JP2024024287A - 半導体モジュールの製造方法 - Google Patents

半導体モジュールの製造方法 Download PDF

Info

Publication number
JP2024024287A
JP2024024287A JP2022127030A JP2022127030A JP2024024287A JP 2024024287 A JP2024024287 A JP 2024024287A JP 2022127030 A JP2022127030 A JP 2022127030A JP 2022127030 A JP2022127030 A JP 2022127030A JP 2024024287 A JP2024024287 A JP 2024024287A
Authority
JP
Japan
Prior art keywords
semiconductor
semiconductor chips
manufacturing
sintered
semiconductor module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022127030A
Other languages
English (en)
Inventor
龍男 西澤
Tatsuo Nishizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2022127030A priority Critical patent/JP2024024287A/ja
Priority to US18/344,314 priority patent/US20240055422A1/en
Publication of JP2024024287A publication Critical patent/JP2024024287A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48153Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate
    • H01L2224/48175Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Powder Metallurgy (AREA)
  • Die Bonding (AREA)

Abstract

【課題】本発明は、複数の半導体チップと絶縁配線基板とを接合するための複数の焼結材に均一に加圧及び加熱することができる半導体モジュールの製造方法を提供することを目的とする。【解決手段】半導体モジュールの製造方法は、下金型2の上に絶縁配線基板13を配置し、絶縁配線基板13の上の複数箇所に焼結材151aを配置し、複数の焼結材151aの上に半導体チップ14aをそれぞれ配置し、複数の半導体チップ14aの上に緩衝材6aをそれぞれ個別に配置し、複数の半導体チップ14aの配置位置に対応する箇所に凸部31aを有する上金型3Aを、複数の半導体チップ14aに複数の凸部31aを対応させて下金型2の上方に配置し、複数の緩衝材6aおよび複数の半導体チップ14aを介して凸部31aによって複数の焼結材151aを加圧及び加熱して焼結する。【選択図】図3

