JP2024012029A - Copper foil for flexible printed substrate, and copper-clad laminate, flexible printed substrate and electronic device that employ the same - Google Patents
Copper foil for flexible printed substrate, and copper-clad laminate, flexible printed substrate and electronic device that employ the same Download PDFInfo
- Publication number
- JP2024012029A JP2024012029A JP2022168095A JP2022168095A JP2024012029A JP 2024012029 A JP2024012029 A JP 2024012029A JP 2022168095 A JP2022168095 A JP 2022168095A JP 2022168095 A JP2022168095 A JP 2022168095A JP 2024012029 A JP2024012029 A JP 2024012029A
- Authority
- JP
- Japan
- Prior art keywords
- copper foil
- flexible printed
- copper
- circuit
- printed circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 94
- 239000011889 copper foil Substances 0.000 title claims abstract description 73
- 239000000758 substrate Substances 0.000 title abstract 5
- 239000013078 crystal Substances 0.000 claims abstract description 47
- 239000010949 copper Substances 0.000 claims abstract description 26
- 238000005259 measurement Methods 0.000 claims abstract description 16
- 238000001887 electron backscatter diffraction Methods 0.000 claims abstract description 15
- 238000010438 heat treatment Methods 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 239000011347 resin Substances 0.000 claims description 25
- 229920005989 resin Polymers 0.000 claims description 25
- 229910052802 copper Inorganic materials 0.000 claims description 21
- 238000005096 rolling process Methods 0.000 abstract 1
- 238000005530 etching Methods 0.000 description 39
- 239000010410 layer Substances 0.000 description 19
- 238000000034 method Methods 0.000 description 19
- 239000010408 film Substances 0.000 description 17
- 238000000137 annealing Methods 0.000 description 14
- 239000000523 sample Substances 0.000 description 10
- 239000000853 adhesive Substances 0.000 description 9
- 230000001070 adhesive effect Effects 0.000 description 9
- 238000005097 cold rolling Methods 0.000 description 8
- 238000001816 cooling Methods 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000011888 foil Substances 0.000 description 6
- 238000010030 laminating Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229920001721 polyimide Polymers 0.000 description 6
- 239000004642 Polyimide Substances 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229920000106 Liquid crystal polymer Polymers 0.000 description 3
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 3
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- -1 polyethylene terephthalate Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000007665 sagging Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 229920001646 UPILEX Polymers 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 1
- 239000012787 coverlay film Substances 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- ing And Chemical Polishing (AREA)
Abstract
Description
本発明はフレキシブルプリント基板等の配線部材に用いて好適な銅箔、それを用いた銅張積層体、フレキシブル配線板、及び電子機器に関する。 The present invention relates to a copper foil suitable for use in wiring members such as flexible printed circuit boards, a copper-clad laminate using the same, a flexible wiring board, and an electronic device.
電子機器の回路基板として、フレキシブルプリント基板(フレキシブル配線板、以下、「FPC」と称する)が広く用いられている。FPCは銅箔と樹脂とを積層したCopper Clad Laminate(銅張積層体、以下CCLと称する)をエッチングすることで配線を形成し、その上をカバーレイと呼ばれる樹脂層によって被覆したものである。CCLに貼り合せる樹脂はポリイミド系、液晶ポリマー、PTFEが挙げられるがこれらに限定されない。 2. Description of the Related Art Flexible printed circuit boards (flexible printed circuit boards, hereinafter referred to as "FPC") are widely used as circuit boards for electronic devices. In FPC, wiring is formed by etching a copper clad laminate (hereinafter referred to as CCL), which is a layered layer of copper foil and resin, and the wiring is covered with a resin layer called a coverlay. Examples of the resin to be bonded to the CCL include, but are not limited to, polyimide, liquid crystal polymer, and PTFE.
そして、このように銅張積層体は、目的とする回路を形成するためにレジスト塗布及び露光工程により回路を印刷し、さらに銅層の不要部分を除去するエッチング処理を経るが、エッチングして回路を形成する際に、その回路が予め表面に形成されたマスクパターン通りの幅にならないという問題がある。
これは、エッチングすることにより形成される銅回路が、銅層の表面から下に向かって、すなわち樹脂層に向かって、末広がりにエッチングされる(ダレを発生する)ことによる。
そこで、この「ダレ」を減少させる技術が開発されている(特許文献1)。
In order to form the desired circuit, the copper-clad laminate is printed with a resist coating and exposure process, and then undergoes an etching process to remove unnecessary parts of the copper layer. When forming a circuit, there is a problem in that the width of the circuit does not match the mask pattern previously formed on the surface.
This is because the copper circuit formed by etching is etched downward from the surface of the copper layer, that is, toward the resin layer, so that it spreads out (sagging occurs).
Therefore, a technique for reducing this "sagging" has been developed (Patent Document 1).
