JP2024029818A - 光源装置、および内視鏡システム - Google Patents

光源装置、および内視鏡システム Download PDF

Info

Publication number
JP2024029818A
JP2024029818A JP2022132213A JP2022132213A JP2024029818A JP 2024029818 A JP2024029818 A JP 2024029818A JP 2022132213 A JP2022132213 A JP 2022132213A JP 2022132213 A JP2022132213 A JP 2022132213A JP 2024029818 A JP2024029818 A JP 2024029818A
Authority
JP
Japan
Prior art keywords
light
dimming
section
light source
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022132213A
Other languages
English (en)
Inventor
佳宏 林
Yoshihiro Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2022132213A priority Critical patent/JP2024029818A/ja
Priority to PCT/JP2023/029733 priority patent/WO2024043171A1/ja
Publication of JP2024029818A publication Critical patent/JP2024029818A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

【課題】ローリングシャッタに起因する歪みやアーティファクトの発生を回避しつつ、十分な光量を確保すると共に、パルス発光器官の変化がローリングシャッタ期間に及んでも明るさムラや横縞を目立ちにくくする技術を提案する。【解決手段】本開示は、被写体に照射する照明光を生成する光源装置であって、光を出射する半導体発光素子と、半導体発光素子の発光プロファイルを生成し、当該発光プロファイルに基づいて半導体発光素子を駆動させる光源制御部と、を備え、光源制御部は、撮像素子が取得する画像信号における1フレーム期間をN個(N=2mの整数;mは2以上の整数)の調光区間に分割する処理と、1フレーム期間において、ターゲット光量に応じて、2k個(k=0からmまでの整数)の調光区間の単位で発光強度を制御する発光プロファイルを生成する処理と、発光プロファイルに基づいて、次フレームの調光制御を行う処理と、を実行する光源装置を提案する。【選択図】図7B