Description

本発明は、半導体チップを備える半導体モジュールの製造方法に関する。
特許文献1には、「絶縁回路基板上に焼結材で複数の半導体チップを接合する際に、絶縁回路基板を載置する下治具と、下治具上に対向して配置され、開口部が設けられた上治具と、上治具の開口部に保持された第1弾性部材と、下治具と第1弾性部材の間に配置され、第1弾性部材よりも薄い緩衝層と、を備え、複数の半導体チップの上面を第1弾性部材により加圧しながら加熱することにより焼結材を焼結させて、絶縁回路基板と複数の半導体チップとを接合する半導体製造装置」が開示されている。さらに、特許文献1には、半導体製造装置において「第1弾性部材が複数に分割され、複数の第1弾性部材のそれぞれが、複数の半導体チップのそれぞれを加圧する」ことが開示されている。
特許文献2には、「半導体チップと、半導体チップの下面に対向して配置された絶縁回路基板と、絶縁回路基板の上面に配置され、半導体チップに接する接合部と接合部を囲む外縁部とを有する第1焼結金属層とを備える半導体装置であって、第1焼結金属層において、第1焼結金属層に含まれる空隙の体積密度を示す空隙率が接合部と外縁部とで均一である」が開示されている。
特許文献3には、半導体装置において「絶縁回路基板の上に複数の焼結材が配置され、各焼結材の上に半導体チップが配置され、各半導体チップを覆うように緩衝層が配置され、緩衝層の上に加圧部が各半導体チップを押して加圧するために配置される」ことが開示されている。さらに、特許文献3には、「枠材の厚さが焼結材と半導体チップの合計厚さよりも薄いため、半導体チップの上面が枠材に接触することを防止して、焼結材と半導体チップを加圧できる」ことが開示されている。
特許文献4及び5には、「基板上で電子部品を焼結するために、複数のシリンダで単一のシール膜を介して各電子部品を加圧する焼結プレス機」が開示されている。
特開2021-150548号公報 特開2021-027288号公報 特開2021-197447号公報 国際公開第2018/122795号 国際公開第2020/008287号
特許文献1から5には、半導体チップなどの電子部品を所定の導電層に接合する材料として焼結材を適用する技術が開示されている。焼結材は、はんだと比較して融点が高く、パワー半導体の使用温度の150℃から175℃ではせん断強度が低下しない。このため、シリコンカーバイド(SiC)チップや窒化ガリウム(GaN)チップなどのさらに高い温度になる半導体チップの接合にも使用することができる。
焼結材を焼結させるためには、焼結させる部分に均一な圧力及び熱を加える必要がある。このため、1枚の絶縁配線基板の複数箇所に半導体チップが搭載される場合、半導体チップや絶縁配線基板の厚さのばらつきに起因して、半導体チップと絶縁配線基板とを接合するための複数の焼結材に均一に圧力及び熱を加えることが困難であるという問題がある。
本発明の目的は、複数の半導体チップと絶縁配線基板とを接合するための複数の焼結材に均一に加圧及び加熱することができる半導体モジュールの製造方法を提供することにある。
上記目的を達成するために、本発明の一態様による半導体モジュールの製造方法は、下金型の上に絶縁配線基板を配置し、前記絶縁配線基板の上の複数箇所に焼結材を配置し、複数の前記焼結材の上に半導体チップをそれぞれ配置し、複数の前記半導体チップの上に緩衝材をそれぞれ個別に配置し、複数の前記半導体チップの配置位置に対応する箇所に凸部を有する上金型を、複数の前記半導体チップに複数の前記凸部を対応させて前記下金型の上方に配置し、複数の前記緩衝材及び複数の前記半導体チップを介して前記凸部によって複数の前記焼結材を加圧及び加熱して焼結する。
本発明の一態様によれば、複数の半導体チップと絶縁配線基板とを接合するための複数の焼結材に均一に加圧及び加熱することができる。
本発明の第1実施形態による半導体モジュールの製造方法によって製造される半導体モジュールの概略構成の一例を示す断面模式図である。 本発明の第1実施形態による半導体モジュールの製造方法の流れの一例を示すフローチャートである。 本発明の第1実施形態による半導体モジュールの製造方法における緩衝材及び保護シートの配置工程を模式的に示す図である。 本発明の第1実施形態による半導体モジュールの製造方法における焼結材の加圧及び加熱工程を模式的に示す図である。 本発明の第1実施形態による半導体モジュールの製造方法における上金型の及び位置決め治具の退避工程を模式的に示す図である。 本発明の第1実施形態による半導体モジュールの製造方法における緩衝材及び保護シートの除去工程及び絶縁配線基板の取り外し工程を模式的に示す図である。 比較例1による半導体モジュールの製造方法における焼結材の加圧及び加熱を行う機構部の配置工程を模式的に示す図である。 比較例1による半導体モジュールの製造方法における焼結材の加圧及び加熱工程を模式的に示す図である。 比較例2による半導体モジュールの製造方法における焼結材の加圧及び加熱を行う機構部の配置工程を模式的に示す図である。 比較例2による半導体モジュールの製造方法における焼結材の加圧及び加熱工程を模式的に示す図である。 比較例3による半導体モジュールの製造方法における焼結材の加圧及び加熱を行う機構部の配置工程を模式的に示す図である。 比較例3による半導体モジュールの製造方法における焼結材の加圧及び加熱工程を模式的に示す図である。 本発明の第2実施形態による半導体モジュールの製造方法における緩衝材、保護シート及びスペーサ部材の配置工程を模式的に示す図である。 本発明の第2実施形態による半導体モジュールの製造方法における焼結材の加圧及び加熱工程を模式的に示す図である。 本発明の第3実施形態による半導体モジュールの製造方法における緩衝材の配置工程を模式的に示す図である。 本発明の第3実施形態による半導体モジュールの製造方法における焼結材の加圧及び加熱工程を模式的に示す図である。
本発明の各実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
〔第1実施形態〕
本発明の第1実施形態による半導体モジュールの製造について図1から図12を用いて説明する。
(半導体モジュールの構成)
本実施形態による半導体モジュールの製造方法によって製造される半導体モジュール1の概略構成について図1を用いて説明する。図1は、半導体モジュール1に備えられた絶縁配線基板13が配置された所定箇所で切断された半導体モジュール1の断面を模式的に示す図である。図1では、理解を容易にするため、封止樹脂18は、ハッチングが付されずに図示されている。
図1に示すように、半導体モジュール1は、空間111を画定するケース11を備えている。ケース11は、例えば絶縁性の熱可塑性樹脂で形成されている。
半導体モジュール1は、空間111に配置された絶縁配線基板13を備えている。絶縁配線基板13は、例えば矩形平板状を有する絶縁基板131を有している。絶縁配線基板13は、例えばDCB(Direct Copper Bonding)基板又はAMB(Active Matal Brazing)基板である。絶縁配線基板13は、絶縁基板131の上面(封止樹脂18(詳細は後述)側)に形成された複数の導電パターン133a,133b,133cと、絶縁基板131の下面(冷却器19(詳細は後述)側)に形成された矩形平板状の伝熱部材135とを有している。絶縁基板131は、例えばアルミナ(Al)や窒化アルミニウム(AlN)、窒化ケイ素(SiN)などのセラミックスで形成されている。導電パターン133a,133b,133c及び伝熱部材135は、例えば銅で形成されている。
半導体モジュール1は、導電パターン133a,133b,133cの上に形成された複数の焼結体15a,15b,15cと、複数の焼結体15a,15b,15cの上に配置された複数の半導体チップ14a,14b,14cとを備えている。焼結体15a,15b,15cは多孔質の焼結された金属層である。このため、半導体チップ14aは焼結体15aによって導電パターン133aと接合され、半導体チップ14bは焼結体15bによって導電パターン133bと接合され、半導体チップ14cは焼結体15cによって導電パターン133cと接合されている。
詳細は後述するが、本実施形態では、半導体チップ14a,14b,14cの配置位置に対応する箇所に凸部を有する上金型3A(図1では不図示、図3及び図4参照)と下金型2を用いて、焼結材151a,151b,151c(図1では不図示、図3及び図4参照)に対して個別に加圧及び加熱して焼結し、焼結体15a,15b,15cを形成する。これにより、半導体チップ14a,14b,14cと絶縁配線基板13とを接合するための焼結材151a,151b,151cに均一に加圧及び加熱することができる。
焼結材 151a,151b,151cは、周囲を有機物でコーティングされた微細な金属粒子を有機溶媒に混合したものである。焼結材151a,151b,151cを接合対象物の間に配置した状態で加圧及び加熱することによって有機溶媒とコーティングしている有機物が気化し、露出した微細な金属粒子同士が融合して多孔質の焼結体15a,15b,15cが形成される。金属粒子としては、例えば粒径数マイクロメートルから数十マイクロメートルの銀(Ag)や銅(Cu)が用いられる。焼結材151a,151b,151cは、例えば銀系焼結材又は銅系焼結材であり、約200W/mK以上300W/mK以下(純銀は約400W/mK)の熱伝導率、約20×10-6/℃の熱膨張係数及び約960℃の融点を有している。このため、焼結材151a,151b,151cを焼結して形成された焼結体15a,15b,15cは、半導体モジュール1の使用温度(例えば150℃以上170℃以下)で安定した強度を有する。
半導体チップ14aは、ケース11に設けられた端子16aとボンディングワイヤ17aによって接続されている。半導体チップ14bは、ケース11に設けられた端子(不図示)とボンディングワイヤ17bによって接続されている。半導体チップ14cは、ケース11に設けられた端子(不図示)とボンディングワイヤ17cによって接続されている。導電パターン133aは、ケース11に設けられた端子16bとボンディングワイヤ17dによって接続されている。導電パターン133bは、ケース11に設けられた端子(不図示)とボンディングワイヤ17eによって接続されている。導電パターン133cは、ケース11に設けられた端子(不図示)とボンディングワイヤ17fによって接続されている。なお、図1では、ゲート制御用のボンディングワイヤの不図示は、省略されている。または、各ボンディングワイヤの代わりにリードフレームが用いられる。
半導体チップ14a,14b,14cには例えば、絶縁ゲート型バイポーラトランジスタ(Insulated Gate Bipolar Transistor:IGBT)やパワー金属酸化膜半導体電界効果トランジスタ(Metal-Oxide-Semiconductor Field-Effect Transistor:MOSFET)などのパワー半導体素子が形成されている。このため、半導体チップ14a,14b,14cに形成されたパワー半導体素子には、端子16a及びその他の端子並びにゲート制御用ボンディングワイヤ(不図示)を介して、半導体モジュール1に備えられた制御装置(不図示)から制御信号が入力される。これにより、当該パワー半導体素子は、所定のタイミングでオン/オフ制御され、外部から入力される例えば直流電力を交流電力に変換し、導電パターン133a,133b,133cに出力する。半導体モジュール1は、半導体チップ14a,14b,14cから焼結材15a,15b,15cを介して導電パターン133a,133b,133cに入力される交流電力をボンディングワイヤ17d,17e,17f並びに端子16b及びその他の端子を介して不図示の負荷(例えばモータ)に出力する。これにより、半導体モジュール1は、半導体チップ14a,14b,14cにおいて生成した交流電力によって負荷を駆動することができる。
半導体モジュール1は、ケース11に取り付けられた冷却器19を備えている。伝熱部材135は、例えば焼結材によって形成された接合層12によって冷却器19に接続されている。なお、伝熱部材135は、はんだ材によって冷却器19に接続されていてもよい。半導体チップ14a,14b,14cに形成されたパワー半導体素子が動作する際に発生する熱は、伝熱部材135及び冷却器19を介して外部に放熱される。これにより、半導体モジュール1は、半導体チップ14a,14b,14cに形成されたパワー半導体素子が熱暴走することを防止できる。
