JP2024034091A - 車載用電子制御ユニット封止樹脂組成物および車載用電子制御ユニットの解体方法 - Google Patents

車載用電子制御ユニット封止樹脂組成物および車載用電子制御ユニットの解体方法 Download PDF

Info

Publication number
JP2024034091A
JP2024034091A JP2022138104A JP2022138104A JP2024034091A JP 2024034091 A JP2024034091 A JP 2024034091A JP 2022138104 A JP2022138104 A JP 2022138104A JP 2022138104 A JP2022138104 A JP 2022138104A JP 2024034091 A JP2024034091 A JP 2024034091A
Authority
JP
Japan
Prior art keywords
control unit
electronic control
resin composition
vehicle electronic
sealing resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022138104A
Other languages
English (en)
Inventor
玄昭 熊本
康二 牧原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2022138104A priority Critical patent/JP2024034091A/ja
Publication of JP2024034091A publication Critical patent/JP2024034091A/ja
Pending legal-status Critical Current

Links

Images

Abstract

Figure 2024034091000001
【課題】硬化物の易解体性により資源のリサイクル性を向上できる車載用電子制御ユニット封止樹脂組成物を提供する。
【解決手段】配線基板12と、配線基板上に搭載された複数の電子部品16と、電子部品を封止する封止部材と、を備える車載用電子制御ユニットの封止部材を形成するために用いられる車載用電子制御ユニット封止樹脂組成物であって、車載用電子制御ユニット用樹脂組成物が、熱硬化性成分を含み、車載用電子制御ユニット用樹脂組成物を熱硬化した後に得られる硬化体が、以下の式(1)で表される構造を備え、易解体性を有する、車載用電子制御ユニット封止樹脂組成物である。
Figure 2024034091000028