ところで、電子機器の小型、薄型、高性能化にともない、FPCの高密度実装が要求されている。FPCを高密度に実装するためには回路の微細化が必要であるが、微細回路ではインピーダンスの整合性を保つために回路幅が回路全体にわたって一定であることが重要となってくる。回路の幅が回路全体にわたって一定でない場合、回路が隣の回路にくっついて(接触して)しまい、不良となるおそれがあるからである。
そして、上述のように、回路幅は樹脂層側(ボトム側)で広がる傾向にあるため、ボトム側が隣の回路により接触し易く、ボトム側の回路幅(ボトム幅)を回路全体にわたって一定に保つことがより重要になってくる。特にボトム幅が35μm以下のような微細回路の場合このような不良がより起きやすい。
しかしながら、上述の特許文献1に記載されたように、回路のトップ幅とボトム幅の差(ダレ)を減少させる技術は開示されているものの、ボトム幅に着目した技術は見られなかった。
Incidentally, as electronic devices become smaller, thinner, and more sophisticated, there is a demand for high-density packaging of FPCs. In order to implement FPCs at high density, it is necessary to miniaturize circuits, and in order to maintain impedance matching in microcircuits, it is important that the circuit width be constant throughout the circuit. This is because if the width of the circuit is not constant over the entire circuit, there is a risk that the circuit will stick to (contact) an adjacent circuit, resulting in a defect.
As mentioned above, the circuit width tends to widen on the resin layer side (bottom side), so the bottom side comes into contact with the adjacent circuit more easily, and the circuit width on the bottom side (bottom width) is kept constant throughout the circuit. things become more important. Particularly in the case of a fine circuit with a bottom width of 35 μm or less, such defects are more likely to occur.
However, as described in
本発明は上記の課題を解決するためになされたものであり、回路直線性が良く、微細回路に適したフレキシブルプリント基板用銅箔、それを用いた銅張積層体、フレキシブルプリント基板、及び電子機器の提供を目的とする。 The present invention was made to solve the above problems, and provides a copper foil for flexible printed circuit boards that has good circuit linearity and is suitable for fine circuits, a copper-clad laminate using the same, a flexible printed circuit board, and an electronic copper foil. The purpose is to provide equipment.
本発明者らは種々検討した結果、銅箔をエッチングして形成した回路の直線性を向上させるには、銅箔の金属組織が均一に近い、換言すれば結晶粒の大きさが揃っている(平均結晶粒径が小さい)ことが重要であることを見出した。これは、平均結晶粒径が小さいと、エッチングによる回路形成時の化学反応(エッチング反応)が均一に生じるためと考えられる。 As a result of various studies, the inventors of the present invention found that in order to improve the linearity of circuits formed by etching copper foil, the metal structure of the copper foil should be nearly uniform, in other words, the crystal grain sizes should be uniform. It has been found that (the average crystal grain size is small) is important. This is thought to be because when the average crystal grain size is small, the chemical reaction (etching reaction) during circuit formation by etching occurs uniformly.
すなわち、本発明のフレキシブルプリント基板用銅箔は、99.96質量%以上のCuを含有し、残部不可避的不純物からなる圧延銅箔であって、300℃×30分の熱処理を行ったとき、前記圧延銅箔の圧延面の測定視野150μm×150μmをEBSD測定し、方位差5°以上を結晶粒界とみなしたときの平均結晶粒径が5.0μm以下である。 That is, the copper foil for flexible printed circuit boards of the present invention is a rolled copper foil containing 99.96% by mass or more of Cu, with the remainder consisting of unavoidable impurities, and when heat treated at 300°C for 30 minutes, An EBSD measurement is performed on a measuring field of 150 μm x 150 μm on the rolled surface of the rolled copper foil, and the average crystal grain size is 5.0 μm or less when misorientation of 5° or more is regarded as a grain boundary.
本発明のフレキシブルプリント基板用銅箔は、前記EBSD測定した前記結晶粒径の標準偏差が3.0μm以下であることが好ましい。
本発明のフレキシブルプリント基板用銅箔は、JIS-H3100(C1100)に規格するタフピッチ銅又はJIS-H3100(C1020)の無酸素銅からなることが好ましい。
本発明のフレキシブルプリント基板用銅箔は、10~50質量ppmのPを含有することが好ましい。
In the copper foil for a flexible printed circuit board of the present invention, it is preferable that the standard deviation of the crystal grain size measured by the EBSD is 3.0 μm or less.
The copper foil for a flexible printed circuit board of the present invention is preferably made of tough pitch copper compliant with JIS-H3100 (C1100) or oxygen-free copper compliant with JIS-H3100 (C1020).
The copper foil for flexible printed circuit boards of the present invention preferably contains 10 to 50 mass ppm of P.
本発明の銅張積層体は、前記フレキシブルプリント基板用銅箔と、樹脂層とを積層してなる。
本発明のフレキシブルプリント基板は、前記銅張積層体における前記銅箔に回路を形成してなる。
本発明の電子機器は、前記フレキシブルプリント基板を用いてなる。
The copper-clad laminate of the present invention is formed by laminating the copper foil for a flexible printed circuit board and a resin layer.