半導体モジュール1は、絶縁配線基板13、焼結材15a,15b,15c、半導体チップ14a,14b,14c及びボンディングワイヤ17a,17b,17c,17d,17e,17fを覆って空間111に形成された封止樹脂18を備えている。封止樹脂18は、ケース11と絶縁基板131との間を通って、ケース11、絶縁配線基板13及び伝熱部材19によって囲まれる領域にも形成される。封止樹脂18は、例えばエポキシ樹脂などのケース11とは異なる材料で形成されている。封止樹脂18は、空間111に設けられた半導体チップ14a,14b,14cや絶縁配線基板13などの構成要素を封止する封止部材である。封止樹脂18は、絶縁配線基板13を封止することによって、絶縁配線基板13に形成された導電パターン133a,133b,133cの間の絶縁性の向上を図ることができる。これにより、封止樹脂18は、半導体モジュール1の信頼性の向上を図ることができる。
図1では、絶縁配線基板13には、3個の半導体チップ14a,14b,14cが並んで配置されているが、絶縁配線基板13に配置される半導体チップの個数及び絶縁配線基板13に形成される導電パターン131a,131b,131cの個数や形状は、図1に示す個数などに限られない。また、図1では、1個の絶縁配線基板13がケース11に配置されているが、絶縁配線基板13の個数は1個に限られず、複数の絶縁配線基板がケース11に配置されていてもよい。
(半導体モジュールの製造方法)
次に、本実施形態による半導体モジュールの製造方法について、図2から図6を用いて説明する。本実施形態による半導体モジュールの製造方法の説明について、図1に示す半導体モジュール1の製造方法を例にとって説明する。図2は、本実施形態による半導体モジュールの製造方法のうちの半導体チップ14a,14b,14cを絶縁配線基板13に接合する工程の流れの一例を示している。
図2に示すように、本実施形態による半導体モジュール1の製造方法におけるステップS11では絶縁配線基板13の配置工程が実行される。具体的には、ステップS11において、平板状を有する下金型2(図3参照)の上に絶縁配線基板13が配置される。下金型2は、例えば金型用金属材料またはセラミック材料(例えば窒化ケイ素など)で形成されている。下金型2は、半導体モジュール1の製造装置に取り付けられている。下金型2は、後の工程で焼結材に熱を加えるために絶縁配線基板13が配置される前に加熱され、例えば250℃以上の温度を有している。下金型2は、加熱された後に当該製造装置に取り付けられてもよいし、当該製造装置によって加熱されてもよい。
ステップS11の次のステップS13では、焼結材の配置工程が実行される。具体的には、ステップS13において、図3に示すように、絶縁配線基板13の上の複数箇所に焼結材151a,151b,151cを配置する。焼結材151aは位置決め治具4に形成された開口部41aに形成して配置され、焼結材151bは位置決め治具4に形成された開口部41bに形成して配置され、焼結材151cは位置決め治具4に形成された開口部41cに形成して配置される。絶縁配線基板13の上に配置される焼結材151a,151b,151cは、ペースト状又はシート状を有している。本実施形態では、焼結材151a,151b,151cは、例えばペースト状を有している。
ステップS13の次のステップS15では、位置決め治具の配置工程が実行される。具体的には、ステップS15において、複数の半導体チップ14a,14b,14cを複数の焼結材151a,151b,151c(図3参照)の上に配置する前に、複数の半導体チップ14a,14b,14cの配置位置に対応する箇所に開口部41a,41b,41cを有する位置決め治具4(図3参照)を絶縁配線基板13の上に配置する。これにより、絶縁配線基板13は、位置決め治具4によって下金型2の所定箇所に固定される。位置決め治具4は、焼結材151a,151b,151cの焼結時に加えられる温度によって変形しないように、高耐熱で熱膨張係数の小さい例えばカーボン製又はセラミック製の治具である。
ステップS15の次のステップS17では、半導体チップの形成工程が実行される。具体的には、ステップS17において、図3に示すように、複数の焼結材151a,151b,151cの上に半導体チップ14a,14b,14cをそれぞれ配置する。半導体チップ14aは開口部41aにおいて焼結材151aの上に配置され、半導体チップ14bは開口部41bにおいて焼結材151bの上に配置され、半導体チップ14cは開口部41cにおいて焼結材151cの上に配置される。
ステップS17の次のステップS19では、保護シートの配置工程が実行される。具体的には、ステップS19において、図3に示すように、半導体チップ14a,14b,14cの上に保護シート5a,5b,5cをそれぞれ配置する。保護シート5aは開口部41aにおいて半導体チップ14aの上に配置され、保護シート5bは開口部41bにおいて半導体チップ14bの上に配置され、保護シート5cは開口部41cにおいて半導体チップ14cの上に配置される。保護シート5a,5b,5cは、例えばフッ素樹脂(例えばポリテトラフルオロエチレン(PTFE))で形成され、例えば0.1mm以上0.5mm以下の厚さを有している。
ステップS19の次のステップS21では、緩衝材の配置工程が実行される。具体的には、ステップS21において、複数の半導体チップ14a,14b,14cの上に緩衝材6a,6b,6cをそれぞれ個別に配置する。緩衝材6aは開口部41aにおいて保護シート5aの上に配置され、緩衝材6bは開口部41bにおいて保護シート5bの上に配置され、緩衝材6cは開口部41cにおいて保護シート5cの上に配置される。このため、緩衝材6aは保護シート5aを介して半導体チップ14aの上に配置され、緩衝材6bは保護シート5bを介して半導体チップ14bの上に配置され、緩衝材6cは保護シート5cを介して半導体チップ14cの上に配置されている。このように、本実施形態では、緩衝材6a,6b,6cは、互いに分離されている。
緩衝材6a,6b,6cは、焼結材151a,151b,151cの焼結時でも低弾性率を有する例えばカーボン製シートなどで構成されている。緩衝材6a,6b,6cは、250℃以上の耐熱性、0.2以下のポアソン比、JIS K 6253準拠のタイプAデュロメータで80ポイント±5%の硬さ、及び1.5mm以上の厚さを有している。緩衝材6a,6b,6cがJIS K 6253準拠のタイプAデュロメータで80ポイント±5%の硬さを有することにより、焼結材151a,151b,151cの焼結時に緩衝材6a,6b,6cが保護シート5a,5b,5cを突き破って半導体チップ14a,14b,14cに傷をつけてしまうことが防止される。緩衝材6a,6b,6cは、1.5mm以上の厚さを有することにより、緩衝材6a,6b,6cの側に向けられる半導体チップ14a,14b,14cの表面の高さの差(例えば10μmより小さい差)を吸収して焼結材151a,151b,151cにほぼ均一な圧力を加えることができる。また、緩衝材6a,6b,6cは、250℃の温度で9MPaの圧縮弾性率を有している。緩衝材6a,6b,6cのより具体的な作用・効果については後述する。
ステップS21の次のステップS23では、上金型の配置工程が実行される。具体的には、ステップS23において、図3に示すように、複数の半導体チップ14a,14b,14cの配置位置に対応する箇所に凸部31a,31b,31cを有する上金型3Aを、複数の半導体チップ14a,14b,14cに複数の凸部31a,31b,31cを対応させて下金型2の上方に配置する。半導体チップ14a,14b,14cの上方には、緩衝材6a,6b,6cが配置されているので、上金型3Aは、凸部31aを緩衝材6aに対向させ、凸部31bを緩衝材6bに対向させ、凸部31cを緩衝材6cに対向させた状態で下金型2の上方に配置される。上金型3Aは、下金型2が取り付けられた半導体モジュール1の製造装置に取り付けられている。
凸部31aは、位置決め治具4の開口部41aに挿入可能な大きさを有している。凸部31bは、位置決め治具4の開口部41bに挿入可能な大きさを有している。凸部31cは、位置決め治具4の開口部41cに挿入可能な大きさを有している。このため、上金型3Aは、焼結材151a,151b,151cの焼結時に、凸部31a,31b,31cを開口部41a,41b,41cに挿入させた状態で焼結材151a,151b,151cを加圧することができる。
上金型3Aは、例えば下金型2と同じ金型用金属材料またはセラミック材料(例えば窒化ケイ素など)で形成されている。上金型3Aは、下金型2と異なる金属材料で形成されていてもよい。上金型3Aは、後の工程で焼結材151a,151b,151cに熱を加えるために下金型2の上方に配置される前に加熱され、例えば250℃以上の温度を有している。このため、凸部31a,31b,31cも例えば250℃以上の温度を有している。上金型3Aは、加熱された後に半導体モジュール1の製造装置に取り付けられてもよいし、当該製造装置によって加熱されてもよい。
ステップS23の次のステップS25では、焼結材への加圧及び加熱工程が実行される。具体的には、ステップS25において、図4に示すように、複数の緩衝材6a,6b,6c及び複数の半導体チップ14a,14b,14cを介して凸部31a,31b,31cによって複数の焼結材151a,151b,151cを加圧及び加熱して焼結する。本実施形態では、半導体チップ14a,14b,14c及び緩衝材6a,6b,6cの間に保護シート5a,5b,5cが配置されている。このため、凸部31a,31b,31cは、緩衝材6a,6b,6c、保護シート5a,5b,5c及び半導体チップ14a,14b,14cを介して焼結材151a,151b,151cを加圧及び加熱する。
下金型2は、焼結材への加圧及び加熱工程において、絶縁配線基板13を固定した状態で伝熱部材135側から絶縁配線基板13を支える。さらに、下金型2は、例えば250℃以上の温度を有している。このため、下金型2は、焼結材への加圧及び加熱工程において、絶縁配線基板13を介して焼結材151a,151b,151cを加圧及び加熱する。このように、焼結材151a,151b,151cは、上金型3A及び下金型2によって、例えば10MPa以上50MPa以下の圧力及び200℃以上300℃以下の温度が加えられて焼結する。
緩衝材6a,6b,6cは、焼結材151a,151b,151cの加圧前では位置決め治具4から飛び出して配置されているが(図3参照)、焼結材151a,151b,151cの加圧及び加熱時では位置決め治具4の開口部41a,41b,41cに全体が入り込むまで圧縮される。
緩衝材6a,6b,6cは、当該焼結時でも低弾性率を有するため、焼結材への加圧及び加熱工程において圧縮されることによって、緩衝材6a,6b,6cの側に向けられる半導体チップ14a,14b,14cの表面のそれぞれの高さ公差を吸収することができる。ここで、緩衝材6a,6b,6cの側に向けられる半導体チップ14a,14b,14cの表面は、保護シート5a,5b,5cに接触する半導体チップ14a,14b,14cの表面である。また、半導体チップ14a,14b,14cの表面のそれぞれの高さは、例えば複数の導電パターン133a,133b,133cが形成された絶縁基板131の表面からの距離に相当する。
また、緩衝材6a,6b,6cには、焼結材への加圧及び加熱工程において、絶縁配線基板13、半導体チップ14a,14b,14c、保護シート5a,5b,5c及び緩衝材6a,6b,6cが積層された方向(縦方向)に力が加えられる。このため、緩衝材6a,6b,6cは、当該力と同じ力で絶縁配線基板13の面内に平行な方向(横方向)に力を加える。緩衝材6a,6b,6cの周囲には、位置決め治具4の開口部41a,41b,41cを構成する側壁が配置されている。したがって、緩衝材6a,6b,6cは、焼結材への加圧及び加熱工程において、位置決め治具4の開口部41a,41b,41cを押し広げる方向に開口部41a,41b,41cを構成する側壁に力を加える。さらに、緩衝材6a,6b,6cが開口部41a,41b,41cを押し広げる際に、位置決め治具4の開口部41a,41b,41cのうちの互いに隣り合う開口部を構成する側壁同士は、互いに力を及ぼし合う。このため、半導体チップ14a,14b,14cのそれぞれへの接合加圧が不均一となり、半導体チップ14a,14b,14cと導電パターン133a,133b,133cとの接合品質が低下する可能性がある。
上述のとおり、緩衝材6a,6b,6cは、0.2以下のポアソン比を有している。このため、緩衝材6a,6b,6cは、横方向に広がりにくい特性を有している。緩衝材6a,6b,6cは、例えば0.2よりも大きいポアソン比を有する材料によって形成された緩衝材よりも、縦方向に加圧された場合に位置決め治具4の開口部41a,41b,41cを構成する側壁に対して弱い力を加える。このため、位置決め治具4は、硬度の低い安価な材料で作製されることができるので、半導体モジュール1の製造費用の低価格化を図ることができる。