【選択図】図1

Description

本発明は、および車載用電子制御ユニットの解体方法に関する。より詳細には、車載用電子制御ユニット封止樹脂組成物、車載用電子制御ユニット封止樹脂組成物の硬化物を備える車載用電子制御ユニット、車載用電子制御ユニット封止樹脂組成物の硬化物の解体方法、および車載用電子制御ユニットを構成する材料のリサイクル方法に関する。
近年、車載用電子制御ユニットとして、電子部品等を搭載した基板を封止樹脂により封止したものが検討されている。このような技術としては、たとえば特許文献1に記載のものが挙げられる。
特許文献1は、スルーホールが設けられた配線基板と、配線基板に実装された電子部品と、配線基板が搭載された金属ベースと、金属ベースに取り付けられて配線基板と外部とを電気的に接続するコネクタとを備え、配線基板の前面と金属ベースの一部とが熱硬化性樹脂により一体的に封止成形された樹脂封止型電子制御装置に関する技術である。
特開2009-147014号公報
ところで、近年、資源の有効活用への関心が高まっている。しかしながら、特許文献1に開示されるような従来技術においては、電子部品等を搭載した基板を一体的に封止樹脂するため、樹脂封止された電子部品等をその後、回収し、再利用することができなかった。
本発明者は、かかる問題を解決すべく、車載用電子制御ユニットに用いられる樹脂材料に着目し鋭意検討を行った結果、車載用電子制御ユニット用の樹脂組成物の硬化物が所定の構造を有することが有効であることを見出した。すなわち、所定の車載用電子制御ユニット用樹脂組成物を用いた車載用電子制御ユニットを溶液処理した際に当該所定の構造部分が離脱しやすくなることで車載用電子制御ユニット用樹脂組成物の硬化物中のネットワークが分断され、硬化物を解体できると考えられた。その結果、車載用電子制御ユニットの電子部品等を簡便に取り出せるようになる。
本発明は、以下の車載用電子制御ユニット封止樹脂組成物、およびこれに関する技術である。
[1] 配線基板と、前記配線基板上に搭載された複数の電子部品と、前記電子部品を封止する封止部材と、を備える車載用電子制御ユニットの前記封止部材を形成するために用いられる車載用電子制御ユニット封止樹脂組成物であって、
当該車載用電子制御ユニット用樹脂組成物が、熱硬化性成分を含み、
当該車載用電子制御ユニット用樹脂組成物を熱硬化した後に得られる硬化体が、以下の式(1)で表される構造を備え、易解体性を有する、車載用電子制御ユニット封止樹脂組成物。
Figure 2024034091000002
(式(1)中、R、Rはそれぞれ独立して、水素原子、炭素数1~30の炭化水素基または芳香族基、水酸基、および炭素数1~30のアルコキシル基のいずれかを示す。)
[2] [1]に記載の車載用電子制御ユニット封止樹脂組成物であって、
前記熱硬化性成分が-Si-O-構造を有する、車載用電子制御ユニット封止樹脂組成物。
[3] [1]または[2]に記載の車載用電子制御ユニット封止樹脂組成物であって、
前記熱硬化性成分が熱硬化性樹脂および硬化剤を含み、当該熱硬化性成分および当該硬化剤がいずれも-Si-O-構造を有する、車載用電子制御ユニット封止樹脂組成物。
[4] [1]または[2]に記載の車載用電子制御ユニット封止樹脂組成物であって、
前記熱硬化性成分が熱硬化性樹脂および硬化剤を含み、当該硬化剤が-Si-O-構造を有する、車載用電子制御ユニット封止樹脂組成物。
[5] [3]または[4]に記載の車載用電子制御ユニット封止樹脂組成物であって、
前記硬化剤が、フェノール系硬化剤を含む、車載用電子制御ユニット封止樹脂組成物。
[6] [1]乃至[5]いずれか一つに記載の車載用電子制御ユニット封止樹脂組成物であって、
前記熱硬化性成分が熱硬化性樹脂および硬化剤を含み、当該熱硬化性樹脂が-Si-O-構造を有する、車載用電子制御ユニット封止樹脂組成物。
[7] [3]乃至[6]いずれか一つに記載の車載用電子制御ユニット封止樹脂組成物であって、
前記熱硬化性樹脂が、エポキシ樹脂、フェノキシ樹脂、ポリイミド樹脂、ベンゾオキサジン樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂、シアネート樹脂、ビスマレイミド樹脂、およびアクリル樹脂の中から選ばれる1種または2種以上を含む、車載用電子制御ユニット封止樹脂組成物。
[8] [1]乃至[7]いずれか一つに記載の車載用電子制御ユニット封止樹脂組成物であって、
さらに無機充填材を含み、当該無機充填材の含有量が前記車載用電子制御ユニット封止樹脂組成物全量に対して、10~98質量%である、車載用電子制御ユニット封止樹脂組成物。
[9] [1]乃至[8]いずれか一つに記載の車載用電子制御ユニット封止樹脂組成物であって、
粉粒状、顆粒状、タブレット状またはシート状の形態である、車載用電子制御ユニット封止樹脂組成物。
[10] [1]乃至[9]いずれか一つに記載の車載用電子制御ユニット封止樹脂組成物であって、
前記配線基板の材料は、ガラスエポキシ、ポリイミド、セラミック、および金属の中から選ばれるいずれかである、車載用電子制御ユニット封止樹脂組成物。
[11] 配線基板と、前記配線基板上に搭載された複数の電子部品と、前記電子部品を封止する封止部材と、を備える車載用電子制御ユニットであって、
前記封止部材が、[1]乃至[10]いずれか一つに記載の車載用電子制御ユニット封止樹脂組成物の硬化物からなる、車載用電子制御ユニット。
[12] [11]に記載の車載用電子制御ユニットの解体方法であって、
前記車載用電子制御ユニットを溶媒に浸漬し、前記車載用電子制御ユニット封止樹脂組成物の前記硬化物を解体する工程を含む、車載用電子制御ユニットの解体方法。
[13] [12]に記載の車載用電子制御ユニットの解体方法であって、
前記溶媒は、フッ素イオンを含む溶媒である、車載用電子制御ユニットの解体方法。
[14] [12]または[13]に記載の車載用電子制御ユニットの解体方法であって、
前記浸漬は-20~200℃で行われる、車載用電子制御ユニットの解体方法。
[15] [12]または[13]に記載の車載用電子制御ユニットの解体方法であって、
前記浸漬は5~30℃で行われる、車載用電子制御ユニットの解体方法。
[16] [11]に記載の車載用電子制御ユニットを構成する材料のリサイクル方法であって、
前記車載用電子制御ユニットを溶媒に浸漬し、前記硬化物を解体する工程と、
前記車載用電子制御ユニットから前記材料を回収する工程と、
を含む、リサイクル方法。
本発明によれば、車載用電子制御ユニット用樹脂組成物の硬化物の易解体性により資源のリサイクル性を向上できる。
本実施形態に係る車載用電子制御ユニットの一例を示す断面模式図である。
本明細書中、数値範囲の説明における「a~b」との表記は、特に断らない限り、a以上b以下のことを表す。例えば、「1~5質量%」とは「1質量%以上5質量%以下」を意味する。また、数値範囲の下限値および上限値は、それぞれ他の数値範囲の下限値および上限値と任意に組み合わせられる。
本明細書に例示する各成分および材料は、特に断らない限り、1種を単独で使用してもよいし、2種以上を併用してもよい。
本明細書における基(原子団)の表記において、置換か無置換かを記していない表記は、置換基を有しないものと置換基を有するものの両方を包含するものである。例えば「アルキル基」とは、置換基を有しないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
また、本明細書における基(原子団)の表記において、直鎖、分岐、環状かを記していない表記は、直鎖、分岐、または環状のいずれであってもよい。
本明細書における「有機基」の語は、特に断りが無い限り、有機化合物から1つ以上の水素原子を除いた原子団のことを意味する。例えば、「1価の有機基」とは、任意の有機化合物から1つの水素原子を除いた原子団のことを表す。
以下、本発明の実施形態について詳細に説明する。
1.車載用電子制御ユニット用樹脂組成物
本実施形態の車載用電子制御ユニット用樹脂組成物(以下、単に「樹脂組成物」とも称する。)は、熱硬化性成分を含み、当該樹脂組成物を熱硬化した後に得られる硬化物が、以下の式(1)で表される構造を有するものである。また、上記熱硬化の条件は、175℃で2分とすることがよい。
Figure 2024034091000003
(式(1)中、R、Rはそれぞれ独立して、水素原子、炭素数1~30の炭化水素基または芳香族基、水酸基、および炭素数1~30のアルコキシル基のいずれかを示す。)
これにより、本実施形態の樹脂組成物の硬化物を溶液処理した際に式(1)の構造が離脱して、硬化物中の架橋構造が崩壊し、易解体性が得られる。式(1)の構造は、熱硬化性成分の熱硬化反応によって生じるものであってもよい。
本実施形態において「易解体性」は、硬化物を溶液処理した際に、硬化物がゲル分解し可溶化することを意図する。
また、硬化物中の式(1)で表される構造の有無は、例えばガスクロマトグラフィー、高速液体クロマトグラフィー、薄層クロマトグラフィー、NMR、IR等の通常の分析手段により確認することができる。確認する際の分析対象は硬化物の状態であってもよく、硬化物を分解した後の分解液であってもよい。硬化物の状態から確認できる点から、ガスクロマトグラフィー質量分析法(GC-MS)が好ましい。また、後述するカップリング剤等による構造と区別しやすくする等点から、分析対象を硬化物の分解処理液としてもよい。
また、本実施形態の硬化物は、式(1)の構造を繰り返し単位として有することが好ましい。繰り返し数は特に限定されないが、平均繰り返し数5~1500であってもよい。
式(1)中、R、Rはそれぞれ独立して、水素原子、炭素数1~30の炭化水素基または芳香族基、水酸基、および炭素数1~30のアルコキシル基のいずれかを示す。
炭素数1~30の炭化水素基は、直鎖状、分岐状、または環状のいずれであってもよく、置換基を有していても有していなくてもよい。
炭素数1~30の炭化水素基は、好ましくは、炭素数1~20の直鎖状アルキル、アルケニル、アルキニル基であり、より好ましくは炭素数1~10の直鎖状アルキル、アルケニル、アルキニル基である。
炭素数3~20の分岐状炭化水素基は、好ましくは炭素数3~20の分岐状アルキル、アルケニル、アルキニル基であり、より好ましくは炭素数3~10の分岐状アルキル、アルケニル、アルキニル基であり、さらに好ましくは炭素数3~6の分岐状アルキル、アルケニル、アルキニル基である。
炭素数3~20の環状炭化水素基は、好ましくは炭素数3~20のシクロアルキル、シクロアルケニル、シクロアルキニル基であり、さらに好ましくは炭素数5~10の、シクロアルケニル、シクロアルキニル基である。具体例として、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
芳香族基は、置換基を有していてもよく、置換基としては例えば、炭化水素基、水酸基、ハロゲン原子、アミノ基等が挙げられる。
炭素数1~30のアルコキシル基は、好ましくは炭素数1~10のアルコキシル基であり、より好ましくは炭素数1~6のアルコキシル基である。具体例として、メトキシ基、エトキシ基、イソプロピルオキシ基等が挙げられる。
本実施形態の樹脂組成物は熱硬化性成分を含む。熱硬化性成分は、通常、ラジカル等の活性化学種が作用することで重合/架橋する基を含むものであればよく、具体的には、熱硬化性樹脂、または硬化剤のいずれであってもよい。本実施形態の樹脂組成物は、熱硬化性成分を1種のみ含んでもよいし、2種以上を含んでもよい。
本実施形態の樹脂組成物は、熱硬化性樹脂、および硬化剤を含むことが好ましい。この場合、熱硬化性樹脂、および硬化剤の少なくともいずれか一方が、-Si-O-構造を有することが好ましい。これにより、本実施形態の樹脂組成物の硬化物が式(1)で示される構造を備えることができ、硬化物が溶媒に可溶化することにより、易解体性が得られるようになる。
本実施形態の樹脂組成物は、硬化物が式(1)で表される構造を有するように各種成分を組み合わせることができるが、具体的には、例えば、以下の形態の樹脂組成物が挙げられる。
<1>-Si-O-構造を有するフェノール樹脂(P)を含む樹脂組成物。
<2>熱硬化性樹脂と、硬化剤として-Si-O-構造を有するフェノール樹脂(P)と、含む樹脂組成物。
<3>-Si-O-構造を有するエポキシ樹脂(A)を含む樹脂組成物。
<4>熱硬化性樹脂としてケイ素原子に結合したアルケニル基を1分子中に2個以上有するシリコーン樹脂(オルガノポリシロキサン)(C1)と、硬化剤としてケイ素原子に結合した水素原子を1分子中に2個以上有するオルガノハイドロジェンポリシロキサン(C2)と、を含む樹脂組成物。
<5>-Si-O-構造を主鎖に持つ不飽和結合を反応させて得られたアクリル/ビニル樹脂を含む、樹脂組成物。
以下、各実施形態の詳細を説明する。
<第1実施形態>
第1実施形態では、-Si-O-構造を有するフェノール樹脂(P)を含む樹脂組成物について説明する。この場合、硬化剤としては、-Si-O-構造を有していないものであってもよく、公知の硬化剤を用いてもよい。公知の硬化剤については後述する。
-Si-O-構造を有するフェノール樹脂(P)としては、フェノール性水酸基を有するシリルエーテル類により変性されたフェノール樹脂を用いることができる。具体的には、例えば、以下の式(P1)に示されるシリルエーテル変性ノボラックが挙げられる。
Figure 2024034091000004
式(P1)中、x,yはいずれも整数であり、x+yは2~200である。
また、式(P1)中、良好な解体性や成形性を得る点から、x:y=1:99~99:1であることが好ましく、x:y=2:98~75:25であることがより好ましく、x:y=5:95~50:50であることがさらに好ましい。
また、式(P1)中、Dは、以下の式(P1-1)で表される構造を有する。
Figure 2024034091000005
式(P1-1)中、Rは炭素数2~10の2価の炭化水素基を示す。R10はそれぞれ独立して、水素原子、炭素数1~30の1価の炭化水素基または芳香族基、水酸基、および炭素数1~30のアルコキシル基のいずれかを示す。zは0~10の整数である。
