WO2022097671A1 - 光源装置、および内視鏡システム - Google Patents

光源装置、および内視鏡システム Download PDF

Info

Publication number
WO2022097671A1
WO2022097671A1 PCT/JP2021/040547 JP2021040547W WO2022097671A1 WO 2022097671 A1 WO2022097671 A1 WO 2022097671A1 JP 2021040547 W JP2021040547 W JP 2021040547W WO 2022097671 A1 WO2022097671 A1 WO 2022097671A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
light
rolling shutter
emission
control unit
Prior art date
Application number
PCT/JP2021/040547
Other languages
English (en)
French (fr)
Inventor
佳宏 林
義之 新島
縁 秋野
真哉 下田代
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to CN202180062409.4A priority Critical patent/CN116075263A/zh
Priority to US18/029,738 priority patent/US20230363630A1/en
Priority to EP21889224.8A priority patent/EP4197423A1/en
Publication of WO2022097671A1 publication Critical patent/WO2022097671A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00006Operational features of endoscopes characterised by electronic signal processing of control signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0669Endoscope light sources at proximal end of an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0684Endoscope light sources using light emitting diodes [LED]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • G02B19/0066Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED in the form of an LED array
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0905Dividing and/or superposing multiple light beams
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0961Lens arrays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0676Endoscope light sources at distal tip of an endoscope