Description

本開示は、光源装置、および内視鏡システムに関する。
ローリングシャッタ方式のイメージセンサを搭載する通常の内視鏡装置においては、当該イメージセンサの有効画素読み出し期間(ローリングシャッタ期間)に光源を消灯させ、それ以外の期間(擬似グローバル露光期間)に光源を点灯させること(パルス発光制御)により、擬似グローバル露光を実行し、ローリングシャッタに起因する望ましくない現象、例えば歪みやアーティファクトの発生を回避している。
一方、ローリングシャッタ期間に光源を完全に消灯してしまうと、被写体(観察対象部位)次第で光量が不足してしまい、良好が画像を取得することができない。例えば、特許文献1から3などでは、この光量不足を解消するために、ローリングシャッタ期間の一部をパルス発光期間に含める光源制御について示されている。
特開2018-182580号公報 特許第5379932号公報 特許第6239220号公報
しかしながら、特許文献1から3のような光源制御を実行すると、隣接するフレームでラインごとの露光時間差により画面の明るさムラや横縞などが発生する。そして、フレーム毎のパルス発光期間の変化によって、この明るさムラや横縞が表示画面上で上下移動して目障りとなるという課題がある。また、光量不足を解消するために、ローリングシャッタ期間にオフセット発光させる場合、オフセット発光がある程度強くなると、長時間露光画像および高速露光画像が二重露光されたような不自然な画像を生成してしまう。
本開示は、このような状況に鑑みてなれたものであり、ローリングシャッタに起因する歪みやアーティファクトの発生を回避しつつ、十分な光量を確保すると共に、パルス発光期間の変化がローリングシャッタ期間に及んでも明るさムラや横縞を目立ちにくくする技術を提案する。
上記課題を解決するために、本実施形態は、被写体に照射する照明光を生成する光源装置であって、光を出射する半導体発光素子と、半導体発光素子の発光プロファイルを生成し、当該発光プロファイルに基づいて半導体発光素子を駆動させる光源制御部と、を備え、光源制御部は、撮像素子が取得する画像信号における1フレーム期間をN個(N=2の整数;mは2以上の整数)の調光区間に分割する処理と、1フレーム期間において、ターゲット光量に応じて、2個(k=0からmまでの整数)の調光区間の単位で発光強度を制御する発光プロファイルを生成する処理と、発光プロファイルに基づいて、次フレームの調光制御を行う処理と、を実行する光源装置を提案する。
また、本実施形態は、観察対象内に内視鏡装置を挿入し、被写体の画像を取得する内視鏡システムであって、光源装置と、光源装置からの出射された照明光を被写体に照射し、当該被写体からの反射光を検出して画像信号を生成する撮像素子と、画像信号を処理して被写体の画像を生成し、モニタに表示するプロセッサと、を備え、光源装置は、光を出射する半導体発光素子と、半導体発光素子の発光プロファイルを生成し、当該発光プロファイルに基づいて半導体発光素子を駆動させる光源制御部と、を備え、光源制御部は、撮像素子が取得する画像信号における1フレーム期間をN個(N=2の整数;mは2以上の整数)の調光区間に分割する処理と、1フレーム期間において、ターゲット光量に応じて、2個(k=0からmまでの整数)の調光区間の単位で発光強度を制御する発光プロファイルを生成する処理と、発光プロファイルに基づいて、次フレームの調光制御を行う処理と、を実行する、内視鏡システムを提案する。
本開示に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、本開示は、要素及び多様な要素の組み合わせ及び以降の詳細な記述と添付される特許請求の範囲の様態により達成され実現される。
本明細書の記述は典型的な例示に過ぎず、特許請求の範囲又は適用例を如何なる意味においても限定するものではない。
本開示によれば、ローリングシャッタに起因する歪みやアーティファクトの発生を回避しつつ、十分な光量を確保すると共に、パルス発光器官の変化がローリングシャッタ期間に及んでも明るさムラや横縞を目立ちにくくすることが可能となる。
本実施形態の内視鏡システムの全体外観例を示す図である。 本実施形態の内視鏡システムの概略内部構成例を示す図である。 プロセッサ200の内部に設けられた光源装置101の内部構成例を示す図である。 各LED1011から1015のスペクトル(波長特性)を示す図である。 クロスプリズム1017および1018に各LEDを透過させて生成される照明光(観察部位を照明する光)の特性を示す図である。 CMOSセンサを一例とするローリングシャッタ方式の撮像素子の有効画素領域と無効領域を示す図である。 本実施形態による調光制御処理1(実施例1)の概要を説明するための図(1)である。 本実施形態による調光制御処理1(実施例1)の概要を説明するための図(2)である。 本実施形態による調光制御処理1(実施例1)に基づく発光プロファイルの生成処理の詳細を説明するためのフローチャートである。 本実施形態による調光制御処理2(実施例2)の概要を説明するための図(1)である。 本実施形態による調光制御処理2(実施例2)の概要を説明するための図(2)である。 本実施形態による調光制御処理1(実施例2)に基づく発光プロファイルの生成処理の詳細を説明するためのフローチャートである。
以下、本開示の実施形態について図面を参照しながら説明する。なお、以下においては、本開示の一実施形態として内視鏡システムを例に取り説明する。
内視鏡システムにおける観察の対象部位は、例えば、呼吸器等、消化器等である。呼吸器等は、例えば、肺、気管支、耳鼻咽喉である。消化器等は、例えば、大腸、小腸、胃、食道、十二指腸、子宮、膀胱等である。上述のような対象部位を観察する場合、特定の生体構造を強調した画像の活用がより効果的である。
なお、本実施形態に開示の技術は、プロセッサ内に光源装置を設ける場合にも適用できるが、容積的に限定され密閉された空間である内視鏡装置内に光源装置を設ける場合にも適用することができる。よって、本実施形態では、後者の構成を主として説明することとする(図2参照)。
<本技術の位置づけ>
本発明者は、本技術の関連として、特願2020-179317(出願日:2020年10月27日;特開2022-070310号公報)に開示の技術を開発している。当該先願は、パルス光から連続光への切り替え時に発生する走査線ノイズ、およびローリングシャッタ期間の発光強度制御を行う際に発生する二重露光様画像を回避するために、画像の明るさの変化に対してローリングシャッタ期間の発光強度制御で対応し、その後徐々に発光強度を発光時間に還元していく強度時間還元処理を行うことを開示している。この強度時間還元処理は、フレーム単位で、光量積算値を表す発光プロファイルの総面積を一定に保ちながら発光時間を発光強度に変換する処理である。当該処理を実現する場合、フレーム単位で対数演算や浮動小数点乗算など複雑な演算を実行しなければならず、プロセッサのようにリソースが十分ある場合には特段不都合はない。しかし、例えば、内視鏡装置側に光源装置を設ける場合のように、演算リソースが十分でない。このため、上述の複雑な演算のためのリソース(例えば、CPUなど)を追加することも考えられるが、内視鏡装置は防水性を担保するために密閉された空間であるため、上述のような複雑な演算をCPUで実行すると発熱により操作者の操作に影響を及ぼす危険性もある。また、デバイスの定格温度を超えてしまい、危険な状況になる可能性もある。これを回避するための特別な放熱機構を設けることも考えられるが、放熱機構を設けることは装置自体の製造コストアップにつながり、必ずしも好ましくはない。このため、光源装置の光源制御部(FPGA)で調光制御を完結することが望ましい。ただし、光源制御部は、CPUとは異なり、複雑な演算を実行するのに適さないため、調光制御のための演算を簡素化する必要がある。
このような状況に鑑み、本実施形態では、上記強度時間還元処理よりも演算量が圧倒的に少なく、光源制御部(FPGA)で実行可能な調光制御処理であって、上記強度時間還元処理と同様に、走査線ノイズおよび二重露光様画像の発生を回避可能な調光制御処理について説明する。
<内視鏡システムの構成>
図1は、本実施形態の内視鏡システムの全体外観例を示す図であり、図2は、本実施形態の内視鏡システムの概略内部構成例を示す図である。内視鏡システム1は、内視鏡装置(電子スコープ)100と、プロセッサ200と、モニタ300とを備えている。なお、内視鏡装置100のプロセッサ側端部には、本実施形態の特徴に係るコネクタ回路を含むスコープコネクタ(以下、単に「コネクタ」と言うこともある)400が設けられている。
内視鏡装置100は、被検体の内部に挿入される細長い管状の挿入部11を備えている。内視鏡装置100は、例えば、光源装置101と、当該光源装置101からの照射光を導くためのLCB(Light Carrying Bundle)102と、LCB102の出射端に設けられた配光レンズ103と、対物レンズ(図示せず)を介して被照射部分(観察部位)からの戻り光を受光する撮像ユニット104と、撮像ユニット104を駆動するドライバ信号処理回路(図示せず)と、第1メモリ(図示せず)とを備えている。
光源装置101からの照射光は、LCB102内に入射し、LCB102内で全反射を繰り返すことによって伝播する。LCB102内を伝播した照射光(照明光)は、挿入部11の先端部12内に配置されたLCB102の出射端から出射され、配光レンズ103を介して観察部位を照射する。被照射部分からの戻り光は、対物レンズを介して撮像ユニット104の受光面上の各画素で光学像を結ぶ。
撮像ユニット104は、挿入部11の先端部12内に配置されており、ローリングシャッタ方式のイメージセンサであるCMOS(Complementary Metal Oxide Semiconductor)イメージセンサを用いることができる。撮像ユニット104は、受光面上の各画素で結像した光学像(生体組織からの戻り光)を光量に応じた電荷として蓄積して、R、G、Bの画像信号を生成して出力する。なお、撮像ユニット104は、CMOSイメージセンサに限らず、ローリングシャッタ方式に基づくものであれば、その他の種類の撮像装置に置き換えられてもよい。撮像ユニット104から出力された信号は、後述するように、スコープコネクタ400に設けられたスコープコネクタ回路401によって処理される。
プロセッサ200は、内視鏡装置100からの信号を処理する信号処理装置と、自然光の届かない体腔内を内視鏡装置100を介して照射する光源装置とを一体に備えた装置である。別の実施形態では、信号処理装置と光源装置とを別体で構成してもよい。プロセッサ200は、システムコントローラ201と、測光部202と、前段信号処理回路203と、色変換回路204と、後段信号処理回路205と、第2メモリ206とを備えている。