なかでも、Rは、好ましくは炭素数2~5の2価の炭化水素基であり、より好ましくは炭素数2~4の2価の炭化水素基であり、さらに好ましくはプロペニル基である。R10はそれぞれ独立して、炭素数1~20の1価の炭化水素基であることが好ましく、炭素数1~10の1価の炭化水素基であることがより好ましく、また、アルキル基であり、炭素数1~5のアルキル基であることがさらに好ましく、メチル基であることがことさらに好ましい。
フェノール樹脂(P1)の重量平均分子量(Mw)は、特に限定されないが、500~10000であることが好ましく、1000~8000であることがより好ましく、1500~5000であることがさらに好ましい。また、フェノール樹脂(P1)の数平均分子量は、特に限定されないが、100~5000であることが好ましく、300~3000であることがより好ましく、600~1000であることがさらに好ましい。
本実施形態において、Mw、Mnはゲル浸透クロマトグラフィー(GPC)により算出することができる。
フェノール樹脂(P)の合成方法は、シリルエーテル類と、フェノール類と、アルデヒド類とを、酸触媒の存在下で反応させて得ることができる。
シリルエーテル類としては、フェノール性水酸基を有するものが好ましく、以下の式(P1-2)に示すものが挙げられる。
Figure 2024034091000006
式(P1-2)中、Rは炭素数2~10の2価の炭化水素基を示す。R10はそれぞれ独立して、水素原子、炭素数1~30の1価の炭化水素基または芳香族基、水酸基、および炭素数1~30のアルコキシル基のいずれかを示す。zは0~10の整数である。
なかでも、Rは、好ましくは炭素数2~5の2価の炭化水素基であり、より好ましくは炭素数2~4の2価の炭化水素基であり、さらに好ましくはプロペニル基である。R10はそれぞれ独立して、炭素数1~20の1価の炭化水素基であることが好ましく、炭素数1~10の1価の炭化水素基であることがより好ましい。また、好ましくはアルキル基であり、炭素数1~5のアルキル基であることがさらに好ましく、メチル基であることがことさらに好ましい。
フェノール類の一例としては、特に限定されないが、例えば、フェノール;オルソクレゾール、メタクレゾール、パラクレゾール等のクレゾール;2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,5-キシレノール等のキシレノール;2,3,5-トリメチルフェノール、2-エチルフェノール、4-エチルフェノール、2-イソプロピルフェノール、4-イソプロピルフェノール、n-ブチルフェノール、イソブチルフェノール、tert-ブチルフェノール、ヘキシルフェノール、オクチルフェノール、ノニルフェノール、フェニルフェノール、ベンジルフェノール、クミルフェノール、アリルフェノール、カルダノール、ウルシオール、チチオール、ラッコール等のアルキルフェノール;1-ナフトール、2-ナフトール等のナフトール;フルオロフェノール、クロロフェノール、ブロモフェノール、ヨードフェノール等のハロゲン化フェノール、p-フェニルフェノール、アミノフェノール、ニトロフェノール、ジニトロフェノール、トリニトロフェノール等の1価フェノール置換体;レゾルシン、アルキルレゾルシン、ピロガロール、カテコール、アルキルカテコール、ハイドロキノン、アルキルハイドロキノン、フロログルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、ジヒドロキシナフタリン、ナフタレン等の多価フェノール;などが挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。これらの中でも、フェノール類は、フェノール、クレゾール、キシレノールおよびアルキルフェノールからなる群より選ばれた1種以上を含ことができ、安価な観点から、フェノールを用いることが
できる。
アルデヒド類としては、特に限定されないが、例えば、ホルマリンやパラホルムアルデヒド等のホルムアルデヒド;トリオキサン、アセトアルデヒド、プロピオンアルデヒド、ポリオキシメチレン、クロラール、ヘキサメチレンテトラミン、フルフラール、グリオキザール、n-ブチルアルデヒド、カプロアルデヒド、アリルアルデヒド、ベンズアルデヒド、クロトンアルデヒド、アクロレイン、テトラオキシメチレン、フェニルアセトアルデヒド、o-トルアルデヒド、サリチルアルデヒド等が挙げられる。これらのアルデヒド類は単独または2種以上を組み合わせて使用してもよい。この中でも、アルデヒド類は、ホルムアルデヒドまたはアセトアルデヒドを含むことができ、生産性および安価な観点から、ホルマリンまたはパラホルムアルデヒドを用いることができる。
フェノール樹脂(P)を合成する際に用いる触媒は、無触媒でも構わないし、ノボラック型フェノール樹脂を製造する観点から、酸性触媒を用いることができる。酸性触媒としては、特に限定するものではないが、例えば、蓚酸、塩酸、硫酸、ジエチル硫酸、パラトルエンスルホン酸等の酸類、酢酸亜鉛等の金属塩類が挙げられ、これらを単独または2種類以上併用して使用できる。
フェノール樹脂(P)を合成する際に用いる反応溶媒としては、水を用いてもよいが、有機溶剤を用いてもよい。有機溶剤としては、非極性溶媒を用いて非水系を用いることができる。有機溶剤の一例としては、例えば、アルコール類、ケトン類、芳香族類で、アルコール類としては、メタノール、エタノール、プロピルアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、グリセリン等で、ケトン類としては、アセトン、メチルエチルケトン等で、芳香族類としては、トルエン、キシレン等が挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
また、フェノール類(P)とアルデヒド類(F)のモル比(F/Pモル比)は、フェノール類1モルに対し、例えば、アルデヒド類を0.2~1.0モルとしてもよく、好ましくは0.3~0.9モルとすることができる。アルデヒド類を上記範囲とすることで、未反応フェノール量を少なくすることができ、歩留まりを上げることができる。
また、反応温度は、例えば、40℃~120℃としてもよく、好ましくは60℃~110℃としてもよい。なお、反応時間は、特に制限はなく、出発原料の種類、配合モル比、触媒の使用量及び種類、反応条件に応じて適宜決定すればよい。
以上により、フェノール樹脂(P)を得ることができる。
<第2実施形態>
第2実施形態では、-Si-O-構造を有するフェノール樹脂(P)を硬化剤として用いる場合について説明する。この場合、熱硬化性樹脂は、-Si-O-構造を有していても有さないものであってもよいが、第2実施形態においては、-Si-O-構造を有さない場合について説明する。熱硬化性樹脂としては、特に限定されないが、公知のエポキシ樹脂を用いることができる。公知のエポキシ樹脂については、後述する。
また、硬化剤としてのフェノール樹脂(P)とエポキシ樹脂は、全熱硬化性樹脂中のエポキシ基数(EP)と全フェノール樹脂のフェノール性水酸基数(OH)との当量比(EP)/(OH)が、好ましくは、0.8以上1.6以下、より好ましくは0.9以上1.3以下、さらに好ましくは1.0以上1.2以下となるように調整される。当量比が上記範囲内であると、得られる本実施形態の樹脂組成物の硬化特性を良好にできる。
第2実施形態の樹脂組成物に含まれるその他の成分については、後述する。
<第3実施形態>
第3実施形態では、-Si-O-構造を有するエポキシ樹脂(A)を含む樹脂組成物について説明する。この場合、硬化剤は、-Si-O-構造を有していても有さないものであってもよいが、第3実施形態においては、-Si-O-構造を有さない場合について説明する。硬化剤としては、特に限定されないが、公知の硬化剤を用いてもよい。公知の硬化剤については後述する。
-Si-O-構造を有するエポキシ樹脂(A)として、具体的には、例えば、第1実施形態で説明した-Si-O-構造を有するフェノール樹脂(P1)をエポキシ化した-Si-O-構造を有するエポキシ樹脂(A1)と、以下の式(A2)で表される構造を有する2官能以上のエポキシ化合物(A2)と、以下の式(A3)で表される構造を有するオルガノシロキサン型エポキシ化合物(A3)等が挙げられる。
[エポキシ樹脂(A1)]
Si-O-構造を有するフェノール樹脂(P1)をエポキシ化した-Si-O-構造を有するエポキシ樹脂(A1)としては、以下の式(A1)で示されるものが挙げられる。
Figure 2024034091000007
式(A1)中、x,yはいずれも整数であり、x+yは2~200である。
また、式(A1)中、良好な解体性や成形性を得る点から、x:y=1:99~99:1であることが好ましく、x:y=2:98~75:25であることがより好ましく、x:y=5:95~50:50であることがさらに好ましい。
また式(A1)中、Dは、以下の式(A1-1)で表される構造を有する。
Figure 2024034091000008
式(A1-1)中、Rは炭素数2~10の2価の炭化水素基を示す。R10はそれぞれ独立して、水素原子、炭素数1~30の1価の炭化水素基または芳香族基、水酸基、および炭素数1~30のアルコキシル基のいずれかを示す。zは0~10の整数である。
なかでも、Rは、好ましくは炭素数2~5の2価の炭化水素基であり、より好ましくは炭素数2~4の2価の炭化水素基であり、さらに好ましくはプロペニル基である。R10はそれぞれ独立して、炭素数1~20の1価の炭化水素基であることが好ましく、炭素数1~10の1価の炭化水素基であることがより好ましい。また、好ましくはアルキル基であり、炭素数1~5のアルキル基であることがさらに好ましく、メチル基であることがことさらに好ましい。
エポキシ樹脂(A1)は、上記のフェノール樹脂(P1)を公知の方法でエポキシ化することにより製造できる。
[エポキシ化合物(A2)]
エポキシ化合物(A2)は、以下の式(A2)で表される構造を有する2官能以上のエポキシ化合物である。
Figure 2024034091000009
式(A2)中、m、nは整数であり、m+n=4である。
は、独立に、水素、アルキル、アルケニル、アルキニル、シクロアルキル、シクロアルケニル、シクロアルキニル、アリール、複素環式、ヘテロシクロアルキル、シクロアルケニル、ヘテロアリール、アルコキシアリール、アルコキシアルキルである。
Bは、独立に、アリーレン、アリーレンエーテル、アルキレン-アリーレン、アルキレン-アリーレンアルキレン、アルケニレン-アリーレン、アルケニレン-アリーレンアルケニレン、アルキレン-アリーレン-アルケニレン、アルキニレンアリーレン、アルキニレン-アリーレン-アルキニレン、ヘテロアリーレン、アルキレン-ヘテロアリーレン、アルキレン-ヘテロアリーレン-アルキレン、アルケニレン-ヘテロアリーレン、アルケニレン-ヘテロアリーレン-アルケニレン、アルキレン-ヘテロアリーレン-アルケニレン、アルキニレンヘテロアリーレン、アルキニレン-ヘテロアリーレン-アルキニレン、アルキレン、アルキレン-ヘテロ-アルキレン、アルケニレン、アルケニレン-ヘテロ-アルケニレン、アルキレン-ヘテロ-アルケニレン、アルキニレン、シクロアルキレン、アルキレン-シクロアルキレン、アルキレン-シクロアルキレンアルキレン、アルケニレン-シクロアルキレン、アルケニレンシクロアルキレン-アルケニレン、アルキレン-シクロアルキレンアルケニレン、アルキニレン-シクロアルキレン、アルキニレンシクロアルキレン-アルキニレン、ヘテロシクロアルキレン、アルキレンヘテロシクロアルキレン、アルキレン-ヘテロシクロアルキレンアルキレン、アルケニレン-ヘテロシクロアルキレン、アルケニレンヘテロシクロアルキレン-アルケニレン、アルキレンヘテロシクロアルキレン-アルケニレン、アルキニレンヘテロシクロアルキレン、アルキニレン-ヘテロシクロアルキレンアルキニレン、シクロアルケニレン、アルキレン-シクロアルケニレン、アルキレン-シクロアルケニレン-アルキレン、アルケニレン-シクロアルケニレン、アルケニレン-シクロアルケニレン-アルケニレン、アルキレンシクロアルケニレン-アルケニレン、アルキニレン-シクロアルケニレン、アルキニレン-シクロアルケニレン-アルキニレン、ヘテロシクロアルケニレン、アルキレン-ヘテロシクロアルケニレン、アルキレン-ヘテロシクロアルケニレン-アルキレン、アルケニレン-ヘテロシクロアルケニレン、アルケニレン-ヘテロシクロアルケニレン-アルケニレン、アルキレン-ヘテロシクロアルケニレン-アルケニレン、アルキニレンヘテロシクロアルケニレン、アルキニレン-ヘテロシクロアルケニレン、またはアルキニレンである。
上記の2官能以上のエポキシ化合物(A2)としては、具体的には、以下の式(A2-1)~(A2-19)にそれぞれ示されるものが挙げられる。
Figure 2024034091000010
Figure 2024034091000011
Figure 2024034091000012
Figure 2024034091000013
エポキシ化合物(A2)は例えば、以下のようにして得ることができる。
まず、1つ又は複数のヒドロキシ基を有する多価アルコールを、塩基の存在下で、エピハロヒドリンで部分的にエポキシ化して、部分的にエポキシ化されたアルコールを得る工程と、当該部分的にエポキシ化されたアルコールを、酸性触媒の存在下で、以下の式(4-1)~(4-3)でそれぞれ示される構造を有する化合物と反応させる工程とを含む。これにより、-Si-O-構造を有するエポキシ化合物(A2)を含む混合物を得ることができる。
Figure 2024034091000014
Figure 2024034091000015
Figure 2024034091000016
(式中、R~Rは、それぞれ独立に、水素、アルキル、アルケニル、アルキニル、メチレン、シクロアルキル、シクロアルケニル、シクロアルキニル、アリール、複素環式、ヘテロシクロアルキル、シクロアルケニル、ヘテロアリール、アルコキシ、アルコキシアリール、アルコキシアルキル、またはアリールオキシであり、R11は、水素、アルキル、アリール、アラルキル、アルケニル、またはアルキニルである)
[エポキシ化合物(A3)]
エポキシ化合物(A3)は、以下の式(A3)で表される構造を有する。
Figure 2024034091000017