Definitions

  • This disclosure relates to a light source device and an endoscope system.
  • the light source is turned off during the effective pixel readout period (rolling shutter period) of the image sensor, and the light source is turned off during the other period (pseudo-global exposure period).
  • rolling shutter period the effective pixel readout period
  • the light source is turned off during the other period (pseudo-global exposure period).
  • pseudo-global exposure is performed to avoid unwanted phenomena caused by rolling shutters, such as distortion and artifacts.
  • Patent Documents 1 to 3 and the like show a light source control in which a part of the rolling shutter period is included in the pulse emission period in order to solve this shortage of light amount.
  • the present disclosure has been made in view of such a situation, and while avoiding the occurrence of distortion and artifacts due to the rolling shutter, a sufficient amount of light is secured, and the change in the pulse emission period changes during the rolling shutter period.
  • the present embodiment is a light source device that generates illumination light to irradiate a subject, and comprises a plurality of semiconductor light emitting elements that emit light having different wavelength bands and a plurality of semiconductor light emitting elements.
  • a control unit that controls a light emission profile and drives a plurality of semiconductor light emitting elements is provided, and the control unit extends the light emission profile in a first direction opposite to the traveling direction of time when the exposure level is increased.
  • the present embodiment is an endoscope system in which an endoscope is inserted into an observation target to acquire an image of a subject, and a plurality of semiconductor light emitting elements that emit light having different wavelength bands and illumination light.
  • a processor Based on an image pickup element that irradiates the subject and detects reflected light from the subject to generate an image signal, a processor that processes the image signal to generate an image of the subject and displays it on a monitor, and an image signal.
  • a main control unit that generates a control signal for controlling the light emission profiles of a plurality of semiconductor light emitting elements, and a control signal received from the main control unit to drive the plurality of semiconductor light emitting elements with a drive signal according to the light emission profile.
  • the light source control unit is provided, and the light emitting profile is (i-1) a period during which illumination light is emitted for at least a part of the pseudo-global exposure period of the image pickup element that images the subject, or (ii-2) the image pickup element.
  • the pulse emission period which indicates the period during which the illumination light is emitted during at least a part of the pseudo-global exposure period and the rolling shutter period, and (ii) the pulse emission intensity, which indicates the intensity of the illumination light during the pulse emission period, are specified, and the main control unit is used. Extends the light emission profile in the first direction opposite to the direction of travel of time when increasing the exposure level, and shortens the light emission profile from the second direction of travel of time when lowering the exposure level. We propose an endoscopic system.
  • the target site for observation in the endoscopic system is, for example, a respiratory organ, a digestive organ, or the like.
  • Respiratory organs and the like are, for example, lungs, bronchi, otolaryngology.
  • the digestive organs and the like are, for example, the large intestine, the small intestine, the stomach, the esophagus, the duodenum, the uterus, the bladder and the like.
  • FIG. 1 is a diagram showing an example of the overall appearance of the endoscope system of the present embodiment
  • FIG. 2 is a diagram showing a schematic internal configuration example of the endoscope system of the present embodiment.
  • the endoscope system 1 includes an endoscope device (electronic scope) 100, a processor 200, and a monitor 300.
  • a scope connector (hereinafter, may be simply referred to as a "connector") 400 including a connector circuit according to the feature of the present embodiment is provided at the end of the endoscope device 100 on the processor side.
  • the endoscope device 100 includes an elongated tubular insertion portion 11 that is inserted inside the subject.
  • the endoscope device 100 includes, for example, an LCB (Light Carrying Bundle) 101 for guiding irradiation light from a light source device 201 described later, a light distribution lens 102 provided at an emission end of the LCB 101, and an objective lens (shown).
  • the image pickup unit 103 that receives the return light from the irradiated portion (observation site) via the lens), the driver signal processing circuit 105 that drives the image pickup unit 103, and the first memory 106 are provided.
  • the irradiation light from the light source device 201 is incident on the LCB 101 and propagates by repeating total reflection in the LCB 101.
  • the irradiation light (illumination light) propagating in the LCB 101 is emitted from the emission end of the LCB 101 arranged in the tip portion 12 of the insertion portion 11 and illuminates the observation site via the light distribution lens 102.
  • the return light from the irradiated portion forms an optical image at each pixel on the light receiving surface of the image pickup unit 103 via the objective lens.
  • the image pickup unit 103 is arranged in the tip portion 12 of the insertion portion 11, and a CMOS (Complementary Metal Oxide Semiconductor) image sensor, which is a rolling shutter type image sensor, can be used.
  • the image pickup unit 103 accumulates an optical image (return light from a living tissue) formed by each pixel on a light receiving surface as an electric charge according to the amount of light, and generates and outputs R, G, and B image signals. ..
  • the image pickup unit 103 is not limited to the CMOS image sensor, and may be replaced with another type of image pickup device as long as it is based on the rolling shutter method.
  • the signal output from the image pickup unit 103 is processed by the scope connector circuit 401 provided in the scope connector 400, as will be described later.
  • the processor 200 is a device integrally provided with a signal processing device that processes a signal from the endoscope device 100 and a light source device that irradiates the inside of a body cavity that natural light does not reach through the endoscope device 100.
  • the signal processing device and the light source device may be configured separately.
  • the processor 200 includes a light source device 201, a system controller 202, a light measuring unit 203, a front-stage signal processing circuit 205, a color conversion circuit 206, a rear-stage signal processing circuit 207, and a second memory 208.
  • the processor 200 may include an operation panel (not shown). There are various forms of the operation panel configuration. As a specific configuration of the operation panel, for example, a hardware key for each function mounted on the front surface of the processor 200, a touch panel GUI (Graphical User Interface), a combination of the hardware key and the GUI, and the like can be considered.
  • the operator prtitioner
  • the operator can perform the mode switching operation described later by using the operation panel.
  • the photometric unit 203 acquires the luminance information of the image signal obtained by imaging from the gain circuit included in the color conversion circuit 206, and obtains a predetermined appropriate luminance value (for example, the information on the appropriate luminance value is the photometric unit 203. (It can be stored in advance in an internal memory (not shown)), and the comparison result (whether the current luminance value is appropriate, high, or low) is notified to the system controller 202.
  • the system controller 202 executes various programs stored in a memory (not shown) and controls the entire endoscope system 1 in an integrated manner.
  • the system controller 202 uses a control signal to control the operation and timing of various circuits in the processor 200 so that processing suitable for the endoscope device 100 connected to the processor 200 is performed.
  • the system controller 202 may be connected to the above-mentioned operation panel.
  • the system controller 202 receives the comparison result with the appropriate luminance value from the photometric unit 203, and should maintain the current exposure (exposure), increase the exposure (including the level value to increase), or decrease the exposure. (Including the level value to be lowered) is determined and output to the light source device 201 as an exposure control signal.
  • the system controller 202 changes each operation of the endoscope system 1 and parameters for each operation in response to an instruction from the operator input from the operation panel. For example, when the operator selects the observation mode on the operation panel (mode switching operation), the system controller 202 outputs a mode selection signal for causing the light source corresponding to the observation mode to emit light to the light source device 201.
  • the light source device 201 for example, a plurality of LEDs (Light Emitting Diodes) that emit light in different wavelength bands can be used (see FIG. 3).
  • the system controller 202 determines the selected mode.
  • a mode selection signal corresponding to the above is generated and supplied to the light source control unit 2016 of the light source device 201 (see FIG. 3).
  • the light source control unit 2016 determines the combination of LEDs to emit light and their intensity and amount of light based on the mode selection signal (for example, the combination of light emitting LEDs corresponding to the mode selection signal is stored in advance in an internal memory (not shown). ),
  • the necessary LED control signals are output from each LED 2011 to 2015. When each LED 2011 to 2015 emits each wavelength band light based on the LED control signal supplied from the light source control unit 2016, each emitted light is combined by a cross prism to generate irradiation light (synthesized light).
  • a wired telecommunications method may be used, or an optical wireless communication method may be used.
  • the connector 400 includes an LCB that constitutes a part of the LCB 101 that continues from the processor 200 to the endoscope device 100, and a scope connector circuit 401.
  • the scope connector circuit 401 is provided inside the scope connector 400, but it does not necessarily have to be provided inside the scope connector 400.
  • a circuit corresponding to the scope connector circuit 401 may be provided in the connector portion on the processor 200 side or inside the processor 200.
  • FIG. 3 is a diagram showing, for example, an internal configuration example of a light source device 201 provided inside the processor 200.
  • the light source device 201 includes a green LED 2011 that emits green light, a blue LED 2012 that emits blue light, a red LED 2013 that emits red light, an amber LED 2014 that emits amber light, and a UV LED 2015 that emits UV light. It includes a light source control unit 2016 that controls the light emission of each LED 2011 to 2015, and cross prisms 2017 and 2018.
  • the light source control unit 2016 When the light source control unit 2016 receives the exposure control signal from the system controller 202, the light source control unit 2016 controls the light emission period and the applied current value of each LED currently emitting light (the combination of LEDs to emit light is determined by the observation mode). , The light emission profile of each LED is changed to adjust the exposure (adjust the amount of light) (see FIG. 12 described later). For example, after changing the light emission profile by one step, the light source control unit 2016 changes the light emission profile again and exposes it based on the exposure control signal determined by the photometric result (comparison result with the appropriate luminance value) by the photometric unit 203. Decide if you want to adjust.
  • the light source control unit 2016 determines the combination of LEDs to be emitted based on the mode selection signal indicating the observation mode selected by the operator. At the light emission start stage, the light source control unit 2016 controls the light emission of each LED based on, for example, a predetermined light emission profile (default light emission period and drive current value), and thereafter, the exposure adjustment as described above. I do.
  • a predetermined light emission profile default light emission period and drive current value
  • FIG. 4 is a diagram showing spectra (wavelength characteristics) of each LED 2011 to 2015. Further, FIG. 5 is a diagram showing the characteristics of the illumination light (light that illuminates the observation portion) generated by transmitting each LED through the cross prisms 2017 and 2018.
  • the transmission wavelength band of the green LED 2011 is 540 nm to 575 nm, the peak wavelength is 550 nm, and the half width is 30 nm.
  • a fluorescent substance is mounted on the green LED 2011, and the fluorescent substance emits light in a transmission wavelength region of about 400 nm to 780 nm, as shown in FIG. That is, white light is substantially emitted by the green LED and the phosphor, but this white light is an intermediate product, and as will be described later, the transmission wavelength band is narrowed by the cross prism 2018, and green light is emitted to the observation site. Is irradiated.
  • the transmission wavelength band of the blue LED 2012 is 460 nm to 490 nm, the peak wavelength is 456 nm, and the half width is 21 nm.
  • the transmission wavelength band of the red LED 2013 is 630 nm to 1000 nm, the peak wavelength is 650 nm, and the half width is 20 nm.
  • the transmission wavelength band of the amber LED 2014 is 600 nm to 615 nm, the peak wavelength is 613 nm, and the half width is 19 nm.
  • the transmission wavelength band of UVLED 2015 is 385 nm to 425 nm, the peak wavelength is 405 nm, and the half width is 14 nm.
  • each light (white light, blue light, red light, amber light, UV light as an intermediate product) generated from each LED 2011 to 2015 including the green LED 2011 equipped with a phosphor passes through the cross prisms 2017 and 2018. Then, each light having the characteristics shown in FIG. 5 is emitted to the observation site.
  • the white light generated from the green LED 2011 + phosphor is limited in the transmission wavelength band by the cross prism 2018, and becomes green light of 520 nm to 595 nm.
  • the blue light emitted from the blue LED 2012 becomes blue light of 440 nm to 500 nm by the cross prisms 2017 and 2018.
  • the red light emitted from the red LED 2013 becomes red light of 620 nm to 630 nm by the cross prisms 2017 and 2018.
  • the amber light emitted from the amber LED 2014 becomes amber light of 580 nm to 630 nm by the cross prisms 2017 and 2018. Further, the UV light emitted from the UVLED 2015 becomes UV light of 380 nm to 450 nm by the cross prism 2018.
  • FIG. 7 is a diagram showing a graph of the amount of emitted light / current ratio of each LED.
  • FIG. 7 shows the relationship of only two LEDs (LED1 and LED2) as an example, the same applies to the case where five LEDs 2011 to 2015 as shown in the present embodiment are used. The relationship between the amount of emitted light and the current ratio of each LED as shown in FIG.
  • a correction value a correction table in which the reciprocal of the relationship between the amount of emitted light / the current ratio is used as the correction parameter is prepared in advance (stored in the memory), and the light source control unit 2016 sets the desired amount of emitted light (exposure adjustment).
  • the corrected drive current value is calculated and each LED is driven. By doing so, it is possible to appropriately control the linearity of the emitted light amount / current ratio even when the wavelength and the light distribution of the emitted light of each LED are different.
  • FIG. 8 is a diagram showing an effective pixel region and an invalid region of a rolling shutter type image pickup device using a CMOS sensor as an example.
  • the CMOS sensor includes an effective pixel area that can be imaged and an invalid area that cannot be imaged. Further, a part (peripheral portion) of the effective pixel region is masked, and the region is substantially unable to acquire an image signal.
  • an image is taken using such an image sensor (in the case of global exposure)
  • various phenomena (features) will appear in the captured image.
  • the period not displayed on the screen is the global exposure period, but the idea of the present embodiment is not limited to this case.
  • FIG. 9 is a diagram showing a phenomenon (feature) that appears in an image captured by an image pickup device having an image pickup surface shown in FIG. 8 when a general dimming control process is executed.
  • pseudo-global exposure can be realized by emitting a pulse within the read-out period of the line not shown on the screen.
  • the exposure amount of the top line of the effective pixel area is smaller than that of the other lines by the period from reading to reset, and the top line appears a little dark. If the period from readout to reset is sufficiently shorter than the pseudo-global exposure period (eg, less than 1%), the darkness is not noticeable.
  • the pulsed light when the pulsed light is emitted as shown in FIG. 9c, the upper half of the effective pixel area becomes slightly dark, but the darkness of the area becomes less noticeable as the total exposure amount of each line increases.
  • the region where the exposure amount is different expands, but the difference in brightness due to the difference in the exposure amount becomes less noticeable.
  • FIG. 9d when the pulse emission period is further extended, when the pulse component immediately before increases, the ratio changes smoothly from the lower part to the upper part of the screen. For this reason, artifacts and distortions (undesirable phenomena) are less noticeable.
  • the horizontal stripes will move up and down on the screen. This is because the horizontal stripes appear to move because the ratio of the bright area to the dark area on the screen changes. In order to make the movement of the horizontal stripes inconspicuous, it is necessary to devise an expansion / contraction process during the pulse emission period.
  • FIG. 10 is a diagram for explaining a light amount reduction control that darkens the screen by shortening the pulse emission period.
  • the light intensity reduction control includes control to shorten the pulse emission period from the front (from the direction in which the time advances (from the rolling shutter period after the target pseudo-global exposure period (future))) (FIG. 10A) and pulse emission. There is a control (FIG. 10B) that shortens the period from the rear (from the direction in which the time has elapsed (from the rolling shutter period before (past) the target pseudo-global exposure period)).
  • the total light emission amount (emission intensity ⁇ total light emission period) is the same, so that the screen brightness is the same. ing.
  • the mode of darkening of the screen (the mode when the screen changes to dark) differs depending on which direction the pulse emission period is shortened.
  • FIG. 10A that is, when the pulse emission period is shortened from the front (the direction in which the time progresses), the entire screen changes darkly while the dark area increases from the bottom to the top of the screen.
  • FIG. 10A that is, when the pulse emission period is shortened from the front (the direction in which the time progresses)
  • the entire screen changes darkly while the dark area increases from the bottom to the top of the screen.
  • FIG. 10B that is, when the pulse emission period is shortened from the rear (direction in which time has elapsed), the entire screen changes darkly while the bright region increases from top to bottom. Therefore, for the operator, the darkening mode of FIG. 10A is natural, but that of FIG. 10B is unnatural. Note that, as in the sixth frame 1003, when the shortened pulse emission period falls within the pseudo-global exposure period, the unnatural darkening phenomenon as described above does not occur. Therefore, either the pulse of FIG. 10A or FIG. 10B is used. A light emission period shortening process may be applied.
  • the pulse emission period includes at least a part of the rolling shutter period (when the emission profile includes at least a part of the rolling shutter period), the way in which the entire screen becomes darker depending on the direction of shortening the pulse emission period. Different as described above. Therefore, when shortening the pulse emission period, it is necessary to shorten it from the front (it is necessary to adopt the shortening process of FIG. 10A).
  • FIG. 11 is a diagram for explaining a light amount increase control that brightens the screen by extending the pulse emission period.
  • the light intensity increase control includes a control (FIG. 10A) in which the pulse emission period is extended backward (in the direction in which time has elapsed (in the rolling shutter period before (past) the target pseudo-global exposure period)) and in the forward direction.
  • a control FIG. 10B
  • FIG. 10B extends (in the direction of time progression (in the rolling shutter period after (future) the pseudo-global exposure period of interest)).
  • the total light emission amount (emission intensity ⁇ total light emission period) is the same, so that the screen brightness is the same. ing.
  • the brightening mode (the mode when the screen changes brightly) differs depending on which direction the pulse emission period is extended.
  • FIG. 11A that is, when the pulse emission period is extended backward (in the direction in which time has passed)
  • the entire screen changes brightly while the bright region increases from the bottom to the top of the screen.
  • the pseudo-global exposure period may be reached while the pulse emission period shortening process is repeated (until the proper exposure (exposure) level is reached).
  • the rear rolling shutter period is shortened, but in this case, scanning line-like noise becomes conspicuous, which is not appropriate. Therefore, further improvement is required for the extension and shortening of the pulse emission period.
  • FIG. 12 is a diagram showing an outline of the improved pulse emission period adjustment process.
  • the pulse emission period is extended backward when brightening (increased light intensity) (FIG. 10A). (Same as above), on the contrary, when it is darkened (reduction of light intensity), the pulse emission period is shortened from the front (similar to FIG. 11A).
  • This adjustment operation is shown in FIG. 12 (1) light intensity increase control and FIG. 12 (2) light intensity decrease control.
  • the light amount shift control process is completed by allocating all the light emission amount in the rear rolling shutter period to the front rolling shutter period. Therefore, the light emission profile 1206 is adjusted by this light amount shift control process so that the light emission intensity and the light emission period length are the same as those of the light emission profile 1207. Then, the light amount reduction control process is executed from the light emission profile 1208 (same as the light emission profile 1207) adjusted to this state, and the pulse light emission period of the rolling shutter period is shortened from the front.
  • the light amount shift control process is executed over time (the emission profile 1206 to 1207 is changed over time), the operator wants to immediately darken the screen without waiting for the completion of the light amount shift control process (rapidly screen). I want to make it dark).
  • the light amount shift control process and the light amount reduction control process can be executed at the same time (FIG. 12 (4): light amount reduction + shift).
  • FIG. 12 (4) the amount of light is reduced by lowering the emission intensity level, not by shortening the pulse emission period.
  • the process of lowering the emission intensity over the entire pulse emission period is performed while shifting the amount of light in the rear rolling shutter period to the front rolling shutter period.
  • the emission profile 1210 is formed by allocating the amount of light during the rolling shutter period for increasing the emission intensity (increasing the emission intensity to the maximum value). After setting the light emission profile 1210, if the screen is darkened, the front rolling shutter period may be shortened (FIG.
  • the emission profile may include a pulse emission period in the front rolling shutter period.
