 又,若依據本發明,因爲即使在和終端裝置之間進行 通信的通信模式時亦抑制同步偏差,所以不必爲了抑制同 步偏差,而縮短需要停止和終端裝置之間的通信之同步模 式的週期。因而,可一面抑制和終端裝置之間的通信量之 降低,一面抑制基地台間的同步偏差。 (2) 該修正部係每隔該單位時間分成複數次進行同步 修正者較佳。 在此情況,因爲在通信模式全區域每隔單位時間均勻 地進行同步修正,所以可有效地抑制隨著時間而增加的同 步偏差。 (3) 又,亦可該推測部自該其他的基地台裝置的通信信 號取得該其他的基地台裝置的通信時序,再根據此通信時 序和自己的通信時序之間的通信時序偏差,求該同步偏差 的推測値。 (4) 更具體而言,該推測部將該通信時序偏差作爲該同 步偏差的推測値,該修正部具有藉由調整構成該通信信號 之通信訊框的時間長度而進行通信時序之同步修正的通信 時序修正部較佳,在此情況,可抑制通信時序的同步偏差。 -104- 201034493 又,亦可該推測部根據該通信時序偏差,求該通信信 號的載頻偏差,作爲該同步偏差的推測値,該修正部具有 進行該載頻之同步修正的頻率修正部。在此情況,可抑制 載頻的同步偏差。 [6.3 分割成複數次之同步修正技術的實施形態] [6.3.1 第1實施形態] 第61圖顯示在第6章之第1實施形態之具有複數台基 地台裝置(BS: Base Station)6001、6002、6003、…的無線 φ 通信系統。在此無線通信系統,例如爲了實現寬頻無線通 信而採用依據由支援正交分頻多元連接(OFDMA)方式的 IEEE8 0 2.1 6所規定之「WiMAX」的方式。此外,WiMAX 的訊框構造是如第2圖所示。 各基地台裝置6001 ' 6002、6003的基本功能和在第5 章者一樣。 第62圖係顯示在第6章之基地台裝置6002、6003之 構成的方塊圖。 φ 兩基地台裝置6002、6003爲了接收信號而具有:放大 器6011,係將接收信號放大;正交解調器6012,係對從放 大器6011所輸出之接收信號進行正交解調(正交檢波)處 理;以及A/D變換部6013,係對從正交解調器6012所輸 出之接收信號進行A/D變換。被變換成數位信號的接收信 號被供給DSP (數位信號處理器)6020。 又,基地台裝置60 02、6003爲了發送信號,而具有: D/A變換部6015,係將數位發送信號進行d/Α變換;正交 調變器6016 ’係對從D/A變換部6015所輸出之發送信號 -105- 201034493 進行正交調變處理;以及放大器6017,係將從正交調變器 6016所輸出之發送信號放大。 此外,該正交解調器6012、該A/D變換部6013、該 D/A變換部6015以及該正交調變器6016的動作時脈由內 建時脈產生器(基準信號產生器)6018所供給。內建時脈產 生器60 18包含有水晶振盪器等,產生既定頻率的動作時 脈。此外,時脈產生器6018的時脈經由倍增部6019 a、6019b 被供給該A/D變換部601 3等。 又’內建時脈產生器6018的動作時脈亦被供給 ❹ DSP6020,亦成爲在在DSP6020的動作時脈。 在此,供給D/A變換部6015之動作時脈的精度影響發 送訊框(下行副訊框)之時間長度的精度。因此,若各基地 台裝置之內建時脈產生器6018的精度相異,則所產生之發 送訊框的時間長度因各基地台裝置而稍微相異。而,重複 發送訊框時,訊框之時間長度的相異被累積,而在基地台 裝置間之訊框時序產生偏差(通信訊框的時序偏差)。 DSP(信號處理部)6020對接收信號及/或發送信號進 ❹ 行信號處理。 DSP6020的主功能是作爲對接收信號之OFDM解調器 的功能、作爲對發送信號之OFDM調變器的功能、發送和 接收(發送訊框和接收訊框)之切換功能、基地台間之訊框 時序同步功以及基地台裝置間的載頻同步功能。在第62 圖’ DSP6020內所示的方塊是表示這些功能。 在第62圖的載頻修正部602 1是修正接收信號的載 頻。又,亦設置修正發送信號之載頻的載頻修正部6022。 -106- 201034493 載頻修正部6021、6022根據由推測部6023所推測的 載頻偏差,而修正接收信號及/或發送信號的載頻。 接收信號之載頻修正部 602 1的輸出經由切換開關 6024被供給解調部(DEM)6025。在解調部6025,對已被修 正載頻的接收信號進行進行解調(OFDM解調)處理。 該切換開關6024是在可接收來自終端裝置之信號的 通信模式之期間,對解調部6025側供給接收信號,而在通 信模式被停止(中止)的同步模式,對推測部6023供給接收 ® 信號。切換開關6024的切換由同步控制部6026進行。 此外,通信模式是藉由對終端裝置發送通信信號而在 和終端裝置之間進行通信的模式,同步模式是用以停止和 終端裝置之間的通信,接收其他的基地台裝置所發送之通 信信號,並在和該其他的基地台裝置之間進行基地台間同 步之處理(同步處理)的模式。這些通信模式及同步模式將 後述。 又,DSP602 0具備有對發送信號進行調變(OFDM調變) 0 處理的調變部(MOD)6027。在調變部6027,因爲根據時脈 產生器60 18的時脈頻率決定載頻,所以時脈頻率的誤差影 響發送信號的載頻。此外,在發送信號的載頻發生偏差時, 雖然各副載波的頻率間隔不變,但是各副載波的中心頻率 一樣地偏移》 由此調變部 6027所輸出之發送信號經由切換開關 6028被供給載頻修正部6022。 該切換開關6028是作成在可對終端裝置發送信號的 通信模式之期間,對D/A變換部60 15供給發送信號,而在 -107- 201034493 通信模式中止的同步模式,不對D/A變換部6015供給發送 信號。 此切換開關6028的切換亦由同步控制部6026進行。 即,此同步控制部6026構成切換通信模式和同步模式並執 行的控制部。The synchronization deviation of the frame transmission timing error (frame synchronization error) is estimated. Specifically, the sub-BS5 10 lb detects the timing of the synchronization signal located at the known location in the received frame, and detects the frame transmission timing of the parent BS5 101a. Then, the frame transmission timing of the detected parent BS 5101a and the frame transmission timing of the slave device 5101b are compared, and the synchronization deviation estimation 检测 is detected. The synchronization deviation estimation detected by the synchronization error detecting unit 5 1 7 1 is supplied to the memory unit 5 1 7 4 and stored in the memory unit 5 1 7 4 every time it is detected. -100-201034493 The synchronization error detecting unit 5 1 7 1 , the correcting unit 5 1 72, the synchronization correcting unit 5173, and the storage unit 5174 of the present embodiment are respectively combined with the synchronization error detecting unit 5033 and the correcting unit of the first embodiment. 5036, the frame timing counter 5 03 2 and the synchronization error history storage unit 503 5 correspond to each other, and by the same processing as these, the correction is estimated from the synchronization deviation, and the synchronization deviation is corrected. Therefore, by the same processing as in the first embodiment, the influence of the error in correcting the synchronization deviation can be suppressed, and the deterioration of the correction accuracy of the synchronization deviation can be suppressed. ❹ In addition, the detection and correction target of the synchronization error (synchronization deviation) is not limited to the frame timing, and may be a symbol timing or a slot timing. The synchronization processing unit 5170 further includes a frequency difference estimation unit 5175 and a frequency correction unit 5 1 7 6 . The frequency deviation estimation unit 5 1 75 estimates the clock of the built-in clock generator (not shown) built in the slave BS 5101b itself, based on the synchronization deviation estimation detected by the synchronization error detecting unit 5 1 7 1 . The difference between the frequency and the clock frequency of the built-in clock generator of the parent BS5101a on the transmitting side (time φ pulse frequency error) is used to estimate the carrier frequency error (carrier frequency deviation) from the clock frequency error. Further, in the present embodiment, the sub-BS 5101b may be configured as shown in Figs. 37 to 42. [Chapter 6 is divided into multiple synchronization corrections] The base station device described in this Chapter 6 is used in Chapter 1, Chapter 2, or Chapter 3, Chapter 4, or Chapter 5 in the non-contradictory scope. The technique of the base station device described. In Chapter 6, the items that are not specified are used in Chapters 1, 2, 3, 4, and 5 - 101- 201034493. [6.1 Necessity of Division into Multiple Synchronization Corrections] As shown above, the deviation between the clock frequency of one base station device and the clock frequency of other base station devices slowly changes with time.値 exists in steady state. This deviation 变化 varies depending on the external temperature change, etc., but there is no tendency for the external factor to gradually increase linearly due to the difference in the accuracy error of the clock generating devices. Since the base station acquires the transmission timing or carrier frequency according to the oscillation of the clock generating device itself, there is a deviation between the clock frequencies of the respective base stations, and between the transmission timing and the carrier frequency between the base station and the other base station devices. A synchronization deviation occurs. Thus, for example, it is thought that the communication with the terminal device is temporarily suspended, and synchronization processing with other base stations is performed, thereby eliminating the synchronization deviation as described above. In this case, the base station apparatus detects the deviation of the known signal wave such as the pre-signal wave included in the received wave of the other base station apparatus from the communication between the other base station apparatus and the synchronization of the other base station apparatus. Degree, and synchronization can be achieved. β is that the deviation of the clock frequency between the base station devices tends to gradually increase linearly as described above. Therefore, even if the base station apparatus suspends communication with the terminal apparatus and acquires synchronization with another base station apparatus, when the communication with the terminal apparatus is started later, the deviation of the clock frequency having the above-described tendency gradually becomes Increased, and synchronization deviation occurs between the two base station devices. In other words, although the synchronization processing can temporarily become a state in which synchronization between the base station apparatuses is obtained, a synchronization deviation of -102 - 201034493 occurs again after communication with the terminal apparatus. Moreover, since the synchronization deviation gradually increases as time passes, so if the communication time between communication with the terminal device is long, the synchronization deviation between the communication times increases, and the elapsed time of the base station device as a whole On the other hand, even if the synchronization process is performed periodically, the synchronization deviation still exists. On the other hand, if the period in which the synchronization processing is performed is shortened and synchronization is obtained before the synchronization deviation becomes large, it is possible to suppress the synchronization deviation from becoming large. However, in order to perform the synchronization process, since communication with the terminal device must be stopped, if the cycle of the synchronization process is shortened, the amount of communication with the terminal device is reduced. Therefore, there is a demand for a technique for suppressing synchronization deviation between base stations while suppressing a decrease in traffic. [6-2 Disclosure of Synchronous Correction Technique of Multiple Numbers] (1) The invention disclosed herein is characterized in that it has a control unit that switches a communication mode and a synchronization mode, and transmits the communication signal. And communicating with the terminal device, the synchronization mode is to stop communication with the φ terminal device, receive communication signals from other base station devices, and perform inter-base station communication with the other base station devices. a synchronization unit that estimates a synchronization deviation between a communication signal of the other base station device and its own communication signal based on a communication signal of the other base station device received in the synchronization mode; The correction unit performs synchronization correction based on the estimation of the synchronization deviation obtained by the estimation unit, and synchronizes the