プロセッサ200は、図示しない操作パネルを備えてもよい。操作パネルの構成には種々の形態がある。操作パネルの具体的構成としては、例えば、プロセッサ200のフロント面に実装された機能毎のハードウェアキーやタッチパネル式GUI(Graphical User Interface)、ハードウェアキーとGUIとの組合せ等が考えられる。オペレータ(施術者)は、操作パネルによって後述するモード切替操作が可能となる。
測光部202は、色変換回路204に含まれるゲイン回路から撮像して得られた画像信号の輝度情報を取得し、予め決められた適正輝度値(例えば、適正輝度値の情報は、測光部202の図示しない内部メモリに予め格納しておくことができる)と比較し、比較結果(現状の輝度値が適正か、高いか、あるいは低いか)をシステムコントローラ201に通知する。
システムコントローラ201は、図示省略のメモリに格納された各種プログラムを実行し、内視鏡システム1全体を統合的に制御する。システムコントローラ201は、制御信号を用いて、プロセッサ200に接続されている内視鏡装置100に適した処理がなされるようにプロセッサ200内の各種回路の動作やタイミングを制御する。なお、システムコントローラ201は、上述の操作パネルに接続されてもよい。
また、システムコントローラ201は、測光部202から適正輝度値との比較結果を受け取り、現状の露光(露出)を維持すべきか、露光を上げるべきか(上げるレベル値を含む)、あるいは露光を下げるべきか(下げるレベル値を含む)を決定し、露光制御信号として光源装置101に出力する。
さらに、システムコントローラ201は、操作パネルから入力されるオペレータからの指示に応じて、内視鏡システム1の各動作及び各動作のためのパラメータを変更する。例えば、オペレータが操作パネルによって観察モードを選択する(モード切替操作)と、システムコントローラ201は、観察モードに対応した光源を発光させるためのモード選択信号を光源装置101に出力する。後述するが、光源装置101としては、例えば、それぞれ異なる波長帯域の光を出射する複数のLED(Light Emitting Diode)を用いることができる(図3参照)。オペレータが、例えば、プロセッサ200に設けられたモード選択スイッチを操作することによって観察モード(例えば、通常観察モード、特殊光観察モード、SatO2モードなど)を選択すると、システムコントローラ201は、選択されたモードに対応するモード選択信号を生成し、これを光源装置101の光源制御部(光源制御回路:FPGA)1016に供給する(図3参照)。光源制御部1016は、モード選択信号に基づいて、発光させるLEDの組み合わせとそれらの強度および光量を決定し(例えば、モード選択信号に対応する、発光LEDの組み合わせ等が図示しない内部メモリに予め格納されている)、必要なLED制御信号を各LED1011から1015に出力する。各LED1011から1015は、光源制御部1016から供給されてきたLED制御信号に基づいて各波長帯域光を出射すると、各出射光はクロスプリズムによって合成され、照射光(合成光)が生成される。
内視鏡装置100とプロセッサ200との間のデータ通信は、有線の電気通信方式を用いてもよいし、光無線通信方式を用いてもよい。
図2に示されるように、内視鏡装置100とプロセッサ200は、スコープコネクタ400を介して接続される。コネクタ400は、スコープコネクタ回路401を備える。なお、本実施形態では、スコープコネクタ回路401は、スコープコネクタ400内に設けられているが、必ずしもスコープコネクタ400の内部に設けられなくても良い。例えば、プロセッサ200側のコネクタ部やプロセッサ200の内部にスコープコネクタ回路401に相当する回路を設けてもよい。
<光源装置101の内部構成例>
図3は、例えば、内視鏡装置100の内部に設けられた光源装置101の内部構成例を示す図である。
光源装置101は、緑色光を出射する緑LED1011と、青色光を出射する青LED1012と、赤色光を出射する赤LED1013と、アンバー光を出射するアンバーLED1014と、UV光を出射するUV LED1015と、各LED1011から1015の発光を制御する光源制御部1016と、クロスプリズム1017および1018と、を備えている。
光源制御部1016は、例えばFPGAで構成することができ、露光制御信号をシステムコントローラ201から受信すると、現在発光している各LED(観察モードによって発光させるLEDの組み合わせは決まっている)の発光期間および印加電流値を制御することにより、各LEDの発光プロファイルを変更して露光調整(光量調整)をする。例えば、発光プロファイルを1段階変更した後、光源制御部1016は、測光部202による測光結果(適正輝度値との比較結果)によって決まる露光制御信号に基づいて、上記発光プロファイルを再度変更して露光調整(調光制御)するか判断する。
また、光源制御部1016は、オペレータによって選択された観察モードを示すモード選択信号に基づいて、発光すべきLEDの組み合わせを決定する。発光開始段階では、光源制御部1016は、例えば、予め決められた発光プロファイル(デフォルトの発光期間および駆動電流値)に基づいて、各LEDの発光を制御し、その後は、上述のような露光調整を行う。
<各LED光源について>
図4は、各LED1011から1015のスペクトル(波長特性)を示す図である。また、図5は、クロスプリズム1017および1018に各LEDを透過させて生成される照明光(観察部位を照明する光)の特性を示す図である。
緑LED1011の透過波長帯域は540nmから575nmであり、ピーク波長は550nm、半値幅は30nmである。緑LED1011には蛍光体が搭載され、この蛍光体により、図4に示すように、約400nmから780nmの透過波長帯域の光が発せられる。つまり、緑LEDと蛍光体により実質的に白色光が出射されるが、この白色光は中間生成物であり、後述するように、クロスプリズム1018によって透過波長帯域は狭められ、観察部位には緑光が照射される。青LED1012の透過波長帯域は460nmから490nmであり、ピーク波長は456nm、半値幅は21nmである。赤LED1013の透過波長帯域は630nmから1000nmであり、ピーク波長は650nm、半値幅は20nmである。アンバーLED1014の透過波長帯域は600nmから615nmであり、ピーク波長は613nm、半値幅は19nmである。UV LED1015の透過波長帯域は385nmから425nmであり、ピーク波長は405nm、半値幅は14nmである。
蛍光体が搭載された緑LED1011を含む各LED1011から1015から発生られた各光(中間生成物としての白色光、青色光、赤色光、アンバー光、UV光)は、クロスプリズム1017および1018を透過すると、図5に示す特性の各光となって観察部位に照射されることになる。詳細には、緑LED1011+蛍光体から発生られた白色光は、クロスプリズム1018によって、透過波長帯域が制限され、520nmから595nmの緑光となる。青色LED1012から発せられた青色光は、クロスプリズム1017および1018によって、440nmから500nmの青色光となる。また、赤色LED2013から発せられた赤色光は、クロスプリズム1017および1018によって、620nmから630nmの赤色光となる。アンバーLED1014から発せられたアンバー光は、クロスプリズム1017および1018によって、580nmから630nmのアンバー光となる。さらに、UV LED1015から発せられたUV光は、クロスプリズム1018によって、380nmから450nmのUV光となる。
<撮像素子の撮像面の構成例>
図6は、CMOSセンサを一例とするローリングシャッタ方式の撮像素子の有効画素領域と無効領域を示す図である。CMOSセンサは、撮像可能な有効画素領域と撮像することができない無効領域を含んでいる。また、有効画素領域の一部(周辺部)はマスクされ、実質的には画像信号を取得できない領域となっている。このような撮像素子を用いて撮像する場合(グローバル露光の場合)、様々な現象(特徴)が撮像画像に現れることになる。なお、本実施形態では、画面に表示されない期間をグローバル露光期間するが、本実施形態の思想はこの場合に限定されるものではない。
<本実施形態による調光制御処理の基本的概念>
本実施形態では、光源制御部1016(図3参照)が単独で、走査線ノイズおよび二重露光様画像の両方を発生させない、もしくは目立たせない調光制御処理を実行する。具体的には、1フレーム期間をN=2(2のべき乗:2、4、8、16、32、64、128、・・・・)数の区間に分割し、必要な除算をビットシフト演算で実現できる除算だけにすることにより、CPUを追加せずに光源制御部(FPGA)1016のみで調光制御処理を実行できるようにして省リソース化を図っている。ここで、1フレーム期間の分割数N=2は、分割後の一区間の幅(時間的幅)がグローバル露光期間に収まるように決定される。また、分割数の上限はない。つまり、分割数が非常に多くても調光制御処理がビットシフト演算で実現できるため、光源制御部1016にとって負荷が過大とならないからである。
<調光制御処理1の概要:実施例1>
図7Aおよび図7Bは、本実施形態による調光制御処理1(実施例1)の概要を説明するための図である。
図7Aおよび図7Bでは、一例として、30フレーム/秒(FPS)駆動の撮像ユニット104(例えば、CMOSセンサ)の1フレーム期間(33.33ms)を32(2)区間に分割して調光制御処理を実行している。図7Aおよび図7Bでは、グローバル露光期間701は、ブランキング期間に相当し、全画素が翌読み出し動作で有効な電荷を蓄積するための期間であり、例えば1.2msとしている。1フレーム期間の開始から1.2ms経過後に残りの32.13msの時間を掛けて有効画素のローリングシャッタ読み出し動作が行われる(ローリングシャッタ期間702)。このローリングシャッタ期間702における調光制御処理の如何によって走査線ノイズや二重露光様画像が発生してしまう。なお、図7Aおよび図7Bでは、光量100%にする必要があるときは、発光強度をスコープ先端熱や光源の定格電流から定まる最大強度とし、32区間すべて発光、すなわち連続光となるように調光制御される。
本実施形態による調光制御処理では、現在の画像(撮像画像)の輝度積算値とオペレータが決定(指示)する目標積算値との比較結果に基づいて光量制御(増減)が行われる。ただし、光量制御が必要な場合であっても急峻な光量(明るさ)変化はオペレータにとってストレスになるため、徐々に光量を増減(例えば、5%ずつ増減)することにより急な明るさの変化が起こらないように制御される。
(i)光量を50%以上100%以下の範囲で制御する場合
実施例1による調光制御処理によって光量(ターゲット光量)をA%にする場合(50≦A≦100)、1フレームの全区間(例えば、N=32区間)のうち前半の半分の区間(例えば、16区間)は最大強度で発光制御し、後半の半分の区間(16区間)は(A×2-100)%の強度で発光制御される。つまり、A=50%になるまで前半の半分の区間は最大強度のまま発光し、後半の半分の区間は徐々に強度を減少させ、A=50%のときに強度0(無発光)とする発光プロファイルで調光制御される(図7Bにおける発光プロファイル703から発光プロファイル705参照)。