  • the light intensity reduction control process (process of FIG. 12 (2)) may be immediately executed.
  • the imaging conditions of the subject change during execution of the light intensity reduction + shift processing (Fig. 12 (4)) and the screen is to be brightened immediately (the screen is to be brightened rapidly).
  • the screen can be brightened (exposure level is increased) by simultaneously executing the light amount shift control process and the light amount increase control process from the state where the light emission intensity level is not at the maximum value (light emission profile 1211) (FIG. 12 (5): Light intensity increase + shift).
  • the amount of light is increased by increasing the emission intensity level, not by extending the pulse emission period. For example, when it is desired to increase the amount of light from the emission profile 1211 to brighten the screen, as shown in FIG.
  • the emission intensity level is increased from the emission profile 1211 and at the same time, the amount of light in the rear rolling shutter period is rolled forward. Shift to the shutter period. Then, this operation is repeated until the emission intensity level reaches the maximum value and the total amount of light in the rear rolling shutter period is completely shifted to the front rolling shutter period. If the emission intensity level is the maximum value and the exposure (exposure) level of the emission profile (not shown) at the completion of the light amount shift is appropriate, the process is completed. On the other hand, if it is desired to make the pulse brighter from this state, the pulse emission period is extended backward (the process of FIG. 12 (1) is executed).
  • the pulse emission period is shortened from the front (the process of FIG. 12 (2) is executed).
  • the emission profile does not include the pulse emission period in the rear rolling shutter period.
  • the light intensity increase control process (process of FIG. 12 (1)) may be executed after the process of raising the light intensity level to the maximum value is executed without executing the light intensity shift process.
  • ⁇ Improved pulse emission period adjustment (extension and shortening) processing use case (series of flows)> (I)
  • the distance between the subject and the tip portion 12 of the endoscope device 100 has increased from the state in which the pulse emission period is shortened (for example, the emission profile 1212 (see FIG. 12 (1))), and the screen becomes dark. Therefore, when it becomes necessary to increase the light, the light amount increase control process (FIG. 12 (1)) is executed, and the pulse emission period is executed behind the pseudo-global exposure period (in the direction of the past rolling shutter period). To extend. While the pulse emission period is being extended (or when the brightness is appropriate and the extension is stopped but the light amount shift control process is not completed), the distance between the subject and the tip 12 of the endoscope device 100 approaches.
  • the light amount shift control process is not completed and there is no pulse emission period before the pseudo-global exposure period (in the direction of time progress), so the light amount The reduction control process (FIG. 12 (2)) cannot be executed. Therefore, the light amount reduction control process for lowering the emission intensity level and the light amount shift control process are simultaneously executed (FIG. 12 (4)) to make the screen brightness appropriate. Further, before reaching a state in which the decrease in intensity is eliminated by reducing the pulse component whose light amount is shifted during the front rolling shutter period to the emission intensity (for example, emission profile 1210), the subject and the tip portion of the endoscope device 100 are reached.
  • the emission intensity for example, emission profile 1210
  • the above-mentioned light amount shift control process (see FIG. 12 (3)) is, for example, It is executed so as to shift the entire pulse emission period to the rolling shutter period of the current frame (forward) over about 1 second. That is, the maximum time required to complete the shift operation is 1 second. For example, when the number of frames imaged per second is 60 frames, the time required for one shift operation is 1/60 second. When 30 frames are imaged per second, the time required for one shift operation is 1/30 second.
  • FIG. 13 and 14 are diagrams for explaining the offset light emission process in the non-light emission period (or the weak light emission period in which the light emission intensity is so weak that the light emission cannot be visually recognized).
  • FIG. 13 shows offset light emission due to a weak pulse.
  • FIG. 14 is a diagram showing differences in captured images that appear depending on the presence or absence of offset light emission when the image sensor comes close to the subject.
  • "weak” means that the emission intensity is sufficiently lower than the emission intensity in the strong emission period, but the emission intensity is such that the emission can be visually recognized.
  • the weak pulse is given as an example of the offset light emission, but the weak continuous light emission may be used, or a light emission pattern other than the weak pulse light emission and the weak continuous light emission may be used. Further, a light emission pattern may be formed by combining pulse light emission and continuous light emission, or a light emission pattern having an irregular pulse width may be formed.
  • the offset light emission processing is executed separately (in the background of the dimming control processing) from the conventional dimming control processing (FIG. 9 and the like) and the pulse emission period adjustment (dimming control) processing (see FIG. 12) according to the present embodiment.
  • This is a process in which a weak offset light is emitted during a non-light emitting period.
  • the weak offset light emission can be regarded as 0 (zero) when the intensity of light emission by the dimming control process (which applies to any dimming control process) is equal to or higher than a predetermined value.
  • the intensity of light emission by the dimming control process is less than a predetermined value (or when the emission intensity is zero)
  • the subject is irradiated only with offset light emission.
  • the event that originally occurred in the non-light emitting period cannot be acquired as an image, but the event in the non-light emitting period can also be captured by the offset light emission.
  • the same image as the frame Fk-1 is acquired as the captured image of the frame Fk.
  • the image captured by the frame Fk is clearly different from that of the frame Fk-1, regardless of whether it is pulsed light or continuous light, and the image sensor is captured by the frame Fk. It can be seen that the event when the subject suddenly approaches the subject is captured. Further, it can be seen that there is no difference in the captured image of the frame Fk + 1 depending on the presence or absence of weak offset light emission.
  • FIG. 15 is a flowchart for explaining the dimming control process according to the present embodiment.
  • the processing of each of the following steps is mainly described with the system controller 202 as the main operating body, but the processing is not limited to this, and a control unit (processor) for performing operation control and arithmetic processing is separately provided and executed by the control unit (processor). May be good.
  • the function of the system controller 202 may be provided to the light source control unit 2016 of the light source device 201. Therefore, the dimming (reduction) control process can be a part of the whole operation of the endoscope system 1 or can be a part of the operation of the light source device 201. In this case, the light source control unit 2016 becomes the main operation main body of the processing of each step.
  • Step 1501 The light source control unit 2016 receives a mode selection signal corresponding to the observation mode selected by the operator from the system controller, and uses the above correction table for each light source (any combination of green LED 2011 to UV LED 2015) to be emitted. Therefore, the linearity of the emitted light amount / current ratio of each light source is corrected.
  • the light source control unit 2016 drives each light source to emit light by driving each light source by the driving current after linearity correction of the emitted light amount / current ratio to generate illumination light, and irradiates the subject with this illumination light.
  • the emission profile (period of strong emission and level and period of weak emission) at this time can be set to a predetermined value (default value), or the emission used in the last operation when the endoscope was used last time. Profiles can also be used.
  • Step 1503 The image sensor (for example, a CMOS sensor) of the image pickup unit 103 detects the reflected light from the subject generated by irradiating the subject (observation site) with the illumination light generated in step 1702, and passes through the scope connector circuit 401. The captured image signal is transmitted to the processor 200.
  • the photometric unit 203 acquires the luminance information of the current captured image signal from the gain circuit included in the color conversion circuit 206, compares it with a predetermined appropriate luminance value (for example, takes a difference value), and compares the comparison result. Pass it to the system controller 202. In the photometric unit 203, only the luminance information of the current captured image signal may be acquired from the gain circuit, and the comparison with the appropriate luminance value may be executed by another processing unit such as the system controller 202.
  • Step 1504 The system controller 202 has a comparison result received from the photometric unit 203 (or the system controller 202 may calculate the comparison result (difference value)) and a predetermined threshold value (threshold value for determining whether the exposure level is appropriate). To determine if the current exposure level is appropriate. For example, if the comparison result (difference value) is equal to or less than the predetermined threshold value, it can be determined to be appropriate. If it is determined that the current exposure level is not appropriate (No in step 1504), the process proceeds to step 1507. On the other hand, when it is determined that the current exposure level is appropriate (Yes in step 1504), the process proceeds to step 1505.
  • the light source control unit 2016 receives information on the emission profile to be applied from the system controller 202, and emits any of the LEDs 2011 to 2015 to generate illumination light based on the received emission profile and mode selection signal. Illuminate the subject. Further, the image pickup element (CMOS sensor) of the image pickup unit 103 detects the reflected light from the subject irradiated with the illumination light, generates an image pickup image signal, and transmits the image pickup image signal to the processor. Further, the processor 200 executes predetermined image processing on the captured image signal to generate display image data, and displays the display image data on the screen of the monitor (display device) 300.
  • CMOS sensor image pickup element
  • Step 1506 The system controller 202 determines whether the operator has input an instruction to end the observation, such as the end of imaging or the off of the illumination light. When the instruction to end the observation is input (YES in step 1506), the dimming control process ends. If the observation end instruction is not input (instruction is not detected) (NO in step 1506), the process proceeds to step 1503, and the determination / monitoring of whether the current exposure level is appropriate and the dimming control process are performed. And so on.
  • the image pickup unit 103 is installed at the tip portion 12 of the endoscope device 100 and moves in the body cavity of the subject. Therefore, the exposure level may change because the subject (observation site) moves closer to or further away from the subject. Therefore, the operation of the light source device 201 is controlled so as to constantly monitor the luminance level of the captured image and maintain an appropriate exposure level.
  • Step 1507 The system controller 202 determines whether the operator has instructed a rapid light / dark change.
  • the amount of light shift control process (FIG. 12 (3)) is terminated, the amount of light increase control process (FIG. 12 (1)) or the amount of light reduction control process (FIG. 12 (1)) is completed.
  • FIG. 12 (2)) is executed.
  • the light / dark change is realized by the light emission intensity in addition to the light amount shift control process (FIGS. 12 (4) and (5)).
  • step 1507 When executing a rapid light / dark change (YES in step 1507), the process proceeds to step 1513. On the other hand, when the rapid light / dark change is not executed (NO in step 1507), the process proceeds to step 1508.
  • Step 1508 The system controller 202 determines whether the operator has instructed the screen to be brighter or darker. If it is instructed to brighten, the process proceeds to step 1509. On the other hand, if it is instructed to darken, the process proceeds to step 1511. In addition to the operator's instruction, the luminance value level in the captured image may be measured by the photometric unit 203, and it may be automatically determined whether to raise or lower the exposure level.
  • the system controller 202 When it is instructed to brighten the screen, the system controller 202 extends the pulse emission period of the current emission profile (increases the amount of light) by executing the light intensity increase control process. That is, as shown in FIG. 12 (1), the system controller 202 extends the pulse emission period of the rear rolling shutter period and increases the total light intensity of the emission profile until the desired brightness is reached.
  • the system controller 202 has a pulse emission period in the rolling shutter period (rolling shutter period of the previous frame) behind the pseudo-global exposure period (direction in which time has elapsed) with respect to the emission profile changed in step 1509.
  • the amount of light is shifted forward (in the direction in which time advances) to the rolling shutter period (rolling shutter period of the current frame).
  • This light intensity shift control process is executed until all the light emitting components in the rear rolling shutter period are shifted (allocated) to the front rolling shutter period.
  • the amount of light shifted in one operation can be set to an amount that can shift the amount of light determined by the total rolling shutter period in one frame ⁇ the maximum value of the emission intensity in a predetermined time. For example, when a predetermined time is set to 1 second and 60 frames are imaged per second, the shift light amount at one time may be (total rolling shutter period in 1 frame x light amount determined by the maximum value of emission intensity) / 60. can.
  • step 1509 When brightening the screen, the reason why the amount of light is increased first (step 1509) is that the scan line-like noise is not noticeable even if the pulse emission period is extended forward, and then the amount of light is shifted (step 1510). This is to enable the process of increasing / decreasing the amount of light to be appropriately performed later (without making scan line-like noise noticeable). After step 1510, the process proceeds to step 1503.
  • Step 1511 When it is instructed to darken the screen, the system controller 202 first sets the rolling shutter period (1) behind the pseudo-global exposure period (in the direction in which time has passed) with respect to the light emission profile before the change (current). The amount of light in the pulse emission period in the rolling shutter period of the previous frame) is shifted to the rolling shutter period (rolling shutter period of the current frame) in the forward direction (direction in which time advances) (see FIG. 12 (3)).
  • Step 1512 The system controller 202 shortens the pulse light emission period of the light emission profile (reduces the light amount) by executing the light amount reduction control process for the light emission profile whose light intensity is shifted in step 1511. That is, the system controller 202 shortens the pulse emission period in the front rolling shutter period and reduces the total light intensity of the emission profile until the desired darkness, as shown in FIG. 12 (2). After step 1512, processing proceeds to step 1503.
  • Step 1513 When the screen is darkened, the system controller 202 shifts the light quantity component (light emission component) of the pulse emission period in the rear rolling shutter period to the pulse emission period in the front rolling shutter period while lowering the pulse emission intensity (FIG. 12). See (4). As a result, the rear pulse emission period is shortened, the front pulse emission period is extended, and the pulse emission intensity is reduced. Therefore, two operations of screen darkening and light intensity shift can be executed at the same time, and the pulse emission intensity can be rapidly executed. You can darken the screen. When the light amount shift operation causes the front rolling shutter period to exceed a predetermined period and reaches an appropriate exposure level, the system controller 202 determines the front pulse emission period increased by the shift until the pulse emission intensity becomes the maximum value.
  • the light amount shift operation causes the front rolling shutter period to exceed a predetermined period and reaches an appropriate exposure level
  • the system controller 202 shifts the light amount component (light emission component) of the pulse emission period in the rear rolling shutter period to the pulse emission period in the front rolling shutter period while increasing the pulse emission intensity (the pulse emission component). See FIG. 12 (5)). If the pulse emission intensity reaches the maximum value before the desired brightness is reached, the system controller 202 extends the pulse emission period (until the desired brightness) in the direction of the rear rolling shutter period. As a result, the emission profile obtained by simultaneously executing the pulse emission intensity increase process and the light amount shift control process (FIG. 12 (5)) is subjected to the light amount increase control process (FIG. 12 (1)). It becomes the same as the light emission profile obtained by executing the light amount shift control process (FIG. 12 (3)).
  • ⁇ Effect of this embodiment> it is possible to secure a sufficient amount of light and image a subject while avoiding rolling shutter distortion and artifacts. Further, even if the change in the pulse emission period extends to the rolling shutter period, the vertical movement of the horizontal stripes can be made inconspicuous. Furthermore, when multiple LEDs are used at the same time as a light source, if the emission intensity changes, the ratio of the amount of light of each LED will change unless the difference in linearity of the amount of emitted light / current ratio of each LED is corrected and current control is performed. This causes a change in light distribution and a change in color, but according to this embodiment, the light emission intensity can be restored to the original in a short time, and such a problem can be solved.
  • Specific matter 1 A light source device that generates illumination light to illuminate a subject. Multiple semiconductor light emitting devices that emit light with different wavelength bands, A control unit that controls the emission profile of the plurality of semiconductor light emitting elements and drives the plurality of semiconductor light emitting elements is provided. When raising the exposure level, the control unit extends the light emission profile in the first direction opposite to the time progress direction, and when lowering the exposure level, the control unit extends the light emission profile in the time progress direction. A light source device that shortens from a certain second direction.
  • the emission profile includes (i-1) a period during which the illumination light is emitted during at least a part of the pseudo-global exposure period of the image pickup device that images the subject, or (ii-2) a pseudo-global exposure period of the image pickup element.
  • a light source device that defines a pulse emission period indicating a period during which the illumination light is emitted as at least a part of a rolling shutter period, and (ii) a pulse emission intensity indicating the intensity of the illumination light during the pulse emission period.
  • control unit When raising the exposure level, the control unit extends the light emission profile in the first direction and then exposes the light source component in the rolling shutter period in the first direction from the pseudo global exposure period to the pseudo global exposure.
  • a light source device that changes the emission profile by shifting to the emission component in the rolling shutter period in the second direction rather than the period.
  • the control unit shifts the light emitting component from the rolling shutter period in the first direction to the rolling shutter period in the second direction, so that the rolling shutter period in the second direction becomes a predetermined period or longer and the exposure level becomes appropriate.
  • a light source device that replaces the emission component of the rolling shutter period in the second direction with an increase in the pulse emission intensity so that the pulse emission intensity reaches a predetermined maximum value after reaching the point.
  • the control unit is a light source device that further executes a process of correcting the linearity of the emitted light amount / current ratio of the plurality of semiconductor light emitting elements.
  • the control unit is a light source device that executes offset light emission with pulsed light or continuous light in addition to light emission according to the light emission profile.
  • Specific matter 10 It is an endoscope system that inserts an endoscope into the observation target and acquires an image of the subject.
  • Multiple semiconductor light emitting devices that emit light with different wavelength bands
  • An image sensor that irradiates the subject with illumination light, detects the reflected light from the subject, and generates an image signal.
  • a processor that processes the image signal to generate an image of the subject and displays it on a monitor, and a main control that generates a control signal for controlling the light emission profiles of the plurality of semiconductor light emitting elements based on the image signal.
  • Department and A light source control unit that receives the control signal from the main control unit and drives the plurality of semiconductor light emitting elements with a drive signal corresponding to the light emission profile.
  • the emission profile includes (i-1) a period during which the illumination light is emitted for at least a part of the pseudo-global exposure period of the image sensor that images the subject, or (ii-2) a pseudo-global exposure period of the image sensor.
  • a pulse emission period indicating a period during which the illumination light is emitted is specified for at least a part of the rolling shutter period, and (ii) a pulse emission intensity indicating the intensity of the illumination light during the pulse emission period is defined.
  • Specific matter 11 In specific matter 10, When raising the exposure level, the main control unit extends the light emission profile in the first direction, and then obtains the light emission component in the rolling shutter period in the first direction from the pseudo global exposure period. An endoscope system that changes the emission profile by shifting to the emission component in the rolling shutter period in the second direction from the exposure period.
  • Specific matter 15 In specific matter 14, After the shift operation of the light emitting component from the rolling shutter period in the first direction to the rolling shutter period in the second direction is completed and the exposure level reaches an appropriate level, the main control unit sets the pulse emission intensity in advance. An endoscopic system that replaces the emission component of the rolling shutter period in the second direction with an increase in the pulse emission intensity so as to reach a determined maximum value.
  • Endoscope system 100 Endoscope device 103 Imaging unit 200 Processor 201 Light source device 2011 Green LED 2012 blue LED 2013 red LED 2014 amber LED 2015 UV LED 2016 Light source control unit 2017, 2018 Cross prism 202 System controller 203 Metering unit 300 Monitor