式(A3)中、R、Rはそれぞれ独立して、水素原子、炭素数1~30の炭化水素基または芳香族基、水酸基、および炭素数1~30のアルコキシル基のいずれかを示す。
12はそれぞれ独立して、水素原子、炭素数1~30の炭化水素基のいずれかを示す。
wは、1~50の整数である。
エポキシ化合物(A3)としては、市販品を用いることができ、例えば、両末端型エポキシ変性シリコーン「X-22-163」、「X-22-163A」、「X-22-163B」、「X-22-163C」、および「KF-105」(いずれも信越シリコーン社製)が挙げられる。
また、上記のエポキシ化合物(A3)としては、具体的には、以下の式(A3-1)に示されるものが挙げられる。
Figure 2024034091000018
式(A3-1)中、R、Rはそれぞれ独立して、水素原子、炭素数1~30の炭化水素基または芳香族基、水酸基、および炭素数1~30のアルコキシル基のいずれかを示す。
なかでも、R、Rは炭素数1~30のアルキル基であることが好ましく、炭素数1~3のアルキル基であることがより好ましく、メチル基であることがさらに好ましい。
上記式(A3-1)で表されるエポキシ化合物としては、市販品を用いることができ、例えば、脂環式エポキシ基含有直鎖シロキサン2官能オリゴマー「X-40-2669」(信越シリコーン社製)が挙げられる。
以下、本実施形態の-Si-O-構造を有するエポキシ樹脂(A)の物性について説明する。
本実施形態の-Si-O-構造を有するエポキシ樹脂(A)の重量平均分子量(Mw)は、特に限定されないが、500~10000であることが好ましく、1000~7000であることがより好ましく、2000~6000であることがさらに好ましい。
本実施形態の-Si-O-構造を有するエポキシ樹脂(A)の数平均分子量(Mn)は、特に限定されないが、100~5000であることが好ましく、300~3000であることがより好ましく、600~1000であることがさらに好ましい。
また、本実施形態の-Si-O-構造を有するエポキシ樹脂(A)の粘度は、1~40,000mPa.sの範囲であることが好ましい。
また、本実施形態の-Si-O-構造を有するエポキシ樹脂(A)は、100~600g/ミリ当量の範囲のエポキシ当量(EEW)を有することが好ましい。なお、エポキシ当量とは、エポキシ1当量を含有する樹脂の質量(グラム)を意味する。
第3実施形態において樹脂組成物は、公知のフェノール系硬化剤を用いることが好適である。
また、硬化剤としてのフェノール系硬化剤と、-Si-O-構造を有するエポキシ樹脂(A)は、全熱硬化性樹脂中のエポキシ基数(EP)と全フェノール樹脂のフェノール性水酸基数(OH)との当量比(EP)/(OH)が、好ましくは、0.8以上1.6以下、より好ましくは0.9以上1.3以下、さらに好ましくは1.0以上1.2以下となるように調整される。当量比が上記範囲内であると、得られる本実施形態の樹脂組成物の硬化特性を良好にできる。
第3実施形態の樹脂組成物に含まれるその他の成分については、後述する。
<第4実施形態>
第4実施形態では、熱硬化性樹脂としてケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシロキサン(シリコーン樹脂)(C1)を含み、硬化剤(架橋剤)としてケイ素原子に結合した水素原子を1分子中に2個以上有するオルガノハイドロジェンポリシロキサン(C2)を含む樹脂組成物について説明する。
ケイ素原子に結合したアルケニル基を1分子中に2個以上有するオルガノポリシロキサン(C1)は、直鎖状オルガノポリシロキサンであることが好ましく、ケイ素原子結合アルケニル基を1分子中に好ましくは2~8個有する直鎖状オルガノポリシロキサンである。具体的には、下記式(C1-1)で示される構造を有するものが挙げられる。
Figure 2024034091000019
式(C1-1)中、R13は、互いに同一または異種の置換もしくは非置換の炭素原子数1~10のアルキル基、炭素原子数6~12のアリール基、または炭素原子数2~10のアルケニル基である。
13の具体例としては、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、シクロヘキシル基等のアルキル基や、これらアルキル基の炭素原子に結合する水素原子の一部または全部が塩素原子、フッ素原子、臭素原子等のハロゲン原子で置換された、例えば、トリフルオロメチル、3,3,3-トリフルオロプロピル基等のフッ素置換アルキル基、ビニル、アリル、ブテニル、ペンテニル、ヘキセニル、シクロヘキセニル基等のアルケニル基、フェニル基等のアリール基などが挙げられる。
これらの中でも、炭素原子数1~6のアルキル基、炭素原子数6~8のアリール基、炭素原子数2~6のアルケニル基が好ましい。
sは5~50,000の整数であり、好ましくは10~20,000の整数である。
オルガノポリシロキサン(C1)中のアルケニル基については、分子鎖末端および側鎖のいずれに有していてもよいが、末端にのみアルケニル基を有するものが好ましい。
ケイ素原子に結合した水素原子を1分子中に2個以上有するオルガノハイドロジェンポリシロキサン(C2)は、以下の式(C2)で示される構造を有するものが挙げられる。
Figure 2024034091000020
式(C2)中、R14はそれぞれ独立して、メチル基、エチル基、プロピル基、ブチル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、フェニル基、トリル基等のアリール基、又はこれらの基の炭素原子に結合している水素原子の一部又は全部をヒドロキシル基、シアノ基、ハロゲン原子等で置換した基である。好ましくは、炭素数1~10の1価炭化水素基であり、アルキル基又はアリール基である。tは2以上の整数であり、好ましくは2~50であり、より好ましくは3~30である。
オルガノハイドロジェンポリシロキサン(C2)の配合量は、アルケニル基を1分子中に2個以上有するオルガノポリシロキサン(C1)中のアルケニル基のモル数に応じて適宜設定されるが、オルガノハイドロジェンポリシロキサン(C2)中のSiH基のモル数がシリコーン樹脂(C1)中のアルケニル基の0.5~20の範囲になるように調査せることが好ましく、0.8~5であることがより好ましい。
第4実施形態において、樹脂組成物はさらに触媒を含むことが好ましい。これによりオルガノポリシロキサン(C1)とオルガノハイドロジェンポリシロキサン(C2)との硬化を促進できる。
触媒としては、例えば、白金系触媒、ロジウム系触媒、およびパラジウム系触媒が挙げられ、なかでも白金が好ましい。
白金系触媒としては、具体的には、例えば、白金微粉末、塩化白金酸、塩化白金酸のアルコール溶液、白金-アルケニルシロキサン錯体、白金-オレフィン錯体、および白金-カルボニル錯体、並びにこれらの白金系触媒を熱可塑性樹脂で分散またはカプセル化した触媒が挙げられる。
触媒の添加量は、樹脂組成物全量に対して、0.01~5質量%であることが好ましく、0.02~2質量%であることがより好ましく、0.05~1質量%であることがさらに好ましい。
第4実施形態の樹脂組成物に含まれるその他の成分については、後述する。
以上、本発明の樹脂組成物の実施形態の一例について説明したが、本発明の樹脂組成物はこれに限定されるものではない。
また、上記各実施形態の樹脂組成物は、さらに、上述の熱硬化性成分のほか、公知の熱硬化性樹脂、公知の硬化剤をさらに含んでもよく、用途などに応じて、他の成分を含んでもよい。
以下、本発明の樹脂組成物が含んでもよいその他の成分について説明する。
[熱硬化性樹脂]
本実施形態の熱硬化性樹脂としては、例えば、フェノール樹脂、エポキシ樹脂、フェノキシ樹脂、ポリイミド樹脂、ベンゾオキサジン樹脂、不飽和ポリエステル樹脂、メラミン樹脂、シリコーン樹脂、シアネート樹脂、マレイミド樹脂、シアネート樹脂、およびアクリル樹脂の中から選ばれる1種または2種以上が挙げられる。これらの熱硬化性樹脂は、1分子内に反応性官能基を2個以上有するモノマー、オリゴマー、ポリマー全般を用いることができ、その分子量や分子構造は特に限定されない。
上記エポキシ樹脂は1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般を用いることができ、その分子量や分子構造は特に限定されない。
エポキシ樹脂は、具体的に、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;N,N-ジグリシジルアニリン、N,N-ジグリシジルトルイジン、ジアミノジフェニルメタン型グリシジルアミン、アミノフェノール型グリシジルアミンのような芳香族グリシジルアミン型エポキシ樹脂;ハイドロキノン型エポキシ樹脂;ビフェニル型エポキシ樹脂;スチルベン型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂;トリフェノールプロパン型エポキシ樹脂;アルキル変性トリフェノールメタン型エポキシ樹脂;トリアジン核含有エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂;ナフトール型エポキシ樹脂;ナフタレン型エポキシ樹脂;ナフチレンエーテル型エポキシ樹脂;フェニレンおよび/またはビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、フェニレンおよび/またはビフェニレン骨格を有するナフトールアラルキル型エポキシ樹脂等のアラルキル型エポキシ樹脂等、またはビニルシクロヘキセンジオキシド、ジシクロペンタジエンオキシド、アリサイクリックジエポキシ-アジペイド等の脂環式エポキシ等の脂肪族エポキシ樹脂の中から選ばれる1種または2種以上が挙げられる。
当該熱硬化性樹脂の含有量が樹脂組成物全量に対して、1質量%以上50質量%以下であることが好ましく、2質量%以上30質量%以下であることがより好ましく、5質量%以上20質量%以下であることがさらに好ましい。
熱硬化性樹脂の含有量を上記下限値以上とすることにより、樹脂組成物の流動性や成型性をより効果的に向上させることができる。また、熱硬化性樹脂の含有量を上記上限値以下とすることにより、硬化性を向上させ、良好な硬化物を得ることができる。
[硬化剤]
本実施形態の硬化剤は、熱硬化性樹脂の種類に応じて選択され、これと反応するものであれば特に限定されない。硬化剤としては、具体的には、重付加型の硬化剤、触媒型の硬化剤、および縮合型の硬化剤等が挙げられる
硬化剤は、具体的には、フェノール系硬化剤、アミン類、ポリパラオキシスチレン等のポリオキシスチレン、ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)等の脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)等の芳香族酸無水物等を含む酸無水物等、ポリサルファイド、チオエステル、チオエーテル等のポリメルカプタン化合物、イソシアネートプレポリマー、ブロック化イソシアネート等のイソシアネート化合物、カルボン酸含有ポリエステル樹脂等の有機酸類が挙げられる。
フェノール系硬化剤は、具体的には、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂、アミノトリアジンノボラック樹脂、ノボラック樹脂、トリスフェニルメタン型のフェノールノボラック樹脂等のノボラック型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格および/またはビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン骨格および/またはビフェニレン骨格を有するナフトールアラルキル樹脂等のアラルキル型樹脂;ビスフェノールA、ビスフェノールF等のビスフェノール化合物;レゾール型フェノール樹脂等の中から選ばれる1種または2種以上が挙げられる。また、硬化性の点から、フェノール樹脂系硬化剤の水酸基当量は、例えば90g/eq以上250g/eq以下とすることが好適である。
上記アミン類としては、具体的には、例えばジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、メタキシレンジアミン(MXDA)等の脂肪族ポリアミン、ジアミノジフェニルメタン(DDM)、m-フェニレンジアミン(MPDA)、ジアミノジフェニルスルホン(DDS)等の芳香族ポリアミンのほか、ジシアンジアミド(DICY)、有機酸ジヒドララジド等を含むポリアミン化合物;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)等の脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)等の芳香族酸無水物等を含む酸無水物等の中から選ばれる1種または2種以上が挙げられる。
当該硬化剤の含有量は、熱硬化性樹脂100質量部に対して、好ましくは5~50質量部であり、より好ましくは10~30質量部である。
また、熱硬化性樹脂と硬化剤の含有量は、熱硬化性樹脂と硬化剤に応じて適宜設定される。例えば、硬化剤としてのフェノール系硬化剤と、熱硬化性樹脂としてのエポキシ樹脂は、全熱硬化性樹脂中のエポキシ基数(EP)と全フェノール樹脂のフェノール性水酸基数(OH)との当量比(EP)/(OH)はが、好ましくは、0.8以上1.6以下、より好ましくは0.9以上1.3以下、さらに好ましくは1.0以上1.2以下となるように調整される。当量比が上記範囲内であると、得られる本実施形態の樹脂組成物の硬化特性を良好にできる。
本実施形態の樹脂組成物は、さらに以下の成分を含んでもよい。
[無機充填材]
本実施形態の樹脂組成物は、無機充填材を含んでもよい。
無機充填材は、硬化物の用途に応じ、機械的強度を高めたり、耐熱性、難燃性等を付与するために用いられる。