communication signal transmitted by itself with the communication signal of the other base station device; the correction unit switches to the next switch. The synchronization correction is performed in plural times between the communication modes in the synchronization mode. -103- 201034493 According to the base station apparatus configured as described above, since the communication signal transmitted by the communication mode itself is divided into a plurality of times, the synchronization correction is performed in the communication mode until the next switching to the synchronous mode. The generation of large synchronization deviations can be suppressed in the entire communication mode. Therefore, since the synchronization deviation is suppressed not only by the synchronization between the base stations performed in the synchronous mode, but also in the communication mode, the synchronization deviation is suppressed, so that the synchronization deviation can be effectively suppressed. Further, according to the present invention, since the synchronization deviation is suppressed even in the communication mode in which communication is performed with the terminal device, it is not necessary to shorten the period of the synchronization mode in which the communication between the terminal device and the terminal device needs to be stopped in order to suppress the synchronization deviation. Therefore, it is possible to suppress the synchronization deviation between the base stations while suppressing the decrease in the amount of communication with the terminal device. (2) It is preferable that the correction unit divides the number of times per unit time to perform synchronization correction. In this case, since the synchronization correction is performed uniformly every unit time in the communication mode area, the synchronization deviation which increases with time can be effectively suppressed. (3) Further, the estimation unit may acquire the communication timing of the other base station device from the communication signal of the other base station device, and obtain the communication timing deviation between the communication sequence and the own communication timing. Predicting the synchronization deviation値. (4) More specifically, the estimation unit uses the communication timing deviation as the estimation of the synchronization deviation, and the correction unit has the synchronization correction of the communication timing by adjusting the length of the communication frame constituting the communication signal. The communication timing correction unit is preferable, and in this case, the synchronization deviation of the communication timing can be suppressed. In addition, the estimation unit may obtain a carrier frequency deviation of the communication signal based on the communication timing deviation, and the correction unit may include a frequency correction unit that performs synchronization correction of the carrier frequency. In this case, the synchronization deviation of the carrier frequency can be suppressed. [6.3. Embodiment of the synchronization correction technique that is divided into a plurality of times] [6.3.1 First embodiment] FIG. 61 shows a plurality of base station devices (BS: Base Station) 6001 in the first embodiment of Chapter 6. Wireless φ communication system of 6002, 6003, .... In this wireless communication system, for example, in order to realize wideband wireless communication, a method of "WiMAX" defined by IEEE802.16 supporting the orthogonal frequency division multiple link (OFDMA) system is employed. In addition, the frame structure of WiMAX is as shown in Figure 2. The basic functions of each base station device 6001 '6002, 6003 are the same as those in Chapter 5. Figure 62 is a block diagram showing the construction of the base station units 6002 and 6003 in Chapter 6. The φ two-base station devices 6002 and 6003 have an amplifier 6011 for amplifying the received signal, and a quadrature demodulator 6012 for performing quadrature demodulation (quadrature detection) on the received signal output from the amplifier 6011. The A/D conversion unit 6013 performs A/D conversion on the received signal output from the quadrature demodulator 6012. The received signal converted into a digital signal is supplied to a DSP (Digital Signal Processor) 6020. Further, the base station apparatuses 60 02 and 6003 have a D/A conversion unit 6015 for performing d/Α conversion on the digital transmission signal, and a quadrature modulator 6016' for the slave D/A conversion unit 6015. The output transmission signal -105 - 201034493 performs orthogonal modulation processing; and the amplifier 6017 amplifies the transmission signal output from the quadrature modulator 6016. Further, the orthogonal demodulator 6012, the A/D conversion unit 6013, the D/A conversion unit 6015, and the operation clock of the quadrature modulator 6016 are built-in clock generators (reference signal generators). 6018 is supplied. The built-in clock generator 60 18 includes a crystal oscillator or the like to generate an operating clock of a predetermined frequency. Further, the clock of the clock generator 6018 is supplied to the A/D conversion unit 601 3 or the like via the multiplication units 6019a and 6019b. Further, the operation clock of the built-in clock generator 6018 is also supplied to the DSP 6020, which is also the operating clock of the DSP 6020. Here, the accuracy of the operation clock supplied to the D/A conversion unit 6015 affects the accuracy of the time length of the transmission frame (downlink sub-frame). Therefore, if the accuracy of the built-in clock generator 6018 of each base station device is different, the length of time of the generated transmission frame is slightly different for each base station device. However, when the frame is repeatedly transmitted, the difference in the length of the frame is accumulated, and the timing of the frame between the base stations is deviated (the timing deviation of the communication frame). The DSP (Signal Processing Unit) 6020 performs signal processing on the received signal and/or the transmitted signal. The main function of DSP6020 is as the function of OFDM demodulator for receiving signals, as the function of OFDM modulator for transmitting signals, switching function of transmitting and receiving (sending frame and receiving frame), and between base stations. The frame timing synchronization function and the carrier frequency synchronization function between the base station devices. The blocks shown in Figure 62, DSP 6020, represent these functions. The carrier frequency correcting unit 602 1 in Fig. 62 is a carrier frequency for correcting the received signal. Further, a carrier frequency correcting unit 6022 that corrects the carrier frequency of the transmission signal is also provided. -106- 201034493 The carrier frequency correcting sections 6021 and 6022 correct the carrier frequency of the received signal and/or the transmitted signal based on the carrier frequency deviation estimated by the estimating unit 6023. The output of the carrier frequency correcting unit 602 1 that receives the signal is supplied to the demodulation unit (DEM) 6025 via the changeover switch 6024. The demodulation unit 6025 performs demodulation (OFDM demodulation) processing on the received signal of the corrected carrier frequency. The changeover switch 6024 supplies a reception signal to the demodulation unit 6025 while receiving a communication mode from a signal from the terminal device, and supplies a reception signal to the estimation unit 6023 in a synchronization mode in which the communication mode is stopped (suspended). . The switching of the changeover switch 6024 is performed by the synchronization control unit 6026. Further, the communication mode is a mode for communicating with the terminal device by transmitting a communication signal to the terminal device, and the synchronization mode is for stopping communication with the terminal device, and receiving communication signals transmitted by other base station devices. And a mode of processing (synchronization processing) between the base stations and the other base station devices. These communication modes and synchronization modes will be described later. Further, the DSP 602 0 includes a modulation unit (MOD) 6027 that performs modulation (OFDM modulation) 0 processing on the transmission signal. In the modulation unit 6027, since the carrier frequency is determined based on the clock frequency of the clock generator 60 18, the error of the clock frequency affects the carrier frequency of the transmission signal. Further, when the carrier frequency of the transmission signal varies, the frequency interval of each subcarrier does not change, but the center frequency of each subcarrier is shifted in the same manner. The transmission signal output from the modulation unit 6027 is transmitted via the changeover switch 6028. The carrier frequency correcting unit 6022 is supplied. The changeover switch 6028 is a synchronization mode in which the D/A conversion unit 60 15 is supplied with a transmission signal while the communication mode in which the terminal device can transmit a signal, and the communication mode is suspended in the -107-201034493 communication mode, and the D/A conversion unit is not provided. The 6015 supplies a transmission signal. The switching of the changeover switch 6028 is also performed by the synchronization control unit 6026. That is, the synchronization control unit 6026 constitutes a control unit that executes the switching communication mode and the synchronization mode.