(ii)光量を25%以上50%未満の範囲で制御する場合
実施例1による調光制御処理によって光量(ターゲット光量)をB%にする場合(25≦B<50)、1フレームの全区間(例えば、N=32区間)のうち前半の1/4の区間(8区間)は最大強度で発光制御し、次の1/4区間(8区間)は(B×4-100)%の強度で発光制御される。また、全区間(32区間)のうち後半の半分の区間(16区間)は強度0(消灯状態)に保たれる。つまり、B=25%になるまで前半の1/4の区間は最大強度のまま発光し、次の1/4の区間は徐々に強度を減少させ、B=25%のときに強度0(無発光)とする発光プロファイルで調光制御される(図7Bにおける発光プロファイル705から発光プロファイル707参照)。
(iii)光量を100/2n+2%以上100/2n+1%未満の範囲で制御する場合
実施例1による調光制御処理によって光量(ターゲット光量)をC%にする場合(100/2n+2≦C<100/2n+1)、1フレームの全区間(例えば、N=32区間)のうち最初N/2n+2の区間(例えば、N=32の場合、4区間(n=1のとき)、2区間(n=2のとき)、あるいは1区間(n=3のとき);なお、32分割の場合、n=3までとなる)は最大強度で発光制御し、次のN/2n+2の区間(N=32の場合、4区間(n=1のとき)、2区間(n=2のとき)、あるいは1区間(n=3のとき))は(C×2n+2-100)%の強度で発光制御される。また、全区間(32区間)のうち残りの(1-N/2n+2)の区間(N=32の場合、24区間(n=1のとき)、28区間(n=2のとき)、あるいは30区間(n=3のとき))は強度0(消灯状態)に保たれる。
例えば、C=12.5%になるまで、最初の1/8の区間(4区間)は最大強度のまま発光し、次の1/8の区間(4区間)は徐々に強度を減少させ、C=12.5%のときに強度0(無発光)とする発光プロファイルで調光制御される(図7Bにおける発光プロファイル707から発光プロファイル709参照)。残りの3/4の区間(24区間)は強度0(消灯状態)に保たれる。
また、C=6.25%になるまで、最初の1/16の区間(2区間)は最大強度のまま発光し、次の1/16の区間(2区間)は徐々に強度を減少させ、C=6.25%のときに強度0(無発光)とする発光プロファイルで調光制御される(図7Bにおける発光プロファイル709から発光プロファイル711参照)。残りの7/8の区間(28区間)は強度0(消灯状態)に保たれる。
さらに、C=3.125%になるまで、最初の1/32の区間(1区間)は最大強度のまま発光し、次の1/32の区間(1区間)は徐々に強度を減少させ、C=3.125%のときに強度0(無発光)とする発光プロファイルで調光制御される(図7Bにおける発光プロファイル711から発光プロファイル713参照)。残りの15/16の区間(30区間)は強度0(消灯状態)に保たれる。
<調光制御処理1の詳細:実施例1>
図8は、本実施形態による調光制御処理1(実施例1)に基づく発光プロファイルの生成処理の詳細を説明するためのフローチャートである。ここで、当該フローチャートの各ステップの動作主体は、追加で設けられた、あるいはプロセッサ200のCPUやシステムコントローラ(制御装置)とすることもできるが、上述のように、光源装置101を内視鏡装置100の内部に設ける場合には、動作主体は光源制御部(FPGA)1016となる。以下では、光源制御部1016を動作主体として説明する。ただし、例えば、光源装置101をプロセッサ200側に設ける場合には、動作主体を別の制御装置(CPUなど)とすることもできる(依然として、光源制御部1016としてもよい)。なお、当該フローチャートは、1フレーム(現フレーム)において実行される発光プロファイル生成処理であり、オペレータが指定した目標の明るさ(後述の目標積算値)に達するまで当該発光プロファイル生成処理は繰り返される。つまり、現フレームの積算輝度値に基づいて生成された(図8のフローチャートに従って生成された)発光プロファイルは、次フレームの調光制御処理で用いられる。
(i)S801
光源制御部1016は、前フレームにおける計算結果による発光強度と発光時間(前フレームで生成された発光プロファイル)で被写体を照射し、撮像ユニット104で撮像された映像信号(現フレームの1画素分の信号)を取得し、これを輝度データに変換する。
(ii)S802
光源制御部1016は、S801で取得した映像信号の輝度データ(1画素分の輝度値)を積算する。
(iii)S803
光源制御部1016は、現1フレーム分の映像信号の輝度データを取得したか判断する。現1フレーム分の輝度データを取得した場合(S803でYesの場合)、処理はS804に移行する。現1フレーム分の全輝度データを取得していない場合(S803でNoの場合)、処理はS801に戻り、現フレームの全画素の輝度データを取得するまでS801からS803の処理が継続される。
(iv)S804
光源制御部1016は、輝度データの積算を完了させる。これにより、光源制御部1016は、現フレームの輝度積算値(1フレーム分)を取得したことになる。
(v)S805
光源制御部1016は、S804で取得した現フレームの輝度積算値が目標積算値に等しいか判断する。ここで、目標積算値は、内視鏡装置100のUI(ユーザインタフェース)でオペレータが指定(指示)した明るさレベルに対応して決まる値である(例えば、明るさレベルに対応する目標積算値のテーブルが予め設けられている)。
S804で取得した輝度積算値が目標積算値に等しい場合(S805でYesの場合)、処理はS806に移行する。S804で取得した輝度積算値が目標積算値と異なる場合(S805でNoの場合)、処理はS807に移行する。
(vi)S806
光源制御部1016は、現在の光量(前フレームの計算結果による発光強度および発光時間:発光プロファイル)を維持する。
(vii)S807
光源制御部1016は、S804で取得した現フレームの輝度積算値が目標積算値より大きいか判断する。S804で取得した輝度積算値が目標積算値よりも大きい場合(S807でYesの場合)、処理はS808に移行する。S804で取得した輝度積算値が目標積算値以下の場合(S807でNoの場合)、処理はS809に移行する。
(viii)S808
光源制御部1016は、前フレームで設定された光量を所定割合減少させ(固定値分の光量を減算してもよい)、次フレームでの光量(ターゲット光量)を決定する。なお、減少させる下限は、3.125%とされる。
(ix)S809
光源制御部1016は、前フレームで設定された光量を所定割合増加させ(固定値分の光量を加算してもよい)、次フレームでの光量(ターゲット光量)を決定する。なお、増加させる上限は、100%とされる。
(x)S810
光源制御部1016は、維持された光量、減少させた光量、あるいは増加させた光量(ターゲット光量A)が50%以上100%以下(「50%よりも大きく」でもよい)の範囲に収まっているか判断する。ターゲット光量A%が50%以上100%以下の範囲内である場合(S810でYesの場合:このときの光量をA%とする)、処理はS811に移行する。ターゲット光量A%が50%以上100%以下の範囲外である場合(S810でNoの場合)、処理はS812に移行する。
(xi)S811
光源制御部1016は、1フレーム時間をN分割し、N分割された区間の最初(前半)のN/2区間(区間1からN/2まで:N=32の場合、区間1から区間16まで)においては最大強度(100%)で発光し、それ以外のN/2区間(区間17から区間32まで)においては(ターゲット光量A×2-100)%で発光するような発光プロファイルを生成する。
(xii)S812
光源制御部1016は、維持された光量、減少させた光量、あるいは増加させた光量(ターゲット光量B)が25%以上50%未満(「25%よりも大きく」や「50%以下」でもよい)の範囲に収まっているか判断する。ターゲット光量Bが25%以上50%未満の範囲内である場合(S812でYesの場合:このときの光量をB%とする)、処理はS813に移行する。ターゲット光量Bが25%以上50%未満の範囲外である場合(S812でNoの場合:25%未満の場合)、処理はS814に移行する。
(xiii)S813
光源制御部1016は、N分割された区間の最初のN/4区間(区間1から区間N/4まで:N=32の場合、区間1から区間8まで)においては最大強度(100%)で発光し、次のN/4区間(区間(N/4)+1から区間N/2まで:N=32の場合、区間9から区間16まで)においては(ターゲット光量B×4-100)%で発光し、それ以外のN/2区間(区間(N/2)+1から区間Nまで:N=32の場合、区間17から区間32まで)無発光(消灯状態)にするような発光プロファイルを生成する。
(xiv)S814
ターゲット光量が25%未満である場合、つまり、100/2n+2以上100/2n+1未満である場合(このとき、ターゲット光量C%とする)、1フレームの全区間(例えば、N=32区間)のうち最初N/2n+2の区間(区間1から区間N/2n+2まで)は最大強度(100%)で発光し、次のN/2n+2の区間(区間N/2n+2+1から区間N/2n+1まで)は(ターゲット光量C×2n+2-100)%の強度で発光し、それ以外の区間(区間N/2n+1+1から区間Nまで)は強度0(消灯状態)にするような発光プロファイルを生成する。
なお、N=32の場合、n=1から3であって、n=1のとき12.5%以上25%未満、n=2のとき6.25%以上12.5%未満、n=3のとき3.125%以上6.25%未満となる。
(xv)以上のように、現フレームに対してS801からS814で構成される発光プロファイル生成処理で生成された発光プロファイルに基づいて、次フレームの調光制御処理(実施例1)が実行されることになる。次フレームにおける調光制御処理によって得られる輝度積算値が目標積算値と異なる場合には、さらに図8による発光プロファイル生成処理が実行される。当該発光プロファイル生成処理は、現フレームにおける輝度積算値が目標積算値に等しくなるまで繰り返される。
また、実施例1によれば、ターゲット光量が25%から100%の間にあるとき(ターゲット光量A%あるいはB%のとき)、最大強度で発光している期間が発光期間の半分に相当し、最大強度で発光していない期間は全発光期間の必ず半分以下になっている(全分割期間の半分以下でもある)。例えば、ターゲット光量Aが50%以上100%の条件であると、全期間の半分の期間で最大強度で発光させ、残りの期間でそれよりも弱い強度で発光している。最大強度の期間(例えば、N=32のとき16期間)とそうでない期間の面積の差が大きいことが二重露光様画像発生の原因となる。このため、これらの面積比率を1.0未満にすることにより、二重露光様画像の影響を軽微にすることが可能となっている。