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Astronomy & Astrophysics (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

本開示は、ローリングシャッタに起因する歪みやアーティファクトの発生を回避しつつ、十分な光量を確保すると共に、パルス発光器官の変化がローリングシャッタ期間に及んでも明るさムラや横縞を目立ちにくくする技術を提案する。そのため、本開示による光源装置は、被写体に照射する照明光を生成する光源装置であって、波長帯域がそれぞれ異なる光を出射する複数の半導体発光素子と、複数の半導体発光素子の発光プロファイルを制御し、複数の半導体発光素子を駆動させる制御部と、を備え、制御部は、露光レベルを上げる場合、発光プロファイルを、時間の進行方向とは逆方向である第1方向に伸長し、露光レベルを下げる場合、発光プロファイルを、時間の進行方向である第2方向から短縮する(図12参照)。

Description

光源装置、および内視鏡システム
 本開示は、光源装置、および内視鏡システムに関する。
 ローリングシャッタ方式のイメージセンサを搭載する通常の内視鏡装置においては、当該イメージセンサの有効画素読み出し期間(ローリングシャッタ期間)に光源を消灯させ、それ以外の期間(擬似グローバル露光期間)に光源を点灯させること(パルス発光制御)により、擬似グローバル露光を実行し、ローリングシャッタに起因する望ましくない現象、例えば歪みやアーティファクトの発生を回避している。
 一方、ローリングシャッタ期間に光源を完全に消灯してしまうと、被写体(観察対象部位)次第で光量が不足してしまい、良好が画像を取得することができない。例えば、特許文献1から3などでは、この光量不足を解消するために、ローリングシャッタ期間の一部をパルス発光期間に含める光源制御について示されている。
特開2018-182580号公報 特許第5379932号公報 特許第6239220号公報
 しかしながら、特許文献1から3のような光源制御を実行すると、隣接するフレームでラインごとの露光時間差により画面の明るさムラや横縞などが発生する。そして、フレーム毎のパルス発光期間の変化によって、この明るさムラや横縞が表示画面上で上下移動して目障りとなるという課題がある。また、光量不足を解消するために、ローリングシャッタ期間にオフセット発光させる場合、オフセット発光がある程度強くなると、長時間露光画像および高速露光画像が二重露光されたような不自然な画像を生成してしまう。
 本開示は、このような状況に鑑みてなれたものであり、ローリングシャッタに起因する歪みやアーティファクトの発生を回避しつつ、十分な光量を確保すると共に、パルス発光期間の変化がローリングシャッタ期間に及んでも明るさムラや横縞を目立ちにくくする技術を提案する。
 上記課題を解決するために、本実施形態は、被写体に照射する照明光を生成する光源装置であって、波長帯域がそれぞれ異なる光を出射する複数の半導体発光素子と、複数の半導体発光素子の発光プロファイルを制御し、複数の半導体発光素子を駆動させる制御部と、を備え、制御部は、露光レベルを上げる場合、発光プロファイルを、時間の進行方向とは逆方向である第1方向に伸長し、露光レベルを下げる場合、発光プロファイルを、時間の進行方向である第2方向から短縮する、光源装置を提案する。
 また、本実施形態は、観察対象内に内視鏡を挿入し、被写体の画像を取得する内視鏡システムであって、波長帯域がそれぞれ異なる光を出射する複数の半導体発光素子と、照明光を前記被写体に照射し、当該被写体からの反射光を検出して画像信号を生成する撮像素子と、画像信号を処理して被写体の画像を生成し、モニタに表示するプロセッサと、画像信号に基づいて、複数の半導体発光素子の発光プロファイルを制御するための制御信号を生成する主制御部と、主制御部から制御信号を受信し、発光プロファイルに応じた駆動信号で複数の半導体発光素子を駆動させる光源制御部と、を備え、発光プロファイルは、(i-1)被写体を撮像する撮像素子の擬似グローバル露光期間の少なくとも一部に照明光を出射する期間、あるいは(ii-2)撮像素子の擬似グローバル露光期間およびローリングシャッタ期間の少なくとも一部に照明光を出射する期間を示すパルス発光期間と、(ii)当該パルス発光期間における照明光の強度を示すパルス発光強度を規定し、主制御部は、露光レベルを上げる場合、発光プロファイルを、時間の進行方向とは逆方向である第1方向に伸長し、露光レベルを下げる場合、発光プロファイルを、時間の進行方向である第2方向から短縮する、内視鏡システムを提案する。
 本開示に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、本開示は、要素及び多様な要素の組み合わせ及び以降の詳細な記述と添付される特許請求の範囲の様態により達成され実現される。
 本明細書の記述は典型的な例示に過ぎず、特許請求の範囲又は適用例を如何なる意味に於いても限定するものではないことを理解する必要がある。
 本開示によれば、ローリングシャッタに起因する歪みやアーティファクトの発生を回避しつつ、十分な光量を確保すると共に、パルス発光期間の変化がローリングシャッタ期間に及んでも明るさムラや横縞を目立ちにくくすることが可能となる。
本実施形態の内視鏡システムの全体外観例を示す図である。 本実施形態の内視鏡システムの概略内部構成例を示す図である。 プロセッサ200の内部に設けられた光源装置201の内部構成例を示す図である。 各LED2011から2015のスペクトル(波長特性)を示す図である。 クロスプリズム2017および2018に各LEDを透過させて生成される照明光(観察部位を照明する光)の特性を示す図である。 配光分布が異なるLEDを用いた光源の構成例を示す図である。 各LEDの出射光量/電流比のグラフを示す図である。 CMOSセンサを一例とするローリングシャッタ方式の撮像素子の有効画素領域と無効領域を示す図である。 一般的な調光制御処理を実行する場合に、図8に示す撮像面を有する撮像素子を用いて撮像した画像に現れる現象(特徴)を示す図である。 パルス発光期間を短縮することにより画面を暗くする光量低減制御を説明するための図である。 パルス発光期間を伸長することにより画面を明るくする光量増加制御を説明するための図である。 改良されたパルス発光期間調整処理の概要を示す図である。 無発光期間(あるいは、発光が視認できないほど発光強度が弱い弱発光期間)におけるオフセット発光処理を説明するための図である。 被写体に撮像素子が急接近したとき、オフセット発光の有無によって現れる撮像画像の相違点を示す図である。 本実施形態による調光制御処理を説明するためのフローチャートである。
 以下、本開示の実施形態について図面を参照しながら説明する。なお、以下においては、本開示の一実施形態として内視鏡システムを例に取り説明する。
 内視鏡システムにおける観察の対象部位は、例えば、呼吸器等、消化器等である。呼吸器等は、例えば、肺、気管支、耳鼻咽喉である。消化器等は、例えば、大腸、小腸、胃、食道、十二指腸、子宮、膀胱等である。上述のような対象部位を観察する場合、特定の生体構造を強調した画像の活用がより効果的である。
 <内視鏡システムの構成>
 図1は、本実施形態の内視鏡システムの全体外観例を示す図であり、図2は、本実施形態の内視鏡システムの概略内部構成例を示す図である。内視鏡システム1は、内視鏡装置(電子スコープ)100と、プロセッサ200と、モニタ300とを備えている。なお、内視鏡装置100のプロセッサ側端部には、本実施形態の特徴に係るコネクタ回路を含むスコープコネクタ(以下、単に「コネクタ」と言うこともある)400が設けられている。
 内視鏡装置100は、被検体の内部に挿入される細長い管状の挿入部11を備えている。内視鏡装置100は、例えば、後述する光源装置201からの照射光を導くためのLCB(Light Carrying Bundle)101と、LCB101の出射端に設けられた配光レンズ102と、対物レンズ(図示せず)を介して被照射部分(観察部位)からの戻り光を受光する撮像ユニット103と、撮像ユニット103を駆動するドライバ信号処理回路105と、第1メモリ106とを備えている。
 光源装置201からの照射光は、LCB101内に入射し、LCB101内で全反射を繰り返すことによって伝播する。LCB101内を伝播した照射光(照明光)は、挿入部11の先端部12内に配置されたLCB101の出射端から出射され、配光レンズ102を介して観察部位を照射する。被照射部分からの戻り光は、対物レンズを介して撮像ユニット103の受光面上の各画素で光学像を結ぶ。
 撮像ユニット103は、挿入部11の先端部12内に配置されており、ローリングシャッタ方式のイメージセンサであるCMOS(Complementary Metal Oxide Semiconductor)イメージセンサを用いることができる。撮像ユニット103は、受光面上の各画素で結像した光学像(生体組織からの戻り光)を光量に応じた電荷として蓄積して、R、G、Bの画像信号を生成して出力する。なお、撮像ユニット103は、CMOSイメージセンサに限らず、ローリングシャッタ方式に基づくものであれば、その他の種類の撮像装置に置き換えられてもよい。撮像ユニット103から出力された信号は、後述するように、スコープコネクタ400に設けられたスコープコネクタ回路401によって処理される。
 プロセッサ200は、内視鏡装置100からの信号を処理する信号処理装置と、自然光の届かない体腔内を内視鏡装置100を介して照射する光源装置とを一体に備えた装置である。別の実施形態では、信号処理装置と光源装置とを別体で構成してもよい。プロセッサ200は、光源装置201と、システムコントローラ202と、測光部203と、前段信号処理回路205と、色変換回路206と、後段信号処理回路207と、第2メモリ208とを備えている。
 プロセッサ200は、図示しない操作パネルを備えてもよい。操作パネルの構成には種々の形態がある。操作パネルの具体的構成としては、例えば、プロセッサ200のフロント面に実装された機能毎のハードウェアキーやタッチパネル式GUI(Graphical User Interface)、ハードウェアキーとGUIとの組合せ等が考えられる。オペレータ(施術者)は、操作パネルによって後述するモード切替操作が可能となる。
 測光部203は、色変換回路206に含まれるゲイン回路から撮像して得られた画像信号の輝度情報を取得し、予め決められた適正輝度値(例えば、適正輝度値の情報は、測光部203の図示しない内部メモリに予め格納しておくことができる)と比較し、比較結果(現状の輝度値が適正か、高いか、あるいは低いか)をシステムコントローラ202に通知する。
 システムコントローラ202は、図示省略のメモリに格納された各種プログラムを実行し、内視鏡システム1全体を統合的に制御する。システムコントローラ202は、制御信号を用いて、プロセッサ200に接続されている内視鏡装置100に適した処理がなされるようにプロセッサ200内の各種回路の動作やタイミングを制御する。なお、システムコントローラ202は、上述の操作パネルに接続されてもよい。
 また、システムコントローラ202は、測光部203から適正輝度値との比較結果を受け取り、現状の露光(露出)を維持すべきか、露光を上げるべきか(上げるレベル値を含む)、あるいは露光を下げるべきか(下げるレベル値を含む)を決定し、露光制御信号として光源装置201に出力する。
 さらに、システムコントローラ202は、操作パネルから入力されるオペレータからの指示に応じて、内視鏡システム1の各動作及び各動作のためのパラメータを変更する。例えば、オペレータが操作パネルによって観察モードを選択する(モード切替操作)と、システムコントローラ202は、観察モードに対応した光源を発光させるためのモード選択信号を光源装置201に出力する。後述するが、光源装置201としては、例えば、それぞれ異なる波長帯域の光を出射する複数のLED(Light Emitting Diode)を用いることができる(図3参照)。オペレータが、例えば、プロセッサ200に設けられたモード選択スイッチを操作することによって観察モード(例えば、通常観察モード、特殊光観察モード、SatO2モードなど)を選択すると、システムコントローラ202は、選択されたモードに対応するモード選択信号を生成し、これを光源装置201の光源制御部2016に供給する(図3参照)。光源制御部2016は、モード選択信号に基づいて、発光させるLEDの組み合わせとそれらの強度および光量を決定し(例えば、モード選択信号に対応する、発光LEDの組み合わせ等が図示しない内部メモリに予め格納されている)、必要なLED制御信号を各LED2011から2015に出力する。各LED2011から2015は、光源制御部2016から供給されてきたLED制御信号に基づいて各波長帯域光を出射すると、各出射光はクロスプリズムによって合成され、照射光(合成光)が生成される。
 内視鏡装置100とプロセッサ200との間のデータ通信は、有線の電気通信方式を用いてもよいし、光無線通信方式を用いてもよい。
 図2に示されるように、内視鏡装置100とプロセッサ200は、スコープコネクタ400を介して接続される。コネクタ400は、プロセッサ200から内視鏡装置100へと続くLCB101の一部を構成するLCBと、スコープコネクタ回路401と、を備える。なお、本実施形態では、スコープコネクタ回路401は、スコープコネクタ400内に設けられているが、必ずしもスコープコネクタ400の内部に設けられなくても良い。例えば、プロセッサ200側のコネクタ部やプロセッサ200の内部にスコープコネクタ回路401に相当する回路を設けてもよい。
 <光源装置201の内部構成例>
 図3は、例えば、プロセッサ200の内部に設けられた光源装置201の内部構成例を示す図である。
 光源装置201は、緑色光を出射する緑LED2011と、青色光を出射する青LED2012と、赤色光を出射する赤LED2013と、アンバー光を出射するアンバーLED2014と、UV光を出射するUV LED2015と、各LED2011から2015の発光を制御する光源制御部2016と、クロスプリズム2017および2018と、を備えている。
 光源制御部2016は、露光制御信号をシステムコントローラ202から受信すると、現在発光している各LED(観察モードによって発光させるLEDの組み合わせは決まっている)の発光期間および印加電流値を制御することにより、各LEDの発光プロファイルを変更して露光調整(光量調整)をする(後述の図12参照)。例えば、発光プロファイルを1段階変更した後、光源制御部2016は、測光部203による測光結果(適正輝度値との比較結果)によって決まる露光制御信号に基づいて、上記発光プロファイルを再度変更して露光調整するか判断する。