在該推測部6023,從接收信號(通信信號)檢測係同步 信號的前置信號,再推測在和其他的基地台裝置之間的通 信訊框時序偏差、及在和其他的基地台裝置之間的載頻偏 差。 因而,推測部6023具有:前置信號檢測部6023a,係 檢測接收信號所包含的前置信號;時脈誤差推測部6023b, 係推測在其他的基地台裝置和自裝置之間的時脈誤差·,以 及計算部6023 c,係計算其他的基地台裝置和自裝置之間 之每單位時間的時序偏差。The estimation unit 6023 detects the preamble signal of the system synchronization signal from the reception signal (communication signal), and estimates the timing difference between the communication frame and the other base station device, and between the base station device and the other base station device. Carrier frequency deviation. Therefore, the estimation unit 6023 includes a preamble detection unit 6023a that detects a preamble signal included in the received signal, and a clock error estimation unit 6023b that estimates a clock error between the other base station device and the own device. And the calculation unit 6023 c calculates the timing deviation per unit time between the other base station device and the self device.

在本實施形態,將位於其他的基地台裝置所發送之下 行副訊框DL的前頭之前置信號用作基地台間同步所需的 同步信號。因而,該檢測部6023a檢測位於其他的基地台 裝置所發送之下行副訊框DL的前頭之前置信號的時序。 此外,作爲同步信號,亦可係中同步、引示信號等。 基地台裝置6002、6003在記憶體具有作爲既知模式之 其他的基地台裝置6001、6002有使用之可能性的前置信號 模式。基地台裝置6002、6003的前置信號檢測部6023a使 用這些既知的前置信號模式,檢測前置信號的時序等。 在檢測部6023a,將自裝置6002、6003的發送時序和 所檢測之前置信號時序t的差檢測爲通信時序偏差(同步時 -108- 201034493 序誤差)。此通信時序偏差(通信訊框時序偏差)每當被檢 測,就被供給記憶部6029,並被儲存於記憶部6029。 以檢測部6023 a所檢測之通信訊框時序偏差被供給時 脈誤差推測部6023b及計算部602 3 c。 計算部6023c根據由前置信號檢測部6023a所檢測之 通信時序偏差,求每單位時間時序偏差的增加程度,藉此, 求每單位時間的時序偏差。 此外,在本實施形態,將該單位時間設定成是一個基 〇 本訊框之時間寬的5ms。 又,時脈誤差推測部6023b根據由前置信號檢測部 6 0 23a所檢測之通信訊框時序偏差,推測屬接收側之自裝 置之內建時脈產生器60 18的時脈頻率和屬發送側之其他 的基地台裝置之內建時脈產生器6018的時脈頻率之差(時 脈頻率誤差)。然後,從該時脈頻率誤差的推測値,求作爲 同步偏差之推測値的載頻偏差。 該時脈誤差推測部6023b在週期性執行同步模式的狀 Q 況下,根據在前次之同步模式所檢測之通信訊框時序偏差 和在本次之同步模式所檢測之通信時序偏差,推測時脈誤 差。此外,可從記憶部6029取得前次的時序偏差。 以時脈誤差推測部6023 b所求得之時序偏差、及載頻 偏差中之載頻偏差(在和前次的同步模式之間所產生之載 頻偏差、及每一基本訊框的載頻偏差)被供給載頻修正部 6021 、 6022 ° 在本實施形態,如一般之A F C (自動頻率控制)功能 般,可不僅修正接收信號的載頻,而且亦修正發送信號的 -109- 201034493 載頻。 即,和其他的基地台裝置之間的載頻偏差亦被供給發 送側的載頻修正部6022,在此載頻修正部6022,修正對終 端裝置之發送信號的載頻。 載頻修正部6022在同步模式進行爲了消除現況所產 生之載頻偏差而調整載頻的處理(同步處理)。 又,載頻修正部6022在通信模式爲了使自己對終端裝 置所發送之通信信號對其他的基地台裝置的通信信號同 步,而根據上述之每一基本訊框的載頻偏差進行調整各基 本訊框之載頻的處理(同步修正處理)。 具體而言,調整各個基本訊框的載頻,使每隔基本訊 框消除是被推測每隔基本訊框所產生之同步偏差量之平均 一個基本訊框的載頻偏差。 即,載頻修正部6022在至切換成下一同步模式的通信 模式之間,每隔一個基本訊框(每隔單位時間)分成複數次 進行同步修正處理,並調整載頻,使消除在和前次的同步 模式之間所產生之作爲同步偏差之推測値的載頻偏差。 如此,在本實施形態,藉由在載頻同步上進行上述的 處理,即使在自己和其他的基地台裝置之間存在時脈頻率 誤差,亦可抑制載頻偏差的發生,而可抑制在自己和其他 的基地台裝置之間之關於通信信號之載頻的同步偏差。 以前置信號檢測部6023 a所檢測之通信時序偏差作爲 同步偏差的推測値,被供給訊框時序控制部6 0 3 0。又,以 計算部6023c所求得之平均一個基本訊框(每單位時間)的 時序偏差亦被供給訊框時序控制部6030。訊框時序控制部 -110- 201034493 (TDD控制部)6 03 0根據這些偏差,切換發送和接收,同時 進行用以調整通信訊框(發送訊框、接收訊框)之時間長度 的處理。 收到通信時序偏差的訊框時序控制部603 0將在同步 模式對自己的發送時序(發送副訊框時序)朝向正方.向挪移 以檢測部6023a所檢測之通信時序偏差量的處理(同步處 理)。藉此,可使自裝置的發送時序和其他的基地台裝置的 發送時序一致,而取得在基地台裝置間之訊框時序同步。 Ο 又,訊框時序控制部603 0,根據以計算部6023c所求 得之平均一個基本訊框的時序偏差,調整各基本訊框的時 間長度,藉此在通信模式進行用以使自己向終端裝置所發 送之通信信號對其他的基地台裝置的通信信號同步之同步 修正(同步修正處理)。 具體而言,調整各個基本訊框的時間長度,使每隔基 本訊框消除是被推測每隔基本訊框所產生之同步偏差量之 平均一個基本訊框的時序偏差。 〇 即,訊框時序控制部603 0在至切換成下一同步模式的 通信模式之間,每隔一個基本資訊訊框(每隔單位時間)分 成複數次進行同步修正處理,並調整各個基本訊框的時間 長度,使消除在和前次的同步模式之間所產生之作爲同步 偏差之推測値的通信時序偏差。 此外’若使發送時序和其他的基地台裝置的發送時序 —致’自然接收時序亦一致。即,成爲在和其他的基地台 裝置之間取得訊框時序同步的狀態。 如此’在本實施形態,藉由在訊框時序同步上進行上 -111- 201034493 述的處理,即使在自己和其他的基地台裝置之間存在 頻率誤差’亦可抑制訊框時序偏差的發生,而可抑制 己和其他的基地台裝置之間之關於通信時序的同步偏】 如以上所示,本實施形態的推測部6023自其他的 台裝置的通信信號取得該其他的基地台裝置之前置信 時序t(通信時序),將此時序t和自裝置6002、6003 送時序的差檢測爲通信時序偏差(同步時序偏差),再 此通信時序偏差,求其他的基地台裝置的通信信號和 的通信信號之間之同步偏差的推測値(通信時序偏差、 偏差)。 又,作爲修正部的載頻修正部6021、6022、及訊 序控制部603 0根據該同步偏差的推測値進行用以使 信模式自已所發送之通信信號對其他的基地台裝置同 (關於時序偏差及載頻偏差)同步修正處理。 又,載頻修正部602 1、6022、及訊框時序控制部 在至切換成下一同步模式的通信模式之間,分成複數 行(關於時序偏差及載頻偏差)同步修正處理。 此外,關於由該推測部6023及訊框時序控制部 所進行之在基地台裝置間之關於訊框時序的同步處理 步修正處理,將後述。 回到第62圖,該同步控制部6026如上述所示, 中止通信模式的時序(同步時序),使執行同步模式。 如以下所示執行同步模式。 首先,副基地台裝置6002、6003在起動時,將其 基地台裝置(主基地台裝置或其他的副基地台裝置)中 時脈 在自 笔。 基地 號的 之發 根據 自己 載頻 框時 在通 步之 6030 次進 603 0 及同 控制 他的 之一 -112- 201034493 基地台裝置選爲源基地台裝置,檢測該源基地台裝置所發 送之信號(前置信號;既知信號;同步信號)的接收波(源接 收波),再取得基地台裝置間的訊框時序同步和載頻同步。 此外’將在基地台裝置起動時所進行之基地台同步所 需的處理稱爲起始同步模式。起始同步模式如上述所示在 起動時被執行,更具體而言,在基地台裝置起動後至和終 端裝置的通信開始之間進行。 執行起始同步模式後,基地台裝置可和自區域內之終 © 端裝置進行通信。 可是,在基地台裝置間,因爲時脈精度之變動所引起 的時脈頻率偏差存在,所以隨著時間的經過,在基地台裝 置間在訊框時序或載頻發生偏差。 因此,副基地台裝置6002、6003在既定的時序中止(停 止)和終端裝置的通信(發送信號;下行副訊框),而成爲用 以消除同步偏差的同步模式(已中止通信的同步模式)。 第63圖顯示基地台裝置6002、6003用以從和終端裝 ❹ 置進行通信的(一般)通信模式切換成接收來自其他的基地 台裝置(主基地台裝置或副基地台裝置)之信號的同步模式 的流程圖。 如第63圖所示,基地台裝置6002、6003判定是否是 應成爲同步模式的同步時序(步驟S6 — 1)。同步時序例如被 設爲成爲同步模式的週期(每既定時間或每既定訊框數)。 在以時間設定週期的情況,例如可設爲約5分鐘。 在是在和終端裝置之間進行通信的一般通信模式時, 在判定到了應移往同步模式之時序的情況(步驟S6— 2),基 -113- 201034493 地台裝置6002、6003移至同步模式(步驟S6—3)。同 式結束時,再回到一般通信模式(步驟S 6— 4)。 基地台裝置60 02、6003藉由即使一面在和終端裝 間進行通信,亦一面定期地或因應於需要而隨時執@ 模式,而即使發生同步偏差,亦可消除之。 基地台裝置6002、6003成爲同步模式時,和終端 之間的通信(下行副訊框的發送)被停止(中止),即使在 成爲下行副訊框的時間,亦成爲接收信號之狀態。 在同步模式,接收其他的基地台裝置60 02向終端 所發送之信號(OFDM信號)。在本實施形態,將位於其 基地台裝置6002所發送之下行副訊框DL的前頭之前 號作爲基地台間同步所需的同步信號,取得訊框時序 及載頻同步。 以上的同步模式結束時,基地台裝置60 02、60 03 步模式回到一般通信模式,而成爲可和終端裝置之間 通信的狀態。 其次,詳述在該同步模式及一般通信模式,基地 置60 02、6003所進行之同步處理及同步修正處理。 第64圖係顯示副基地台裝置重複進行通信模式 步模式時對主基地台裝置之通信時序偏差之隨時間變 形態的圖。此外,在第64圖,作爲第1基地台裝置 和第2基地台裝置6002之間的通信時序偏差,加以影 在第64圖,顯示第2基地台裝置6002在執行既 間寬的通信模式後週期性重複同步模式的形態。又, 64圖,在通信時序偏差爲「0」時,表示第1基地台 步模 置之 同步 裝置 本來 裝置 他的 置信 同步 從同 進行 台裝 和同 化的 600 1 Ϊ明。 定時 在第 裝置 -114- 201034493 6001和第2基地台裝置6002之間的訊框時序一致 得訊框時序之同步的狀態。 又,第64圖中,虛線是表示僅以在同步模式的 理取得訊框時序同步的情況之通信時序偏差的隨時 的線圖,實線是表示利用在同步模式的同步處理及 模式的同步修正處理取得訊框時序同步之本實施形 信時序偏差的隨時間變化的線圖。 在通信模式,因爲第2基地台裝置6002在和終 〇 之間進行通信,所以在和第1基地台裝置6001的關 別獨立動作,是自由運轉之狀態。因此,如第64圖 線所示,在通信模式不進行同步修正處理的情況, 序偏差從藉由在同步模式進行同步處理而取得同 態,在通信模式,因兩基地台裝置6 001、6002彼此 頻率誤差,而發生隨時間增加的同步偏差。此時, 信模式切換成同步模式時(通信模式結束時)作爲同 所產生之通信時序偏差値ΔΤη'因兩者間之時脈頻 φ 隨時間累積,而作爲大致同程度的値,對應於各通 週期性地出現。 相對地,在本實施形態,藉由在通信模式進行 正處理,而如第64圖中的實線所示,抑制對應於通 週期性地出現的通信時序偏差變大。 第65圖係第64圖中之同步模式的部分的放大 本實施形態的2基地台裝置6002,利用推測f 及訊框時序控制部6030,求平均一個基本訊框的時 tn,每隔構成在通信模式所發送之信號的基本訊框 ,而取 同步處 間變化 在通信 態之通 端裝置 係,分 中的虛 通信時 步之狀 的時脈 在從通 步偏差 率誤差 信模式 同步修 信模式 圖。 部 6023 序偏差 進行同 -115- 201034493 步修正,使消除此時序偏差tn。 具體而言,訊框時序控制部6030藉由在消除時序偏差 tn之方向挪移信號在各基本訊框之下行副訊框DL的發送 開始時序而進行同步修正。即,訊框時序控制部60 3 0可藉 由在基本訊框調整和下一基本訊框相鄰之切換間隙RTG的 時間寬而進行該同步修正。 因爲訊框時序控制部6030每隔各基本訊框進行同步 修正,所以在通信模式之通信時序偏差値如第65圖所示, 每隔各基本訊框的時間寬而增加,在各基本訊框彼此之間 n 的時序,重複僅減少時序偏差tn量。 如此,訊框時序控制部6030在至切換成下一同步模式 的通信模式之間,每隔一個基本訊框分成複數次進行同步 修正處理,並調整各個基本訊框的時間長度,使消除在和 前次的同步模式之間所產生之作爲同步偏差之推測値的通 信時序偏差。 如此進行同步修正時,因爲在通信模式全區域均勻地 進行同步修正,所以可有效地抑制隨時間增加的同步偏差。_ 此外,關於平均一個基本訊框之時序偏差“的求法, 將在後面說明。 從通信模式切換成同步模式時,推測部6023的前置信 號檢測部6023 a(第62圖)檢測通信時序偏差値△ Tn,作爲 現況的同步偏差。 接著,計算部6023c (第62圖)將該通信時序偏差値△In the present embodiment, the leading signal of the sub-frame DL transmitted by the other base station apparatus is used as a synchronization signal required for synchronization between the base stations. Therefore, the detecting unit 6023a detects the timing of the preceding preamble signal of the sub-frame DL transmitted by the other base station apparatus. Further, as the synchronization signal, a synchronization, a pilot signal, or the like may be used. The base station apparatuses 6002 and 6003 have a pre-signal pattern in which the memory has a possibility that other base station apparatuses 6001 and 6002 which are known modes are used. The preamble signal detecting unit 6023a of the base station devices 6002 and 6003 detects the timing of the preamble signal and the like using these known preamble signal patterns. The detecting unit 6023a detects the difference between the transmission timings of the self-devices 6002 and 6003 and the detected pre-signal timing t as the communication timing deviation (synchronization -108 - 201034493 sequence error). This communication timing deviation (communication frame timing deviation) is supplied to the storage unit 6029 every time it is detected, and is stored in the storage unit 6029. The timing error of the communication frame detected by the detecting unit 6023a is supplied to the clock error estimating unit 6023b and the calculating unit 602 3 c. The calculation unit 6023c obtains the degree of increase in the time-series deviation per unit time based on the communication timing deviation detected by the pre-signal detection unit 6023a, thereby obtaining the timing deviation per unit time. Further, in the present embodiment, the unit time is set to be 5 ms which is a time width of the frame. Further, the clock error estimating unit 6023b estimates the clock frequency and the genus transmission of the built-in clock generator 60 18 of the own device on the receiving side based on the communication frame timing deviation detected by the preamble detecting unit 630a. The difference in clock frequency (clock frequency error) of the built-in clock generator 6018 of the other base station devices on the side. Then, from the estimation of the clock frequency error, the carrier frequency deviation which is the estimated 同步 of the synchronization deviation is obtained. The clock error estimating unit 6023b estimates the timing of the communication frame detected in the previous synchronization mode and the communication timing deviation detected in the current synchronization mode in the case of the timing Q in which the synchronization mode is periodically executed. Pulse error. Further, the previous timing offset can be obtained from the storage unit 6029. The timing deviation obtained by the clock error estimation unit 6023 b and the carrier frequency deviation in the carrier frequency deviation (the carrier frequency deviation generated between the previous synchronization mode and the carrier frequency of each basic frame) The carrier frequency correction units 6021 and 6022 are supplied to the carrier frequency correcting unit 6021 and 6022. In the present embodiment, as in the general AFC (automatic frequency control) function, not only the carrier frequency of the received signal but also the carrier frequency of the transmitted signal can be corrected. . That is, the carrier frequency deviation between the other base station devices is also supplied to the carrier frequency correcting unit 6022 on the transmitting side, and the carrier frequency correcting unit 6022 corrects the carrier frequency of the transmission signal to the terminal device. The carrier frequency correcting unit 6022 performs processing (synchronization processing) for adjusting the carrier frequency in order to eliminate the carrier frequency deviation generated in the current state in the synchronous mode. Further, the carrier frequency correcting unit 6022 adjusts the basic signals according to the carrier frequency deviation of each of the basic frames in order to synchronize the communication signals transmitted by the terminal device to the communication signals of the other base station devices in the communication mode. The processing of the carrier frequency of the frame (synchronization correction processing). Specifically, the carrier frequency of each basic frame is adjusted such that every basic frame elimination is an average carrier frequency deviation of the basic frame that is estimated to be generated by every basic frame. In other words, the carrier frequency correcting unit 6022 divides the communication mode into the next synchronization mode every other basic frame (every unit time) to perform the synchronization correction processing, and adjusts the carrier frequency to eliminate the sum. The carrier frequency deviation generated as the synchronization deviation between the previous synchronization modes. As described above, in the present embodiment, by performing the above-described processing on the carrier frequency synchronization, even if there is a clock frequency error between itself and another base station device, it is possible to suppress the occurrence of the carrier frequency deviation and suppress the self. Synchronous deviation from the carrier frequency of the communication signal with other base station devices. The communication timing deviation detected by the preamble signal detecting unit 6023a is supplied to the frame timing control unit 6 0 3 as the estimation of the synchronization deviation. Further, the timing deviation of the average one frame (per unit time) obtained by the calculating unit 6023c is also supplied to the frame timing control unit 6030. Frame timing control section -110- 201034493 (TDD Control Unit) 6 03 0 Switches transmission and reception according to these deviations, and performs processing for adjusting the length of time of the communication frame (send frame, receive frame). The frame timing control unit 603 0 that has received the communication timing deviation processes the synchronization timing (the transmission subframe timing) in the synchronization mode toward the square. The processing of the communication timing deviation amount detected by the detecting unit 6023a (synchronization processing) ). Thereby, the transmission timing of the own apparatus can be synchronized with the transmission timing of the other base station apparatus, and the timing synchronization of the frames between the base station apparatuses can be obtained. Further, the frame timing control unit 603 0 adjusts the time length of each basic frame based on the timing deviation of the