<調光制御処理2の概要:実施例2>
図9Aおよび図9Bは、本実施形態による調光制御処理2(実施例2)の概要を説明するための図である。
図9Aおよび図9Bでは、図7AおよびBと同様に、一例として、30フレーム/秒(FPS)駆動の撮像ユニット104(例えば、CMOSセンサ)の1フレーム期間(33.33ms)を32(2)区間に分割して調光制御処理を実行している。図9Aおよび図9Bにおいても、グローバル露光期間901は、ブランキング期間に相当し、全画素が翌読み出し動作で有効な電荷を蓄積するための期間であり、例えば1.2msとしている。1フレーム期間の開始から1.2ms経過後に残りの32.13msの時間を掛けて有効画素のローリングシャッタ読み出し動作が行われる(ローリングシャッタ期間902)。このローリングシャッタ期間902における調光制御処理の如何によって走査線ノイズや二重露光様画像が発生してしまう。
上述のように、本実施形態による調光制御処理では、現在の画像(撮像画像)の輝度積算値とオペレータが決定(指示)する目標積算値との比較結果に基づいて光量制御(増減)が行われる。ただし、光量制御が必要な場合であっても急峻な光量(明るさ)変化はオペレータにとってストレスになるため、徐々に光量を増減(例えば、5%ずつ増減)することにより急な明るさの変化が起こらないように制御される。
(i)光量を50%以上100%以下の範囲で制御する場合
実施例2による調光制御処理によって光量(ターゲット光量)をA%にする場合(50≦A≦100)、1フレームの全区間(例えば、N=32区間)においてA%の強度で発光制御され、無発光(消灯状態)の区間は存在しない。つまり、A=50%になるまで区間1から区間N(N=32)までの全ての区間において徐々に強度を減少させ、A=50%のときに全区間において強度を半分とする発光プロファイルで調光制御される(図9Bにおける発光プロファイル903から発光プロファイル705参照)。
(ii)光量を25%以上50%未満の範囲で制御する場合
実施例2による調光制御処理によって光量(ターゲット光量)をB%にする場合(25≦B<50)、1フレームの全区間(例えば、N=32区間)のうち前半の1/4の区間(8区間)は(150-B×2)%の強度で発光制御し、残りの3/4区間(24区間)は(B-25)×2%の強度で発光制御される。つまり、B=25%になるまで前半の1/4の区間は50%から強度が徐々に増加され、B=25%のときに最大強度(100%)とし、残りの3/4の区間(24区間)は徐々に強度を50%から減少させ、B=25%のときに強度0(無発光)とする発光プロファイルで調光制御される(図9Bにおける発光プロファイル905から発光プロファイル907参照)。
(iii)光量を100/2n+2%以上100/2n+1%未満の範囲で制御する場合:25%未満の調光制御処理は実施例1と同様
実施例2による調光制御処理によって光量(ターゲット光量)をC%にする場合(100/2n+2≦C<100/2n+1)、1フレームの全区間(例えば、N=32区間)のうち最初N/2n+2の区間(例えば、N=32の場合、4区間(n=1のとき)、2区間(n=2のとき)、あるいは1区間(n=3のとき);なお、32分割の場合、n=3までとなる)は最大強度で発光制御し、次のN/2n+2の区間(N=32の場合、4区間(n=1のとき)、2区間(n=2のとき)、あるいは1区間(n=3のとき))は(C×2n+2-100)%の強度で発光制御される。また、全区間(32区間)のうち残りの(1-N/2n+2)の区間(N=32の場合、24区間(n=1のとき)、28区間(n=2のとき)、あるいは30区間(n=3のとき))は強度0(消灯状態)に保たれる。
例えば、C=12.5%になるまで、最初の1/8の区間(4区間)は最大強度のまま発光し、次の1/8の区間(4区間)は徐々に強度を減少させ、C=12.5%のときに強度0(無発光)とする発光プロファイルで調光制御される(図9Bにおける発光プロファイル907から発光プロファイル909参照)。残りの3/4の区間(24区間)は強度0(消灯状態)に保たれる。
また、C=6.25%になるまで、最初の1/16の区間(2区間)は最大強度のまま発光し、次の1/16の区間(2区間)は徐々に強度を減少させ、C=6.25%のときに強度0(無発光)とする発光プロファイルで調光制御される(図9Bにおける発光プロファイル909から発光プロファイル911参照)。残りの7/8の区間(28区間)は強度0(消灯状態)に保たれる。
さらに、C=3.125%になるまで、最初の1/32の区間(1区間)は最大強度のまま発光し、次の1/32の区間(1区間)は徐々に強度を減少させ、C=3.125%のときに強度0(無発光)とする発光プロファイルで調光制御される(図9Bにおける発光プロファイル911から発光プロファイル913参照)。残りの15/16の区間(30区間)は強度0(消灯状態)に保たれる。
<調光制御処理2の詳細:実施例2>
図10は、本実施形態による調光制御処理1(実施例2)に基づく発光プロファイルの生成処理の詳細を説明するためのフローチャートである。ここで、当該フローチャートの各ステップの動作主体は、追加で設けられた、あるいはプロセッサ200のCPUやシステムコントローラ(制御装置)とすることもできるが、上述のように、光源装置101を内視鏡装置100の内部に設ける場合には、動作主体は光源制御部(FPGA)1016となる。以下では、光源制御部1016を動作主体として説明する。ただし、例えば、光源装置101をプロセッサ200側に設ける場合には、動作主体を別の制御装置(例えば、CPU)とすることもできる(依然として、光源制御部1016としてもよい)。なお、当該フローチャートは、1フレーム(現フレーム)において実行される発光プロファイル生成処理であり、オペレータが指定した目標の明るさ(後述の目標積算値)に達するまで当該発光プロファイル生成処理は繰り返される。つまり、現フレームの積算輝度値に基づいて生成された(図10のフローチャートに従って生成された)発光プロファイルは、次フレームの調光制御処理で用いられる。
(i)S1001
光源制御部1016は、前フレームにおける計算結果による発光強度と発光時間(前フレームで生成された発光プロファイル)で被写体を照射し、撮像ユニット104で撮像された映像信号(現フレームの1画素分の信号)を取得し、これを輝度データに変換する。
(ii)S1002
光源制御部1016は、S1001で取得した映像信号の輝度データ(1画素分の輝度値)を積算する。
(iii)S1003
光源制御部1016は、現1フレーム分の映像信号の輝度データを取得したか判断する。現1フレーム分の輝度データを取得した場合(S1003でYesの場合)、処理はS1004に移行する。現1フレーム分の全輝度データを取得していない場合(S1003でNoの場合)、処理はS1001に戻り、現フレームの全画素の輝度データを取得するまでS1001からS1003の処理が継続される。
(iv)S1004
光源制御部1016は、輝度データの積算を完了させる。これにより、光源制御部1016は、現フレームの輝度積算値(1フレーム分)を取得したことになる。
(v)S1005
光源制御部1016は、S1004で取得した現フレームの輝度積算値が目標積算値に等しいか判断する。ここで、目標積算値は、内視鏡装置100のUI(ユーザインタフェース)でオペレータが指定(指示)した明るさレベルに対応して決まる値である(例えば、明るさレベルに対応する目標積算値のテーブルが予め設けられている)。
S1004で取得した輝度積算値が目標積算値に等しい場合(S1005でYesの場合)、処理はS1006に移行する。S1004で取得した輝度積算値が目標積算値と異なる場合(S1005でNoの場合)、処理はS1007に移行する。
(vi)S1006
光源制御部1016は、現在の光量(前フレームの計算結果による発光強度および発光時間:発光プロファイル)を維持する。
(vii)S1007
光源制御部1016は、S1004で取得した現フレームの輝度積算値が目標積算値より大きいか判断する。S1004で取得した輝度積算値が目標積算値よりも大きい場合(S1007でYesの場合)、処理はS1008に移行する。S1004で取得した輝度積算値が目標積算値以下の場合(S1007でNoの場合)、処理はS1009に移行する。
(viii)S1008
光源制御部1016は、前フレームで設定された光量を所定割合減少させ(固定値分の光量を減算してもよい)、次フレームでの光量(ターゲット光量)を決定する。なお、減少させる下限は、3.125%とされる。
(ix)S1009
光源制御部1016は、前フレームで設定された光量を所定割合増加させ(固定値分の光量を加算してもよい)、次フレームでの光量(ターゲット光量)を決定する。なお、増加させる上限は、100%とされる。
(x)S1010
光源制御部1016は、維持された光量、減少させた光量、あるいは増加させた光量(ターゲット光量)が50%以上100%以下(「50%よりも大きく」でもよい)の範囲に収まっているか判断する。ターゲット光量が50%以上100%以下の範囲内である場合(S1010でYesの場合:このときの光量をA%とする)、処理はS1011に移行する。ターゲット光量が50%以上100%以下の範囲外である場合(S1010でNoの場合)、処理はS1012に移行する。
(xi)S1011
光源制御部1016は、1フレーム時間をN分割し、N分割された全ての区間(N=32の場合、区間1から区間32まで)において、ターゲット光量A%の強度で発光するような発光プロファイルを生成する。
(xii)S1012
光源制御部1016は、維持された光量、減少させた光量、あるいは増加させた光量(ターゲット光量)が25%以上50%未満(「25%よりも大きく」や「50%以下」でもよい)の範囲に収まっているか判断する。ターゲット光量が25%以上50%未満の範囲内である場合(S1012でYesの場合:このときの光量をB%とする)、処理はS1013に移行する。ターゲット光量が25%以上50%未満の範囲外である場合(S1012でNoの場合:25%未満の場合)、処理はS1014に移行する。
(xiii)S1013
光源制御部1016は、N分割された区間の最初のN/4区間(区間1から区間N/4まで:N=32の場合、区間1から区間8まで)においては(150-ターゲット光量B×2)%の強度で発光し、残りの3×(N/4)区間(区間(N/4)+1から区間Nまで:N=32の場合、区間9から32まで)においては(ターゲット光量B-25)×2%で発光するような発光プロファイルを生成する。
(xiv)S1014
ターゲット光量が25%未満である場合、つまり、100/2n+2以上100/2n+1未満である場合(このときターゲット光量C%とする)、1フレームの全区間(例えば、N=32区間)のうち最初N/2n+2の区間(区間1から区間N/2n+2まで)は最大強度(100%)で発光し、次のN/2n+2の区間(区間N/2n+2+1から区間N/2n+1まで)は(ターゲット光量C×2n+2-100)%の強度で発光し、それ以外の区間(区間N/2n+1+1から区間Nまで)は強度0(消灯状態)にするような発光プロファイルを生成する。