上金型3A及び下金型2によって焼結材151a,151b,151cに圧力及び熱が加えられることにより、焼結材151a,151b,151cにおいて焼結反応が促進される。これにより、ペースト状又はシート状の焼結材151a,151b,151cに含まれていた銀粒子又は銅粒子が結合して構成された焼結体を有し、導電性を有する焼結材15a,15b,15cが形成される。
ステップS25の次のステップS27では、上金型の退避工程が実行される。具体的には、ステップS27において、位置決め治具4の開口部41a,41b,41cから上金型3Aの凸部31a,31b,31cが引き抜かれ、例えば下金型2の上方に退避される(図5参照)。
ステップS27の次のステップS29では、位置決め治具の退避工程が実行される。具体的には、ステップS29において、図5に示すように、位置決め治具4は、絶縁配線基板13などを下金型2に残した状態で、例えば下金型2の上方に退避される。位置決め治具4が退避された後の絶縁配線基板13には、半導体チップ14a,14b,14c、保護シート5a,5b,5c及び緩衝材6a,6b,6cが残存する。
ステップS29の次のステップS31では、緩衝材及び保護シートの除去工程が実行される。具体的には、ステップS31において、図6に示すように、緩衝材6a,6b,6c及び保護シート5a,5b,5cが除去される。これにより、絶縁配線基板13には、焼結材15a,15b,15cによって導電パターン133a,133b,133cに接合された半導体チップ14a,14b,14cが残存する。
ステップS31の次のステップS33では、絶縁配線基板の取り外し工程が実行される。具体的には、ステップS33において、図6に示すように、焼結材15a,15b,15cによって導電パターン133a,133b,133cに接合された半導体チップ14a,14b,14cを有する絶縁配線基板13が下金型2から取り外される。これにより、半導体チップ14a,14b,14cを絶縁配線基板13に接合する工程が終了する。
図示は省略するが、図1に示すように、冷却器19が取り付けられたケース11の空間111に、半導体チップ14a,14b,14cが接合された絶縁配線基板13を配置する。次に、半導体チップ14a,14b,14cとケース11に配置された端子16aなどとをボンディングワイヤ17a,17b,17cによって接続し、導電パターン133a,133b,133cとケース11に配置された端子16bなどをボンディングワイヤ17d,17e,17fによって接続する。次に、半導体チップ14a,14b,14c、ボンディングワイヤ17a,17b,17c,17d,17e,17f及び導電パターン133a,133b,133cを覆って空間111に封止樹脂18を注型する。これにより、半導体モジュール1が完成する。
(半導体モジュールの製造方法の効果)
次に、本実施形態による半導体モジュールの製造方法の効果について、図3及び図4を参照しつつ図7から図12を用いて説明する。
(比較例1)
図7及び図8は、比較例1による半導体モジュールの製造方法における焼結材の加圧及び加熱工程を説明するための図である。
図7に示すように、比較例1による半導体モジュールの製造方法では、本実施形態における下金型2と同様の作用・機能を有する下金型21Aの上に絶縁配線基板13Xが配置される。絶縁配線基板13Xは、本実施形態における絶縁配線基板13と同様に、絶縁基板132と、絶縁基板132の一方の表面に形成された導電パターン134a,134b,134cと、絶縁基板132の他方の表面に形成された伝熱部材136とを有している。絶縁基板132は、本実施形態における絶縁基板131と同様の作用・機能を有している。導電パターン134a,134b,134cは、本実施形態における導電パターン133a,133b,133cと同様の作用・機能を有している。伝熱部材136は、本実施形態における伝熱部材135と同様の作用・機能を有している。絶縁配線基板13Xは、伝熱部材136を下金型2A側に向けて下金型2Aの上に配置される。
次に、図7に示すように、導電パターン134a,134b,134cの所定箇所に焼結材152a,152b,152cが形成される。焼結材152a,152b,152cは、本実施形態における焼結材151a,151b,151cと同様の作用・機能を有している。
次に、図7に示すように、焼結材152a,152b,152cの上に半導体チップ141a,141b,141cを配置する。半導体チップ141a,141b,141cは、本実施形態における半導体チップ14a,14b,14cと同様の作用・機能を有している。
次に、図7に示すように、半導体チップ141a,141b,141cの上に、絶縁配線基板13Xの上方の全面を覆うことが可能な大きさの1枚の保護シート51を配置する。保護シート51は、半導体チップ141a,141b,141cの上面に接触させて配置される。
次に、図7に示すように、絶縁配線基板13Xなどを挟んで下金型2Aの上方に、上金型31Aを対向して配置する。比較例1による上金型31Aは、内部に加圧機構部91を有している。加圧機構部91は、本実施形態における緩衝材6a,6b,6cと同様に低弾性率を有している。上金型31Aは、一方の端部が加圧機構部91に接触し他方の端部が上金型31Aから突出する個別加圧部92a,92b,92cを有している。個別加圧部92a,92b,92cは、上金型31Aを下金型2Aに対向して配置した場合に、下金型2A側に向かって突出する。個別加圧部92a,92b,92cは、半導体チップ141a,141b,141cの配置位置に対応させて配置されている。このため、上金型31Aが絶縁配線基板13Xを挟んで下金型2Aに対向して配置されると、個別加圧部92aは、保護シート51を挟んで半導体チップ141aに対向して配置され、個別加圧部92bは、保護シート51を挟んで半導体チップ141bに対向して配置され、個別加圧部92cは、保護シート51を挟んで半導体チップ141cに対向して配置される。
次に、図8に示すように、上金型31A及び下金型2Aによって焼結材151a,152b,152cを加圧する。上金型31Aが下金型2Aに向かって下降すると、まず、個別加圧部92a,92b,92cの端部が保護シート51に接触する。加圧機構部91は、個別加圧部92a,92b,92c、半導体チップ141a,141b,141c及び絶縁配線基板13Xよりも柔らかい。このため、個別加圧部92a,92b,92cの端部が保護シート51に接触した後も上金型31Aの下降が継続すると、図8に示すように、個別加圧部92a,92b,92cは、上金型31Aが下降する前に上金型31Aから突出していた部分と同じ長さ分だけ加圧機構部91に食い込む。上金型31Aは、下金型2Aに対向する表面がほぼ面一になった状態で、保護シート51及び半導体チップ141a,141b,141cを介して焼結材152a,152b,152cを加圧する。
上金型31A及び下金型2Aは、本実施形態における上金型3及び下金型2と同様に、加熱されて例えば250℃程度の温度を有している。このため、上金型31A及び下金型2Aは、焼結材152a,152b,152cに圧力とともに熱を加えることができる。これにより、焼結材152a,152b,152cが焼結して半導体チップ141a,141b,141cと絶縁配線基板13X(具体的には導電パターン134a,134b,134c)が接合される。
このように、比較例1における上金型31Aは、焼結材152a,152b,152cを加圧及び加熱することができる。しかしながら、上金型31Aは、加圧機構部91を配置する空間及び個別加圧部92a,92b,92cを配置する開口を有する必要があるため、複雑な構造を有している。また、上金型31Aの空間に加圧機構部91を設けたり、上金型31Aの開口に個別加圧部92a,92b,92cを設けたりする必要があるため、上金型31Aの構造や製造が複雑になる。また、半導体チップ141a,141b,141cの配置位置や個数は半導体モジュールの品種ごとに異なる。このため、上金型31Aは、半導体モジュールの品種ごとに作製する必要がある。
また、上金型31Aを繰り返し使用していると、加圧機構部91は同じ箇所を個別加圧部92a,92b,92cに押し上げられる。このため、加圧機構部91の当該箇所における弾性力の経時変化によって、焼結材152a,152b,152cに必要な力を加えることができなくなる可能性がある。このため、加圧機構部91には使用回数に制限がある。
さらに、保護シート51は、焼結材152a,152b,152cへの加圧及び加熱時に破損する可能性がある。破損した保護シート51を絶縁配線基板13Xや上金型31Aなどに付着した場合、破損した保護シート51を取り除くための費用が掛かる。このため、保護シート51は、使い回すことが困難であるため、使い捨てとなる。図7及び図8に示すように、1枚の保護シート51において、半導体チップ141a,141b,141cが接触する領域よりも接触しない領域の方が多い。このため、比較例1による半導体モジュールの製造方法において、保護シート51の利用効率が低い。
このように、比較例1による半導体モジュールの製造方法では、半導体モジュールの製造に用いる上金型31Aの作製費用、加圧機構部91の交換費用、保護シート51の利用効率及びメンテナンス費用などで、半導体モジュールの製造コストが高くなる。
これに対し、本実施形態による半導体モジュールの製造方法では、凸部31a,31b,31cが一体に形成された上金型3Aを使用することができる。上金型3Aも半導体モジュールの品種ごとに作製する必要があるが、上金型31Aと比較して単純な構造を有しているので、上金型31Aと比較して低コストで作製することができる。また、本実施形態による半導体モジュールの製造方法では、保護シート5a,5b,5cは使い捨てではあるものの、半導体チップ14a,14b,14cごとに保護シート5a,5b,5cを配置するため、比較例1における保護シート51と比較して、保護シート5a,5b,5cの利用効率が高い。さらに、緩衝材及び保護シートの除去工程では、半導体チップ14a,14b,14cサイズの保護シート5a,5b,5c及び緩衝材6a,6b,6cを取り除くだけなので、緩衝材及び保護シートの除去工程が煩雑にならず、メンテナンス費用も極めて低く抑えることができる。
したがって、本実施形態による半導体モジュールの製造方法は、比較例1による半導体モジュールの製造方法よりも半導体モジュールの製造費用やメンテナンス費用の低コスト化を図ることができる。
(比較例2)
図9及び図10は、比較例2による半導体モジュールの製造方法における焼結材の加圧及び加熱工程を説明するための図である。比較例2による半導体モジュールの製造方法によって製造される半導体モジュールに用いられる絶縁配線基板、焼結材及び半導体チップについては、比較例1における絶縁配線基板13X、焼結材152a,152b,152c及び半導体チップ141a,141b,141cと同様の符号を用いて説明する。
図9に示すように、比較例2による半導体モジュールの製造方法では、下金型21Bの上に絶縁配線基板13Xが配置される。下金型21Bは、絶縁配線基板13Xに設けられた絶縁基板132及び伝熱部材136が配置される凹部を有している。このため、絶縁配線基板13Xが下金型2Bに配置されると、絶縁配線基板13Xに設けられた導電パターン134a,134b,134cが下金型2Bから飛び出した状態となる。
次に、図9に示すように、導電パターン134a,134b,134cの所定箇所に焼結材152a,152b,152cを形成し、焼結材152a,152b,152cの上に半導体チップ141a,141b,141cを配置する。
次に、図9に示すように、絶縁配線基板13Xなどを挟んで下金型2Bの上方に、上金型31Bを対向して配置する。比較例2による上金型31Bは、内部に形成された空間に流動性の高い弾性体94と、当該空間の開口を塞いで配置されて弾性体94を当該空間に密閉する密閉シート95とを有している。上金型31Bは、密閉シート95を下金型2Bに向かい合わせて配置される。
次に、図10に示すように、上金型31B及び下金型2Bによって焼結材151a,152b,152cを加圧する。上金型31Bが下金型2Bに向かって下降すると、密閉シート95が半導体チップ141a,141b,141c、焼結材151a,151b,151c及び絶縁配線基板13Xを含む全面に密着する。密閉シート95及び弾性体94は、半導体チップ141a,141b,141c及び絶縁配線基板13Xよりも柔軟性を有している。このため、上金型31Bが下金型2Bに接触した状態で配置されると、密閉シート95及び密閉シート95近傍の弾性体94は、弾性力を有しているので、絶縁配線基板13Xなどを含む当該全面の形状に倣った形状に変形する。これにより、弾性体94は、密閉シート95を介して焼結材152a,152b,152cを加圧する。