average one frame obtained by the calculating unit 6023c, thereby performing the communication mode to make the terminal to the terminal. The communication signal transmitted by the device is synchronized with the synchronization of the communication signals of the other base station devices (synchronization correction processing). Specifically, the time length of each basic frame is adjusted so that every basic frame elimination is an average timing deviation of a basic frame that is estimated to be generated by every basic frame. That is, the frame timing control unit 603 0 divides the basic communication frame (every unit time) into a plurality of times to perform synchronization correction processing between the communication modes switched to the next synchronization mode, and adjusts each basic signal. The length of time of the frame is such that the communication timing deviation generated as the synchronization deviation between the previous synchronization mode and the previous synchronization mode is eliminated. In addition, if the transmission timing is the same as the transmission timing of other base station apparatuses, the natural reception timing also coincides. In other words, the frame timing synchronization is obtained between the other base station devices. Thus, in the present embodiment, by performing the processing described in the above-mentioned -111-201034493 on the timing synchronization of the frame, even if there is a frequency error between itself and other base station devices, the occurrence of frame timing deviation can be suppressed. Further, it is possible to suppress the synchronization bias with respect to the communication timing between the other base station apparatuses. As described above, the estimation unit 6023 of the present embodiment acquires the previous timing of the other base station apparatus from the communication signals of the other station apparatuses. t (communication timing), the difference between the timing t and the transmission timing of the self-devices 6002 and 6003 is detected as the communication timing deviation (synchronous timing deviation), and the communication timing deviation is obtained, and the communication signals and communication signals of other base station apparatuses are obtained. Predicted 同步 (communication timing deviation, deviation) between the synchronization deviations. Further, the carrier frequency correcting units 6021 and 6022 as the correcting unit and the sequence control unit 603 0 perform the communication signal for transmitting the signal mode to the other base station devices based on the estimation of the synchronization deviation (for timing) Deviation and carrier frequency deviation) Synchronous correction processing. Further, the carrier frequency correcting sections 602 1 and 6022 and the frame timing control section divide the complex mode (for the timing offset and the carrier frequency offset) into the complex mode between the communication modes switched to the next synchronization mode. In addition, the synchronization processing step correction processing for the frame timing between the base station apparatuses by the estimation unit 6023 and the frame timing control unit will be described later. Returning to Fig. 62, the synchronization control unit 6026 suspends the timing (synchronization timing) of the communication mode as described above, and causes the synchronization mode to be executed. The sync mode is executed as shown below. First, when the sub-base station devices 6002 and 6003 are activated, the clocks of the base station devices (the main base station device or other sub-base station devices) are self-written. The base number is selected according to its own carrier frequency frame, and is selected as the source base station device by the base station device, which is selected as the source base station device at 6030 times of the pass, and is detected by the source base station device. The received wave (source received wave) of the signal (preamble signal; known signal; synchronization signal), and then the frame timing synchronization and carrier frequency synchronization between the base station devices are obtained. Further, the processing required to synchronize the base station performed at the time of starting the base station apparatus is referred to as the initial synchronization mode. The initial synchronization mode is performed at the time of starting as described above, more specifically, between the start of the base station apparatus and the start of communication with the terminal apparatus. After the initial sync mode is executed, the base station device can communicate with the terminal device in the self-region. However, there is a variation in the clock frequency caused by fluctuations in the clock accuracy between the base station devices. Therefore, as time passes, the frame timing or carrier frequency varies between the base station devices. Therefore, the sub-base station devices 6002 and 6003 stop (stop) communication with the terminal device (transmission signal; downlink sub-frame) at a predetermined timing, and become a synchronization mode for canceling the synchronization deviation (synchronization mode in which communication is suspended). . Figure 63 shows the base station apparatus 6002, 6003 for switching from the (general) communication mode in communication with the terminal device to receiving signals from other base station devices (main base station devices or sub-base station devices). Flow chart of the pattern. As shown in Fig. 63, the base station apparatuses 6002 and 6003 determine whether or not the synchronization timing should be the synchronization mode (step S6-1). The synchronization timing is set, for example, to the period of the synchronization mode (per predetermined time or number of frames). In the case of setting the period by time, for example, it can be set to about 5 minutes. In the normal communication mode in which communication is performed with the terminal device, when it is determined that the timing to be moved to the synchronization mode is reached (step S6-2), the base-113-201034493 ground station devices 6002, 6003 are moved to the synchronous mode. (Step S6-3). When the equation ends, return to the normal communication mode (step S 6-4). The base station devices 60 02 and 6003 can perform the @ mode at any time, or in response to the need, even if they are communicating with the terminal device, and can be eliminated even if a synchronization deviation occurs. When the base station apparatuses 6002 and 6003 are in the synchronous mode, communication with the terminal (transmission of the downlink sub-frame) is stopped (suspended), and the state of the received signal is obtained even when it is the downlink sub-frame. In the synchronous mode, a signal (OFDM signal) transmitted from the other base station device 60 02 to the terminal is received. In the present embodiment, the number preceding the head frame DL transmitted by the base station device 6002 is used as a synchronization signal required for synchronization between the base stations, and the frame timing and carrier frequency synchronization are obtained. When the above synchronization mode ends, the base station apparatus 60 02, 60 03 step mode returns to the normal communication mode, and becomes a state in which communication with the terminal apparatus is possible. Next, the synchronization processing and the synchronization correction processing performed by the base 60 02 and 6003 in the synchronous mode and the general communication mode will be described in detail. Fig. 64 is a view showing a temporal change of the communication timing deviation of the main base station apparatus when the sub-base station apparatus repeats the communication mode step mode. In addition, in Fig. 64, the communication timing variation between the first base station device and the second base station device 6002 is shown in Fig. 64, and the second base station device 6002 is shown to perform the wide communication mode. The form of the synchronous mode is periodically repeated. Further, in Fig. 64, when the communication timing deviation is "0", the synchronizing device indicating the first base step mode is originally set. The confidence of the device is synchronized with the 600 1 description of the station loading and assimilation. Timing The timing of the frame between the first device - 114 - 201034493 6001 and the second base station device 6002 coincides with the synchronization of the timing of the frame. Further, in Fig. 64, the broken line indicates a time chart of the communication timing deviation only in the case where the synchronization timing is synchronized in the synchronization mode, and the solid line indicates the synchronization processing using the synchronization mode and the synchronization correction of the mode. A time-line diagram of the time-series deviation of the present embodiment of the received frame timing synchronization. In the communication mode, since the second base station device 6002 communicates with the terminal, it operates independently of the first base station device 6001 and is in a free running state. Therefore, as shown in Fig. 64, in the case where the communication mode is not subjected to the synchronization correction processing, the sequence deviation is obtained from the synchronization state by the synchronization processing in the synchronization mode, and in the communication mode, the two base station devices 6 001 and 6002 Frequency errors are mutual to each other, and synchronization deviations increase with time occur. At this time, when the signal mode is switched to the synchronous mode (at the end of the communication mode), the communication timing deviation 値ΔΤη' generated as the same occurs because the clock frequency φ between the two accumulates with time, which is approximately the same degree, corresponding to Each pass appears periodically. On the other hand, in the present embodiment, by performing the forward processing in the communication mode, as shown by the solid line in Fig. 64, it is suppressed that the communication timing deviation corresponding to the occurrence of the continuity becomes large. Fig. 65 is an enlarged view of a portion of the synchronization pattern in Fig. 64. The two-base station device 6002 of the present embodiment uses the estimation f and the frame timing control unit 6030 to average the time tn of one basic frame, and is configured every other time. The basic frame of the signal sent by the communication mode, and the synchronization device changes the communication device at the end device system, and the time of the virtual communication time step in the segment is synchronized with the error rate from the step deviation rate error signal mode. Pattern diagram. Department 6023 Order Deviation Perform the same -115-201034493 step correction to eliminate this timing deviation tn. Specifically, the frame timing control unit 6030 performs synchronization correction by shifting the transmission start timing of the sub-frame DL in the direction below the basic frame by shifting the signal in the direction of eliminating the timing offset tn. That is, the frame timing control unit 60 3 0 can perform the synchronization correction by the time width of the basic frame adjustment and the switching gap RTG adjacent to the next basic frame. Since the frame timing control unit 6030 performs synchronization correction every basic frame, the communication timing deviation in the communication mode is increased as shown in FIG. 65, and the time width of each basic frame is increased in each basic frame. The timing of n between each other, the repetition only reduces the amount of timing deviation tn. In this way, the frame timing control unit 6030 divides the synchronization mode into every other basic frame between the communication modes switched to the next synchronization mode, and adjusts the time length of each basic frame to eliminate the sum in the sum. The communication timing deviation generated as the synchronization deviation between the previous synchronization modes. When the synchronization correction is performed in this way, since the synchronization correction is performed uniformly over the entire area of the communication mode, the synchronization deviation which increases with time can be effectively suppressed. Further, the method of calculating the timing deviation of the average one frame will be described later. When the communication mode is switched to the synchronization mode, the preamble detecting unit 6023a (Fig. 62) of the estimating unit 6023 detects the communication timing deviation.値ΔTn, as the synchronization deviation of the current situation. Next, the calculation unit 6023c (Fig. 62) shifts the communication timing 値Δ