 また、光源制御部2016は、オペレータによって選択された観察モードを示すモード選択信号に基づいて、発光すべきLEDの組み合わせを決定する。発光開始段階では、光源制御部2016は、例えば、予め決められた発光プロファイル(デフォルトの発光期間および駆動電流値)に基づいて、各LEDの発光を制御し、その後は、上述のような露光調整を行う。
 <各LED光源について>
 図4は、各LED2011から2015のスペクトル(波長特性)を示す図である。また、図5は、クロスプリズム2017および2018に各LEDを透過させて生成される照明光(観察部位を照明する光)の特性を示す図である。
 緑LED2011の透過波長帯域は540nmから575nmであり、ピーク波長は550nm、半値幅は30nmである。緑LED2011には蛍光体が搭載され、この蛍光体により、図4に示すように、約400nmから780nmの透過波長領域の光が発せられる。つまり、緑LEDと蛍光体により実質的に白色光が出射されるが、この白色光は中間生成物であり、後述するように、クロスプリズム2018によって透過波長帯域は狭められ、観察部位には緑光が照射される。青LED2012の透過波長帯域は460nmから490nmであり、ピーク波長は456nm、半値幅は21nmである。赤LED2013の透過波長帯域は630nmから1000nmであり、ピーク波長は650nm、半値幅は20nmである。アンバーLED2014の透過波長帯域は600nmから615nmであり、ピーク波長は613nm、半値幅は19nmである。UV LED2015の透過波長帯域は385nmから425nmであり、ピーク波長は405nm、半値幅は14nmである。
 蛍光体が搭載された緑LED2011を含む各LED2011から2015から発生られた各光(中間生成物としての白色光、青色光、赤色光、アンバー光、UV光)は、クロスプリズム2017および2018を透過すると、図5に示す特性の各光となって観察部位に照射されることになる。詳細には、緑LED2011+蛍光体から発生られた白色光は、クロスプリズム2018によって、透過波長帯域が制限され、520nmから595nmの緑光となる。青色LED2012から発せられた青色光は、クロスプリズム2017および2018によって、440nmから500nmの青色光となる。また、赤色LED2013から発せられた赤色光は、クロスプリズム2017および2018によって、620nmから630nmの赤色光となる。アンバーLED2014から発せられたアンバー光は、クロスプリズム2017および2018によって、580nmから630nmのアンバー光となる。さらに、UV LED2015から発せられたUV光は、クロスプリズム2018によって、380nmから450nmのUV光となる。
 <各LEDのリニアリティ差の補正>
 光源装置201を複数のLEDで構成する場合、各LED2011から2015が発する光の波長のみならず、配光(各方向における光度分布)が異なる場合(図6参照:配光分布が異なるLEDを用いた光源の構成例)があり、各LED2011から2015からの出射光の色や配光の変化が発生する可能性がある。また、LEDの種類によっては駆動電流値を下げるために順方向電圧を下げると、駆動電流値が急激に低下しLEDが発光しなくなるため駆動電流値を大きく下げることができない場合がある。このような状況に対処するため、各LED2011から2015の駆動電流制御に合せて各LED2011から2015の出射光量/電流比のリニアリティの差を動的に補正しなければならなくなる。
 しかし、リニアリティの差を動的に補正する処理は複雑であるため、予めリニアリティの差がないように駆動電流値を決定することが好ましい。そこで、本実施形態では、出射光量/電流比のリニアリティを補正するための補正テーブルを予め用意し、これを用いて各LED2011から2015の駆動電流値を決定する。図7は、各LEDの出射光量/電流比のグラフを示す図である。図7では、一例として2つのLED(LED1およびLED2)のみの関係を示しているが、本実施形態に示すような5つのLED2011から2015を用いる場合も同様である。図7に示すような各LEDの出射光量/電流比の関係は、予め各LEDを測定することによって取得することができる。このため、補正値として、出射光量/電流比の関係の逆数を補正パラメータとする補正テーブルを予め備えておき(メモリに格納しておく)、光源制御部2016は、所望の出射光量(露光調整によって得られる目標出射光量)に対応する補正パラメータを乗算することにより、補正された駆動電流値を算出し、各LEDを駆動する。このようにすることにより、各LEDの出射光の波長や配光が異なっている場合であっても出射光量/電流比のリニアリティを適切に制御することが可能となる。
 <撮像素子の撮像面の構成例>
 図8は、CMOSセンサを一例とするローリングシャッタ方式の撮像素子の有効画素領域と無効領域を示す図である。CMOSセンサは、撮像可能な有効画素領域と撮像することができない無効領域を含んでいる。また、有効画素領域の一部(周辺部)はマスクされ、実質的には画像信号を取得できない領域となっている。このような撮像素子を用いて撮像する場合(グローバル露光の場合)、様々な現象(特徴)が撮像画像に現れることになる。なお、本実施形態では、画面に表示されない期間をグローバル露光期間するが、本実施形態の思想はこの場合に限定されるものではない。
 <一般的な調光制御処理>
 図9は、一般的な調光制御処理を実行する場合に、図8に示す撮像面を有する撮像素子を用いて撮像した画像に現れる現象(特徴)を示す図である。図9aのように、画面に示されないラインの読み出し期間内にパルス発光すると、擬似グローバル露光を実現することができる。また、図9bのようにパルス発光すると、有効画素領域の一番上のラインは読み出しからリセットまでの期間分だけ他のラインよりも露光量が少なくなり、一番上のラインが多少暗く映るが、読み出しからリセットまでの期間が擬似グローバル露光期間よりも十分に短ければ(例えば、1%未満)暗さは目立たない。また、図9cのようにパルス発光すると、有効画素領域の上半分程度が僅かに暗くなるが、各ラインの総露光量が増加している分だけさらにその領域の暗さが目立たなくなる。このように、パルス発光期間が伸びるほど露出量が異なる領域は広がるが露出量が異なることに起因する明るさの違いは目立たなくなるという特徴がある。さらに、図9dのように、パルス発光期間をさらに伸ばすと、直前のパルス成分が増加すると、画面下部から上部に掛けて滑らかに比率が変わっていく。このため、アーティファクトや歪(好ましくない現象)が目立ちにくくなる。
 また、一般的な調光制御処理(図9)の場合、擬似グローバル露光期間の一部の期間(例えば、図9aの場合)のみ、または擬似グローバル露光期間の全部とローリングシャッタ期間の一部を含む連続した期間(例えば、図9bからdの場合)に均一な強度のパルス発光をフレーム毎に1回行う。パルス発呼期間がローリングシャッタ期間を含む場合(図9bからdの場合)、パルス発光中に読み出し・リセットされたラインは、リセット期間分露光量が少なくなり、他のラインとの境界に横縞が発生することがある。ただし、パルス発光期間がリセット期間に比べて十分に大きく、期間と位相が一定で変化しなければ横縞は目立たない。
 <パルス発光期間伸縮による走査線様ノイズ(横縞の上下移動)の発生と、パルス発光期間伸縮処理の必要性>
 露光(露出)が適正の状態が継続し、パルス発光期間が固定(パルス発光プロファイルが固定)であれば画面上に出現する明暗の横縞は動かない(走査線様ノイズが発生しない)ため、横縞は目立たない。しかし、実際には、被写体の露光(露出)レベルは被写体の条件によって変動するため、照明光のパルス発光期間を伸長あるいは短縮して適切な露光(露出)レベルにする必要がある。
 一方、パルス発光期間を変動させると、横縞が画面上で上下に移動することになる。画面上の明るい領域と暗い領域の割合に変化が生じるため横縞が移動しているように見えるからである。この横縞の移動を目立たなくするためには、パルス発光期間の伸縮処理を工夫する必要がある。
 以下に、単純にパルス発光期間を伸縮する場合とこの場合の技術的課題について説明し、引き続き、この単純なパルス発光期間の伸長による技術的課題を解決する改善案について説明する。
 <パルス発光期間調整による明暗制御(光量低減および光量増加制御)>
 まずは、単純に、一方向に対してパルス発光期間を伸縮する場合について説明する。
(i)光量低減制御(図10):パルス発光期間短縮(画面が明るすぎるため暗くしたい場合)
 図10は、パルス発光期間を短縮することにより画面を暗くする光量低減制御を説明するための図である。光量低減制御には、パルス発光期間を前方から(時間が進行する方向から(対象となる擬似グローバル露光期間の後(未来)のローリングシャッタ期間から))短縮する制御(図10A)と、パルス発光期間を後方から(時間が経過した方向から(対象となる擬似グローバル露光期間の前(過去)のローリングシャッタ期間から))短縮する制御(図10B)がある。
 上述のように、パルス発光期間を短縮する(光量を低減する)と画面上で暗い領域の面積が増加し、横縞(明るい領域と暗い領域の境界線)が上下に移動するため、画面における横縞の存在が目立ってしまう。しかし、パルス発光期間を短縮する方向(パルス発光期間を前方から短縮するか、後方から短縮するか)によって、その目立ち方に違いがある。
 例えば、図10Aの第4フレーム1001と図10Bの第4フレーム1002を見ると、どちらの総発光量(発光強度×総発光期間)も同一となっているため、画面の明るさは同一となっている。しかし、これらについて、どちらの方向からパルス発光期間を短縮させるかによって、画面の暗転態様(暗く変化する際の態様)に違いが出る。図10Aの場合、つまりパルス発光期間を前方(時間の進行する方向)から短縮する場合、暗い領域が画面の下から上に増えながら画面全体が暗く変化していく。一方、図10Bの場合、つまりパルス発光期間を後方(時間が経過した方向)から短縮する場合、明るい領域が上から下に増えながら画面全体が暗く変化していく。このため、オペレータにとって、図10Aの暗転態様は自然であるが、図10Bのそれは不自然なものとなる。なお、第6フレーム1003のように、短縮されたパルス発光期間が擬似グローバル露光期間内に入ってくると上述のような不自然な暗転現象は生じなくなるため、図10Aおよび図10B、どちらのパルス発光期間短縮処理を適用してもよい。
 よって、パルス発光期間にローリングシャッタ期間の少なくとも一部が含まれる場合(発光プロファイルがローリングシャッタ期間の少なくとも一部を含み場合)、パルス発光期間を短縮させる方向によって画面全体の暗くなる変化の仕方が上述のように異なる。このため、パルス発光期間を短縮する場合には、前方から短縮する必要がある(図10Aの短縮処理を採用する必要がある)ことが分かる。
(ii)光量増加制御(図11):パルス発光期間伸長(画面が暗すぎるため明るくしたい場合)
 図11は、パルス発光期間を伸長することにより画面を明るくする光量増加制御を説明するための図である。光量増加制御には、パルス発光期間を後方に(時間が経過した方向に(対象となる擬似グローバル露光期間の前(過去)のローリングシャッタ期間に))伸長する制御(図10A)と、前方に(時間が進行する方向に(対象となる擬似グローバル露光期間の後(未来)のローリングシャッタ期間に))伸長する制御(図10B)がある。
 例えば、図11Aの第3フレーム1101と図11Bの第4フレーム1102を見ると、どちらの総発光量(発光強度×総発光期間)も同一となっているため、画面の明るさは同一となっている。しかし、これらについて、どちらの方向からパルス発光期間を伸長させるかによって、画面の明転態様(明るく変化する際の態様)に違いが出る。図11Aの場合、つまりパルス発光期間を後方(時間が経過した方向)に伸長する場合、明るい領域が画面の下から上に増えながら画面全体が明るく変化していく。一方、図11Bの場合、つまりパルス発光期間を前方(時間が進行する方向)に伸長する場合、暗い領域が上から下に増えながら画面全体が明るく変化していく。このため、ユーザ(オペレータ)にとって、図11Aの明転態様は自然であるが、図11Bのそれは不自然なものとなる。
 よって、パルス発光期間を伸長する場合には、後方に伸長する必要がある(図11Aの伸長処理を採用する必要がある)ことが分かる。
(iii)パルス発光間隔を短縮してから伸長する処理、およびパルス発光期間を伸長してから短縮する処理
 上記(i)および(ii)で説明したように、パルス発光期間を短縮する場合には前方から短縮し、パルス発光期間を伸長する場合には後方に伸長する必要があることが分かる。
 しかし、これら2つの処理は両立しない。例えば、図10Aの第4フレーム1001の状態から画面を明るくしたいとき、図11Aに示すように、後方にパルス発光期間を伸長していきたいが、この場合、パルス発光期間が前方に存在する状態で後方にローリングシャッタ期間を伸長していくことになる(この伸長処理自体に問題はない)。そして、後方への伸長処理が完了して適正露出レベルになった後に再度被写体条件が変わり、画面を暗くしたいときには、図10Aの処理に従って、パルス発光期間を前方のローリングシャッタ期間から短縮することになる。この場合、前方からの処理なので走査線様ノイズ(横縞の上下移動)は目立たなくすることができる。しかし、前方のローリングシャッタ期間が十分でない場合、パルス発光期間短縮処理を繰り返している間(適正露光(露出)レベルに達するまでの間)に擬似グローバル露光期間に到達してしまう可能性がある。このとき、さらに暗くしなければならないときには後方のローリングシャッタ期間を短縮することになるが、この場合には走査線様ノイズが目立つことになり、適切ではない。
 そこで、パルス発光期間の伸長および短縮処理にはさらなる改良が必要となる。
 <改良されたパルス発光期間調整(伸長および短縮)処理>
 図12は、改良されたパルス発光期間調整処理の概要を示す図である。改良されたパルス発光期間調整処理においても、画面における走査線様ノイズ(横縞の上下移動)を目立たなくするために、明るくするとき(光量増加)は後方にパルス発光期間を伸長し(図10Aと同様)、逆に暗くするとき(光量低減)は前方からパルス発光期間を短縮する(図11Aと同様)。この調整動作は、図12(1)光量増加制御、および図12(2)光量低減制御に示されている。