上金型31B及び下金型2Bは、本実施形態における上金型3及び下金型2と同様に、加熱されて例えば250℃程度の温度を有している。このため、上金型31B及び下金型2Bは、焼結材152a,152b,152cに圧力とともに熱を加えることができる。これにより、焼結材152a,152b,152cが焼結して半導体チップ141a,141b,141cと絶縁配線基板13X(具体的には導電パターン134a,134b,134c)が接合される。
このように、比較例2における上金型31Bは、焼結材152a,152b,152cを加圧及び加熱することができる。比較例2による半導体モジュールの製造方法では、焼結材152a,152b,152cを加圧及び加熱時に、導電パターン134a,134b,134c及び半導体チップ141a,141b,141cが弾性体94に食い込む。これにより、弾性体94は、導電パターン134a,134b,134c及び半導体チップ141a,141b,141cの大きさに基づいて外側に広がろうとする。このため、上金型31Bは、弾性体94が外側に広がろうとする内圧に耐える大きさや強度が必要になる。このため、上金型31Bの作製費用が高額になるので、半導体モジュールの製造コストが高くなる。
これに対し、本実施形態による半導体モジュールの製造方法では、上述のとおり、凸部31a,31b,31cが一体に形成された上金型3Aを使用することができる。このように、本実施形態による半導体モジュールの製造方法では、単純な構造を有する上金型3Aを用いることができるので、比較例2による半導体モジュールの製造方法よりも半導体モジュールの製造設備や製造費用の低コスト化を図ることができる。
(比較例3)
図11及び図12は、比較例3による半導体モジュールの製造方法における焼結材の加圧及び加熱工程を説明するための図である。比較例3による半導体モジュールの製造方法によって製造される半導体モジュールに用いられる絶縁配線基板、焼結材及び半導体チップについては、比較例1における絶縁配線基板13X、焼結材152a,152b,152c及び半導体チップ141a,141b,141cと同様の符号を用いて説明する。
図11に示すように、比較例3による半導体モジュールの製造方法では、比較例2における下金型2Bと同様の構造を有する下金型2Bの上に絶縁配線基板13Xが配置される。このため、絶縁配線基板13Xが下金型2Bに配置されると、絶縁配線基板13Xに設けられた導電パターン134a,134b,134cが下金型2Bから飛び出した状態となる。
次に、図11に示すように、導電パターン134a,134b,134cの所定箇所に焼結材152a,152b,152cを形成し、焼結材152a,152b,152cの上に半導体チップ141a,141b,141cを配置する。
次に、図11に示すように、半導体チップ141a,141b,141cの上に、絶縁配線基板13Xの上方の全面を覆うことが可能な大きさの1枚の密閉シート96(詳細は後述)を配置する。密閉シート96は、半導体チップ141a,141b,141cの上面に接触させて配置される。
次に、図11に示すように、密閉シート96の上に弾性体97を配置する。弾性体97は、比較例2における弾性体94よりも流動性が低いものの所定の流動性を有し、かつ所定の形状を保持することができる。
次に、図11に示すように、絶縁配線基板13Xなどを挟んで下金型2Bの上方に、空間311を有する上金型31Cを対向して配置する。空間311は、弾性体97を内包することができ、かつほぼ同じ大きさを有している。上金型31Cは、空間311を下金型2Bに向かい合わせて配置される。
次に、図12に示すように、上金型31C及び下金型2Bによって焼結材151a,152b,152cを加圧する。上金型31Cは、下金型2Bに向かって下降しながら弾性体97を空間311に収納し、下金型2Bに接触した状態で停止する。これにより、比較例2と同様に、密閉シート96及び弾性体97は、絶縁配線基板13Xなどを含む当該全面の形状に倣った形状に変形する。これにより、弾性体97は、密閉シート96を介して焼結材152a,152b,152cを加圧する。
上金型31C及び下金型2Bは、本実施形態における上金型3及び下金型2と同様に、加熱されて例えば250℃程度の温度を有している。このため、上金型31C及び下金型2Bは、焼結材152a,152b,152cに例えば20MPa以上の圧力とともに250℃の熱を加えることができる。これにより、焼結材152a,152b,152cが焼結して半導体チップ141a,141b,141cと絶縁配線基板13X(具体的には導電パターン134a,134b,134c)が接合される。
このように、比較例3における上金型31Cは、焼結材152a,152b,152cを加圧及び加熱することができる。比較例3における上金型31Cは、比較例2における上金型31Bと同様に、焼結材152a,152b,152cの加圧及び加熱時に、弾性体97が外側に広がろうとする内圧に耐える大きさや強度が必要になる。このため、上金型31Cの作製費用が高額になるので、半導体モジュールの製造コストが高くなる。
これに対し、本実施形態による半導体モジュールの製造方法では、上述のとおり、凸部31a,31b,31cが一体に形成された上金型3Aを使用することができる。このように、本実施形態による半導体モジュールの製造方法では、単純な構造を有する上金型3Aを用いることができるので、比較例3による半導体モジュールの製造方法よりも半導体モジュールの製造設備や製造費用の低コスト化を図ることができる。
比較例1による半導体モジュールの製造方法において説明したように、個別に半導体チップを加圧する機構では、高さが異なる半導体チップに対して同じ加圧力を発生させる機構を金型又は治具内に内蔵する必要がある。このため、当該機構を内蔵する必要がある金型又は治具は、当該機構を金型又は治具内に内蔵する必要がない金型又は治具よりも厚さの厚い構造を有する必要がある。
さらに、半導体チップの表面に形成された回路の凹凸が加圧面の圧力分布に影響する。このため、焼結材を焼結するための加圧の際に、半導体チップ表面の凹凸を吸収できるだけの厚さを有する緩衝材又は保護シートが必要とされる。つまり、比較例1における個別加圧部92a、92b、92c、比較例2における弾性体94及び比較例3における弾性体97は、半導体チップ表面の凹凸を吸収できるだけの厚さを有している。
比較例2及び比較例3のように弾性体を用いる半導体モジュールの製造方法において、0.4以上のポアソン比を有する弾性体(例えばゴム状の弾性体)が用いられると、当該弾性体は、半導体チップへの加圧において横方向にも広がって圧力が分散する。このため、当該弾性体の横方向への広がりを抑えるために、容器状の金型や治具が必要になる。比較例1における上金型31A、比較例2における上金型31B及び比較例3における上金型31Cは、いずれも弾性体を囲むことが可能な容易状を有している。
弾性体が半導体チップに加える縦方向の圧力と、当該圧力により横方向に広がる圧力とは、ほぼ同じ強さである。このため、上述のとおり、上金型31A、上金型31B及び上金型31Cは、弾性体からの横方向に広がる圧力に耐え得る強度が必要になる。したがって、上金型31A、上金型31B及び上金型31Cを形成するために高価な材料が必要になったり、当該強度に耐え得る厚さを有するために上金型31A、上金型31B及び上金型31Cが大型になったりするという問題が生じる。
液状の弾性体は、固体の弾性体よりも流動性が高いため、接合対象の複数の半導体チップの段差を吸収できるが、半導体モジュールの製造時において取り扱いが困難であるという問題を有している。一方、固体の弾性体では、弾性体の厚みが接合対象の複数の半導体チップの間の段差距離の吸収量と相関している。このため、固体の弾性体には、想定される当該段差距離を十分に吸収できるだけ厚さが必要になるため、当該弾性体の厚さに対向可能な容器状の金型や治具が必要となり、半導体モジュールの製造装置が大型化するという問題が生じる。
これに対し、本実施形態による半導体モジュールの製造方法では、容器状の金型を必要としない。また、本実施形態による半導体モジュールの製造方法では、0.2以下のポアソン比を有する緩衝材6a,6b,6cが用いられるため、横方向への広がりが抑制される。このため、位置決め治具4に必要な強度を低く抑えることができ、位置決め治具4を安価で作製することができる。したがって、本実施形態による半導体モジュールの製造方法は、上述のような問題が生じず、半導体モジュールの製造費用の低コスト化を図ることができる。
以上説明したように、本実施形態による半導体モジュールの製造方法は、下金型2の上に絶縁配線基板13を配置し、絶縁配線基板13の上の複数箇所に焼結材151a,151b,151cを配置し、複数の焼結材151a,151b,151cの上に半導体チップ14a,14b,14cをそれぞれ配置し、複数の半導体チップ14a,14b,14cの上に緩衝材6a,6b,6cをそれぞれ個別に配置し、複数の半導体チップ14a,14b,14cの配置位置に対応する箇所に凸部31a,31b,31cを有する上金型3Aを、複数の半導体チップ14a,14b,14cに複数の凸部31a,31b,31cを対応させて下金型2の上方に配置し、複数の緩衝材6a,6b,6c及び複数の半導体チップ14a,14b,14cを介して凸部31a,31b,31cによって複数の焼結材151a,151b,151cを加圧及び加熱して焼結する。
本実施形態による半導体モジュールの製造方法によれば、複数の半導体チップ14a,14b,14cと絶縁配線基板13とを接合するための複数の焼結材151a,151b,151cに均一に加圧及び加熱することができる。
〔第2実施形態〕
本発明の第2実施形態による半導体モジュールの製造方法について図13及び図14を用いて説明する。本実施形態による半導体モジュールの製造方法は、複数の半導体チップの間の段差を抑制するスペーサ部材を用いる点に特徴を有している。本実施形態による半導体モジュールの製造方法の説明に当たって、上記第1実施形態による半導体モジュールの製造方法に用いられる部材と同一の作用・機能を奏する部材については、同一の符号を付して説明は省略する。
(半導体モジュールの構成)
本実施形態による半導体モジュールの製造方法によって製造される半導体モジュールは、上記第1実施形態による半導体モジュールの製造方法によって製造される半導体モジュールと同様の構成を有し、同様の機能を発揮するため、説明は省略する。
(半導体モジュールの製造方法)
本実施形態による半導体モジュールの製造方法は、緩衝材の配置工程と上金型の配置工程(図2参照)の間にスペーサ部材の配置工程がある点を除いて、上記第1実施形態による半導体モジュールの製造方法と同様であるため、スペーサ部材の配置工程から焼結材への加圧及び加熱工程(図2参照)について説明し、その他の工程の説明は省略する。
図13は、スペーサ部材の配置工程及び上金型の配置工程の一例を示す図である。図14は、焼結材への加圧及び加熱工程の一例を示す図である。図13及び図14では、半導体チップ14aの高さが半導体チップ14b,14cの高さよりも低い場合が図示されている。
スペーサ部材の配置工程では、半導体チップ14a,14b,14cの緩衝材6a,6b,6cと接触する表面の高さが異なっているか否かを判定する。図13に示すように、緩衝材6a,6b,6cの側に向けられる半導体チップ14a,14b,14cの表面の高さが異なっている場合、当該高さの差を低減させるスペーサ部材7を緩衝材(本例では緩衝材6a)の上に配置する。本実施形態では、緩衝材の側に向けられる半導体チップの表面の高さは、例えば導電パターンが形成される絶縁基板132の表面からの距離である。また、本実施形態では、緩衝材の側に向けられる半導体チップの表面は、保護シートが接触する面である。さらに、本実施形態では、緩衝材の側に向けられる複数の半導体チップの表面の高さの差は、例えば半導体モジュールの製造装置の制御装置(不図示)によって判定される。
緩衝材6a,6b,6cの側に向けられる半導体チップ14a,14b,14cの表面の高さの差が10μm以上の場合に複数の半導体チップ14a,14b,14cのうちの当該高さが低い方にスペーサ部材7を配置する。図13及び図14に示す例では、半導体チップ14aの高さが半導体チップ14b,14cのそれぞれの高さよりも例えば10μm以上低いとする。このため、当該高さの差が低い方に相当する半導体チップ14aにスペーサ部材7が配置される。スペーサ部材7は、例えば緩衝材6a,6b,6cよりも熱膨張係数が小さくかつ圧縮強度が高く、焼結材151a,151b,151cに加える温度よりも高い温度に耐熱性を有する例えばセラミック製又は金属製の部材である。