なお、N=32の場合、n=1から3であって、n=1のとき12.5%以上25%未満、n=2のとき6.25%以上12.5%未満、n=3のとき3.125%以上6.25%未満となる。
(xv)以上のように、現フレームに対してS1001からS1014で構成される発光プロファイル生成処理で生成された発光プロファイルに基づいて、次フレームの調光制御処理(実施例2)が実行されることになる。次フレームにおける調光制御処理によって得られる輝度積算値が目標積算値と異なる場合には、さらに図10による発光プロファイル生成処理が実行される。当該発光プロファイル生成処理は、現フレームにおける輝度積算値が目標積算値に等しくなるまで繰り返される。
また、実施例2によれば、ターゲット光量が25%から50%の間にあるとき(ターゲット光量B%のとき)、(150-ターゲット光量B×2)%で発光する期間の面積が(ターゲット光量B-25)×2%で発光する期間の面積よりも小さくなるときがある。つまり、面積=期間×強度の比1.0以上となるときがあるが、この場合の両者の強度自体の差が小さい。このため(ほぼ同じ強度で連続発光しているような状況となっているため)、二重露光様画像が発生することによる影響(画像の観づらさ)は極めて小さい。
さらに、実施例2の場合、ターゲット光量Aとなる条件(50%≦A≦100%の場合)においては、連続光で発光するプロファイルとなるため、内視鏡装置が体腔外にあるときに出射光のフリッカ(ちらつき)によりオペレータや患者に与える不快感を軽減することが可能となる。
<本実施形態の効果>
本実施形態によれば、ローリングシャッタ歪みやアーティファクトを回避しつつ、充分な光量を確保して被写体を撮像することができるようになる。また、ローリングシャッタ期間中に連続性のあるパルス発光期間の変化が起こらないため、横縞の上下移動を目立ちにくくすることができる。
さらに、1フレームを2(mは2以上の整数)の調光区間に分割し、発光プロファイル生成に必要な演算をビットシフトで実現できる除算だけにすることにより、CPUなどの演算素子を用いずに光源制御部(FPGA)のみで光源装置の省リソース化を実現することが可能となる。よって、演算リソースが限定的で、かつ密閉された空間の内視鏡装置側に光源装置を設置することが可能となる。
<本開示の特定事項>
(1)特定事項1
被写体に照射する照明光を生成する光源装置であって、
光を出射する半導体発光素子と、
前記半導体発光素子の発光プロファイルを生成し、当該発光プロファイルに基づいて前記半導体発光素子を駆動させる光源制御部と、を備え、
前記光源制御部は、
撮像素子が取得する画像信号における1フレーム期間をN個(N=2の整数;mは2以上の整数)の調光区間に分割する処理と、
前記1フレーム期間において、ターゲット光量に応じて、2個(k=0からmまでの整数)の前記調光区間の単位で発光強度を制御する発光プロファイルを生成する処理と、
前記発光プロファイルに基づいて、次フレームの調光制御を行う処理と、
を実行する光源装置。
(2)特定事項2
特定事項1において、
前記光源制御部は、1つの前記調光区間がグローバル露光期間よりも小さくなるように前記1フレーム期間を分割する、光源装置。
(3)特定事項3
特定事項1において、
前記光源制御部は、前フレームの発光プロファイルを用いて取得した現フレームの映像信号の輝度積算値と入力された目標輝度積算値とを比較することにより、前記ターゲット光量を決定する、光源装置。
(4)特定事項4
特定事項3において、
前記光源制御部は、前記現フレームの輝度積算値が前記目標輝度積算値と異なる場合には、所定量あるいは所定割合ずつ光量を増減して徐々に前記目標輝度積算値になるように調光制御する、光源装置。
(5)特定事項5
特定事項1において、
前記ターゲット光量が50%以上100%以下の範囲にある場合、前記光源制御部は、調光区間1から調光区間N/2までは最大強度で発光し、調光区間(N/2)+1から調光区間Nまでは(ターゲット光量×2-100)%の強度で発光するような前記発光プロファイルを生成する、光源装置。
(6)特定事項6
特定事項5において、
前記ターゲット光量が25%以上50%未満の範囲にある場合、前記光源制御部は、調光区間1から調光区間N/4までは最大強度で発光し、調光区間(N/4)+1から調光区間N/2までは(ターゲット光量×4-100)%の強度で発光し、残りの調光区間では消灯するような前記発光プロファイルを生成する、光源装置。
(7)特定事項7
特定事項6において、
前記ターゲット光量が100/2n+2%以上100/2n+1%未満(n=1からm-2までの整数)の範囲にある場合、前記光源制御部は、調光区間1から調光区間N/2n+2までは最大強度で発光し、調光区間(N/2n+2)+1から調光区間N/2n+1までは(ターゲット光量×2n+2-100)%の強度で発光し、残りの調光区間では消灯するような前記発光プロファイルを生成する、光源装置。
(8)特定事項8
特定事項1において、
前記ターゲット光量が50%以上100%以下の範囲にある場合、前記光源制御部は、調光区間1から調光区間Nまでをターゲット光量の強度で発光するような前記発光プロファイルを生成する、光源装置。
(9)特定事項9
特定事項8において、
前記ターゲット光量が25%以上50%未満の範囲にある場合、前記光源制御部は、調光区間1から調光区間N/4までは(150-ターゲット光量×2)%の強度で発光し、調光区間(N/4)+1から調光区間Nまでは(ターゲット光量-25)×2%の強度で発光するような前記発光プロファイルを生成する、光源装置。
(10)特定事項10
特定事項9において、
前記ターゲット光量が100/2n+2%以上100/2n+1%未満(n=1からm-2までの整数)の範囲にある場合、前記光源制御部は、調光区間1から調光区間N/2n+2までは最大強度で発光し、調光区間(N/2n+2)+1から調光区間N/2n+1までは(ターゲット光量×2n+2-100)%の強度で発光し、残りの調光区間では消灯するような前記発光プロファイルを生成する、光源装置。
(11)特定事項11
観察対象内に内視鏡装置を挿入し、被写体の画像を取得する内視鏡システムであって、
光源装置と、
前記光源装置からの出射された照明光を前記被写体に照射し、当該被写体からの反射光を検出して画像信号を生成する撮像素子と、
前記画像信号を処理して前記被写体の画像を生成し、モニタに表示するプロセッサと、を備え、
前記光源装置は、
光を出射する半導体発光素子と、
前記半導体発光素子の発光プロファイルを生成し、当該発光プロファイルに基づいて前記半導体発光素子を駆動させる光源制御部と、を備え、
前記光源制御部は、
前記撮像素子が取得する画像信号における1フレーム期間をN個(N=2の整数;mは2以上の整数)の調光区間に分割する処理と、
前記1フレーム期間において、ターゲット光量に応じて、2個(k=0からmまでの整数)の前記調光区間の単位で発光強度を制御する発光プロファイルを生成する処理と、
前記発光プロファイルに基づいて、次フレームの調光制御を行う処理と、
を実行する、内視鏡システム。
(12)特定事項12
特定事項11において、
前記光源制御部は、1つの前記調光区間がグローバル露光期間よりも小さくなるように前記1フレーム期間を分割する、内視鏡システム。
(13)特定事項13
特定事項11において、
前記光源制御部は、前フレームの発光プロファイルを用いて取得した現フレームの映像信号の輝度積算値と入力された目標輝度積算値とを比較することにより、前記ターゲット光量を決定する、内視鏡システム。
(14)特定事項14
特定事項13において、
前記光源制御部は、前記現フレームの輝度積算値が前記目標輝度積算値と異なる場合には、所定量あるいは所定割合ずつ光量を増減して徐々に前記目標輝度積算値になるように調光制御する、内視鏡システム。
(15)特定事項15
特定事項11において、
前記ターゲット光量が50%以上100%以下の範囲にある場合、前記光源制御部は、調光区間1から調光区間N/2までは最大強度で発光し、調光区間(N/2)+1から調光区間Nまでは(ターゲット光量×2-100)%の強度で発光するような前記発光プロファイルを生成する、内視鏡システム。
(16)特定事項16
特定事項15において、
前記ターゲット光量が25%以上50%未満の範囲にある場合、前記光源制御部は、調光区間1から調光区間N/4までは最大強度で発光し、調光区間(N/4)+1から調光区間N/2までは(ターゲット光量×4-100)%の強度で発光し、残りの調光区間では消灯するような前記発光プロファイルを生成する、内視鏡システム。
(17)特定事項17
特定事項16において、
前記ターゲット光量が100/2n+2%以上100/2n+1%未満(n=1からm-2までの整数)の範囲にある場合、前記光源制御部は、調光区間1から調光区間N/2n+2までは最大強度で発光し、調光区間(N/2n+2)+1から調光区間N/2n+1までは(ターゲット光量×2n+2-100)%の強度で発光し、残りの調光区間では消灯するような前記発光プロファイルを生成する、内視鏡システム。
(18)特定事項18
特定事項11において、
前記ターゲット光量が50%以上100%以下の範囲にある場合、前記光源制御部は、調光区間1から調光区間Nまでをターゲット光量の強度で発光するような前記発光プロファイルを生成する、内視鏡システム。
(19)特定事項19
特定事項18において、
前記ターゲット光量が25%以上50%未満の範囲にある場合、前記光源制御部は、調光区間1から調光区間N/4までは(150-ターゲット光量×2)%の強度で発光し、調光区間(N/4)+1から調光区間Nまでは(ターゲット光量-25)×2%の強度で発光するような前記発光プロファイルを生成する、内視鏡システム。
(20)特定事項20
特定事項19において、
前記ターゲット光量が100/2n+2%以上100/2n+1%未満(n=1からm-2までの整数)の範囲にある場合、前記光源制御部は、調光区間1から調光区間N/2n+2までは最大強度で発光し、調光区間(N/2n+2)+1から調光区間N/2n+1までは(ターゲット光量×2n+2-100)%の強度で発光し、残りの調光区間では消灯するような前記発光プロファイルを生成する、内視鏡システム。
(21)特定事項21
特定事項11において、
前記光源装置は、前記内視鏡装置の内部に設けられている、内視鏡システム。
1 内視鏡システム
100 内視鏡装置
104 撮像ユニット
200 プロセッサ
101 光源装置
1011 緑LED
1012 青LED
1013 赤LED
1014 アンバーLED
1015 UV LED
1016 光源制御部
1017、1018 クロスプリズム
201 システムコントローラ
202 測光部
300 モニタ