Tn作爲在下一通信模式之同步偏差的推測値,從前置信號 檢測部6023 a接受後,計算平均一個基本訊框的時序偏差 -116- 201034493 U + 1,並向訊框時序控制部6030輸出。 在此,計算部6023c依以下的方式計算平均一個基本 訊框的時序偏差tn+1。即,現況的通信時序偏差値△ Tn是 每隔基本訊框根據時序偏差tn被逐次同步修正之結果所產 生的同步偏差。若現況的通信時序偏差値ΔΤη和時序偏差 tn等値,利用設爲時序偏差tn的同步修正,在同步模式的 時刻,就正確地消除同步偏差。 可是,在現況的通信時序偏差値ΔΤη,因兩基地台裝 e 置之時脈產生器的狀態或通信環境之變化,一般發生如以 下之第(2)式所示的偏差値5 Τη。 Δ T„ = t„+ δ Τ„ (2) 此外,在剛才的通信模式整體,在不進行同步修正的 情況所產生之通信時序偏差値△ Τη',以對每隔基本訊框利 用同步修正所消除之時序偏差tn乘以在一次通信模式所含 之基本訊框數者加上該偏差値5 Tn的値表示。 該偏差値Τη是在剛才的通信模式整體進行同步修正 Q 下所產生的同步偏差。因此,計算部6023C如以下的第(3) 式所示,藉由將偏差値<5 1„除以在通信模式之時間寬所含 的基本訊框數,而求偏差値<5 Tn之平均一個基本訊框的 値,再藉由對其加上前面之平均一個基本訊框的時序偏差 tn,而求在下一通信模式之平均一個基本訊框的時序偏差 tn +1。 tn+1=tn+5Tn/(通信模式所含之基本訊框數)(3) 計算部6023c如該第(2)式、第(3)式所示,根據前置信 號檢測部6023a作爲在下一通信模式之同步偏差的推測値 -117- 201034493 所檢測的通信時序偏差値ΔΤη,求平均一個基本訊框的時 序偏差tn + 1。 此外,關於一次通信模式所含之基本訊框數,預先由 同步控制部6026決定通信模式的時間寬,又,因爲基本訊 框的時間寬如上述所示被決定爲5ms,計算部6023 c可從 這些値求一次通信模式所含之基本訊框數。 此外,在該偏差値5 Tn小於預定値的情況,亦可不考 慮該偏差値6 Τη,而將現況的時序偏差“直接作爲在下一 通信模式的時序偏差tn+ !。在此情況,可防止根據不必修 正之微細的偏差値(5 !\進行同步修正。 又,即使在偏差値5 Tn以極大的値出現的情況,亦可 不考慮該偏差値5 Tn,而將現況的時序偏差tn直接作爲在 下一通信模式的時序偏差tn+1。在此情況,即使偏差値5 Tn例如因多路徑等而以突發性異常値出現,亦可避免根據 該値進行同步修正。 從計算部6023c接受如上述所示求得之平均一個基本 訊框的時序偏差tn+1,同時從前置信號檢測部6023a接受 通信時序偏差値△1'„時,訊框時序控制部6030藉由進行 將使通信模式開始時之自己的發送時序在消除現況的通信 時序偏差値ΛΤη之方向挪移的處理,進行同步處理。 又’訊框時序控制部6030在該同步處理後切換成通信 模式時’根據平均一個基本訊框的時序偏差tn+1,每隔在 該通信模式的各基本訊框進行上述的同步修正。 如上述所示構成之第2及第3基地台裝置6002、6003, 因爲在至切換成下一同步模式的通信模式之間分成複數次 -118- 201034493 進行在通信訊框時序偏差自己所發送之通信信號的同步修 正,所以可在通信模式全區域抑制大的同步偏差之發生。 因此,因爲不僅利用在同步模式所進行之基地台間同步抑 制同步偏差,而且在通信模式亦抑制同步偏差,所以可有 效地抑制同步偏差。 又,若依據本實施形態的基地台裝置6002、6003,因 爲即使在用以在和終端裝置之間進行通信的通信模式亦抑 制同步偏差,所以不必爲了抑制同步偏差,而縮短需要停 ❺ 止和終端裝置之間的通信之某同步模式的週期。因而,可 一面抑制和終端裝置之間的通信量的降低,一面抑制基地 台間的同步偏差。 [6.3.2 第2實施形態] 第66圖係顯示在第6章之第2實施形態之無線通信系 統的整體構成圖。在第66圖,表示基地台裝置6101 a、6101b 和使用者終端機(移動終端機;MS: Mobile Station)6102a、 610 2b之間進行無線通信的通信系統。在此通信系統,設 φ 置複數台基地台裝置(BS: Base Station)6101a、6101b,可 在和cell內的使用者終端機6102a、6102b之間進行通信。 此通信系統例如是應用 LTE(Long - Term Evolution) 的系統。在LTE,可採用分頻雙工(FDD),在以下,以採用 分頻雙工方式者說明本通信系統。又,通信系統除了 LTE 以外,亦可採用WCDMA、CDMA2000。 在本實施形態的通信系統,在複數台基地台裝置 6101a、6101b間進行取得同步的基地台間同步。在本實施 形態,基地台裝置間同步是利用「無線同步」來執行,該 -119- 201034493 無線同步是成爲母之作爲其他的基地台裝置之基地台裝置 (以下稱爲「母BS」)6101a,藉由別的基地台裝置(以下稱 爲「子BS」)6101b接收該母BS6101a向cell內的終端裝 置6102a所發送之信號而取得同步。 此外’母BS亦可係還在和其他的基地台裝置之間取得 無線同步者,亦可係利用根據GPS信號取得同步等無線同 步以外的方法,決定訊框時序者。 [基地台裝置之構成] 第67圖顯示基地台裝置(子BS)6101b的構成。第67 圖之子BS6101b的構成是和第59圖所示之子BS5l01b的 構成一樣。在第67圖,從A/D變換部6127所輸出之信號 被供給同步處理部6170。因而,同步處理部6170可取得 來自母BS6101a的下行信號。 同步處理部6170根據從母BS6101a所取得之下行信號 的訊框所含之 Primary Synchronization Signal 及 Secondary Synchronization Signal,進行用以取得自裝置 6101b的通信時序及通信頻率之同步的處理。 同步處理部6170由無線同步控制部6180控制。無線 同步控制部6180具有和第1實施形態之同步控制部6026 一樣之功能。 即’無線同步控制部6180根據固定週期而定期地或因 應於需要’爲了無線同步,而設爲中止對使用者終端機 6102b發送下行信號的通信模式,並接收母BS6101a所發 送之下行信號的無線同步狀態(同步模式)。無線同步控制 部6180藉由向調變電路6160及同步處理部6170輸出是表 -120- 201034493 示成爲此無線同步狀態之時間帶的資訊之無線同步區間資 訊,而進行該調變電路6160及同步處理部6170的控制。 第68圖係同步處理部6170的構成圖。如第68圖所 示,同步處理部6170具備:推測部6171、訊框時序控制 部6172、載頻修正部6173以及記憶部6174。 同步處理部6170根據從無線同步控制部6180所供給 的無線同步區間資訊,識別自裝置6101b係通信模式或同 步模式,再決定是否進行無線同步。 φ 推測部6171在決定進行無線同步時,取得來自母 BS6101a的下行信號,利用下行信號所含之 primary Synchronization Signal 及 Secondary Synchronization Signal(以下將兩Signal總稱爲「同步信號」),檢測母 BS6101a的訊框發送時序,再推測在母BS6101a和自裝置 5101b之間的訊框時序偏差及載頻偏差。 推測部6171具有和在該第1實施形態之推測部602 3 一樣的功能,具備:檢測部6171a,係檢測下行信號所含 φ 之同步信號;時脈誤差推測部6171b,係推測母BS6101a 和子BS6101b之間的時脈誤差;以及計算部6171c,係計 算母BS6101a和子BS6101b之間之每單位時間的時序偏 差。關於這些功能部,亦具有和該第1實施形態一樣之功 能。 檢測部6 1 7 1 a檢測位於所接收之下行訊框中的既知位 置之該同步信號的時序,並檢測母BS6101a的訊框發送時 序。然後,比較所檢測之母BS61 01a的訊框發送時序和自 裝置6101b的訊框發送時序,而檢測該差,作爲通信時序 -121 - 201034493 偏差(同步偏差)。此通信時序偏差每當被檢測,就被供給 記憶部6174,並被儲存於記憶部6174。 又,在本實施形態的訊框時序控制部6172及載頻修正 部6173,亦各自和在該第1實施形態的訊框時序控制部 6030、及載頻修正部602卜60 22對應,並具有一樣之功能。 即,訊框時序控制部61 72及載頻修正部6173各自同 步模式,各自在同步模式進行用以消除現況所檢測之時序 偏差及載頻偏差的同步處理,而在通信模式,根據平均一 個基本訊框的時序偏差及載頻偏差,進行用以調整各基本 訊框之時間長度及載頻的同步修正處理。此外,和該第1 實施形態一樣地進行這些同步處理及同步修正處理。 結果’若依據本實施形態’因爲可在母BS6101a和子 BS6101b之間取得同步,同時在至切換成下一同步模式的 通信模式之間進行自己所發送之下行信號的同步修正,所 以可在通信模式全區域可抑制大的同步偏差之發生。 此外,同步誤差(同步偏差)的檢測、修正對象未限定 爲訊框時序,亦可係符號時序或儲存格(slot)時序。 又,在本實施形態,子BS6101b亦可採用第37圖〜第 42圖所示之構成。 在第6章所揭示的發明未限定爲上述的各實施形態。 在上述的實施形態,雖然根據一個通信時序偏差値△1'„進 行在通信模式的同步修正,但是亦可例如預先記憶複數個 在過去之同步模式所檢測的同步偏差推測値ΛΤ,並對這複 數個通信時序偏差値八^求平均値,再根據此平均値進行 同步修正。 -122- 201034493 又在上述的實施形態,雖然將一個基本訊框的時間寬 作爲單位時間,並根據平均一個基本訊框的時序偏差 tn+l,每隔在通信模式的各基本訊框分成複數次進行同步 修正,但是亦可例如將複數個基本訊框的時間寬作爲單位 時間並進行同步修正,在此情況,可減少分開進行同步修 正處理的次數,該處理的自由度變高。 [第7章附記] 此外,應認爲在第1章至第6章所揭示之實施形態在 φ 所有的事項都是舉例表示,而不是用以限制者。所設想之 本發明之範圍不是由上述的意義,而由申請專利範圍所表 示’包含和申請專利範圍具有同等之意義及範圍內之所有 的變更。 【圖式簡單說明】 胃1圖係顯示將網際網路NW作爲上階網路之移動體 無線通信系統的圖。 第2圖係顯示基地台間取得同步時之WiMAX訊框的 φ 狀態圖。 胃3圖係顯示在無線通信系統之主基地台裝置和副基 地台裝置的_。 第4圖係基地台裝置之功能方塊圖。 第5圖係顯示發生時序偏差之訊框的圖。 第6圖係檢測前置信號之時序的說明圖。 胃7圖係顯示在前次和本次的同步模式之時序偏差量 的說明圖。 第8圖係顯示一般通信模式和同步模式之切換的流程 -123- 201034493 圖》 第9圖係第2章之無線通信系統的整體圖。 第10圖係第2章第1實施形態的子BS(基地台裝置) 的收發電路構成圖。 第11圖係顯示無線同步時序的圖。 第12圖係顯示失真補償所使用的檢測信號取得時序 和無線同步時序之關係圖。 第13圖係無線同步互斥處理的時序圖。 第14圖係第2章第2實施形態的子BS的收發電路構 成圖。 第15圖係第2章第3實施形態的子BS的收發電路構 成圖。 第16圖係第2章第4實施形態的子BS的收發電路構 成圖。 第17圖係第2章第4實施形態的子BS的無線同步時 序圖。 第18圖係第2章第5實施形態的子BS的收發電路構 成圖。 第19圖係第2章第6實施形態的子BS的收發電路構 成圖。 第20圖係第2章第7實施形態的子BS的收發電路構 成圖。 第21圖係第2章第8實施形態的子BS的收發電路構 成圖。 第22圖係第2章第8實施形態的子BS的無線同步時 -124- 201034493 序圖。 第23圖係第2章第9實施形態的子BS之同步處理部 的方塊圖。 第24圖係說明分頻雙工方式中複數台基地台裝置的 同步的圖。 第25圖係顯示在基地台裝置間同步的階層構造圖。 第26圖係LTE之訊框構成圖。 第27圖係LET之DL訊框構成圖。 φ 第28圖係第3章之基地台裝置的電路構成圖。 第29圖係第3章之同步處理部的構成圖。 第30圖係顯示階層順位和第1既知信號模式及第2既 知信號模式之關係圖。 第31圖係同步對象選擇處理的流程圖。 第32圖係基地台裝置之階層順位設定處理的流程圖。 第33圖係顯示環狀之同步對象參照構造圖。 第34圖係第4章之無線通信系統的整體圖。 φ 第35圖係第4章的第1例之子BS的電路構成圖。 第36圖係同步處理部的構成圖。 第37圖係第4章第2例之子BS的電路構成圖。 第38圖係第4章第3例之子BS的電路構成圖。 第39圖係第4章第4例之子BS的電路構成圖。 第40圖係第4章第5例之子BS的電路構成圖。 第41圖係第4章第6例之子BS的電路構成圖。 第42圖係資源分配控制部的構成圖。 第43圖係顯示資源分配之方法的圖。 -125- 201034493 第44圖係資源分配處理的流程圖。 第45圖係顯示資源分配之方法的圖。 第46圖係資源分配處理的流程圖。 第47圖係資源分配控制部的構成圖。 第48圖係資源分配處理的流程圖。。 第49圖係第5章之無線通信系統的整體圖。 第50圖係顯示第5章之第2及第3基地台裝置之接收 部及發送部之構成的方塊圖。 第51圖係顯示第2及第3基地台裝置從通信模式切換 成同步模式時的流程圖。 第52圖係顯示第51圖中之同步模式之處理的流程圖。 第53圖係顯示源基地台裝置和接收源基地台裝置之 信號的基地台裝置之間之前置信號的時序之關係的模式 圖。 第54圖係顯示基地台裝置重複進行通信模式和同步 模式時之對於源基地台裝置而言之實際的同步偏差値ATs 之隨時間變化之一例的圖。 第55圖係顯示基地台裝置重複進行通信模式和同步 模式時之對於源基地台裝置而言之實際的同步偏差値ATs 之隨時間變化之別例的圖。 第56圖係顯示第5章之第2實施形態的基地台裝置重 複進行通信模式和同步模式時之對於源基地台裝置而言之 實際的同步偏差値ATs之隨時間變化之一例的圖。 第57圖係顯示對於一基地台裝置之時脈頻率而言之 其他基地台裝置的時脈頻率之偏差之隨時間變化之一例的 -126- 201034493 圖形。 第58圖係第5章第3實施形態的無線通信系統之整體 構成圖》 第59圖係第5章之基地台裝置(子BS)的構成圖。 第60圖係第5章之同步處理部的構成圖。 第61圖係顯示第6章第1實施形態之無線通信系統的 整體圖。 第62圖係顯示第6章之第2及第3基地台裝置之構成 © 的方塊圖。 第63圖係顯示第2及第3基地台裝置從通信模式切換 成同步模式的流程圖。 第64圖係顯示副基地台裝置重複進行通信模式和同 步模式時之對於主基地台裝置而言之通信時序偏差之隨時 間變化的形態的圖。 第65圖係第64圖中之同步模式的部分放大圖。 第66圖係顯示第6章第2實施形態之無線通信系統的 φ 整體構成圖》 第67圖係基地台裝置(子BS)之構成圖。 第68圖係同步處理部之構成圖。 【主要元件符號說明】 11 放大 器 12 正交 解 調 器 13 A/D 變 換 部 15 D/A 級 愛 換 部 16 正交 調 織 愛 器 -127- 201034493Tn is estimated as the synchronization deviation in the next communication mode, and after receiving from the preamble signal detecting unit 6023a, the timing deviation of the average one frame is calculated as -116 - 201034493 U + 1, and is output to the frame timing control unit 6030. . Here, the calculation unit 6023c calculates the timing deviation tn+1 of the average one frame in the following manner. That is, the current communication timing deviation 値 ΔTn is the synchronization deviation generated by the synchronization correction of the basic frame based on the timing offset tn. If the current communication timing deviation 値ΔΤη and the timing deviation tn are equal to each other, the synchronization correction set as the timing offset tn corrects the synchronization deviation at the timing of the synchronization mode. However, in the current communication timing deviation 値ΔΤη, the variation 値5 Τη shown in the following equation (2) generally occurs due to the change of the state of the clock generator or the communication environment of the two base stations. Δ T„ = t„+ δ Τ„ (2) In addition, in the previous communication mode, the communication timing deviation 値Δ Τη′ generated when the synchronization correction is not performed is used to correct the synchronization for every basic frame. The eliminated timing offset tn is multiplied by the 値 representation of the number of basic frames included in one communication mode plus the deviation 値5 Tn. The deviation 値Τη is generated by the synchronization correction Q as a whole in the previous communication mode. Therefore, the calculation unit 6023C obtains the deviation 値 <5, as shown in the following formula (3), by dividing the deviation 値 < 5 1 „ by the number of basic frames included in the time width of the communication mode. ; 5 Tn averages the 値 of a basic frame, and then adds the timing offset tn +1 of an average frame in the next communication mode by adding the previous timing offset tn of the average one frame. Tn+1=tn+5Tn/(the number of basic frames included in the communication mode) (3) The calculation unit 6023c is based on the pre-signal detection unit 6023a as shown in the equations (2) and (3). Predicting the synchronization deviation of a communication mode 値-117- 201034493 The detected communication timing deviation 値ΔΤη, averages the timing offset tn + 1 of a basic frame. Further, regarding the number of basic frames included in the primary communication mode, the synchronization control unit 6026 determines the time width of the communication mode in advance, and since the time width of the basic frame is determined to be 5 ms as described above, the calculation unit 6023 c can From these, the number of basic frames included in the communication mode is requested. Further, in the case where the deviation 値5 Tn is smaller than the predetermined 値, the deviation 値6 Τ η may not be considered, and the timing deviation of the current state may be directly used as the timing deviation tn+! in the next communication mode. In this case, it is possible to prevent The fine deviation 修正 (5 !