次に、上金型の配置工程において、図13に示すように、複数の半導体チップ14a,14b,14cの配置位置に対応する箇所に凸部31a,31b,31cを有する上金型3Aを、複数の半導体チップ14a,14b,14cに複数の凸部31a,31b,31cを対応させて下金型2の上方に配置する。
次に、焼結材への加圧及び加熱工程において、図14に示すように、複数の緩衝材6a,6b,6c及び複数の半導体チップ14a,14b,14cを介して凸部31a,31b,31cによって複数の焼結材151a,151b,151cを加圧及び加熱して焼結する。スペーサ部材7は、例えば10μm以下の厚さを有している。これにより、スペーサ部材7が配置されることにより、半導体チップ14aの高さと、半導体チップ14b,14cのそれぞれの高さとの差は、10μmよりも小さくなる(最小値は0となる)。このため、長さの同じ凸部31a,31b,31cを有する上金型3Aであっても、凸部31aは、凸部31b,31cが緩衝材6b,6cに接触するタイミングとほぼ同じタイミングでスペーサ部材7と接触する。その結果、上金型3Aは、高さの低い半導体チップ14aを導電パターン133aに接合させる焼結材151aに、その他の焼結材151b,151cとほぼ同じ力を加えることができる。
ところで、緩衝材6a,6b,6cの厚さ寸法の公差は、例えば10μmである。このため、半導体チップ14a,14b,14cの高さの間に10μm以上の段差があると、緩衝材6a,6b,6cは、この段差を吸収することができない。これにより、上金型3Aによる焼結材151a,151b,151cへの加圧にばらつきが生じ、半導体チップ14a,14b,14cのうちの高さの低い半導体チップの接合状態の信頼性が低下する。
そこで、本実施形態による半導体モジュールの製造方法では、半導体チップ14a,14b,14cの間の段差を吸収するスペーサ部材7が必要に応じて使用される。これにより、本実施形態による半導体モジュールの製造方法は、半導体チップ14a,14b,14cと絶縁配線基板13との接合状態の信頼性の向上を図ることができる。
以上説明したように、本実施形態による半導体モジュールの製造方法は、下金型2の上に絶縁配線基板13を配置し、絶縁配線基板13の上の複数箇所に焼結材151a,151b,151cを配置し、複数の焼結材151a,151b,151cの上に半導体チップ14a,14b,14cをそれぞれ配置し、複数の半導体チップ14a,14b,14cの上に緩衝材6a,6b,6cをそれぞれ個別に配置し、複数の半導体チップ14a,14b,14cの配置位置に対応する箇所に凸部31a,31b,31cを有する上金型3Aを、複数の半導体チップ14a,14b,14cに複数の凸部31a,31b,31cを対応させて下金型2の上方に配置し、複数の緩衝材6a,6b,6c及び複数の半導体チップ14a,14b,14cを介して凸部31a,31b,31cによって複数の焼結材151a,151b,151cを加圧及び加熱して焼結する。
これにより、本実施形態による半導体モジュールの製造方法によれば、上記第1実施形態による半導体モジュールの製造方法と同様の効果が得られる。
さらに、本実施形態による半導体モジュールの製造方法は、緩衝材6a,6b,6cの側に向けられる半導体チップ14a,14b,14cの表面の高さが異なっている場合、当該高さの差を低減させるスペーサ部材7を緩衝材(具体的には、高さの低い半導体チップの上方に設けられた緩衝材)の上に配置する。
これにより、本実施形態による半導体モジュールの製造方法によれば、例えば半導体チップ14a,14b,14cの厚さが異なって緩衝材6a,6b,6cの厚さ寸法の公差では吸収できない段差が半導体チップ14a,14b,14cの間に生じていたとしても、焼結材151a,151b,151cは十分に焼結される。その結果、完成した半導体モジュール1の信頼性を確保することができる。
〔第3実施形態〕
本発明の第3実施形態による半導体モジュールの製造方法について図15及び図16を用いて説明する。本実施形態による半導体モジュールの製造方法は、焼結材の焼結時に絶縁配線基板に生じた反りを矯正することができる点に特徴を有している。本実施形態による半導体モジュールの製造方法の説明に当たって、上記第1実施形態による半導体モジュールの製造方法に用いられる部材と同一の作用・機能を奏する部材については、同一の符号を付して説明は省略する。
(半導体モジュールの構成)
本実施形態による半導体モジュールの製造方法によって製造される半導体モジュールは、上記第1実施形態による半導体モジュールの製造方法によって製造される半導体モジュールと同様の構成を有し、同様の機能を発揮するため、説明は省略する。
(半導体モジュールの製造方法)
本実施形態による半導体モジュールの製造方法は、上金型の構造が上記第1実施形態と異なるものの、上記第1実施形態による半導体モジュールの製造方法と同様であるため、上金型が用いられる上金型の配置工程から焼結材への加圧及び加熱工程(図2参照)について説明し、その他の工程の説明は省略する。
図15は、上金型の配置工程の一例を示す図である。図16は、焼結材への加圧及び加熱工程の一例を示す図である。絶縁配線基板13は、絶縁材料で形成された絶縁基板132を金属材料で形成された導電パターン133a,133b,133c及び伝熱部材135で挟んだ構造を有している。このため、絶縁基板132と、導電パターン133a,133b,133c及び伝熱部材136とは、熱膨張係数が異なる。これにより、絶縁配線基板13は、作製過程における加熱及び冷却などによって応力が発生し、変形や厚みばらつきが生じる可能性がある。そこで、本実施形態では、焼結材への加圧及び加熱工程、すなわち絶縁配線基板13に半導体チップ14a,14b,14cの接合する際に、変形した絶縁配線基板13を強制的に平坦化しながら焼結材151a,151b,151cへの加圧及び加熱が実行される。
図15に示すように、絶縁配線基板13は、変形(本例では反り)が生じたままの状態で、位置決め治具4によって下金型2の上に固定されて配置されている。また、本実施形態では、絶縁配線基板13の上には、半導体チップ14bは配置されているが、半導体チップ14a,14cは配置されていない。
上金型の配置工程において、図15に示すように、半導体チップ14bの配置位置に対応する箇所に凸部31bを有し、導電パターン133a,133cの配置位置に対応する箇所に凸部31d,31eを有する上金型3Bを、半導体チップ14b及び導電パターン133a,133cに凸部31b,31d,31eを対応させて下金型2の上方に配置する。凸部31d,31eは、半導体チップ14b及び焼結材151bを合わせた厚さ分だけ凸部31bよりも長く形成されている。このため、上金型3Bを絶縁配線基板13などを挟んで下金型2に対向して配置すると、凸部31d,31eは、凸部31bよりも絶縁配線基板13側に向かって突出する。
次に、焼結材への加圧及び加熱工程において、図16に示すように、保護シート5a,5c及び緩衝材6a,6cを介して凸部31d,31eによって導電パターン133a,133cを加圧する。これにより、絶縁配線基板13の反りが矯正され平坦な状態になる。また、焼結材への加圧及び加熱工程において、保護シート5b、緩衝材6b及び半導体チップ14bを介して凸部31bによって焼結材151bを加圧及び加熱する。その結果、焼結材151bは、絶縁配線基板13の形状が矯正された状態で焼結することができるので、焼結材151bには均一な力及び温度が加えられ、粒子が良好に結合された焼結体を有する焼結材15b(図1参照)となる。
このように、本実施形態による半導体モジュールの製造方法は、絶縁配線基板13が変形していたとしても、良好な接合状態で半導体チップ14bを絶縁配線基板13に搭載することができるので、完成した半導体モジュールの信頼性を確保することができる。
図15及び図16では、絶縁配線基板13に1つの半導体チップ14bを接合する状態が図示されているが、接合される半導体チップは、2つ以上であってもよい。また、図15及び図16では、絶縁配線基板13を矯正するための凸部31d,31eと対応する位置に導電パターン133a,133cが形成されている状態が図示されているが、凸部31d,31eと対応する位置に導電パターンが形成されていなくてもよい。
以上説明したように、本実施形態による半導体モジュールの製造方法は、下金型2の上に絶縁配線基板13を配置し、絶縁配線基板13の上の複数箇所に焼結材151a,151b,151cを配置し、複数の焼結材151a,151b,151cの上に半導体チップ14a,14b,14cをそれぞれ配置し、複数の半導体チップ14a,14b,14cの上に緩衝材6a,6b,6cをそれぞれ個別に配置し、複数の半導体チップ14a,14b,14cの配置位置に対応する箇所に凸部31a,31b,31cを有する上金型3Aを、複数の半導体チップ14a,14b,14cに複数の凸部31a,31b,31cを対応させて下金型2の上方に配置し、複数の緩衝材6a,6b,6c及び複数の半導体チップ14a,14b,14cを介して凸部31a,31b,31cによって複数の焼結材151a,151b,151cを加圧及び加熱して焼結する。
これにより、本実施形態による半導体モジュールの製造方法によれば、上記第1実施形態による半導体モジュールの製造方法と同様の効果が得られる。
さらに、本実施形態による半導体モジュールの製造方法は、焼結材を焼結するための凸部よりも長さの長い凸部を有する上金型を用いて、焼結材への加圧及び加熱工程において、変形した絶縁配線基板13を強制的に平坦な状態にするとともに焼結材を焼結させることができる。
これにより、本実施形態による半導体モジュールの製造方法によれば、絶縁配線基板13の変形の矯正と、複数の半導体チップと絶縁配線基板13との接合とを同時に行うことができる。その結果、完成した半導体モジュール1の信頼性を確保することができる。
本発明は、上記第1実施形態から第3実施形態に限らず、種々の変形が可能である。
上記第1実施形態から第3実施形態では、半導体モジュールは、半導体チップ及び導電パターンとケースに設けられた端子とがボンディングワイヤによって接続された個性を有しているが、本発明は、これに限られない。例えば、本発明による半導体モジュールの製造方法において製造される半導体モジュールは、半導体チップの主面上にピンを接合して電気配線とするインプラントピン基板を用いたインプラントピン構造を有していてもよい。また例えば、本発明による半導体モジュールの製造方法において製造される半導体モジュールは、リードフレームを用いた配線構造を有していてもよい。
上記第1実施形態から第3実施形態では、焼結材151a,151b,151cは、例えばペースト状を有しているが、シート状を有していてもよい。この場合、焼結材151a,151b,151cは、半導体チップ14a,14b,14cの裏面(すなわち絶縁配線基板13に向けられる面)に転写又は絶縁配線基板13上に配置されてもよい。
上記第1実施形態から第3実施形態による半導体モジュールの製造方法では、位置決め治具が用いられているが、本発明はこれに限られない。緩衝材は、0.2以下のポアソン比を有し、焼結材を加圧及び加熱する際に横方向に広がりにくく、横方向の圧力分散が発生しにくい。このため、位置決め治具によって緩衝材の横方向の広がりを抑制する必要がないので、位置決め治具は用いられなくてもよい。
本発明の技術的範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本発明が目的とするものと均等な効果をもたらす全ての実施形態をも含む。さらに、本発明の技術的範囲は、請求項により画される発明の特徴の組み合わせに限定されるものではなく、全ての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画され得る。
1 半導体モジュール
2,2A,2B,21A,21B 下金型
3,3A,3B,31A,31B,31C 上金型
4 位置決め治具
5a,5b,5c 保護シート
6a,6b,6c 緩衝材
7 スペーサ部材
11 ケース
13,13X 絶縁配線基板
14a,14b,14c,141a,141b,141c 半導体チップ
15a,15b,15c,151a,151b,151c,152a,152b,152c 焼結材
16a,16b 端子
17a,17b,17c,17d,17e,17f ボンディングワイヤ
18 封止樹脂
19 冷却器
31a,31b,31c,31d,31e 凸部
41a,41b,41c 開口部
51 保護シート
91 加圧機構部
92a,92b,92c 個別加圧部
94,97 弾性体
95,96 密閉シート
111,311 空間
131,132 絶縁基板
131a,131b,131c,133a,133b,133c,134a,134b,134c 導電パターン
135,136 伝熱部材