 例えば、発光プロファイル1206の状態から光量を減らし暗くしたいときには、発光プロファイル1206の前方にローリングシャッタ期間が含まれていないので、図12(2)(=図10A)の光量低減制御を実行することはできない。そこで、光量低減処理(図12(2))を実行する前に、光量シフト制御処理(図12(3))を実行することにより、後方のローリングシャッタ期間における発光量を前方のローリングシャッタ期間にシフトさせる。この場合、シフト前後における総光量(発光プロファイルの面積)は同一となるようにシフト動作は制御される。当該光量シフト制御処理は、後方のローリングシャッタ期間における発光量の全てを前方のローリングシャッタ期間に割り当てることにより完了する。従って、発光プロファイル1206は、この光量シフト制御処理により、発光強度および発光期間長が同一の発光プロファイル1207のように調整される。そして、この状態に調整された発光プロファイル1208(発光プロファイル1207と同一)から光量低減制御処理が実行され、前方からローリングシャッタ期間のパルス発光期間が短縮される。
 当該光量シフト制御処理は時間を掛けて実行される(発光プロファイル1206から1207に時間を掛けて変更する)ため、オペレータが光量シフト制御処理の完了を待たずに直ぐに画面を暗くしたい(急速に画面暗転させたい)場合もある。このような場合(場面)に対応するため、光量シフト制御処理と光量低減制御処理を同時に実行することもできる(図12(4):光量低減+シフト)。ただし、図12(4)では、パルス発光期間短縮によってではなく発光強度レベルを下げることにより光量低減を実現する。この場合、後方のローリングシャッタ期間の光量を前方のローリングシャッタ期間にシフトしながら、全パルス発光期間に亘って発光強度を下げる処理が行われる。ここで重要なことは、単に強度を下げるだけではなく、光量シフト制御処理も並行して継続実行される点である。光量シフト制御処理を実行しないと時間方向にパルス発光期間を短縮することができない(光量低減処理を実行することができない)ためである。そして、後方のローリングシャッタ期間の全光量の前方のローリングシャッタ期間へのシフト動作が完了したら(発光プロファイル1209に変換したら)、総光量(発光プロファイルの面積=発光強度×パルス発光期間長)を一定にしつつ、ローリングシャッタ期間の光量を発光強度上昇のために割り当てる(発光強度の最大値まで上昇させる)ことにより発光プロファイル1210を形成する。発光プロファイル1210の状態にした後は、画面を暗くするのであれば前方のローリングシャッタ期間を短縮(図12(2))すればよいし、画面を明るくするのであれば後方にローリングシャッタ期間を伸長(図12(1))すればよい。なお、発光プロファイルが、前方のローリングシャッタ期間にパルス発光期間を含んでいる場合もある。この場合には、光量低減制御処理(図12(2)の処理)を即座に実行すればよい。
 一方、光量低減+シフト処理(図12(4))を実行中に被写体の撮像条件が変化し、直ぐに画面を明るくしたい(急速に画面明転させたい)場合(場面)もある。この場合には、発光強度レベルが最大値に無い状態(発光プロファイル1211)から光量シフト制御処理と光量増加制御処理を同時に実行することにより、画面を明るく(露光レベルを上げる)ことができる(図12(5):光量増加+シフト)。ただし、図12(5)では、パルス発光期間伸長によってではなく発光強度レベルを上げることにより光量増加を実現する。例えば、発光プロファイル1211から光量を増加させて画面を明るくしたい場合、図12(5)に示すように、発光プロファイル1211から発光強度レベルを上げると同時に、後方のローリングシャッタ期間における光量を前方のローリングシャッタ期間にシフトする。そして、発光強度レベルが最大値になるまで、かつ後方のローリングシャッタ期間の全光量が前方のローリングシャッタ期間にシフト完了するまで、この動作が繰り返される。発光強度レベルが最大値、かつ光量シフト完了時の発光プロファイル(図示せず)の露光(露出)レベルが適正であれば、処理は完了する。一方、この状態からさらに明るくしたい場合には、後方にパルス発光期間を伸長する(図12(1)の処理を実行する)ことになる。また、この状態から再度暗くしたい場合には、前方からパルス発光期間を短縮する(図12(2)の処理を実行する)ことになる。なお、発光プロファイルが、後方のローリングシャッタ期間にパルス発光期間を含んでいない場合もある。この場合には、光量シフト処理は実行せずに、光強度レベルを最大値まで上げる処理を実行した後に、光量増加制御処理(図12(1)の処理)を実行すればよい。
 <改良されたパルス発光期間調整(伸長および短縮)処理:ユースケース(一連の流れ)>
(i)パルス発光期間を短くしている状態(例えば、発光プロファイル1212(図12(1)参照))から被写体と内視鏡装置100の先端部12との距離が遠ざかり、画面が暗くなったので光を増やしたいという状況になった場合には、光量増加制御処理(図12(1))を実行して、擬似グローバル露光期間よりも後方(過去のローリングシャッタ期間の方向)にパルス発光期間を伸長する。パルス発光期間を伸長している最中(あるいは適正明るさとなって伸長は止めたが光量シフト制御処理が完了していない状態)に被写体と内視鏡装置100の先端部12の距離が接近し、画面が過剰に明るくなったので光を減らしたい場合、光量シフト制御処理が完了しておらず、擬似グローバル露光期間の前方(時間の進行方向)にパルス発光期間がない状態であるので、光量低減制御処理(図12(2))を実行することができない。このため、発光強度レベルを下げる光量低減制御処理と光量シフト制御処理とを同時に実行(図12(4))して、画面明るさを適正にする。さらに、前方のローリングシャッタ期間に光量シフトしたパルス成分を発光強度に還元して強度低下が解消された状態(例えば、発光プロファイル1210)に到達する前に、被写体と内視鏡装置100の先端部12が再度遠ざかり、画面が暗くなったので光を増やしたいという状況になった場合には、直ぐに光量増加制御処理(図12(1))を実行すると強度低下が解消されない状態が継続してしまう。このため、光量増加制御処理を実行する前に一度強度を最大値に戻すために、発光強度レベルを上げる光量増加処理と光量シフト制御処理とを同時に実行(図12(5))する。
(ii)被写体と内視鏡装置100の先端部12との距離が接近し、画面が過剰に明るくなったので光を減らしたいという状況になった場合、光量シフト制御処理を実行せずに発光強度レベルを下げて画面を暗くしてもよい。そのとき、例えば、発光プロファイル1206から発光プロファイル1211の状態にすることができる。この状態(発光プロファイル1211)で、再度画面を明るくしたい場合には、直ぐに光量増加制御処理(図12(1))を実行するのではなく、発光強度レベルを上げる光量増加処理と光量シフト制御処理とを同時に実行(図12(5))する。発光強度レベルが最大値に達したが、所望の明るさになっていない場合には、パルス発光期間を後方に伸長していく光量増加制御処理(図12(1))を実行することができる。
 <1回の光量シフト制御処理におけるシフト量>
 対象フレームの擬似グローバル露光期間の1フレーム前(後方)のローリングシャッタ期間の全部に亘ってパルス発光期間が設定されている場合、上述の光量シフト制御処理(図12(3)参照)は、例えば約1秒間掛けて全てのパルス発光期間を現フレーム(前方)のローリングシャッタ期間にシフトするように実行される。つまり、シフト動作完了までに掛かる最大時間が1秒間である。例えば、1秒間に撮像されるフレーム数が60フレームである場合、1回のシフト動作に掛ける時間は、1/60秒ということになる。1秒間に30フレーム撮像する場合には、1回のシフト動作に掛ける時間は1/30秒である。
 このように時間を掛けてゆっくりと光量シフト制御処理を実行することにより、走査線様ノイズを目立たなくすることができるようになる。
 <オフセット発光処理>
 図13および図14は、無発光期間(あるいは、発光が視認できないほど発光強度が弱い弱発光期間)におけるオフセット発光処理を説明するための図である。図13は、微弱パルスによるオフセット発光を示している。図14は、被写体に撮像素子が急接近したとき、オフセット発光の有無によって現れる撮像画像の相違点を示す図である。なお、ここで、「微弱」とは、強発光期間における発光強度よりも十分に低いが発光が視認できる程度の発光強度であることを意味するものとする。また、本実施形態では、オフセット発光として微弱パルスを一例に挙げているが、微弱連続発光であってもよいし、微弱パルス発光と微弱連続発光以外の発光パターンでもよい。また、パルス発光と連続発光を組み合わせて発光パターンを構成してもよいし、不規則なパルス幅での発光パターンを構成してもよい。
 オフセット発光処理は、従来の調光制御処理(図9など)や本実施形態によるパルス発光期間調整(調光制御)処理(図12参照)とは別に(調光制御処理のバックグラウンドで)実行され、無発光期間に微弱なオフセット発光する処理である。微弱なオフセット発光は、調光制御処理(何れの調光制御処理でも当てはまる)による発光の強度が所定値以上ある場合には、0(ゼロ)と見做すことができる。一方、調光制御処理による発光の強度が所定値未満となれば(あるいは発光強度がゼロのとき)、オフセット発光のみで被写体を照射することになる。この結果、本来なら無発光期間で起こった事象は画像として取得できないところ、オフセット発光によって無発光期間での事象も捉えることができるようになる。
 図14を参照すると、微弱オフセット発光が無い場合、フレームFkの撮像画像は、フレームFk-1と同一の画像が取得される。一方、微弱オフセット発光を行う場合、パルス光あるいは連続光の何れの場合であっても、フレームFkの撮像画像は、フレームFk-1とは明らかに異なる画像となっており、フレームFkで撮像素子が被写体に急接近したときの事象が捉えられていることが分かる。また、フレームFk+1の撮像画像は、微弱オフセット発光の有無によって違いが無いことが分かる。
 <パルス発光期間調整(調光制御)処理:フローチャート>
 図15は、本実施形態による調光制御処理を説明するためのフローチャートである。以下の各ステップの処理は、主にシステムコントローラ202を動作主体として説明されているが、これに限らず、動作制御や演算処理をする制御部(プロセッサ)を別途設けてそれに実行させるようにしてもよい。また、システムコントローラ202の機能を光源装置201の光源制御部2016に持たせて構成してもよい。従って、調光(還元)制御処理は、内視鏡システム1の全体の動作の一部とすることもできるし、光源装置201の動作の一部とすることもできる。この場合は、光源制御部2016が各ステップの処理の主な動作主体となる。
(i)ステップ1501
 光源制御部2016は、システムコントローラからオペレータによって選択された観察モードに対応するモード選択信号を受信し、発光すべき各光源(緑LED2011からUV LED2015の何れかの組み合わせ)について、上記補正テーブルを用いて、各光源の出射光量/電流比のリニアリティを補正する。
(ii)ステップ1502
 光源制御部2016は、出射光量/電流比のリニアリティ補正後の駆動電流によって各光源を駆動して発光させて照明光を生成し、被写体にこの照明光を照射する。なお、このときの発光プロファイル(強発光の期間と弱発光のレベルおよび期間)は所定の値(デフォルト値)とすることもできるし、前回の内視鏡使用時で最後の動作で用いた発光プロファイルを用いることもできる。
(iii)ステップ1503
 撮像ユニット103の撮像素子(例えば、CMOSセンサ)は、ステップ1702で生成された照明光を被写体(観察部位)に照射することにより発生する被写体からの反射光を検出し、スコープコネクタ回路401を介して撮像画像信号をプロセッサ200に送信する。測光部203は、現在の撮像画像信号の輝度情報を色変換回路206に含まれるゲイン回路から取得し、予め決められた適正輝度値と比較(例えば、差分値を取る)し、当該比較結果をシステムコントローラ202に受け渡す。なお、測光部203では、ゲイン回路から現在の撮像画像信号の輝度情報のみを取得し、適正輝度値との比較はシステムコントローラ202など他の処理部で実行してもよい。
(iv)ステップ1504
 システムコントローラ202は、測光部203から受け取った比較結果(あるいは、システムコントローラ202が比較結果(差分値)を算出してもよい)と所定の閾値(露光レベルが適正かを判断するための閾値)とを比較し、現在の露光レベルが適正であるか判断する。例えば、比較結果(差分値)が当該所定の閾値以下であれば適正と判断することができる。現在の露光レベルが適正ではないと判断された場合(ステップ1504でNoの場合)、処理はステップ1507に移行する。一方、現在の露光レベルが適正であると判断された場合(ステップ1504でYesの場合)、処理はステップ1505に移行する。
(v)ステップ1505
 光源制御部2016は、システムコントローラ202から適用すべき発光プロファイルの情報を受信し、受信した発光プロファイルおよびモード選択信号に基づいて、各LED2011から2015の何れかを発光して照明光を生成して被写体に照射させる。また、撮像ユニット103の撮像素子(CMOSセンサ)は、照明光が照射された被写体から反射光を検出し、撮像画像信号を生成してプロセッサに送信する。また、プロセッサ200は、撮像画像信号に対して所定の画像処理を実行して表示画像データを生成し、当該表示画像データをモニタ(表示装置)300の画面上に表示する。
(vi)ステップ1506
 システムコントローラ202は、オペレータから撮像終了や照明光オフなど、観察終了の指示が入力されたか判断する。観察終了の指示が入力された場合(ステップ1506でYESの場合)、調光制御処理は終了する。観察終了の指示が入力されない(指示が検知されない)場合(ステップ1506でNOの場合)、処理はステップ1503に移行し、現在の露光レベルが適正か否かの判断・監視、および調光制御処理などが継続して行われる。撮像ユニット103は、内視鏡装置100の先端部12に設置されており、被検者の体腔内を移動する。従って、被写体(観察部位)に近づいたり遠ざかったりするため、露光レベルに変化が生じることがある。そのため、常に撮像画像の輝度レベルを監視し、適正な露光レベルを維持するように光源装置201の動作は制御される。
(vii)ステップ1507