\ is corrected synchronously. Moreover, even if the deviation 値5 Tn occurs with a large 値, the deviation 値5 Tn can be ignored, and the timing deviation tn of the current situation is directly taken as the next The timing deviation tn+1 of the communication mode. In this case, even if the deviation 値5 Tn appears as a sudden abnormality due to multipath or the like, it is possible to avoid the synchronization correction based on the 値. The calculation unit 6023c accepts the above. When the timing deviation tn+1 of one basic frame is averaged and the communication timing deviation 値Δ1' is received from the preamble detecting unit 6023a, the frame timing control unit 6030 starts the communication mode by performing the communication mode. The transmission timing of the own transmission is synchronized in the direction of eliminating the communication timing deviation 値ΛΤη of the current situation, and the synchronization processing is performed. Further, the frame timing control unit 6030 cuts the synchronization processing. In the communication mode, the above-described synchronization correction is performed every basic frame in the communication mode based on the average timing deviation tn+1 of one basic frame. The second and third base station devices 6002 configured as described above. , 6003, because the communication mode to the next synchronous mode is divided into a plurality of times -118-201034493 to perform the synchronization correction of the communication signal transmitted by the communication frame timing deviation, so the large area can be suppressed in the communication mode. Therefore, the synchronization deviation is suppressed not only by the synchronization between the base stations in the synchronization mode but also by the synchronization mode in the communication mode, so that the synchronization deviation can be effectively suppressed. The base station devices 6002 and 6003 suppress the synchronization deviation even in the communication mode for communicating with the terminal device, so it is not necessary to shorten the communication between the terminal device and the terminal device in order to suppress the synchronization deviation. The period of the synchronous mode. Therefore, it is possible to suppress the decrease in the amount of communication between the terminal device and the side. [6.3.2 Second Embodiment] Fig. 66 is a view showing an overall configuration of a wireless communication system according to a second embodiment of Chapter 6. In Fig. 66, a base station device 6101 is shown. a, 6101b and a communication system for wireless communication between a user terminal (mobile terminal; MS: Mobile Station) 6102a and 610 2b. In this communication system, a plurality of base station devices (BS: Base Station) are provided. 6101a, 6101b can communicate with the user terminals 6102a, 6102b in the cell. This communication system is, for example, a system using LTE (Long - Term Evolution). In LTE, Frequency Division Duplex (FDD) can be used. In the following, the communication system will be described by using a frequency division duplex mode. In addition, the communication system can use WCDMA or CDMA2000 in addition to LTE. In the communication system of the present embodiment, synchronization between the base stations that synchronize is performed between the plurality of base station apparatuses 6101a and 6101b. In the present embodiment, the base station device synchronization is performed by "wireless synchronization", and the -119-201034493 wireless synchronization is a base station device (hereinafter referred to as "parent BS") 6101a which becomes a parent base station device. The other base station device (hereinafter referred to as "sub-BS") 6101b receives the signal transmitted from the parent BS 6101a to the terminal device 6102a in the cell, and synchronizes. Further, the parent BS may also obtain wireless synchronization with other base station devices, or may determine the frame timing by using a method other than wireless synchronization such as synchronization based on GPS signals. [Configuration of Base Station Apparatus] Fig. 67 shows the configuration of the base station apparatus (sub-BS) 6101b. The configuration of the sub-BS6101b of Fig. 67 is the same as that of the sub-BS5101b shown in Fig. 59. In Fig. 67, the signal output from the A/D converter 6127 is supplied to the synchronization processing unit 6170. Therefore, the synchronization processing unit 6170 can acquire the downlink signal from the parent BS 6101a. The synchronization processing unit 6170 performs processing for acquiring the synchronization of the communication timing and the communication frequency from the device 6101b based on the Primary Synchronization Signal and the Secondary Synchronization Signal included in the frame of the downlink signal acquired from the parent BS6101a. The synchronization processing unit 6170 is controlled by the wireless synchronization control unit 6180. The wireless synchronization control unit 6180 has the same function as the synchronization control unit 6026 of the first embodiment. In other words, the wireless synchronization control unit 6180 periodically stops the communication mode for transmitting the downlink signal to the user terminal device 6102b for the wireless synchronization, and receives the wireless signal transmitted by the parent BS 6101a, periodically or in response to the fixed period. Synchronization status (synchronous mode). The wireless synchronization control unit 6180 performs the modulation circuit 6160 by outputting the wireless synchronization section information indicating the time zone of the wireless synchronization state to the modulation/demodulation circuit 6160 and the synchronization processing unit 6170. And the control of the synchronization processing unit 6170. Fig. 68 is a configuration diagram of the synchronization processing unit 6170. As shown in Fig. 68, the synchronization processing unit 6170 includes a estimation unit 6171, a frame timing control unit 6172, a carrier frequency correction unit 6173, and a storage unit 6174. The synchronization processing unit 6170 identifies the self-device 6101b communication mode or the synchronization mode based on the wireless synchronization section information supplied from the wireless synchronization control unit 6180, and determines whether or not to perform wireless synchronization. The φ estimation unit 6171 acquires the downlink signal from the parent BS6101a when determining the wireless synchronization, and detects the signal of the parent BS6101a by using the primary synchronization signal and the Secondary Synchronization Signal included in the downlink signal (hereinafter, the two signals are collectively referred to as "synchronization signals"). The frame transmission timing, and then the frame timing deviation and carrier frequency deviation between the parent BS 6101a and the self device 5101b are estimated. The estimation unit 6171 has the same function as the estimation unit 602 3 of the first embodiment, and includes a detection unit 6171a that detects a synchronization signal of φ included in the downlink signal, and a clock error estimation unit 6171b that estimates the parent BS6101a and the sub-BS6101b. The clock error between the two; and the calculation unit 6171c calculates the timing deviation per unit time between the parent BS6101a and the sub-BS6101b. These functional units also have the same functions as those of the first embodiment. The detecting unit 6 1 7 1 a detects the timing of the synchronization signal located at the known position in the received frame, and detects the frame transmission timing of the parent BS 6101a. Then, the frame transmission timing of the detected parent BS61 01a and the frame transmission timing of the device 6101b are compared, and the difference is detected as the communication timing -121 - 201034493 deviation (synchronization deviation). This communication timing deviation is supplied to the memory unit 6174 every time it is detected, and is stored in the memory unit 6174. Further, the frame timing control unit 6172 and the carrier frequency correcting unit 6173 of the present embodiment respectively correspond to the frame timing control unit 6030 and the carrier frequency correcting unit 602 of the first embodiment, and have The same function. That is, the frame timing control unit 61 72 and the carrier frequency correcting unit 6173 are in a synchronous mode, and each of the synchronization modes performs synchronization processing for eliminating the timing offset and the carrier frequency deviation detected by the current situation, and in the communication mode, based on the average one basic The timing deviation of the frame and the carrier frequency deviation are performed, and the synchronization correction processing for adjusting the time length of each basic frame and the carrier frequency is performed. Further, these synchronization processing and synchronization correction processing are performed in the same manner as in the first embodiment. As a result, according to the present embodiment, since the synchronization can be achieved between the parent BS 6101a and the sub-BS 6101b, and the synchronization correction of the downlink signal transmitted by itself is performed between the communication modes switched to the next synchronization mode, the communication mode can be performed. The entire region can suppress