Claims (6)

  1. 下金型の上に絶縁配線基板を配置し、
    前記絶縁配線基板の上の複数箇所に焼結材を配置し、
    複数の前記焼結材の上に半導体チップをそれぞれ配置し、
    複数の前記半導体チップの上に緩衝材をそれぞれ個別に配置し、
    複数の前記半導体チップの配置位置に対応する箇所に凸部を有する上金型を、複数の前記半導体チップに複数の前記凸部を対応させて前記下金型の上方に配置し、
    複数の前記緩衝材及び複数の前記半導体チップを介して前記凸部によって複数の前記焼結材を加圧及び加熱して焼結する
    半導体モジュールの製造方法。
  2. 前記焼結材は、ペースト状又はシート状を有する
    請求項1に記載の半導体モジュールの製造方法。
  3. 前記緩衝材は、250℃以上の耐熱性、0.2以下のポアソン比、JIS K 6253準拠のタイプAデュロメータで80ポイント±5%の硬さ、及び1.5mm以上の厚さを有する
    請求項1に記載の半導体モジュールの製造方法。
  4. 前記緩衝材の側に向けられる複数の前記半導体チップの表面の高さが異なっている場合、前記高さの差を低減させるスペーサ部材を前記緩衝材の上に配置する
    請求項1に記載の半導体モジュールの製造方法。
  5. 前記高さの差が10μm以上の場合に複数の前記半導体チップのうちの前記高さが低い方に前記スペーサ部材を配置する
    請求項4に記載の半導体モジュールの製造方法。
  6. 複数の前記半導体チップを複数の前記焼結材の上に配置する前に、複数の前記半導体チップの配置位置に対応する箇所に開口部を有する位置決め治具を前記絶縁配線基板の上に配置する
    請求項1に記載の半導体モジュールの製造方法。