The flexible printed circuit board of the present invention is formed by forming a circuit on the copper foil of the copper clad laminate.
An electronic device of the present invention uses the flexible printed circuit board.
本発明によれば、回路直線性が良く、微細回路に適したフレキシブルプリント基板用銅箔が得られる。 According to the present invention, a copper foil for flexible printed circuit boards with good circuit linearity and suitable for fine circuits can be obtained.
以下、本発明に係る銅箔の実施の形態について説明する。なお、本発明において%は特に断らない限り、質量%を示すものとする。 Embodiments of the copper foil according to the present invention will be described below. In the present invention, % indicates mass % unless otherwise specified.
<組成>
本発明に係る銅箔は、99.96質量%以上のCuを含有し、残部不可避的不純物からなる。添加元素として10~50質量ppmのPを含有すると好ましい。ここで、Cuが99.96質量%以上となる範囲であれば、銅箔の機械的特性を改善する目的で、銅箔にAg、Sn、Zr等を微量に含有させてもよい。
添加元素としてPを含有すると、金属組織(結晶粒径)が均一になりやすく、さらにエッチング後の回路のボトム幅が一定になる傾向にある。但し、Pの含有量が50質量ppm (0.005質量%)を超えると、導電率が低下し、フレキシブルプリント基板に適さない。
<Composition>
The copper foil according to the present invention contains 99.96% by mass or more of Cu, and the remainder consists of inevitable impurities. It is preferable to contain 10 to 50 mass ppm of P as an additional element. Here, as long as Cu is in a range of 99.96% by mass or more, the copper foil may contain a trace amount of Ag, Sn, Zr, etc. for the purpose of improving the mechanical properties of the copper foil.
When P is contained as an additive element, the metal structure (crystal grain size) tends to become uniform, and the bottom width of the circuit after etching tends to become constant. However, if the content of P exceeds 50 mass ppm (0.005 mass %), the electrical conductivity will decrease, making it unsuitable for flexible printed circuit boards.
本発明に係る銅箔を、JIS-H3100(C1100)に規格するタフピッチ銅又はJIS-H3100(C1020)の無酸素銅の組成、又はAg、Sn、Zr等を微量に含有する無酸素銅若しくはタフピッチ銅としてもよく、さらにこれらの組成に、添加元素として10~50質量ppmのPを含有してもよい。 The copper foil according to the present invention has a composition of tough pitch copper compliant with JIS-H3100 (C1100) or oxygen-free copper of JIS-H3100 (C1020), or oxygen-free copper or tough pitch containing trace amounts of Ag, Sn, Zr, etc. Copper may be used, and 10 to 50 mass ppm of P may be added to these compositions as an additional element.
P濃度の分析は、JIS H 1058(銅及び銅合金中のりん定量方法)に規定されるモリブドりん酸抽出モリブドりん酸青吸光光度法(P濃度:0.0005%~0.01%に適用)を用いて実施する。 The P concentration was analyzed using molybdophosphoric acid extraction molybdophosphate blue absorption spectrophotometry (applicable to P concentration: 0.0005% to 0.01%) specified in JIS H 1058 (method for determining phosphorus in copper and copper alloys). ).
<平均結晶粒径>
圧延銅箔に300℃×30分の熱処理を行ったとき、熱処理後の圧延面の測定視野150μm×150μmをEBSD測定し、方位差5°以上を結晶粒界とみなしたときの平均結晶粒径が5.0μm以下である。
平均結晶粒径は、EBSD(ElectronBack Scatter Diffraction:電子後方散乱回折)測定における結晶方位解析により算出する。
実際の測定は、試料表面を電解研磨後にSEM-EBSD(日本電子株式会社JSM-IT500HR、TSL EDAX SCAN GENERATOR-II、TSL OIM DATA COLECTION7)で下記の条件で観察する。
なお、EBSD測定は、熱処理後の銅箔から切り出したサンプル板(150mm×150mm)に対して行えばよい。
<Average grain size>
When a rolled copper foil is heat treated at 300°C for 30 minutes, the average crystal grain size is measured by EBSD over a measurement field of 150 μm x 150 μm on the rolled surface after heat treatment, and misorientation of 5° or more is regarded as a grain boundary. is 5.0 μm or less.
The average crystal grain size is calculated by crystal orientation analysis in EBSD (Electron Back Scatter Diffraction) measurement.
In the actual measurement, the surface of the sample is electrolytically polished and then observed using a SEM-EBSD (JEOL Ltd. JSM-IT500HR, TSL EDAX SCAN GENERATOR-II, TSL OIM DATA COLECTION 7) under the following conditions.
Note that the EBSD measurement may be performed on a sample plate (150 mm x 150 mm) cut out from the copper foil after heat treatment.