 システムコントローラ202は、オペレータから急速な明暗変更が指示されているか判断する。光量を調整して画面の明暗を変更する場合、通常は、光量シフト制御処理(図12(3))を終了させてから、光量増加制御処理(図12(1))あるいは光量低減制御処理(図12(2))を実行する。しかし、被写体の観察状況によっては、後方のローリングシャッタ期間における全ての光量を前方のローリングシャッタ期間にシフトし終わる前に明暗変更する必要がある場合がある。そこで、急速な明暗変更処理が必要な場合には、光量シフト制御処理に加えて発光強度で明暗変更を実現するようにしている(図12(4)および(5))。
 急速な明暗変更を実行する場合(ステップ1507でYESの場合)、処理はステップ1513に移行する。一方、急速な明暗変更を実行しない場合(ステップ1507でNOの場合)、処理はステップ1508に移行する。
(viii)ステップ1508
 システムコントローラ202は、オペレータによって画面を明るくすることが指示されているか、暗くすることが指示されているか判断する。明るくすることが指示されている場合、処理はステップ1509に移行する。一方、暗くすることが指示されている場合、処理はステップ1511に移行する。なお、オペレータの指示の他、撮像画像における輝度値レベルを測光部203で測定し、露光レベルを上下させるか自動的に判断するようにしてもよい。
(ix)ステップ1509
 画面を明るくすることが指示されている場合、システムコントローラ202は、光量増加制御処理を実行することにより、現在の発光プロファイルのパルス発光期間を伸長する(光量を増加)。つまり、システムコントローラ202は、図12(1)に示すように、後方のローリングシャッタ期間のパルス発光期間を伸長し、所望の明るさになるまで発光プロファイルの総光量を増加させる。
(x)ステップ1510
 システムコントローラ202は、ステップ1509で変更された発光プロファイルに対して、擬似グローバル露光期間より後方(時間が経過した方向)のローリングシャッタ期間(1つ前のフレームのローリングシャッタ期間)におけるパルス発光期間の光量を前方(時間が進行する方向)のローリングシャッタ期間(現フレームのローリングシャッタ期間)にシフトする。この際、シフト前後の発光プロファイルの総光量(発光強度×パルス発光期間=発光プロファイルの面積)は同一になるようにシフト動作が制御される(図12(3)参照)。
 この光量シフト制御処理は、後方のローリングシャッタ期間における発光成分の全てが前方のローリングシャッタ期間にシフトされる(割り当てられる)まで実行される。1回の動作でシフトされる光量は、1フレームにおける全ローリングシャッタ期間×発光強度の最大値で決まる光量を所定時間でシフトさせることができる量に定めることができる。例えば、所定時間を1秒間とし、1秒間に60フレーム撮像する場合、当該1回のシフト光量は、(1フレームにおける全ローリングシャッタ期間×発光強度の最大値で決まる光量)/60とすることができる。
 画面を明るくする場合、最初に光量を増加(ステップ1509)のは前方にパルス発光期間を伸長しても走査線様ノイズは目立たないためであり、その後光量をシフトする(ステップ1510)のは、後で、光量の増減処理を適切に(走査線様ノイズを目立たせずに)実行することを可能にするためである。
 ステップ1510の後、処理はステップ1503に移行する。
(xi)ステップ1511
 画面を暗くすることが指示されている場合、システムコントローラ202は、まず、変更前(現在)の発光プロファイルに対して、擬似グローバル露光期間より後方(時間が経過した方向)のローリングシャッタ期間(1つ前のフレームのローリングシャッタ期間)におけるパルス発光期間の光量を前方(時間が進行する方向)のローリングシャッタ期間(現フレームのローリングシャッタ期間)にシフトする(図12(3)参照)。
(xii)ステップ1512
 システムコントローラ202は、ステップ1511において光量シフトされた発光プロファイルに対して光量低減制御処理を実行することにより、発光プロファイルのパルス発光期間を短縮する(光量を低減)。つまり、システムコントローラ202は、図12(2)に示すように、前方のローリングシャッタ期間におけるパルス発光期間を短縮し、所望の暗さになるまで発光プロファイルの総光量を減少させる。
 ステップ1512の後、処理はステップ1503に移行する。
(xiii)ステップ1513
 画面を暗くする場合、システムコントローラ202は、パルス発光強度を下げながら、後方のローリングシャッタ期間におけるパルス発光期間の光量成分(発光成分)を前方のローリングシャッタ期間におけるパルス発光期間にシフトする(図12(4)参照)。これにより、後方のパルス発光期間が短縮され、前方のパルス発光期間が伸長されるとともに、パルス発光強度が減少するので、画面暗転と光量シフトの2つの動作を同時に実行することができ、急速に画面を暗くすることができる。当該光量シフト動作によって前方のローリングシャッタ期間が所定期間以上になり適切な露光レベルになった場合、システムコントローラ202は、パルス発光強度が最大値になるまで、シフトによって増加した前方のパルス発光期間の光量(パルス発光成分)を置換する。つまり、総光量(発光プロファイルの面積)の同一性を保ちつつ、パルス発光期間を短縮する一方、パルス発光強度を上げる。結果的には、パルス発光強度低減処理と光量シフト制御処理とを同時に実行すること(図12(4))により得られる発光プロファイル、光量シフト制御処理(図12(3))を実行してから光量低減制御処理(図12(2))を実行することによって得られる発光プロファイルと同一となる。
 一方、画面を明るくする場合、システムコントローラ202は、パルス発光強度を上げながら、後方のローリングシャッタ期間におけるパルス発光期間の光量成分(発光成分)を前方のローリングシャッタ期間におけるパルス発光期間にシフトする(図12(5)参照)。所望の明るさになる前にパルス発光強度が最大値に達すると、システムコントローラ202は、後方のローリングシャッタ期間の方向にパルス発光期間を伸長する(所望の明るさになるまで)。結果的には、パルス発光強度増加処理と光量シフト制御処理とを同時に実行すること(図12(5))により得られる発光プロファイルは、光量増加制御処理(図12(1))を実行してから光量シフト制御処理(図12(3))を実行することによって得られる発光プロファイルと同一となる。
 <本実施形態の効果>
 本実施形態によれば、ローリングシャッタ歪みやアーティファクトを回避しつつ、充分な光量を確保して被写体を撮像することができるようになる。また、パルス発光期間の変化がローリングシャッタ期間に及んだとしても横縞の上下移動を目立ちにくくすることができる。さらに、光源として、複数のLEDを同時に使用する場合、発光強度が変わると各LEDの出射光量/電流比のリニアリティの違いを補正して電流制御をおこなわないと各LEDの光量の比率が変わってしまい、配光の変化や色の変化を起こしてしまうが、本実施形態に寄れば、短時間で発光強度を基に戻すことができ、このような課題を解決することが可能となる。
 <本開示の特定事項>
(1)特定事項1
 被写体に照射する照明光を生成する光源装置であって、
 波長帯域がそれぞれ異なる光を出射する複数の半導体発光素子と、
 前記複数の半導体発光素子の発光プロファイルを制御し、前記複数の半導体発光素子を駆動させる制御部と、を備え、
 前記制御部は、露光レベルを上げる場合、前記発光プロファイルを、時間の進行方向とは逆方向である第1方向に伸長し、前記露光レベルを下げる場合、前記発光プロファイルを、時間の進行方向である第2方向から短縮する、光源装置。
(2)特定事項2
 特定事項1において、
 前記発光プロファイルは、(i-1)前記被写体を撮像する撮像素子の擬似グローバル露光期間の少なくとも一部に前記照明光を出射する期間、あるいは(ii-2)前記撮像素子の擬似グローバル露光期間およびローリングシャッタ期間の少なくとも一部に前記照明光を出射する期間を示すパルス発光期間と、(ii)当該パルス発光期間における前記照明光の強度を示すパルス発光強度を規定する、光源装置。
(3)特定事項3
 特定事項2において、
 前記制御部は、前記露光レベルを上げる場合、前記発光プロファイルを前記第1方向に伸長した後、前記擬似グローバル露光期間よりも前記第1方向にあるローリングシャッタ期間における発光成分を、前記擬似グローバル露光期間よりも前記第2方向にあるローリングシャッタ期間における発光成分にシフトさせて前記発光プロファイルを変更する、光源装置。
(4)特定事項4
 特定事項2において、
 前記制御部は、前記露光レベルを下げる場合、前記擬似グローバル露光期間よりも前記第1方向にあるローリングシャッタ期間における発光成分を、前記擬似グローバル露光期間よりも前記第2方向にあるローリングシャッタ期間における発光成分にシフトさせて前記発光プロファイルを変更した後、当該変更後の発光プロファイルのパルス発光期間を前記第2方向から短縮する、光源装置。
(5)特定事項5
 特定事項2において、
 前記制御部は、前記パルス発光強度が予め決められた最大値から下がった状態で前記露光レベルを急速に上げるように指示されている場合、前記パルス発光強度を上げながら、前記擬似グローバル露光期間よりも前記第1方向のローリングシャッタ期間の発光成分を前記擬似グローバル露光期間よりも前記第2方向にローリングシャッタ期間にシフトする、光源装置。
(6)特定事項6
 特定事項2において、
 前記制御部は、前記露光レベルを急速に下げるように指示されている場合、前記パルス発光強度を下げながら、前記擬似グローバル露光期間よりも前記第1方向のローリングシャッタ期間の発光成分を前記擬似グローバル露光期間よりも前記第2方向にローリングシャッタ期間にシフトする、光源装置。
(7)特定事項7
 特定事項6において、
 前記制御部は、前記第1方向のローリングシャッタ期間から前記第2方向のローリングシャッタ期間への前記発光成分のシフト動作によって前記第2方向のローリングシャッタ期間が所定期間以上になり適切な露光レベルに到達した後、前記パルス発光強度が予め決められた最大値になるように、前記第2方向のローリングシャッタ期間の発光成分を前記パルス発光強度の増加に置換する、光源装置。
(8)特定事項8
 特定事項1から7の何れか1項において、
 前記制御部は、さらに、前記複数の半導体発光素子の出射光量/電流比のリニアリティを補正する処理を実行する、光源装置。
(9)特定事項9
 特定事項1から8の何れか1項において、
 前記制御部は、前記発光プロファイルによる発光以外に、オフセット発光を、パルス光、あるいは連続光で実行する、光源装置。
(10)特定事項10
 観察対象内に内視鏡を挿入し、被写体の画像を取得する内視鏡システムであって、
 波長帯域がそれぞれ異なる光を出射する複数の半導体発光素子と、
 照明光を前記被写体に照射し、当該被写体からの反射光を検出して画像信号を生成する撮像素子と、
 前記画像信号を処理して前記被写体の画像を生成し、モニタに表示するプロセッサと、 前記画像信号に基づいて、前記複数の半導体発光素子の発光プロファイルを制御するための制御信号を生成する主制御部と、
 前記主制御部から前記制御信号を受信し、前記発光プロファイルに応じた駆動信号で前記複数の半導体発光素子を駆動させる光源制御部と、を備え、
 前記発光プロファイルは、 (i-1)前記被写体を撮像する撮像素子の擬似グローバル露光期間の少なくとも一部に前記照明光を出射する期間、あるいは(ii-2)前記撮像素子の擬似グローバル露光期間およびローリングシャッタ期間の少なくとも一部に前記照明光を出射する期間を示すパルス発光期間と、(ii)当該パルス発光期間における前記照明光の強度を示すパルス発光強度を規定し、
 前記主制御部は、露光レベルを上げる場合、前記発光プロファイルを、時間の進行方向とは逆方向である第1方向に伸長し、前記露光レベルを下げる場合、前記発光プロファイルを、時間の進行方向である第2方向から短縮する、内視鏡システム。
(11)特定事項11
 特定事項10において、
 前記主制御部は、前記露光レベルを上げる場合、前記発光プロファイルを前記第1方向に伸長した後、前記擬似グローバル露光期間よりも前記第1方向にあるローリングシャッタ期間における発光成分を、前記擬似グローバル露光期間よりも前記第2方向にあるローリングシャッタ期間における発光成分にシフトさせて前記発光プロファイルを変更する、内視鏡システム。
(12)特定事項12
 特定事項10において、
 前記主制御部は、前記露光レベルを下げる場合、前記擬似グローバル露光期間よりも前記第1方向にあるローリングシャッタ期間における発光成分を、前記擬似グローバル露光期間よりも前記第2方向にあるローリングシャッタ期間における発光成分にシフトさせて前記発光プロファイルを変更した後、当該変更後の発光プロファイルのパルス発光期間を前記第2方向から短縮する、内視鏡システム。
(13)特定事項13
 特定事項10において、
 前記主制御部は、前記パルス発光強度が予め決められた最大値から下がった状態で前記露光レベルを急速に上げるように指示されている場合、前記パルス発光強度を上げながら、前記擬似グローバル露光期間よりも前記第1方向のローリングシャッタ期間の発光成分を前記擬似グローバル露光期間よりも前記第2方向にローリングシャッタ期間にシフトする、内視鏡システム。
(14)特定事項14
 特定事項10において、
 前記主制御部は、前記露光レベルを急速に下げるように指示されている場合、前記パルス発光強度を下げながら、前記擬似グローバル露光期間よりも前記第1方向のローリングシャッタ期間の発光成分を前記擬似グローバル露光期間よりも前記第2方向にローリングシャッタ期間にシフトする、内視鏡システム。
(15)特定事項15
 特定事項14において、
 前記主制御部は、前記第1方向のローリングシャッタ期間から前記第2方向のローリングシャッタ期間への前記発光成分のシフト動作が完了し、適切な露光レベルに到達した後、前記パルス発光強度が予め決められた最大値になるように、前記第2方向のローリングシャッタ期間の発光成分を前記パルス発光強度の増加に置換する、内視鏡システム。
1 内視鏡システム
100 内視鏡装置
103 撮像ユニット
200 プロセッサ
201 光源装置
2011 緑LED
2012 青LED
2013 赤LED
2014 アンバーLED
2015 UV LED
2016 光源制御部
2017、2018 クロスプリズム
202 システムコントローラ
203 測光部
300 モニタ