the occurrence of large synchronization deviations. In addition, the detection and correction target of the synchronization error (synchronization deviation) is not limited to the frame timing, and may be a symbol timing or a slot timing. Further, in the present embodiment, the sub-BS 6101b may be configured as shown in Figs. 37 to 42. The invention disclosed in Chapter 6 is not limited to the above embodiments. In the above-described embodiment, the synchronization correction in the communication mode is performed based on one communication timing deviation 値 Δ1'. However, for example, a plurality of synchronization deviation estimations detected in the past synchronization pattern may be memorized in advance, and this is The plurality of communication timing offsets are averaged and then corrected according to the average -. -122- 201034493 In the above embodiment, although the time width of a basic frame is taken as the unit time, and based on the average The timing offset tn+1 of the frame is divided into multiple times for synchronization correction in each basic frame of the communication mode, but for example, the time width of the plurality of basic frames can be used as the unit time and the synchronization correction is performed. The number of times of the simultaneous correction processing can be reduced, and the degree of freedom of the processing becomes high. [Chapter 7 Supplementary Notes] In addition, it should be considered that the embodiments disclosed in Chapters 1 through 6 are all matters of φ. The scope of the invention as envisaged is not to be construed as a limitation It contains all the changes in the meaning and scope of the patent application. [Simplified description of the schema] The stomach 1 diagram shows the wireless communication system of the mobile body using the Internet NW as the upper-order network. The φ state diagram of the WiMAX frame when the base stations are synchronized is displayed. The stomach 3 map is displayed in the main base station device and the sub-base station device of the wireless communication system. Figure 4 is a functional block diagram of the base station device. Fig. 5 is a diagram showing a frame in which a timing deviation occurs. Fig. 6 is an explanatory diagram for detecting the timing of a preamble signal. The stomach 7 is an explanatory diagram showing the timing deviation amount of the previous and current synchronization modes. Fig. 8 shows the flow of switching between the general communication mode and the synchronous mode - 123 - 201034493 Fig. 9 is an overall view of the wireless communication system of Chapter 2. Fig. 10 is a subsection of the first embodiment of Chapter 2. The transmission and reception circuit configuration diagram of the BS (base station device). Fig. 11 is a diagram showing the wireless synchronization timing. Fig. 12 is a diagram showing the relationship between the detection signal acquisition timing and the wireless synchronization timing used for distortion compensation. Fig. 14 is a diagram showing a configuration of a transmission/reception circuit of a sub-BS according to a second embodiment of the second embodiment. Fig. 15 is a diagram showing a configuration of a transmission/reception circuit of a sub-BS according to a third embodiment of the second chapter. Fig. 17 is a diagram showing a configuration of a transmission/reception circuit of a sub-BS according to a fourth embodiment of the present invention. Fig. 17 is a timing chart of radio synchronization of a sub-BS according to a fourth embodiment of the second chapter. Fig. 18 is a fifth embodiment of the fifth embodiment. Fig. 19 is a diagram showing a configuration of a transmission/reception circuit of a sub-BS according to a sixth embodiment of the present invention. Fig. 20 is a diagram showing a configuration of a transmission/reception circuit of a sub-BS according to a seventh embodiment of the second chapter. Fig. 22 is a diagram showing a configuration of a transmission/reception circuit of a sub-BS in the eighth embodiment. Fig. 22 is a timing chart of the wireless synchronization of the sub-BS in the eighth embodiment of the second chapter. Fig. 23 is a block diagram showing a synchronization processing unit of the sub BS in the ninth embodiment of the second chapter. Fig. 24 is a view showing the synchronization of a plurality of base station apparatuses in the frequency division duplex mode. Fig. 25 is a diagram showing the hierarchical structure of synchronization between base station apparatuses. Figure 26 is a frame diagram of LTE. Figure 27 is a DL frame structure diagram of LET. φ Figure 28 is a circuit diagram of the base station device in Chapter 3. Fig. 29 is a view showing the configuration of the synchronization processing unit in Chapter 3. Fig. 30 is a diagram showing the relationship between the hierarchical order and the first known signal pattern and the second known signal pattern. Figure 31 is a flow chart of the synchronization object selection process. Fig. 32 is a flow chart showing the process of setting the hierarchical order of the base station apparatus. Fig. 33 is a view showing a reference structure of a ring-shaped synchronization object. Figure 34 is an overall view of the wireless communication system of Chapter 4. φ Fig. 35 is a circuit diagram of the sub-BS of the first example of Chapter 4. Fig. 36 is a configuration diagram of the synchronization processing unit. Figure 37 is a circuit diagram of the sub-BS of the second example of Chapter 4. Fig. 38 is a circuit diagram of the sub-BS of the third example of Chapter 4. Fig. 39 is a circuit diagram of the sub-BS of the fourth example of Chapter 4. Fig. 40 is a circuit diagram of the sub-BS of the fifth example of Chapter 4. Fig. 41 is a circuit diagram of the sub-BS of the sixth example of Chapter 4. Fig. 42 is a configuration diagram of a resource allocation control unit. Figure 43 is a diagram showing a method of resource allocation. -125- 201034493 Figure 44 is a flow chart of resource allocation processing. Figure 45 is a diagram showing a method of resource allocation. Figure 46 is a flow chart of resource allocation processing. Fig. 47 is a configuration diagram of a resource allocation control unit. Figure 48 is a flow chart of resource allocation processing. . Figure 49 is an overall view of the wireless communication system of Chapter 5. Fig. 50 is a block diagram showing the configuration of the receiving unit and the transmitting unit of the second and third base station apparatuses of Chapter 5. Fig. 51 is a flow chart showing the case where the second and third base station apparatuses are switched from the communication mode to the synchronous mode. Fig. 52 is a flow chart showing the processing of the synchronous mode in Fig. 51. Fig. 53 is a pattern diagram showing the relationship of the timing of the preamble signal between the source base station apparatus and the base station apparatus which receives the signal of the source base station apparatus. Fig. 54 is a view showing an example of temporal change of the actual synchronization deviation 値ATs with respect to the source base station apparatus when the base station apparatus repeats the communication mode and the synchronous mode. Fig. 55 is a view showing an example of the time-dependent change of the actual synchronization deviation 値ATs with respect to the source base station apparatus when the base station apparatus repeats the communication mode and the synchronization mode. Fig. 56 is a view showing an example of temporal change of the actual synchronization deviation 値ATs with respect to the source base station apparatus when the base station apparatus of the second embodiment of the fifth embodiment repeats the communication mode and the synchronous mode. Fig. 57 is a graph showing the time-varying variation of the time-frequency variation of the other base station devices for the clock frequency of a base station device, -126-201034493. Fig. 58 is a diagram showing the entire configuration of a wireless communication system according to a third embodiment of the fifth chapter. Fig. 59 is a configuration diagram of a base station device (sub-BS) in Chapter 5. Fig. 60 is a configuration diagram of the synchronization processing unit in Chapter 5. Fig. 61 is a view showing the entirety of a wireless communication system according to the first embodiment of the sixth chapter. Figure 62 is a block diagram showing the structure of the second and third base station devices in Chapter 6. Fig. 63 is a flow chart showing the switching of the second and third base station apparatuses from the communication mode to the synchronous mode. Fig. 64 is a view showing a state in which the communication sequence deviation of the main base station apparatus changes with time in the case where the sub-base station apparatus repeats the communication mode and the synchronization mode. Fig. 65 is a partially enlarged view of the synchronous mode in Fig. 64. Fig. 66 is a view showing the configuration of the φ overall configuration of the wireless communication system according to the second embodiment of the sixth chapter. Fig. 67 is a configuration diagram of the base station device (sub-BS). Fig. 68 is a configuration diagram of the synchronization processing unit. [Main component symbol description] 11 Amplifier 12 Orthogonal demodulator 13 A/D conversion section 15 D/A grade love section 16 Orthogonal woven love device -127- 201034493