・WD:15.0mm or 16.0mm
・Camera Elavation Angle:2.7 degrees
・Sample Tilt:70.0 degrees
・Camera Azimuthal Angle:0.0 degrees
・加速電圧:15.0kV
・プローブ電流:9.5nA
・SS―CCD Camera:Binning 8×8
・Gain:300~350(Pattern brightness:0.90~0.95)
・Exposure time:4ms
・Background integration count:20times
・観察倍率: 600倍
・観察視野: 150μm×150μm
・ステップサイズ 0.5μm
・Scan Mode: Hexagonal Glid
・Phase List: Copper
・WD: 15.0mm or 16.0mm
・Camera Elevation Angle: 2.7 degrees
・Sample Tilt: 70.0 degrees
・Camera azimuthal angle: 0.0 degrees
・Acceleration voltage: 15.0kV
・Probe current: 9.5nA
・SS-CCD Camera:
・Gain: 300-350 (Pattern brightness: 0.90-0.95)
・Exposure time: 4ms
・Background integration count: 20times
・Observation magnification: 600x ・Observation field: 150μm x 150μm
・Step size 0.5μm
・Scan Mode: Hexagonal Grid
・Phase List: Copper
また、得られた測定データの解析はOIM Analysis Ver8.0 x64 Advanced packageを用いて下記の条件で実施する。
・Grain Dilation法によるCrean Upを1回実施(Grain Tolerance angle:5,Minimum Grain size:2 points,Multi Row:1, Iteration Fraction:0.25)
・EBSDマップのエッジにかかった結晶粒は計算から除外
・Area Fraction法により、結晶粒径(Diameter)の平均値、標準偏差を算出
Furthermore, analysis of the obtained measurement data is performed using OIM Analysis Ver8.0 x64 Advanced package under the following conditions.
- Perform Clean Up once using the Grain Dilation method (Grain Tolerance angle: 5, Minimum Grain size: 2 points, Multi Row: 1, Iteration Fraction: 0.25)
・Crystal grains that touch the edges of the EBSD map are excluded from calculations. ・Calculate the average value and standard deviation of the crystal grain diameter (Diameter) using the Area Fraction method.
ここで、Area Fraction法では、各結晶粒の面積が観察視野全面積に占める割合を各面積値に乗した値の平均値から結晶粒径の平均値を算出する。すなわち、観察視野内において粗大な結晶粒が1つでも観察される場合、Number法よりも平均結晶粒径が大きくなりやすく、Area Fraction法で平均結晶粒径が小さいことは結晶粒の大きさが揃っていてかつ小さいことを示している。 Here, in the Area Fraction method, the average value of the crystal grain size is calculated from the average value of the values obtained by multiplying each area value by the ratio of the area of each crystal grain to the total area of the observation field. In other words, if even one coarse crystal grain is observed within the observation field, the average crystal grain size tends to be larger than in the Number method, and the smaller average crystal grain size in the Area Fraction method means that the size of the crystal grains is smaller. This shows that they are uniform and small.
平均結晶粒径、特にArea Fraction法による平均結晶粒径が5.0μm以下であれば、銅箔の金属組織が均一に近く(結晶粒の大きさが揃っていて)、エッチングによる回路形成時の化学反応(エッチング反応)が均一に生じると考えられる。 If the average crystal grain size, especially the average crystal grain size measured by the Area Fraction method, is 5.0 μm or less, the metal structure of the copper foil is nearly uniform (crystal grain sizes are uniform), and it is difficult to form a circuit by etching. It is thought that the chemical reaction (etching reaction) occurs uniformly.
<回路直線性>
銅箔に表面処理をした後にサンプル板(150mm×150mm)を切り出し、熱処理を加えて銅張積層板とした後に以下のエッチング条件で銅張積層板の銅箔側から直線回路(図2参照)を形成し、回路のボトム幅wを複数測定したとき、ボトム幅w(μm)の標準偏差σ(μm)と、ボトム幅wの平均値Aw(μm)で表されるσ/Awが0.03未満であると好ましい。σ/Awが0.03未満であると、回路直線性に優れる傾向にあることが経験的に得られているからである。
エッチング条件:
エッチング液の組成:CuCl2-2H2O=3mol/L(比重1.24)、HCl=4mol/L、液温度=50℃、エッチング液のスプレー圧=0.22MPaとし、回路部分をマスクした圧延銅箔をエッチング処理して回路を形成する。
σ/Awは、エッチング形成した回路の実際のボトム幅wを複数(好ましくは、10カ所以上、より好ましくは、50カ所、さらに好ましくは、回路の長手方向30μmごとに100カ所)測定してσ及びAwを求め、σ/Awを算出する。
<Circuit linearity>
After surface-treating the copper foil, cut out a sample board (150 mm x 150 mm), heat-treat it to make a copper-clad laminate, and then create a straight circuit from the copper foil side of the copper-clad laminate under the following etching conditions (see Figure 2). When the bottom width w of the circuit is formed and the bottom width w of the circuit is measured multiple times, σ/Aw expressed by the standard deviation σ (μm) of the bottom width w (μm) and the average value Aw (μm) of the bottom width w is 0. It is preferable that it is less than 0.03. This is because it has been empirically found that when σ/Aw is less than 0.03, circuit linearity tends to be excellent.