無機充填材としては、具体的には、タルク、焼成クレー、未焼成クレー、マイカ、ガラス等のケイ酸塩;酸化チタン、アルミナ、ベーマイト、シリカ等の酸化物;炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイト等の炭酸塩;水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等の水酸化物;硫酸バリウム、硫酸カルシウム、亜硫酸カルシウム等の硫酸塩または亜硫酸塩;ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム等のホウ酸塩;窒化アルミニウム、窒化ホウ素、窒化ケイ素、窒化炭素等の窒化物;チタン酸ストロンチウム、チタン酸バリウム等のチタン酸塩等が挙げられる。これらは、1種単独で用いてもよいし、2種以上を併用してもよい。
無機充填材の平均粒径D50は、好ましくは0.01μm以上75μm以下であり、より好ましくは0.05μm以上50μm以下である。無機充填材の平均粒径を上記範囲内にすることにより、充填性が向上する。平均粒径D50は、市販のレーザー式粒度分布計による、体積換算(累積50%)平均粒径とすることができる。
無機充填材の含有量は、用途に応じて適宜設定されるが、樹脂組成物全量に対して、10~98質量%であることが好ましく、20~95質量%であることがより好ましく、40~95質量%であることがさらに好ましい。
無機充填材の含有量を上記下限値以上とすることにより、硬化物の保存性と硬化性を向上させることができる。また、無機充填材の含有量を上記上限値以下とすることにより、樹脂組成物の良好な流動性が得られ、成形性を効果的に向上させることが可能となる。
[カップリング剤]
本実施形態の樹脂組成物は、無機充填材を含む場合、カップリング剤を含んでもよい。これにより、無機充填剤の凝集を抑制し、良好な流動性を得ることができる。
カップリング剤としては、たとえばエポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン等の各種シラン系化合物、チタン系化合物、アルミニウムキレート類、アルミニウム/ジルコニウム系化合物等の公知のカップリング剤を用いることができる。
より具体的には、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、ビニルトリアセトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アニリノプロピルトリメトキシシラン、γ-アニリノプロピルメチルジメトキシシラン、γ-[ビス(β-ヒドロキシエチル)]アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-(β-アミノエチル)アミノプロピルジメトキシメチルシラン、N-(トリメトキシシリルプロピル)エチレンジアミン、N-(ジメトキシメチルシリルイソプロピル)エチレンジアミン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、ヘキサメチルジシラン、ビニルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチルーブチリデン)プロピルアミンの加水分解物等のシラン系カップリング剤;イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート等のチタネート系カップリング剤が挙げられる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
カップリング剤の含有量は、とくに限定されないが、樹脂組成物全体に対して、0.05質量%以上3質量%以下であることが好ましく、0.1質量%以上2質量%以下であることがより好ましい。カップリング剤の含有量を上記下限値以上とすることにより、樹脂組成物中における無機充填材の分散性を良好なものとすることができる。また、カップリング剤の含有量を上記上限値以下とすることにより、樹脂組成物の流動性を良好なものとし、成形性の向上を図ることができる。
[硬化促進剤]
本実施形態の樹脂組成物は、硬化促進剤を含んでもよい。
硬化促進剤は、典型的には、熱硬化樹脂と硬化剤との反応を促進させるものである。
硬化促進剤としては、具体的には、例えば、有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、または、ホスホニウム化合物とシラン化合物との付加物等のリン原子含有化合物;1,8-ジアザビシクロ(5,4,0)ウンデセン-7、イミダゾール等のアミジン系化合物;ベンジルジメチルアミン等の3級アミン、アミジニウム塩、またはアンモニウム塩等の窒素原子含有化合物;フェノール、ビスフェノールA、ノニルフェノール、2,3-ジヒドロキシナフタレン等のフェノール化合物等が挙げられる。
また、上記有機ホスフィンとしては、トリフェニルホスフィン、トリ-p-トリルホスフィン、テトラフェニルホスホニウム・テトラフェニルボレート、トリフェニルホスフィン・トリフェニルボラン、1,2-ビス-(ジフェニルホスフィノ)エタン等が挙げられる。これらは、1種単独で用いてもよいし、2種以上を併用してもよい。
硬化促進剤の含有量は、用途に応じて適宜設定されるが、樹脂組成物全量に対して、0.1~5質量%であることが好ましく、0.2~3質量%であることがより好ましい。
硬化促進剤の含有量を上記下限値以上とすることにより、樹脂組成物を適切に硬化しやすくなる。一方、硬化促進剤の含有量を上記上限値以下とすることにより、溶融状態を長くし、より低粘度状態を長くできる。
[水酸基含有環式化合物]
本実施形態の樹脂組成物は、硬化促進剤を含む場合、芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(以下「水酸基含有環式化合物」ともいう)を含んでもよい。これにより、硬化促進剤として潜伏性を有しないリン原子含有硬化促進剤を用いた場合であっても、樹脂組成物の溶融混練中における反応を抑えることができ、安定して樹脂組成物を得ることができる。また、水酸基含有環式化合物は、樹脂組成物の溶融粘度を下げ、流動性を向上させる効果も有するものである。
水酸基含有環式化合物としては、以下の一般式(5)で表される単環式化合物、または以下の一般式(6)で表される多環式化合物等を用いることができる。これらの化合物は水酸基以外の置換基を有していてもよい。
Figure 2024034091000021
一般式(5)において、R15およびR19のいずれか一方は水酸基であり、他方は水素原子、水酸基または水酸基以外の置換基である。また、R16、R17およびR18は、水素原子、水酸基または水酸基以外の置換基である。
Figure 2024034091000022
一般式(6)において、R20およびR26のいずれか一方は水酸基であり、他方は水素原子、水酸基または水酸基以外の置換基である。また、R21、R22、R23、R24およびR25は、水素原子、水酸基または水酸基以外の置換基である。
一般式(5)で表される単環式化合物の具体例としては、例えばカテコール、ピロガロール、没食子酸、没食子酸エステルまたはこれらの誘導体が挙げられる。
また、一般式(6)で表される多環式化合物の具体例としては、例えば1,2-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレンおよびこれらの誘導体が挙げられる。これらのうち、流動性と硬化性の制御のしやすさから、芳香環を構成する2個の隣接する炭素原子にそれぞれ水酸基が結合した化合物が好ましい。また、混練工程での揮発を考慮した場合、母核は低揮発性で秤量安定性の高いナフタレン環である化合物とすることがより好ましい。この場合、水酸基含有環式化合物を、具体的には、例えば1,2-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレンおよびその誘導体等のナフタレン環を有する化合物とすることができる。これらの水酸基含有環式化合物は1種類を単独で用いても2種以上を併用してもよい。
水酸基含有環式化合物の含有量は、樹脂組成物の合計値100質量%に対して、0.01質量%以上であることが好ましく、0.03質量%以上であることがより好ましく、0.05質量%以上であることがさらに好ましい。水酸基含有環式化合物の含有量が上記範囲内であると、樹脂組成物の充分な低粘度化と流動性向上効果を得ることができる。また、水酸基含有環式化合物の含有量は、樹脂組成物の合計値100質量%に対して、2質量%以下であることが好ましく、0.8質量%以下であることがより好ましく、0.5質量%以下であることがさらに好ましい。水酸基含有環式化合物の含有量が上記範囲内であると、樹脂組成物の硬化性の低下や硬化物の物性の低下を引き起こす恐れが少ない。
さらに、本実施形態の樹脂組成物は、さらに、例えば、カーボンブラック等の着色剤;天然ワックス、合成ワックス、高級脂肪酸もしくはその金属塩類、パラフィン、酸化ポリエチレン等の離型剤;シリコーンオイル、シリコーンゴム等の低応力剤;水酸化アルミニウム等の難燃剤;ハイドロタルサイト類またはマグネシウム、アルミニウム、ビスマス、チタン、ジルコニウムから選ばれる元素の含水酸化物等のイオン捕捉剤;チアゾリン、ジアゾール、トリアゾール、トリアジン、ピリミジン等の密着付与剤、酸化防止剤等の各種添加剤を含むことができる。
[製造方法]
次に、本実施形態の樹脂組成物の製造方法について説明する。
本実施形態の樹脂組成物の製造方法は、特に制限されないが、例えば、熱硬化性成分他任意の各成分を、ミキサー等を用いて混合し、その後、加熱ニーダー、熱ロール、または押し出し機等を用いて90~120℃程度で溶融加熱し混練を行う。次いで、得られた混練物を冷却、粉砕することによって、粉末状・顆粒状の樹脂組成物を得る。樹脂組成物は、必要に応じて、粉砕後にタブレット状に打錠成形してもよく、粉砕後に例えば真空ラミネート成形または圧縮成形によりシート状にしてもよい。
また例えば、熱硬化性成分他任意の各成分を、超音波分散方式、高圧衝突式分散方式、高速回転分散方式、ビーズミル方式、高速せん断分散方式、または自転公転式分散方式等の各種混合機を用いて溶剤中に溶解、混合、撹拌することによりワニス状の樹脂組成物として調製してもよい。
溶剤としては、具体的には、アセトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、酢酸エチル、ヘプタン、シクロヘキサン、シクロヘキサノン、テトラヒドロフラン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、エチレングリコール、セルソルブ系、カルビトール系、アニソール、およびN-メチルピロリドン等が挙げられる。溶剤は、1種単独で用いても、2種以上を組み合わせて用いてもよい。
[用途]
本実施形態の樹脂組成物は、配線基板と、前記配線基板上に搭載された複数の電子部品と、前記電子部品を封止する封止部材と、を備える車載用電子制御ユニットの前記封止部材を形成するために用いられる。自動車等の車載に搭載される電子制御ユニットとしては、例えば、エンジンコントロールユニットや自動変速機用コントロールユニットなどが挙げられる。
ここで、従来の封止部材を用いない車載用電子制御装置は、電子部品が搭載された電子回路基板をケース内に収容するものであった。そのため、当該ケースを開けることで内部の電子部品を取り出し、再利用することが可能であった。しかしながら、ケース内に収容された電子部品は、樹脂封止された電子部品に比べ、外気雰囲気からの湿度や異物付着等の影響を受けやすく、信頼性が低下しやすいものであった。これに対し、本実施形態の樹脂組成物によれば、配線基板上に搭載された複数の電子部品を封止した場合であって、電子部品の良好な信頼性を保持したまま、電子部品の再利用を可能とすることができる。
2.車載用電子制御ユニット
本実施形態の車載用電子制御ユニットは、上記の車載用電子制御ユニット用樹脂組成物の硬化物を備えるものである。硬化物は、本実施形態の樹脂組成物を、100~200℃、10~900秒熱硬化することで得られる。
図1は、本実施形態に係る車載用電子制御ユニット10の一例を示す断面模式図である。
図1に示すように、車載用電子制御ユニット10は、たとえば配線基板12と、配線基板12の少なくとも一面に搭載された複数の電子部品16と、電子部品16を封止する封止樹脂14と、を備えている。また、配線基板12は、少なくとも一辺において、外部と接続するための接続端子18を有している。また、車載用電子制御ユニット10は、接続端子18と相手方コネクタを嵌合することによって、接続端子18を介して上記相手方コネクタに電気的に接続されることとなる。
車載用電子制御ユニット10は、エンジンや各種車載機器等を制御するために用いられる。
配線基板12は、たとえば一面および当該一面とは反対の他面のうちの一方または双方に回路配線が設けられた配線基板である。図1に示すように、配線基板12は、たとえば平板状の形状を有している。配線基板12は、たとえば配線基板12を貫通して一面と他面を接続するスルーホール120を有していてもよい。この場合、配線基板12のうちの一面に設けられた配線と、他面に設けられた配線と、がスルーホール120内に設けられた導体パターンを介して電気的に接続される。
配線基板12を構成する材料としては、ガラスエポキシ、ポリイミド、セラミック、および金属等が挙げられる。
配線基板12は、たとえば電子部品16を搭載する一面においてソルダーレジスト層を有している。上記ソルダーレジスト層は、半導体装置の分野において通常使用されるソルダーレジスト形成用樹脂組成物を用いて形成することができる。本実施形態においては、たとえば配線基板12の一面および他面にソルダーレジスト層を設けることができる。
配線基板12の一面に、または一面および他面の双方に設けられた上記ソルダーレジスト層は、たとえばシリコーン化合物を含む樹脂組成物により形成される。これにより、表面平滑性に優れたソルダーレジスト層を実現することができる。
複数の電子部品16は、図1に示すように、たとえば配線基板12の一面と他面のそれぞれに搭載される。一方で、電子部品16は、配線基板12の一面のみに設けられ、配線基板12の他面には設けられていなくともよい。電子部品16としては、車載用電子制御ユニットに搭載され得るものであればとくに限定されないが、たとえばマイクロコンピュータが挙げられる。
封止樹脂14は、電子部品16を封止するように封止用樹脂組成物を成形し、硬化することにより形成される。封止樹脂14は、上述の本実施形態の樹脂組成物が用いられる。