Claims (21)

  1. 被写体に照射する照明光を生成する光源装置であって、
    光を出射する半導体発光素子と、
    前記半導体発光素子の発光プロファイルを生成し、当該発光プロファイルに基づいて前記半導体発光素子を駆動させる光源制御部と、を備え、
    前記光源制御部は、
    撮像素子が取得する画像信号における1フレーム期間をN個(N=2の整数;mは2以上の整数)の調光区間に分割する処理と、
    前記1フレーム期間において、ターゲット光量に応じて、2個(k=0からmまでの整数)の前記調光区間の単位で発光強度を制御する発光プロファイルを生成する処理と、
    前記発光プロファイルに基づいて、次フレームの調光制御を行う処理と、
    を実行する光源装置。
  2. 請求項1において、
    前記光源制御部は、1つの前記調光区間がグローバル露光期間よりも小さくなるように前記1フレーム期間を分割する、光源装置。
  3. 請求項1において、
    前記光源制御部は、前フレームの発光プロファイルを用いて取得した現フレームの映像信号の輝度積算値と入力された目標輝度積算値とを比較することにより、前記ターゲット光量を決定する、光源装置。
  4. 請求項3において、
    前記光源制御部は、前記現フレームの輝度積算値が前記目標輝度積算値と異なる場合には、所定量あるいは所定割合ずつ光量を増減して徐々に前記目標輝度積算値になるように調光制御する、光源装置。
  5. 請求項1において、
    前記ターゲット光量が50%以上100%以下の範囲にある場合、前記光源制御部は、調光区間1から調光区間N/2までは最大強度で発光し、調光区間(N/2)+1から調光区間Nまでは(ターゲット光量×2-100)%の強度で発光するような前記発光プロファイルを生成する、光源装置。
  6. 請求項5において、
    前記ターゲット光量が25%以上50%未満の範囲にある場合、前記光源制御部は、調光区間1から調光区間N/4までは最大強度で発光し、調光区間(N/4)+1から調光区間N/2までは(ターゲット光量×4-100)%の強度で発光し、残りの調光区間では消灯するような前記発光プロファイルを生成する、光源装置。
  7. 請求項6において、
    前記ターゲット光量が100/2n+2%以上100/2n+1%未満(n=1からm-2までの整数)の範囲にある場合、前記光源制御部は、調光区間1から調光区間N/2n+2までは最大強度で発光し、調光区間(N/2n+2)+1から調光区間N/2n+1までは(ターゲット光量×2n+2-100)%の強度で発光し、残りの調光区間では消灯するような前記発光プロファイルを生成する、光源装置。
  8. 請求項1において、
    前記ターゲット光量が50%以上100%以下の範囲にある場合、前記光源制御部は、調光区間1から調光区間Nまでをターゲット光量の強度で発光するような前記発光プロファイルを生成する、光源装置。
  9. 請求項8において、
    前記ターゲット光量が25%以上50%未満の範囲にある場合、前記光源制御部は、調光区間1から調光区間N/4までは(150-ターゲット光量×2)%の強度で発光し、調光区間(N/4)+1から調光区間Nまでは(ターゲット光量-25)×2%の強度で発光するような前記発光プロファイルを生成する、光源装置。
  10. 請求項9において、
    前記ターゲット光量が100/2n+2%以上100/2n+1%未満(n=1からm-2までの整数)の範囲にある場合、前記光源制御部は、調光区間1から調光区間N/2n+2までは最大強度で発光し、調光区間(N/2n+2)+1から調光区間N/2n+1までは(ターゲット光量×2n+2-100)%の強度で発光し、残りの調光区間では消灯するような前記発光プロファイルを生成する、光源装置。
  11. 観察対象内に内視鏡装置を挿入し、被写体の画像を取得する内視鏡システムであって、
    光源装置と、
    前記光源装置からの出射された照明光を前記被写体に照射し、当該被写体からの反射光を検出して画像信号を生成する撮像素子と、
    前記画像信号を処理して前記被写体の画像を生成し、モニタに表示するプロセッサと、を備え、
    前記光源装置は、
    光を出射する半導体発光素子と、
    前記半導体発光素子の発光プロファイルを生成し、当該発光プロファイルに基づいて前記半導体発光素子を駆動させる光源制御部と、を備え、
    前記光源制御部は、
    前記撮像素子が取得する画像信号における1フレーム期間をN個(N=2の整数;mは2以上の整数)の調光区間に分割する処理と、
    前記1フレーム期間において、ターゲット光量に応じて、2個(k=0からmまでの整数)の前記調光区間の単位で発光強度を制御する発光プロファイルを生成する処理と、
    前記発光プロファイルに基づいて、次フレームの調光制御を行う処理と、
    を実行する、内視鏡システム。
  12. 請求項11において、
    前記光源制御部は、1つの前記調光区間がグローバル露光期間よりも小さくなるように前記1フレーム期間を分割する、内視鏡システム。
  13. 請求項11において、
    前記光源制御部は、前フレームの発光プロファイルを用いて取得した現フレームの映像信号の輝度積算値と入力された目標輝度積算値とを比較することにより、前記ターゲット光量を決定する、内視鏡システム。
  14. 請求項13において、
    前記光源制御部は、前記現フレームの輝度積算値が前記目標輝度積算値と異なる場合には、所定量あるいは所定割合ずつ光量を増減して徐々に前記目標輝度積算値になるように調光制御する、内視鏡システム。
  15. 請求項11において、
    前記ターゲット光量が50%以上100%以下の範囲にある場合、前記光源制御部は、調光区間1から調光区間N/2までは最大強度で発光し、調光区間(N/2)+1から調光区間Nまでは(ターゲット光量×2-100)%の強度で発光するような前記発光プロファイルを生成する、内視鏡システム。
  16. 請求項15において、
    前記ターゲット光量が25%以上50%未満の範囲にある場合、前記光源制御部は、調光区間1から調光区間N/4までは最大強度で発光し、調光区間(N/4)+1から調光区間N/2までは(ターゲット光量×4-100)%の強度で発光し、残りの調光区間では消灯するような前記発光プロファイルを生成する、内視鏡システム。
  17. 請求項16において、
    前記ターゲット光量が100/2n+2%以上100/2n+1%未満(n=1からm-2までの整数)の範囲にある場合、前記光源制御部は、調光区間1から調光区間N/2n+2までは最大強度で発光し、調光区間(N/2n+2)+1から調光区間N/2n+1までは(ターゲット光量×2n+2-100)%の強度で発光し、残りの調光区間では消灯するような前記発光プロファイルを生成する、内視鏡システム。
  18. 請求項11において、
    前記ターゲット光量が50%以上100%以下の範囲にある場合、前記光源制御部は、調光区間1から調光区間Nまでをターゲット光量の強度で発光するような前記発光プロファイルを生成する、内視鏡システム。
  19. 請求項18において、
    前記ターゲット光量が25%以上50%未満の範囲にある場合、前記光源制御部は、調光区間1から調光区間N/4までは(150-ターゲット光量×2)%の強度で発光し、調光区間(N/4)+1から調光区間Nまでは(ターゲット光量-25)×2%の強度で発光するような前記発光プロファイルを生成する、内視鏡システム。
  20. 請求項19において、
    前記ターゲット光量が100/2n+2%以上100/2n+1%未満(n=1からm-2までの整数)の範囲にある場合、前記光源制御部は、調光区間1から調光区間N/2n+2までは最大強度で発光し、調光区間(N/2n+2)+1から調光区間N/2n+1までは(ターゲット光量×2n+2-100)%の強度で発光し、残りの調光区間では消灯するような前記発光プロファイルを生成する、内視鏡システム。
  21. 請求項11において、
    前記光源装置は、前記内視鏡装置の内部に設けられている、内視鏡システム。
JP2022132213A 2022-08-23 2022-08-23 光源装置、および内視鏡システム Pending JP2024029818A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022132213A JP2024029818A (ja) 2022-08-23 2022-08-23 光源装置、および内視鏡システム
PCT/JP2023/029733 WO2024043171A1 (ja) 2022-08-23 2023-08-17 光源装置、および内視鏡システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022132213A JP2024029818A (ja) 2022-08-23 2022-08-23 光源装置、および内視鏡システム