Etching conditions:
Etching solution composition: CuCl 2 -2H 2 O = 3 mol/L (specific gravity 1.24), HCl = 4 mol/L, solution temperature = 50°C, etching solution spray pressure = 0.22 MPa, and the circuit part was masked. A circuit is formed by etching rolled copper foil.
σ/Aw is determined by measuring the actual bottom width w of the etched circuit at multiple locations (preferably at 10 or more locations, more preferably at 50 locations, and even more preferably at 100 locations every 30 μm in the longitudinal direction of the circuit). and Aw, and calculate σ/Aw.
具体的には、図1に示すように、銅箔をエッチングして形成した回路21、22は、表面から下方(樹脂層4側(ボトム側))に向かって広がっており、このボトム側の回路幅(ボトム幅)wを複数測定する。ここで、符号wtは表面(トップ)側の回路幅(トップ幅)である。
なお、図2に示すように、別々の回路21、22からそれぞれ所定の測定点にて回路幅w1、w2、w100、w101、w102、w200・・・のように50カ所測定することができる。1つの回路上で測定してもよい。
Specifically, as shown in FIG. 1, the
As shown in FIG. 2, the circuit widths can be measured at 50 locations such as w1, w2, w100, w101, w102, w200, . . . at predetermined measurement points from the
σ/Awが0.03未満であると、ボトム幅wのバラツキが小さく、回路直線性が優れていることを示す。特に、ボトム幅wが10~35μmの範囲においても回路直線性が優れていることが好ましい。 When σ/Aw is less than 0.03, the variation in the bottom width w is small, indicating that the circuit linearity is excellent. In particular, it is preferable that the circuit linearity is excellent even when the bottom width w is in the range of 10 to 35 μm.
銅箔の回路部分のマスクは、例えばフォトレジスト(ドライフィルムレジスト等)を用いてフォトマスクにより回路として残る部分のみにレジストを残す公知の方法で形成できる。ドライフィルムレジストとしては、例えば日立化成製の製品名RY-5107 (厚み7μm)を用いることができる。 The mask for the circuit portion of the copper foil can be formed by, for example, a known method using a photoresist (dry film resist, etc.) and leaving the resist only on the portion that remains as the circuit. As the dry film resist, for example, Hitachi Chemical's product name RY-5107 (thickness: 7 μm) can be used.
ここで、図3は、回路直線性を評価する際の直線回路をエッチング形成するための露光マスクを示す。露光マスクのレジスト/スペースのパターンは10種類あり、図3の左側(番号10側)ほどスペースが広く、右側ほど狭くなる設計である。そして、全パターンに対し、露光、現像、エッチング、ドライフィルム剥離を順に行った後に、SEMを使用して目標のL/S(L/S=10/40~30/20)に近い回路を、全パターンの中から1個選択し、評価に用いる。
Here, FIG. 3 shows an exposure mask for etching a linear circuit when evaluating circuit linearity. There are 10 types of resist/space patterns on the exposure mask, and the space is designed to be wider on the left side (
銅箔の厚さは、JISC6515に規定される公称厚さで17μm以下が好ましい。厚さが薄い程、銅箔にかかる応力が小さくなるため折り曲げ性の向上に資すると共にポータブル機器の小型化、薄型化、軽量化にも資する。 The thickness of the copper foil is preferably 17 μm or less as the nominal thickness specified in JISC6515. The thinner the copper foil, the smaller the stress applied to the copper foil, which contributes to improved bendability and also contributes to making portable devices smaller, thinner, and lighter.
<製造>
本発明の銅箔は、例えば以下のようにして製造することができる。まず、銅インゴットに必要に応じてPを添加して溶解、鋳造した後、熱間圧延し、冷間圧延と焼鈍を繰り返し行うことにより箔を製造することができる。
ここで、冷間圧延の途中で、所定の冷却速度の中間焼鈍を実施し、中間焼鈍の際に発生した酸化スケールを除去して中間冷間圧延を行った後に最終焼鈍、最終冷間圧延をして目的とする最終厚さの箔を得ることができる。
中間焼鈍の最高温度は、350~500℃とすることができる。中間焼鈍の冷却速度は、中間焼鈍における最高温度TM(℃)から、(TM-200)℃の温度まで50~150℃/hで冷却することが好ましい。
<Manufacturing>
The copper foil of the present invention can be manufactured, for example, as follows. First, a foil can be manufactured by adding P to a copper ingot as needed, melting and casting the ingot, hot rolling it, and repeating cold rolling and annealing.