本実施形態において、封止樹脂14は、たとえば電子部品16とともに配線基板12を封止するように形成される。図1に示す例では、配線基板12の一面および他面、ならびに配線基板12に搭載された電子部品16を封止するように封止樹脂14が設けられている。また、封止樹脂14は、たとえば配線基板12の一部または全部を封止するように形成される。図1においては、接続端子18が露出するように、配線基板12のうちの接続端子18を封止せずに他の部分全体を封止するように封止樹脂14が設けられる場合が例示されている。
本実施形態に係る車載用電子制御ユニット10において、配線基板12は、たとえば金属ベース上に搭載されていてもよい。金属ベースは、たとえば電子部品16から発生する熱を放熱するためのヒートシンクとして機能することができる。本実施形態においては、たとえば金属ベースと、金属ベース上に搭載された配線基板12と、を封止用樹脂組成物により一体的に封止成形することにより車載用電子制御ユニット10を形成することができる。金属ベースを構成する金属材料としては、とくに限定されないが、たとえば鉄、銅、およびアルミ、ならびにこれらの一種または二種以上を含む合金等を含むことができる。なお、車載用電子制御ユニット10は、金属ベースを有していなくともよい。
[製造方法]
次に、車載用電子制御ユニット10の製造方法について説明する。
本実施形態に係る車載用電子制御ユニット10の製造方法は、配線基板12の少なくとも一面上に複数の電子部品16を搭載し、次いで、複数の電子部品16を、封止用樹脂組成物を用いて封止成形することで行われる。封止用樹脂組成物としては、上述の本実施形態の樹脂組成物が用いられる。以下、製造方法について詳述する。
まず、配線基板12の少なくとも一面上に複数の電子部品16を搭載する。本実施形態においては、たとえば複数の電子部品16を、配線基板12の一面と、当該一面とは反対の他面と、のそれぞれに搭載することができる。これにより、図1に示すような、配線基板12の両面に電子部品16が搭載された車載用電子制御ユニット10を形成することが可能となる。一方で、配線基板12の一面のみに電子部品16を搭載し、他面には電子部品16が搭載されなくともよい。なお、配線基板12および電子部品16としては、上記に例示したものを適用することができる。
次に、複数の電子部品16を、封止用樹脂組成物を用いて封止成形する。これにより、電子部品16を封止する封止樹脂14が形成されることとなる。
本実施形態においては、たとえば電子部品16とともに配線基板12を封止するように封止用樹脂組成物の成形が行われる。図1に例示される車載用電子制御ユニット10は、たとえば配線基板12の一面および他面、ならびに配線基板12に搭載された電子部品16を封止用樹脂組成物によって封止成形することにより得ることができる。また、本実施形態においては、複数の電子部品16とともに配線基板12の一部または全部が封止用樹脂組成物を用いて封止される。図1に例示される車載用電子制御ユニット10は、たとえば接続端子18が露出するように、配線基板12のうちの接続端子18を封止せずに他の部分全体を封止するように封止用樹脂組成物の成形を行うことにより得られる。
3.解体方法
本実施形態の解体方法は、上記の車載用電子制御ユニット用樹脂組成物の硬化物を溶媒に浸漬することによって行われる。これにより、硬化物中の架橋が分断・分解され、硬化物が可溶化したり、硬化物の一部が可溶化したりゲル化し、解体することができる。
硬化物の浸漬温度は、用途に応じて適宜設定することができるが、例えば、-20~200℃とすることが好ましく、0~150℃とすることがより好ましい。
また、簡便な方法で解体する点からは、硬化物の浸漬は、環境温度下、すなわち常温下で行ってもよい。これにより、冷却または加熱処理等の特段の作業が不要となる。例えば、溶媒の液温は5~30℃とすることができる。
一方、解体を促進する等の点からは、硬化物の浸漬の際に、加温・加熱処理を加えてもよい。
硬化物の浸漬方法は特に限定されず、硬化物の一部または全体が溶媒に接触すればよい。また、浸漬時間は、硬化物の大きさ等に応じて適宜調整される。
また、硬化物が収容された容器内に溶媒を流し込んでもよく、容器内の溶媒中に硬化物を浸漬・攪拌させてもよい。
溶媒としては、硬化物から-Si-O-構造を遊離させるものであればよく、フッ素イオンを含む溶媒であることが好ましい。フッ化イオンを含む溶媒は、フッ素イオンを発生する溶媒であってもよい。
本実施形態の溶媒は、例えば、以下のように調製した溶媒とすることができる。
(i)テトラヒドロフラン等の有機溶媒中に、フッ化テトラ-n-ブチルアンモニウム(n-BuNF)のフッ化物を作用させることで得られた溶媒。
上記のフッ化物は、例えば、アンモニウム、有機アミンまたは有機アンモニウムのフッ化物塩が挙げられ、具体的には、フッ化アンモニウム、フッ化水素酸、酸性フッ化アンモニウム、メチルアミンフッ化水素塩、エチルアミンフッ化水素塩、プロピルアミンフッ化水素塩、フッ化テトラメチルアンモニウム、フッ化テトラエチルアンモニウム、エタノールアミンフッ化水素塩、メチルエタノールアミンフッ化水素塩、ジメチルエタノールアミンフッ化水素塩、ヒドロキシルアミンフッ化水素塩、ジメチルヒドロキシルアミンフッ化水素塩、トリエチレンジアミンフッ化水素塩等の中から選ばれる1種または2種以上が挙げられる。なかでも、好ましくはフッ化アンモニウムおよびフッ化テトラ-n-ブチルアンモニウムであり、より好ましくはフッ化テトラ-n-ブチルアンモニウムである。
(ii)アセトニトリル等の無水の有機溶媒または含水有機溶媒中で鉱酸または有機の強酸を作用させることで得られた溶媒。
(iii)ジメチルスルホキシド(DMSO)中、N-ブロモこはく酸イミド(NBS)を作用させることで得られた溶媒。
(iv)水またはアルコール等の溶媒中でアルカリ金属の硫酸水素塩を作用させることで得られた溶媒。
上記の硫酸水素塩としては、硫酸水素リチウム、硫酸水素カリウム、硫酸水素ナトリウム等のアルカリ金属塩が使用でき、なかでもカリウム塩およびナトリウム塩が好適である。
(v)酢酸水溶液を作用させることで得られた溶媒。
(vi)過剰のフッ化カリウム・2水和物と過剰のテトラブチルアンモニウムクロリドとをアセトニトリル中で反応させることで得られた溶媒。
これら溶媒の中でも分解速度や廃液処理の観点からは(i)の溶媒を用いることが好ましい。
4.リサイクル方法
本実施形態のリサイクル方法は、上記の車載用電子制御ユニットを構成する材料のリサイクル方法であって、前記構造体を溶媒に浸漬し、前記車載用電子制御ユニット用樹脂組成物の前記硬化物を解体する工程と、前記車載用電子制御ユニットから前記材料を回収する工程と、を含む。
これにより、車載用電子制御ユニットに用いられた材料を再利用することができる。硬化物を解体する工程は、上記解体方法で説明した方法と同様である。
また、車載用電子制御ユニットから材料を回収する方法としては、材料の品質を低下させない限りにおいて特に限定されないが、例えば、硬化物を解体した溶媒中に材料を沈殿させ、濾過等によって材料のみを回収する方法や、溶媒から構造体を取り出した後、解体により脆くなった硬化物とともに構造体を破壊して、材料を回収する方法等が挙げられる。
材料としては、上記溶媒に可溶化せず、また化学反応を生じないものであれば特に限定されないが、例えば、QFP(Quad Flat Package)、QFN((Quad Flat Non-leaded package))、セラミックコンデンサ、アルミ電解コンデンサ、チップコンデンサおよびコイルなどの電子部品;コネクタ部品、基板部品、および回路部品などが挙げられる。
以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
次に、実施例により本発明を詳しく説明するが、本発明の内容は実施例に限られるものではない。
1.合成方法
以下の手順で、各シリルエーテル型フェノール樹脂を合成した。
[合成例1](シリルエーテル型フェノールモノマーの合成方法)
温度計、撹拌装置、還流冷却管を備えたフラスコに、2-アリルフェノール56.1g、トルエン80g、Karstedt触媒10μLを仕込み80℃に昇温した。その後、1,1,3,3-テトラメチルジシロキサン28.0gを滴下した。その後、80℃で2時間反応した後、反応液からトルエンを留去した。上記操作により、以下の式(S1)で表されるシリルエーテル型フェノールモノマー(1)89.3gを得た。
Figure 2024034091000023
[合成例2](シリルエーテル型ノボラック樹脂(1)の合成方法)
温度計、撹拌装置、還流冷却管を備えたフラスコに、得られたシリルエーテル型フェノールモノマー(1)を25.0g、蓚酸0.11gを仕込み、徐々に昇温した。その後、37%ホルマリン溶液4.5gを滴下し、内温100℃にて5時間反応した。その後、内温120℃に昇温し、常圧脱水を行い水分を除去した。上記操作により、以下の式(S2)で表されるシリルエーテル型ノボラック樹脂(1)27.4gを得た。
シリルエーテル型ノボラック樹脂(1)は、Mn=780、Mw=2,800、水酸基当量は237g/eqであった。
Figure 2024034091000024
[合成例3](シリルエーテル型ノボラック樹脂(2)の合成方法)
温度計、撹拌装置、還流冷却管を備えたフラスコに、シリルエーテル型フェノールモノマー(1)25.0g、フェノール5.8g、蓚酸0.22gを仕込み、徐々に昇温した。その後、37%ホルマリン溶液9.0gを滴下し、内温100℃にて5時間反応した。その後、内温120℃に昇温し、常圧脱水を行い水分を除去した。更に減圧下で脱水反応を行い、以下の式(S3)で表されるシリルエーテル型ノボラック樹脂(2)29.5gを得た。
シリルエーテル型ノボラック樹脂(2)は、Mn=800、Mw=2,300、水酸基当量は198g/eqであった。
Figure 2024034091000025
(式(S3)中、x:yは約45:55を示す。)
2.樹脂組成物の調製
以下に示す原料を用いて、表1に示す固形分割合で各成分を混合し、混合物を得た。混合は、常温でヘンシェルミキサーを用いて行った。その後、得られた混合物を、90~120℃でロール混練し、混練物を得た。得られた混練物を冷却した後、粉砕し、各樹脂組成物を得た。
[原料]
(熱硬化性樹脂)
・エポキシ樹脂1:オルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製、EPICRON N-670)
・エポキシ樹脂2:BPAビスフェノールA型樹脂(三菱ケミカル株式会社性、YL6810)
(硬化剤)
・硬化剤1:ノボラック型フェノール化合物(住友ベークライト株式会社製、PR-51470)
・硬化剤2:合成例2で得られたシリルエーテル型ノボラック樹脂(1)
・硬化剤3:合成例3で得られたシリルエーテル型ノボラック樹脂(2)
(硬化促進剤)
硬化促進剤1:トリフェニルホスフィン
(無機充填材)
無機充填材1:溶融球状シリカ(デンカ株式会社製、FB-60)
(その他)
着色剤1:カーボンブラック(三菱ケミカル株式会社製、カーボン#5)
カップリング剤1:N-フェニル-3-アミノプロピルトリメトキシシラン(東レ・ダウコーニング株式会社製、CF-4083)
離型剤1:カルナウバロウ
添加剤:低応力剤、イオン捕捉剤および難燃剤
3.樹脂組成物の硬化物中の構造の確認
得られた各樹脂組成物に対し、金型温度175℃、硬化時間2分の条件で成形し、硬化物を得た。各硬化物に対し、熱分解GC-MSを用いて以下の樹脂組成分析を行った。GC-MS測定はFT-NMR装置(日本電子社製、JNM-ECA400)を用いた。
まず、硬化物をヘリウム雰囲気下で600℃、1minの加熱を行い、発生した成分全てをGCの分離カラムに導入し、液体窒素でトラップした。加熱終了後、トラップを取り去りその直後にGC-MS測定を開始した。
-Si-O-構造の同定は、それぞれのマススペクトル及びリテンションタイムに基づいて行い、以下の基準に従い判定した。結果を表1に示す。
(基準)
〇:-Si-O-構造を同定できた
×:-Si-O-構造を同定できなかった
4.易解体性の評価
以下の溶媒を用いて、解体性の評価を行った。
・溶媒:フッ化テトラブチルアンモニウム(0.5mol/L、THF溶液)
まず、得られた各樹脂組成物を対し、金型温度175℃、硬化時間2分の条件で成形し硬化物(幅10mm、厚み4mm、長さ20mm)を得た。
次に、得られた硬化物を、容器内の溶媒25mlに浸漬し、23℃で24時間静置した。
その後、シェーカー(約200往復/分)を用いて容器ごと1分間シェークしたのち、容器内の全ての溶液を212μmメッシュのフィルター(JIS標準篩212μm直径100mm)でろ過した。ろ過の可否(フィルターの詰まりの有無)及びフィルター上の残渣を観察し、以下の基準に従い評価した。フィルターの詰まりの程度が低いほど、また残渣が少ないほど、硬化物が溶媒に溶解でき解体性が良好であることを表す。結果を表1に示す。
(基準)
◎:フィルターが詰まらず、フィルター上に硬化物の残渣がない又はわずかに硬化物の残渣がある
〇:フィルターが詰まらないが、フィルター上に硬化物の残渣が顕著にある
×:フィルターが直に詰まり、ろ過ができない
5.車載用電子制御ユニットからの材料の回収
半導体素子などに見立てた金属片を半田付けした基板(幅50mm、厚み1.5mm、長さ84mm)を金型(幅65mm、厚み13mm、長さ75mm)に入れ成形機にセットした後、金型が175℃に達したところで、上記で得られた各樹脂組成物を注入成形し、硬化時間120秒後に成形物を金型から取り出した。
次に、成形物を溶媒に浸漬した後、基板の回収と金属片の取り外し評価を行った。具体的には、溶媒はフッ化テトラブチルアンモニウム(0.5mol/L、THF溶液)を用い、浸漬は23℃で24時間、静置して行った。
浸漬処理後、成形物を溶媒から取り出し、基板の回収と半田付けした金属片が取り外せるか否かを確認し、以下の基準に従い評価した。
(基準)
〇:基板が回収でき、金属片の取り外しができた
×:基板が回収できず、金属片の取り外しができなかった
Figure 2024034091000026
10 車載用電子制御ユニット
12 配線基板
14 封止樹脂
16 電子部品
18 接続端子
120 スルーホール