JP2022127030A 2022-08-09 2022-08-09 半導体モジュールの製造方法 Pending JP2024024287A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022127030A JP2024024287A (ja) 2022-08-09 2022-08-09 半導体モジュールの製造方法
US18/344,314 US20240055422A1 (en) 2022-08-09 2023-06-29 Method for manufacturing semiconductor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022127030A JP2024024287A (ja) 2022-08-09 2022-08-09 半導体モジュールの製造方法

Publications (1)

Publication Number Publication Date
JP2024024287A true JP2024024287A (ja) 2024-02-22

Family

ID=89846770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022127030A Pending JP2024024287A (ja) 2022-08-09 2022-08-09 半導体モジュールの製造方法

Country Status (2)

Country Link
US (1) US20240055422A1 (ja)
JP (1) JP2024024287A (ja)

Also Published As

Publication number Publication date
US20240055422A1 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
JP6755386B2 (ja) 電力用半導体モジュールおよび電力用半導体モジュールの製造方法
JP6366766B2 (ja) 半導体装置
JP6143687B2 (ja) 半導体装置および半導体装置の製造方法
US20140001244A1 (en) Assembly and production of an assembly
US10319620B2 (en) Common procedure of interconnecting electronic chip with connector body and forming the connector body
CN109616460B (zh) 电力用半导体装置
JP2014135411A (ja) 半導体装置および半導体装置の製造方法
EP3422394B1 (en) Method for processing a semiconductor substrate
EP3627548B1 (en) Semiconductor module and method for manufacturing semiconductor module
JP2010192591A (ja) 電力用半導体装置とその製造方法
JP2024024287A (ja) 半導体モジュールの製造方法
EP3416186A1 (en) Semiconductor substrate arrangement with a connection layer with regions of different porosity and method for producing the same
US20240055391A1 (en) Method for manufacturing semiconductor module
JP2019216183A (ja) 半導体装置、及び半導体装置の製造方法
JP7351134B2 (ja) 半導体装置及び半導体装置の製造方法
JP2021150548A (ja) 半導体製造装置及び半導体装置の製造方法
JP2022081849A (ja) 電力用半導体装置および電力用半導体装置の製造方法
JP2004022964A (ja) Al−SiC系複合体およびそれを用いた放熱部品、半導体モジュール装置
US20240055392A1 (en) Method of manufacturing semiconductor device
JP4459031B2 (ja) 電子部品収納用パッケージおよび電子装置
JP4514598B2 (ja) 電子部品収納用パッケージおよび電子装置
WO2023017680A1 (ja) 半導体装置及びその製造方法
US20230343611A1 (en) Semiconductor device manufacturing method and molding press machine
JP7254216B2 (ja) 半導体装置の製造方法
JP2010141034A (ja) 半導体装置及びその製造方法