Here, in the middle of cold rolling, intermediate annealing is performed at a predetermined cooling rate, and after removing the oxide scale generated during intermediate annealing and performing intermediate cold rolling, final annealing and final cold rolling are performed. The desired final thickness of the foil can be obtained.
The maximum temperature of intermediate annealing can be 350 to 500°C. The cooling rate of intermediate annealing is preferably 50 to 150° C./h from the maximum temperature TM (° C.) in intermediate annealing to a temperature of (TM-200)° C.
以上のように中間焼鈍の冷却速度を50~150℃/hに設定すると、一般的な条件よりも冷却速度が遅くなる。そして、中間焼鈍の冷却速度が遅いほど、材料内の温度勾配が小さくなる(一番初めに冷却される箇所と一番遅く冷却される箇所の温度差が小さくなる)ことにより、金属組織が均一となりやすく(結晶粒の大きさが揃い)、最終厚さの箔を熱処理したときの平均結晶粒径が小さくなる。その結果、エッチングによる回路形成時の化学反応(エッチング反応)が均一に生じるために回路直線性が向上すると考えられる。
これは、上述の通り、AreaFraction法による結晶粒径が小さいほど、結晶粒の大きさが揃っていて、かつ個々結晶粒の粒径が小さいことを意味するためである。
As described above, when the cooling rate for intermediate annealing is set to 50 to 150°C/h, the cooling rate becomes slower than under general conditions. The slower the cooling rate during intermediate annealing, the smaller the temperature gradient within the material (the smaller the temperature difference between the first and last cooled areas), which results in a more uniform metal structure. (crystal grain sizes are uniform), and the average crystal grain size becomes smaller when the final thickness foil is heat treated. As a result, it is thought that the chemical reaction (etching reaction) during circuit formation by etching occurs uniformly, resulting in improved circuit linearity.
This is because, as described above, the smaller the crystal grain size determined by the AreaFraction method, the more uniform the crystal grain sizes are, and the smaller the grain size of each crystal grain.
図4,図5は金属組織が均一(結晶粒の大きさが揃う)なほど、回路直線性が向上するメカニズムを示す。
図4に示すように、エッチングは、レジストの無い部分(直線回路の間のスペースに相当)からエッチング液が銅箔内部に侵入して進行するが、スペースから銅箔の左右に向かってエッチングが進む。このとき、図1に示したように、エッチング(回路)は、表面から下方(樹脂層側(ボトム側))に向かって広がっていく。
4 and 5 show the mechanism by which circuit linearity improves as the metal structure becomes more uniform (crystal grain sizes are more uniform).
As shown in Figure 4, etching progresses as the etching solution enters the copper foil from the areas without resist (corresponding to the spaces between linear circuits), but the etching progresses from the spaces toward the left and right of the copper foil. move on. At this time, as shown in FIG. 1, the etching (circuit) spreads downward from the surface (toward the resin layer side (bottom side)).
ここで、図5(a)に示すように、金属組織が均一でない(結晶粒の大きさが揃っていない)場合、図1に示した回路21、22のボトム幅wのバラツキが大きくなる(図5(a)で回路21、22の縁が直線状でなく、波打つように曲がっている)。
この理由は、図5(b)に示すように、例えば視野150μm×150μm内で、回路21側の銅箔の結晶粒が大きく、回路22側の銅箔の結晶粒が小さいと、金属組織が均一でなく(結晶粒の大きさが揃わず)、結晶粒が大きい回路21側でのエッチング速度が大きくなり、結晶粒が小さい部位との間でエッチング量が変わり、ひいてはボトム幅wのバラツキが大きくなるためと考えられる。
Here, as shown in FIG. 5(a), if the metal structure is not uniform (crystal grain sizes are not uniform), the variation in the bottom width w of the
The reason for this is that, as shown in FIG. 5(b), for example, if the crystal grains of the copper foil on the
なお、図5(b)において、結晶粒と結晶粒界ではエッチングされる速度が異なるので、結晶粒の大きさが揃っていないと、エッチング速度が局所的に大きく変動することになる。なお、本試験のエッチング液では結晶粒よりも結晶粒界のエッチング速度が遅かったが、逆の場合もある。 Note that in FIG. 5B, the etching speed is different between crystal grains and grain boundaries, so if the crystal grains are not uniform in size, the etching speed will locally vary greatly. Although the etching solution used in this test etched grain boundaries slower than crystal grains, the opposite may be true.
上記のEBSD測定した結晶粒径の標準偏差が3.0μm以下であると、結晶粒の大きさがより一層揃うので好ましい。結晶粒径の標準偏差の測定法は、上述のEBSD測定について記載した通りであり、測定結果に対してAreaFraction法により、結晶粒径の平均値(平均結晶粒径)だけでなく、標準偏差も算出される。 It is preferable that the standard deviation of the crystal grain size measured by the above-mentioned EBSD is 3.0 μm or less because the crystal grain sizes are more uniform. The method for measuring the standard deviation of the crystal grain size is as described above for the EBSD measurement, and the AreaFraction method is used to calculate not only the average value of the crystal grain size (average grain size) but also the standard deviation. Calculated.