Claims (16)

  1. 配線基板と、前記配線基板上に搭載された複数の電子部品と、前記電子部品を封止する封止部材と、を備える車載用電子制御ユニットの前記封止部材を形成するために用いられる車載用電子制御ユニット封止樹脂組成物であって、
    当該車載用電子制御ユニット用樹脂組成物が、熱硬化性成分を含み、
    当該車載用電子制御ユニット用樹脂組成物を熱硬化した後に得られる硬化体が、以下の式(1)で表される構造を備え、易解体性を有する、車載用電子制御ユニット封止樹脂組成物。
    Figure 2024034091000027
    (式(1)中、R、Rはそれぞれ独立して、水素原子、炭素数1~30の炭化水素基または芳香族基、水酸基、および炭素数1~30のアルコキシル基のいずれかを示す。)
  2. 請求項1に記載の車載用電子制御ユニット封止樹脂組成物であって、
    前記熱硬化性成分が-Si-O-構造を有する、車載用電子制御ユニット封止樹脂組成物。
  3. 請求項1または2に記載の車載用電子制御ユニット封止樹脂組成物であって、
    前記熱硬化性成分が熱硬化性樹脂および硬化剤を含み、当該熱硬化性成分および当該硬化剤がいずれも-Si-O-構造を有する、車載用電子制御ユニット封止樹脂組成物。
  4. 請求項1または2に記載の車載用電子制御ユニット封止樹脂組成物であって、
    前記熱硬化性成分が熱硬化性樹脂および硬化剤を含み、当該硬化剤が-Si-O-構造を有する、車載用電子制御ユニット封止樹脂組成物。
  5. 請求項3に記載の車載用電子制御ユニット封止樹脂組成物であって、
    前記硬化剤が、フェノール系硬化剤を含む、車載用電子制御ユニット封止樹脂組成物。
  6. 請求項1または2に記載の車載用電子制御ユニット封止樹脂組成物であって、
    前記熱硬化性成分が熱硬化性樹脂および硬化剤を含み、当該熱硬化性樹脂が-Si-O-構造を有する、車載用電子制御ユニット封止樹脂組成物。
  7. 請求項5に記載の車載用電子制御ユニット封止樹脂組成物であって、
    前記熱硬化性樹脂が、エポキシ樹脂、フェノキシ樹脂、ポリイミド樹脂、ベンゾオキサジン樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂、シアネート樹脂、ビスマレイミド樹脂、およびアクリル樹脂の中から選ばれる1種または2種以上を含む、車載用電子制御ユニット封止樹脂組成物。
  8. 請求項1または2に記載の車載用電子制御ユニット封止樹脂組成物であって、
    さらに無機充填材を含み、当該無機充填材の含有量が前記車載用電子制御ユニット封止樹脂組成物全量に対して、10~98質量%である、車載用電子制御ユニット封止樹脂組成物。
  9. 請求項1または2に記載の車載用電子制御ユニット封止樹脂組成物であって、
    粉粒状、顆粒状、タブレット状またはシート状の形態である、車載用電子制御ユニット封止樹脂組成物。
  10. 請求項1または2に記載の車載用電子制御ユニット封止樹脂組成物であって、
    前記配線基板の材料は、ガラスエポキシ、ポリイミド、セラミック、および金属の中から選ばれるいずれかである、車載用電子制御ユニット封止樹脂組成物。
  11. 配線基板と、前記配線基板上に搭載された複数の電子部品と、前記電子部品を封止する封止部材と、を備える車載用電子制御ユニットであって、
    前記封止部材が、請求項1または2に記載の車載用電子制御ユニット封止樹脂組成物の硬化物からなる、車載用電子制御ユニット。
  12. 請求項11に記載の車載用電子制御ユニットの解体方法であって、
    前記車載用電子制御ユニットを溶媒に浸漬し、前記車載用電子制御ユニット封止樹脂組成物の前記硬化物を解体する工程を含む、車載用電子制御ユニットの解体方法。
  13. 請求項12に記載の車載用電子制御ユニットの解体方法であって、
    前記溶媒は、フッ素イオンを含む溶媒である、車載用電子制御ユニットの解体方法。
  14. 請求項12に記載の車載用電子制御ユニットの解体方法であって、
    前記浸漬は-20~200℃で行われる、車載用電子制御ユニットの解体方法。
  15. 請求項12に記載の車載用電子制御ユニットの解体方法であって、
    前記浸漬は5~30℃で行われる、車載用電子制御ユニットの解体方法。
  16. 請求項11に記載の車載用電子制御ユニットを構成する材料のリサイクル方法であって、
    前記車載用電子制御ユニットを溶媒に浸漬し、前記硬化物を解体する工程と、
    前記車載用電子制御ユニットから前記材料を回収する工程と、
    を含む、リサイクル方法。
JP2022138104A 2022-08-31 2022-08-31 車載用電子制御ユニット封止樹脂組成物および車載用電子制御ユニットの解体方法 Pending JP2024034091A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022138104A JP2024034091A (ja) 2022-08-31 2022-08-31 車載用電子制御ユニット封止樹脂組成物および車載用電子制御ユニットの解体方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022138104A JP2024034091A (ja) 2022-08-31 2022-08-31 車載用電子制御ユニット封止樹脂組成物および車載用電子制御ユニットの解体方法