Claims (15)

  1.  被写体に照射する照明光を生成する光源装置であって、
     波長帯域がそれぞれ異なる光を出射する複数の半導体発光素子と、
     前記複数の半導体発光素子の発光プロファイルを制御し、前記複数の半導体発光素子を駆動させる制御部と、を備え、
     前記制御部は、露光レベルを上げる場合、前記発光プロファイルを、時間の進行方向とは逆方向である第1方向に伸長し、前記露光レベルを下げる場合、前記発光プロファイルを、時間の進行方向である第2方向から短縮する、光源装置。
  2.  請求項1において、
     前記発光プロファイルは、(i-1)前記被写体を撮像する撮像素子の擬似グローバル露光期間の少なくとも一部に前記照明光を出射する期間、あるいは(ii-2)前記撮像素子の擬似グローバル露光期間およびローリングシャッタ期間の少なくとも一部に前記照明光を出射する期間を示すパルス発光期間と、(ii)当該パルス発光期間における前記照明光の強度を示すパルス発光強度を規定する、光源装置。
  3.  請求項2において、
     前記制御部は、前記露光レベルを上げる場合、前記発光プロファイルを前記第1方向に伸長した後、前記擬似グローバル露光期間よりも前記第1方向にあるローリングシャッタ期間における発光成分を、前記擬似グローバル露光期間よりも前記第2方向にあるローリングシャッタ期間における発光成分にシフトさせて前記発光プロファイルを変更する、光源装置。
  4.  請求項2において、
     前記制御部は、前記露光レベルを下げる場合、前記擬似グローバル露光期間よりも前記第1方向にあるローリングシャッタ期間における発光成分を、前記擬似グローバル露光期間よりも前記第2方向にあるローリングシャッタ期間における発光成分にシフトさせて前記発光プロファイルを変更した後、当該変更後の発光プロファイルのパルス発光期間を前記第2方向から短縮する、光源装置。
  5.  請求項2において、
     前記制御部は、前記パルス発光強度が予め決められた最大値から下がった状態で前記露光レベルを急速に上げるように指示されている場合、前記パルス発光強度を上げながら、前記擬似グローバル露光期間よりも前記第1方向のローリングシャッタ期間の発光成分を前記擬似グローバル露光期間よりも前記第2方向にローリングシャッタ期間にシフトする、光源装置。
  6.  請求項2において、
     前記制御部は、前記露光レベルを急速に下げるように指示されている場合、前記パルス発光強度を下げながら、前記擬似グローバル露光期間よりも前記第1方向のローリングシャッタ期間の発光成分を前記擬似グローバル露光期間よりも前記第2方向にローリングシャッタ期間にシフトする、光源装置。
  7.  請求項6において、
     前記制御部は、前記第1方向のローリングシャッタ期間から前記第2方向のローリングシャッタ期間への前記発光成分のシフト動作によって前記第2方向のローリングシャッタ期間が所定期間以上になり適切な露光レベルに到達した後、前記パルス発光強度が予め決められた最大値になるように、前記第2方向のローリングシャッタ期間の発光成分を前記パルス発光強度の増加に置換する、光源装置。
  8.  請求項1から7の何れか1項において、
     前記制御部は、さらに、前記複数の半導体発光素子の出射光量/電流比のリニアリティを補正する処理を実行する、光源装置。
  9.  請求項1から8の何れか1項において、
     前記制御部は、前記発光プロファイルによる発光以外に、オフセット発光を、パルス光、あるいは連続光で実行する、光源装置。
  10.  観察対象内に内視鏡を挿入し、被写体の画像を取得する内視鏡システムであって、
     波長帯域がそれぞれ異なる光を出射する複数の半導体発光素子と、
     照明光を前記被写体に照射し、当該被写体からの反射光を検出して画像信号を生成する撮像素子と、
     前記画像信号を処理して前記被写体の画像を生成し、モニタに表示するプロセッサと、 前記画像信号に基づいて、前記複数の半導体発光素子の発光プロファイルを制御するための制御信号を生成する主制御部と、
     前記主制御部から前記制御信号を受信し、前記発光プロファイルに応じた駆動信号で前記複数の半導体発光素子を駆動させる光源制御部と、を備え、
     前記発光プロファイルは、 (i-1)前記被写体を撮像する撮像素子の擬似グローバル露光期間の少なくとも一部に前記照明光を出射する期間、あるいは(ii-2)前記撮像素子の擬似グローバル露光期間およびローリングシャッタ期間の少なくとも一部に前記照明光を出射する期間を示すパルス発光期間と、(ii)当該パルス発光期間における前記照明光の強度を示すパルス発光強度を規定し、
     前記主制御部は、露光レベルを上げる場合、前記発光プロファイルを、時間の進行方向とは逆方向である第1方向に伸長し、前記露光レベルを下げる場合、前記発光プロファイルを、時間の進行方向である第2方向から短縮する、内視鏡システム。
  11.  請求項10において、
     前記主制御部は、前記露光レベルを上げる場合、前記発光プロファイルを前記第1方向に伸長した後、前記擬似グローバル露光期間よりも前記第1方向にあるローリングシャッタ期間における発光成分を、前記擬似グローバル露光期間よりも前記第2方向にあるローリングシャッタ期間における発光成分にシフトさせて前記発光プロファイルを変更する、内視鏡システム。
  12.  請求項10において、
     前記主制御部は、前記露光レベルを下げる場合、前記擬似グローバル露光期間よりも前記第1方向にあるローリングシャッタ期間における発光成分を、前記擬似グローバル露光期間よりも前記第2方向にあるローリングシャッタ期間における発光成分にシフトさせて前記発光プロファイルを変更した後、当該変更後の発光プロファイルのパルス発光期間を前記第2方向から短縮する、内視鏡システム。
  13.  請求項10において、
     前記主制御部は、前記パルス発光強度が予め決められた最大値から下がった状態で前記露光レベルを急速に上げるように指示されている場合、前記パルス発光強度を上げながら、前記擬似グローバル露光期間よりも前記第1方向のローリングシャッタ期間の発光成分を前記擬似グローバル露光期間よりも前記第2方向にローリングシャッタ期間にシフトする、内視鏡システム。
  14.  請求項10において、
     前記主制御部は、前記露光レベルを急速に下げるように指示されている場合、前記パルス発光強度を下げながら、前記擬似グローバル露光期間よりも前記第1方向のローリングシャッタ期間の発光成分を前記擬似グローバル露光期間よりも前記第2方向にローリングシャッタ期間にシフトする、内視鏡システム。
  15.  請求項14において、
     前記主制御部は、前記第1方向のローリングシャッタ期間から前記第2方向のローリングシャッタ期間への前記発光成分のシフト動作が完了し、適切な露光レベルに到達した後、前記パルス発光強度が予め決められた最大値になるように、前記第2方向のローリングシャッタ期間の発光成分を前記パルス発光強度の増加に置換する、内視鏡システム。
PCT/JP2021/040547 2020-11-09 2021-11-04 光源装置、および内視鏡システム WO2022097671A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180062409.4A CN116075263A (zh) 2020-11-09 2021-11-04 光源装置和内窥镜系统
US18/029,738 US20230363630A1 (en) 2020-11-09 2021-11-04 Light source device and endoscope system
EP21889224.8A EP4197423A1 (en) 2020-11-09 2021-11-04 Light source device and endoscope system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020186299A JP7547178B2 (ja) 2020-11-09 2020-11-09 光源装置、および内視鏡システム
JP2020-186299 2020-11-09

Publications (1)

Publication Number Publication Date
WO2022097671A1 true WO2022097671A1 (ja) 2022-05-12

Family

ID=81457085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040547 WO2022097671A1 (ja) 2020-11-09 2021-11-04 光源装置、および内視鏡システム

Country Status (5)

Country Link
US (1) US20230363630A1 (ja)
EP (1) EP4197423A1 (ja)
JP (1) JP7547178B2 (ja)
CN (1) CN116075263A (ja)
WO (1) WO2022097671A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116320741A (zh) * 2022-12-08 2023-06-23 瀚湄信息科技(上海)有限公司 一种全局卷帘快门曝光控制方法、装置及电子设备
WO2024043171A1 (ja) * 2022-08-23 2024-02-29 Hoya株式会社 光源装置、および内視鏡システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022070310A (ja) * 2020-10-27 2022-05-13 Hoya株式会社 光源装置、および内視鏡システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157368A1 (ja) * 2012-04-16 2013-10-24 オリンパスメディカルシステムズ株式会社 撮像システム、撮像方法
WO2013175908A1 (ja) * 2012-05-25 2013-11-28 オリンパスメディカルシステムズ株式会社 撮像システム
JP2017510348A (ja) * 2014-03-17 2017-04-13 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 組織接触検出のための、並びに自動露出及び照明制御のためのシステム及び方法
JP6239220B1 (ja) 2016-03-17 2017-11-29 オリンパス株式会社 内視鏡装置及びビデオプロセッサ
JP2018182580A (ja) 2017-04-14 2018-11-15 キヤノンメディカルシステムズ株式会社 撮像装置及び撮像装置の制御プログラム
WO2020012563A1 (ja) * 2018-07-10 2020-01-16 オリンパス株式会社 内視鏡装置、処理装置及び処理方法
JP2020151090A (ja) * 2019-03-19 2020-09-24 ソニー・オリンパスメディカルソリューションズ株式会社 医療用光源装置及び医療用観察システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157368A1 (ja) * 2012-04-16 2013-10-24 オリンパスメディカルシステムズ株式会社 撮像システム、撮像方法
JP5379932B1 (ja) 2012-04-16 2013-12-25 オリンパスメディカルシステムズ株式会社 撮像システム、撮像方法
WO2013175908A1 (ja) * 2012-05-25 2013-11-28 オリンパスメディカルシステムズ株式会社 撮像システム
JP2017510348A (ja) * 2014-03-17 2017-04-13 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 組織接触検出のための、並びに自動露出及び照明制御のためのシステム及び方法
JP6239220B1 (ja) 2016-03-17 2017-11-29 オリンパス株式会社 内視鏡装置及びビデオプロセッサ
JP2018182580A (ja) 2017-04-14 2018-11-15 キヤノンメディカルシステムズ株式会社 撮像装置及び撮像装置の制御プログラム
WO2020012563A1 (ja) * 2018-07-10 2020-01-16 オリンパス株式会社 内視鏡装置、処理装置及び処理方法
JP2020151090A (ja) * 2019-03-19 2020-09-24 ソニー・オリンパスメディカルソリューションズ株式会社 医療用光源装置及び医療用観察システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043171A1 (ja) * 2022-08-23 2024-02-29 Hoya株式会社 光源装置、および内視鏡システム
CN116320741A (zh) * 2022-12-08 2023-06-23 瀚湄信息科技(上海)有限公司 一种全局卷帘快门曝光控制方法、装置及电子设备
CN116320741B (zh) * 2022-12-08 2024-01-26 瀚湄信息科技(上海)有限公司 一种全局卷帘快门曝光控制方法、装置及电子设备

Also Published As

Publication number Publication date
US20230363630A1 (en) 2023-11-16
CN116075263A (zh) 2023-05-05
JP7547178B2 (ja) 2024-09-09
EP4197423A1 (en) 2023-06-21
JP2022076076A (ja) 2022-05-19

Similar Documents

Publication Publication Date Title
WO2022097671A1 (ja) 光源装置、および内視鏡システム
JP4761899B2 (ja) 電子内視鏡システム
JP5431294B2 (ja) 内視鏡装置
JP5326065B2 (ja) 内視鏡装置
US11337593B2 (en) Endoscope apparatus and video processor
WO2015083683A1 (ja) 撮像装置、撮像装置の作動方法
WO2022091649A1 (ja) 光源装置、および内視鏡システム
US11051683B2 (en) Control device for imaging system, imaging system, and method for controlling imaging system
CN108463157B (zh) 内窥镜用处理器
JP6180612B2 (ja) 内視鏡装置
JP5622529B2 (ja) 内視鏡装置
JP6945660B2 (ja) 撮像システムおよび処理装置
US10091480B2 (en) Driving method of imaging element, imaging device with read-out time and accumulation period
WO2023037783A1 (ja) 光源装置、および内視鏡システム
JP6353962B2 (ja) 内視鏡装置
WO2019225691A1 (ja) 内視鏡画像処理装置及び内視鏡システム
JP6046854B2 (ja) 内視鏡装置
JP5816765B2 (ja) 内視鏡装置
JP2013094489A (ja) 内視鏡装置
JP2019162165A (ja) 内視鏡システム
WO2024043171A1 (ja) 光源装置、および内視鏡システム
WO2019167298A1 (ja) 被検体観察システム、被検体観察システムの作動方法
JP2018140231A (ja) 内視鏡装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21889224

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021889224

Country of ref document: EP

Effective date: 20230317

NENP Non-entry into the national phase

Ref country code: DE