<銅張積層体及びフレキシブルプリント基板>
又、本発明の銅箔に例えば(1)樹脂前駆体(例えばワニスと呼ばれるポリイミド前駆体)をキャスティングして熱をかけて重合させること、(2)ベースフィルムと同種の熱可塑性接着剤を用いてベースフィルムを本発明の銅箔にラミネートすること、により、銅箔と樹脂基材の2層からなる銅張積層体(CCL)が得られる。又、本発明の銅箔に接着剤を塗着したベースフィルムをラミネートすることにより、銅箔と樹脂基材とその間の接着層の3層からなる銅張積層体(CCL)が得られる。これらのCCL製造時に銅箔が熱処理されて再結晶化する。
これらにフォトリソグラフィー技術を用いて回路を形成し、必要に応じて回路にめっきを施し、カバーレイフィルムをラミネートすることでフレキシブルプリント基板(フレキシブル配線板)が得られる。
<Copper-clad laminate and flexible printed circuit board>
In addition, for example, (1) casting a resin precursor (for example, a polyimide precursor called varnish) on the copper foil of the present invention and polymerizing it by applying heat; (2) using the same type of thermoplastic adhesive as the base film; By laminating the base film on the copper foil of the present invention, a copper clad laminate (CCL) consisting of two layers of copper foil and a resin base material is obtained. Further, by laminating a base film coated with an adhesive on the copper foil of the present invention, a copper clad laminate (CCL) consisting of three layers of the copper foil, a resin base material, and an adhesive layer therebetween can be obtained. During the manufacture of these CCLs, the copper foil is heat treated and recrystallized.
A flexible printed circuit board (flexible wiring board) is obtained by forming a circuit on these using photolithography technology, plating the circuit as necessary, and laminating a coverlay film.
従って、本発明の銅張積層体は、銅箔と樹脂層とを積層してなる。又、本発明のフレキシブルプリント基板は、銅張積層体の銅箔に回路を形成してなる。
樹脂層としては、PET(ポリエチレンテレフタレート)、PI(ポリイミド)、LCP(液晶ポリマー)、PEN(ポリエチレンナフタレート)が挙げられるがこれに限定されない。また、樹脂層として、これらの樹脂フィルムを用いてもよい。
樹脂層と銅箔との積層方法としては、銅箔の表面に樹脂層となる材料を塗布して加熱成膜してもよい。又、樹脂層として樹脂フィルムを用い、樹脂フィルムと銅箔との間に以下の接着剤を用いてもよく、接着剤を用いずに樹脂フィルムを銅箔に熱圧着してもよい。但し、樹脂フィルムに余分な熱を加えないという点からは、接着剤を用いることが好ましい。
Therefore, the copper-clad laminate of the present invention is formed by laminating copper foil and a resin layer. Further, the flexible printed circuit board of the present invention is formed by forming a circuit on the copper foil of the copper-clad laminate.
Examples of the resin layer include, but are not limited to, PET (polyethylene terephthalate), PI (polyimide), LCP (liquid crystal polymer), and PEN (polyethylene naphthalate). Further, these resin films may be used as the resin layer.
As a method of laminating the resin layer and the copper foil, a material that will become the resin layer may be applied to the surface of the copper foil and then heated to form a film. Alternatively, a resin film may be used as the resin layer and the following adhesive may be used between the resin film and the copper foil, or the resin film may be thermocompression bonded to the copper foil without using an adhesive. However, from the viewpoint of not applying excess heat to the resin film, it is preferable to use an adhesive.
樹脂層としてフィルムを用いた場合、このフィルムを、接着剤層を介して銅箔に積層するとよい。この場合、フィルムと同成分の接着剤を用いることが好ましい。例えば、樹脂層としてポリイミドフィルムを用いる場合は、接着剤層もポリイミド系接着剤を用いることが好ましい。尚、ここでいうポリイミド接着剤とはイミド結合を含む接着剤を指し、ポリエーテルイミド等も含む。 When a film is used as the resin layer, this film is preferably laminated on the copper foil via an adhesive layer. In this case, it is preferable to use an adhesive having the same components as the film. For example, when a polyimide film is used as the resin layer, it is preferable that the adhesive layer also uses a polyimide adhesive. Note that the polyimide adhesive herein refers to an adhesive containing an imide bond, and also includes polyetherimide and the like.
なお、本発明は、上記実施形態に限定されない。又、本発明の作用効果を奏する限り、上記実施形態における銅合金がその他の成分を含有してもよい。
例えば、銅箔の表面に、粗化処理、防錆処理、耐熱処理、またはこれらの組み合わせによる表面処理を施してもよい。
Note that the present invention is not limited to the above embodiments. Moreover, the copper alloy in the above embodiment may contain other components as long as the effects of the present invention are achieved.