Publications (1)

Publication Number Publication Date
JP2024034091A true JP2024034091A (ja) 2024-03-13

Family

ID=90193400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022138104A Pending JP2024034091A (ja) 2022-08-31 2022-08-31 車載用電子制御ユニット封止樹脂組成物および車載用電子制御ユニットの解体方法

Country Status (1)

Country Link
JP (1) JP2024034091A (ja)

Similar Documents

Publication Publication Date Title
JP5193207B2 (ja) シラン化合物、その製造方法及びシラン化合物を含む樹脂組成物
JP5400267B2 (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP6380456B2 (ja) 封止用エポキシ樹脂成形材料及び電子部品装置
KR102590185B1 (ko) 수지 조성물, 수지 필름, 반도체 적층체, 반도체 적층체의 제조 방법 및 반도체 장치의 제조 방법
KR101005994B1 (ko) 경화 촉진성 화합물-실리카 복합체, 경화 촉진성화합물-실리카 복합체의 제조 방법, 경화 촉진제, 경화성수지 조성물 및 전자 부품 장치
JP2008163116A (ja) 半導体封止用樹脂組成物および半導体装置
KR102590184B1 (ko) 수지 조성물, 수지 필름, 반도체 적층체, 반도체 적층체의 제조 방법 및 반도체 장치의 제조 방법
CN110819068A (zh) 半导体封装用热固性树脂组合物和半导体装置
JP2013237855A (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP2024034091A (ja) 車載用電子制御ユニット封止樹脂組成物および車載用電子制御ユニットの解体方法
JP7392906B1 (ja) 易解体性ローター固定用樹脂組成物およびローターの解体方法
WO2023234341A1 (ja) 易解体性ローター固定用樹脂組成物およびローターの解体方法
WO2023234340A1 (ja) 易解体性熱硬化性樹脂組成物および解体方法
JP7444345B1 (ja) ステータ用封止樹脂組成物およびステータの解体方法
WO2024048369A1 (ja) ステータ用封止樹脂組成物およびステータの解体方法
JP3806222B2 (ja) エポキシ樹脂組成物及びその硬化物
JP2004339371A (ja) エポキシ樹脂組成物、及びその硬化物
JP2009242719A (ja) フェノールノボラック樹脂、エポキシ樹脂組成物及びその硬化物、並びに半導体装置
JP5721519B2 (ja) フェノール系重合体、その製法およびその用途
JP2001114863A (ja) エポキシ樹脂組成物及びその硬化物
JP5333842B2 (ja) エポキシ樹脂用硬化剤の製造方法、それを用いたエポキシ樹脂組成物、及び電子部品装置
JP5040404B2 (ja) 封止材用エポキシ樹脂組成物、その硬化体および半導体装置
JP2008147494A (ja) 封止用エポキシ樹脂組成物、その製造方法及び電子部品装置
JP2011246545A (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP2004307686A (ja) エポキシ樹脂、その製法、エポキシ樹脂組成物及び半導体装置