Publications (1)

Publication Number Publication Date
JP2024029818A true JP2024029818A (ja) 2024-03-07

Family

ID=90013234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022132213A Pending JP2024029818A (ja) 2022-08-23 2022-08-23 光源装置、および内視鏡システム

Country Status (2)

Country Link
JP (1) JP2024029818A (ja)
WO (1) WO2024043171A1 (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5470416B2 (ja) * 2011-05-02 2014-04-16 富士フイルム株式会社 医療機器の光源装置、及び内視鏡装置
JP5379932B1 (ja) * 2012-04-16 2013-12-25 オリンパスメディカルシステムズ株式会社 撮像システム、撮像方法
WO2014125724A1 (ja) * 2013-02-12 2014-08-21 オリンパスメディカルシステムズ株式会社 内視鏡装置
WO2017061003A1 (ja) * 2015-10-08 2017-04-13 オリンパス株式会社 内視鏡装置
WO2018211705A1 (ja) * 2017-05-19 2018-11-22 オリンパス株式会社 照明装置、その照明装置を含む撮像システム、その撮像システムを含む内視鏡システムおよび顕微鏡システム
WO2022029954A1 (ja) * 2020-08-06 2022-02-10 オリンパス株式会社 医療システム、及び、処理プロトコル制御方法
JP2022070310A (ja) * 2020-10-27 2022-05-13 Hoya株式会社 光源装置、および内視鏡システム
JP2022076076A (ja) * 2020-11-09 2022-05-19 Hoya株式会社 光源装置、および内視鏡システム

Also Published As

Publication number Publication date
WO2024043171A1 (ja) 2024-02-29

Similar Documents

Publication Publication Date Title
US9029755B2 (en) Imaging system with illumination controller to variably control illumination light
JP5431294B2 (ja) 内視鏡装置
WO2016104386A1 (ja) 調光装置、撮像システム、調光装置の作動方法および調光装置の作動プログラム
WO2022091649A1 (ja) 光源装置、および内視鏡システム
US20180344129A1 (en) Endoscope processor and operation method of endoscope processor
WO2022097671A1 (ja) 光源装置、および内視鏡システム
JP2012223376A (ja) 照明用発光ダイオードの制御回路、制御方法及びそれを用いた電子内視鏡装置
JP5622529B2 (ja) 内視鏡装置
JP7224985B2 (ja) 医療用光源装置及び医療用観察システム
WO2024043171A1 (ja) 光源装置、および内視鏡システム
JP3442653B2 (ja) 内視鏡装置
US10901199B2 (en) Endoscope system having variable focal length lens that switches between two or more values
JP6099445B2 (ja) 撮像システム
CN111712178A (zh) 内窥镜系统及其工作方法
JPH11305144A (ja) 内視鏡装置
JP6937902B2 (ja) 内視鏡システム
JP5694492B2 (ja) 内視鏡装置
JP6353962B2 (ja) 内視鏡装置
JP5470224B2 (ja) 内視鏡装置
WO2023037783A1 (ja) 光源装置、および内視鏡システム
JP2019162165A (ja) 内視鏡システム
JP7112970B2 (ja) 内視鏡システム
US12035052B2 (en) Image processing apparatus and image processing method
JP2013094489A (ja) 内視鏡装置
US20230042498A1 (en) Image processing apparatus and image processing method