17 放 大 器 18 內 建 時 脈 產 生 器 19a、 19b 倍 增 部 20 DSP 2 1 載 its 頻 修 正 部 22 載 頻 修 正 部 23 推 測 部 23 a 刖 置 信 號 檢 測 部 23b 時 脈 誤 差 推 測 部 24 切 換 開 關 25 解 調 部 26 同 步 控 制 部 27 調 變 部 28 切 換 開 關 29 記 憶 部 3 0 訊 框 時 序 控 制 部17 Amplifier 18 built-in clock generator 19a, 19b multiplication unit 20 DSP 2 1 carrier frequency correction unit 22 carrier frequency correction unit 23 estimation unit 23 a detection signal detection unit 23b clock error estimation unit 24 switching switch 25 demodulation Unit 26 Synchronization control unit 27 Modulation unit 28 Switching switch 29 Memory unit 30 Frame timing control unit

-128--128-

Claims (1)

201034493 七、申請專利範圍: 1. 一種基地台裝置,其構成爲在和終端裝置之間進行OFDM 信號的無線通信,同時具備有產生動作時脈的內建時脈 產生器,因由該內建時脈產生器所產生之時脈頻率的精 度,而使OFDM信號之載頻的精度受到影響,該基地台 裝置的特徵爲具備: 接收手段,係接收在對終端裝置停止發送中從其他 的基地台裝置所發送之無線信號; e 推測手段,係根據在對終端裝置停止發送中所接收 之OFDM信號,求該OFDM信號之載頻偏差的推測値: 以及 頻率修正手段,係根據該推測値,修正對終端裝置 所發送之OFDM信號的載頻。 2 .如申請專利範圍第1項之基地台裝置,其中該推測手段 構成爲根據在對終端裝置停止發送中所接收之OFDM信 號,求該OFDM信號之通信時序偏差的推測値,再根據 ©通信時序偏差的推測値,求該OFDM信號之載頻偏差的 推測値。 3.如申請專利範圍第2項之基地台裝置,其中 該推測手段具有: 相位旋轉量算出手段,係根據在第1停止發送時刻 所求得之通信時序偏差的第1推測値、與在時刻爲和第1 停止發送時刻相異的第2停止發送時刻所求得之通信時 序偏差的第2推測値之差分,算出在第1停止發送時刻 和第2停止發送時刻之間之OFDM信號的相位旋轉量; 及 -129- 201034493 時脈誤差算出手段,係根據該相位旋轉量,算出該 時脈頻率的誤差; 同時,根據所算出之該時脈頻率的誤差,求該載頻 偏差的推測値。 4. 如申請專利範圍第2項之基地台裝置,其中還具備修正 手段,其根據該通信時序偏差的推測値,修正通信訊框 時序。 5. 如申請專利範圍第1項之基地台裝置,其中在對終端裝 置停止發送中從其他的基地台裝置所接收之OFDM信 號,是該其他的基地台裝置對終端裝置所發送之前置信 號信號。 6. 如申請專利範圍第1項之基地台裝置,其中 該基地台裝置構成爲利用上行信號之頻率和下行信 號之頻率相異的分頻雙工,進行和終端裝置之間的無線 通信; 該基地台裝置還具備: 第1接收部’係以上行信號之頻率接收來自終端裝 置的上行信號;及 第2接收部,係以下行信號之頻率接收來自其他的 基地台裝置的下行信號; 利用該第2接收部在對終端裝置停止發送中接收從 其他的基地台裝置所發送之OFDM信號。 7. 如申請專利範圍第6項之基地台裝置,其中具備·· 失真補償部’係進行該發送部所含之放大器的失真 補償;及 切換手段’係用以切換該失真補償部經由該第2接 -130- 201034493 收部而取得從該放大器所輸出之下行信號的第1狀態、 和該推測手段經由該第2接收部而接受來自其他的基地 台裝置之下行信號的第2狀態。 8. 如申請專利範圍第6項之基地台裝置,其中具備: 信號處理裝置,係產生被輸入該發送部的信號;及 切換手段,係用以切換該信號處理裝置經由該第2 接收部而接受由該發送部所產生之下行信號之回授的第 1狀態、和該推測手段經由該第2接收部而接受來自其他 的基地台裝置之下行信號的第2狀態。 9. 如申請專利範圍第6項之基地台裝置,其中以如下之方 式構成, 變換來自終端裝置之上行信號及來自其他的基地台 裝置之下行信號中至少任一方之信號的頻率而使兩信號 的頻率一致之頻率變換部,設置於該第1接收部及該第2 接收部中之至少任一方; 該第1接收部及該第2接收部以該第1接收部及該 第2接收部彼此所共有之共有部處理頻率一致的該兩信201034493 VII. Patent application scope: 1. A base station device configured to perform wireless communication of an OFDM signal with a terminal device and a built-in clock generator for generating an action clock, because of the built-in time The accuracy of the clock frequency generated by the pulse generator affects the accuracy of the carrier frequency of the OFDM signal. The base station apparatus is characterized in that: the receiving means receives the base station from other base stations when the transmission is stopped. The wireless signal transmitted by the device; e estimation means is based on the OFDM signal received by the terminal device to stop transmission, and the estimation of the carrier frequency deviation of the OFDM signal: and the frequency correction means are corrected based on the estimation The carrier frequency of the OFDM signal transmitted by the terminal device. 2. The base station apparatus of claim 1, wherein the estimation means is configured to determine a communication timing deviation of the OFDM signal based on an OFDM signal received during termination of transmission by the terminal apparatus, and then according to © communication The estimation of the timing deviation is used to estimate the carrier frequency deviation of the OFDM signal. 3. The base station apparatus according to claim 2, wherein the estimation means includes: a phase rotation amount calculation means for first estimating 値 and timing at the time of the communication timing deviation obtained at the first stop transmission time The phase of the OFDM signal between the first stop transmission time and the second stop transmission time is calculated for the difference between the second estimation 値 of the communication timing deviation obtained at the second stop transmission time different from the first stop transmission time. The amount of rotation; and -129-201034493, the clock error calculation means calculates the error of the clock frequency based on the phase rotation amount; and estimates the carrier frequency deviation based on the calculated error of the clock frequency. . 4. The base station apparatus of claim 2, further comprising a correction means for correcting the timing of the communication frame based on the estimation of the communication timing deviation. 5. The base station apparatus of claim 1, wherein the OFDM signal received from the other base station apparatus during the stop transmission of the terminal apparatus is a pre-signal signal transmitted by the other base station apparatus to the terminal apparatus. . 6. The base station apparatus of claim 1, wherein the base station apparatus is configured to perform wireless communication with the terminal apparatus by using a frequency division duplex of a frequency of the uplink signal and a frequency of the downlink signal; The base station apparatus further includes: the first receiving unit receives the uplink signal from the terminal device at a frequency of the uplink signal; and the second receiving unit receives the downlink signal from the other base station device at a frequency of the downlink signal; The second receiving unit receives the OFDM signal transmitted from the other base station device while the terminal device stops transmitting. 7. The base station apparatus of claim 6, wherein the distortion compensation unit is configured to perform distortion compensation of an amplifier included in the transmission unit; and the switching means is configured to switch the distortion compensation unit via the first 2: -130 - 201034493 The first state in which the downlink signal is output from the amplifier, and the second state in which the estimation means receives the downlink signal from the other base station device via the second receiving unit. 8. The base station apparatus of claim 6, comprising: a signal processing device that generates a signal input to the transmitting unit; and a switching means for switching the signal processing device via the second receiving portion The first state in which the feedback of the downlink signal generated by the transmitting unit is received, and the second state in which the estimation means receives the downlink signal from the other base station device via the second receiving unit. 9. The base station apparatus of claim 6, wherein the base station apparatus is configured to convert the frequency of the uplink signal from the terminal apparatus and the signal of at least one of the downlink signals from the other base station apparatus to cause the two signals The frequency conversion unit having the same frequency is provided in at least one of the first receiving unit and the second receiving unit; and the first receiving unit and the second receiving unit are the first receiving unit and the second receiving unit The two departments that share the same processing frequency with each other 10.如申請專利範圍第1項之基地台裝置,其中 該基地台裝置構成爲向終端裝置發送下行信號,其 包含可取得複數個模式的第1既知信號及可取得複數個 模式的第2既知信號; 基地台裝置還具備識別部,其在收到其他的基地台 裝置所發送之包含該第1既知信號及該第2既知信號的 下行信號時,根據所接收之該第1既知信號的模式和所 接收之該第2既知信號的模式之組合,識別其他的基地 -131- 201034493 台裝置在基地台裝置間同步之階層構造中所位居的階層 順位。 11. 如申請專利範圍第10項之基地台裝置,其中該識別部具 備: 第1識別部,係對所接收之該第1既知信號的模式 進行是第1既知信號可取得之複數個模式中的哪一個之 模式識別;及 第2識別部,係對所接收之該第2既知信號的模式 進行是第2既知信號可取得之複數個模式中的哪一個之 模式識別。 12. 如申請專利範圍第1 1項之基地台裝置,其中以如下之方 式構成, 利用在該第1識別部及該第2識別部中用以識別可 取得之模式數少之既知信號的模式之識別部,進行第1 模式識別; 在利用該第1模式識別來識別模式後,利用在該第1 識別部及該第2識別部中用以識別可取得之模式數多之 既知信號的模式之識別部,進行第2模式識別。 13. 如申請專利範圍第12項之基地台裝置,其中 具備有模式設定部,其設定基地台裝置包含於下行 信號中地發送之第1既知信號的模式及第2既知信號的 模式; 該模式設定部將第1既知信號的模式及第2既知信 號的模式設定成表示階層順位比成爲在基地台間同步的 同步對象之其他的基地台裝置之階層順位更低的模式。 -132-10. The base station apparatus of claim 1, wherein the base station apparatus is configured to transmit a downlink signal to the terminal apparatus, the first known signal capable of acquiring a plurality of modes, and the second known knowledge that a plurality of modes are available The base station device further includes an identification unit that receives the first known signal pattern when receiving the downlink signal including the first known signal and the second known signal transmitted by the other base station device In combination with the received pattern of the second known signal, the ranks of the other base-131-201034493 devices in the hierarchical structure synchronized between the base station devices are identified. 11. The base station apparatus of claim 10, wherein the identification unit includes: a first identification unit that performs a mode in which the first known signal is received in a plurality of modes in which the first known signal is available Which of the plurality of modes that the second known signal is received is the pattern recognition of the mode in which the second known signal is received. 12. The base station apparatus of claim 1 wherein the base station apparatus is configured to identify a pattern of a known signal having a small number of modes that can be acquired by the first identification unit and the second identification unit. The recognition unit performs the first pattern recognition, and after identifying the pattern by the first pattern recognition, the first recognition unit and the second recognition unit are configured to recognize a pattern of the known number of patterns that can be acquired. The recognition unit performs the second pattern recognition. 13. The base station apparatus according to claim 12, further comprising: a mode setting unit configured to set a mode of the first known signal and a mode of the second known signal transmitted by the base station apparatus in the downlink signal; The setting unit sets the mode of the first known signal and the mode of the second known signal to a mode in which the hierarchical order ratio is lower than the hierarchical order of the other base station devices that are synchronized between the base stations. -132-
TW98138190A 2008-11-12 2009-11-11 Base station device TW201034493A (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008289895 2008-11-12
JP2009053414A JP4811478B2 (en) 2008-11-12 2009-03-06 Base station equipment
JP2009064711A JP5035279B2 (en) 2009-03-17 2009-03-17 Base station apparatus, resource allocation processing method, and apparatus functioning as resource allocation control unit
JP2009085727A JP4983834B2 (en) 2009-03-31 2009-03-31 Base station equipment
JP2009122157A JP5402234B2 (en) 2008-07-07 2009-05-20 Base station equipment
JP2009122060A JP2010041712A (en) 2008-07-07 2009-05-20 Base station device

Publications (1)

Publication Number Publication Date
TW201034493A true TW201034493A (en) 2010-09-16

Family

ID=44855528

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98138190A TW201034493A (en) 2008-11-12 2009-11-11 Base station device

Country Status (1)

Country Link
TW (1) TW201034493A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI661685B (en) * 2013-11-01 2019-06-01 史華曲集團研發有限公司 Signal receiver with a duty-cycle controller
WO2019173875A1 (en) * 2018-03-14 2019-09-19 Locata Corporation Pty Ltd Method and apparatus for synchronising a location network

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI661685B (en) * 2013-11-01 2019-06-01 史華曲集團研發有限公司 Signal receiver with a duty-cycle controller
WO2019173875A1 (en) * 2018-03-14 2019-09-19 Locata Corporation Pty Ltd Method and apparatus for synchronising a location network

Similar Documents

Publication Publication Date Title
WO2010004830A1 (en) Base station device
JP5345156B2 (en) Time division multiplexed downlink / uplink configuration detection
US9084193B2 (en) Base station device
JP2011522452A (en) Time and frequency error correction in multi-carrier wireless communication systems
JPWO2011108028A1 (en) Wireless communication system, terminal apparatus, and wireless communication method in wireless communication system
AU2017219686B2 (en) NB-loT receiver operating at minimum sampling rate
CN103493409A (en) Technique for automatic gain control
JP2021507648A (en) OFDM signal transmission method and transmitter, and OFDM signal reception method and receiver
JP2007089173A (en) Communication method employing subcarrier allocation scheme, and communication system
US20200067753A1 (en) Base station, synchronization signal transmission method, and user equipment terminal, and cell search method
JP5083096B2 (en) Base station equipment
JP4679644B2 (en) Wireless terminal device
WO2011043372A1 (en) Base station device, signal processing device for base station device, phy processing device, and mac processing device
JP5402234B2 (en) Base station equipment
TW201034493A (en) Base station device
JP2010118726A (en) Base station device
JP4230932B2 (en) Transmission radio station, reception radio station, radio communication system, and radio communication method
JP2010041712A (en) Base station device
JP2010219746A (en) Transmission control method, and communication device
JP5605107B2 (en) Base station equipment
JP5391985B2 (en) Base station apparatus, signal processing apparatus for base station apparatus, PHY processing apparatus, and MAC processing apparatus
JP5476911B2 (en) Base station apparatus, signal processing apparatus for base station apparatus, PHY processing apparatus, and MAC processing apparatus
KR102079350B1 (en) Apparatus and circuit for processing carrier aggregation
JP2011082833A (en) Base station apparatus
JP2017069809A (en) Communication device