For example, the surface of the copper foil may be subjected to surface treatment such as roughening treatment, rust prevention treatment, heat resistance treatment, or a combination thereof.
次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
電気銅を用いてインゴットを非酸化性雰囲気で作製した。インゴットに含まれる銅の割合は99.96質量%以上であった。このインゴットを900℃以上で均質化焼鈍後、熱間圧延と冷間圧延を行った。冷間圧延中に最高温度400℃の中間焼鈍を実施し、中間焼鈍の冷却速度を最高温度より200℃低い温度まで表1の値として冷却した。実施例の冷却速度は、該実施例と別の材料を焼鈍した時の材料温度実測データから推算した。中間焼鈍の際に発生した酸化スケールを除去して中間冷間圧延を行った後に最終焼鈍、最終冷間圧延をして目的とする最終厚さ12μmの箔を得た。なお、比較例については、最高温度より200℃低い温度までの中間焼鈍の冷却速度を伝熱シミュレーションにより求め、表1に記載した。
Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.
Ingots were produced using electrolytic copper in a non-oxidizing atmosphere. The proportion of copper contained in the ingot was 99.96% by mass or more. This ingot was homogenized and annealed at 900° C. or higher, and then hot rolled and cold rolled. Intermediate annealing was performed at a maximum temperature of 400° C. during cold rolling, and the cooling rate for intermediate annealing was set to the values shown in Table 1 to a temperature 200° C. lower than the maximum temperature. The cooling rate of the example was estimated from actual material temperature measurement data when a material different from that of the example was annealed. After removing the oxide scale generated during intermediate annealing and performing intermediate cold rolling, final annealing and final cold rolling were performed to obtain a foil having the desired final thickness of 12 μm. In addition, for the comparative example, the cooling rate of intermediate annealing to a temperature 200° C. lower than the maximum temperature was determined by heat transfer simulation and is listed in Table 1.
得られた箔に対し、大気雰囲気において、300℃×30分の熱処理を加え、銅箔サンプルを得た。具体的には、酸化防止の為に幅30mm×長さ130mm×厚み0.15mmのC7025板2枚の間に銅箔サンプルを挟み、A4サイズのアニール済みのC1100でパッキングを行った後に、300℃になった高温熱風乾燥機の扉を開けて投入し、30分後に扉を開けてを回収し、銅箔サンプルを取り出した。熱処理後の銅箔は、CCLの積層時に熱処理を受けた状態を模している。熱処理後の銅箔の圧延面を電解研磨した後に測定視野150μm×150μmをEBSD測定し、方位差5°以上を結晶粒界とみなしたときの結晶粒径の平均値(平均結晶粒径)及び標準偏差を求めた。EBSD測定の条件は上述の記載通りとした。 The obtained foil was heat treated at 300° C. for 30 minutes in an air atmosphere to obtain a copper foil sample. Specifically, in order to prevent oxidation, a copper foil sample was sandwiched between two C7025 plates of 30 mm width x 130 mm length x 0.15 mm thickness, and after packing with A4 size annealed C1100, The door of the high-temperature hot air dryer, which had reached ℃, was opened and the sample was put in. After 30 minutes, the door was opened and the sample was collected, and the copper foil sample was taken out. The copper foil after heat treatment simulates the state that was heat treated during lamination of CCL. After electrolytically polishing the rolled surface of the copper foil after heat treatment, EBSD measurement was performed on a measurement field of 150 μm x 150 μm, and the average value of the crystal grain size (average grain size) and The standard deviation was calculated. The conditions for the EBSD measurement were as described above.
また、最終冷間圧延をして得られた箔に表面処理を行った後に、ユーピレックスVT(宇部興産株式会社製)25μmを積層し,加熱プレス機で300℃×30minの熱処理を行って銅張積層板とした後、ドライフィルムレジスト(日立化成製の製品名RY-5107、厚み7μm)を用い、銅箔の回路部分をフォトリソによりマスクし、L+Sが50μmピッチのドライフィルムパターニングを行った。レジストの現像、エッチング及びレジストの剥離は、サンテクノシステム株式会社の「現像・エッチング・剥離ライン」(装置名:DERM)を用いた。エッチング条件は上述の「<回路直線性>」で記載した通りである。
In addition, after surface treatment was performed on the foil obtained by final cold rolling, Upilex VT (manufactured by Ube Industries, Ltd.) of 25 μm was laminated and heat treated at 300°C for 30 minutes using a hot press machine to form copper cladding. After forming a laminate, using a dry film resist (product name RY-5107 manufactured by Hitachi Chemical,
<回路直線性の評価>
上記したエッチング条件により、目標L/S(L/S=10/40~30/20)に近くなるよう各実施例及び各比較例ごとにエッチング時間を種々変えて条件設定したものを、実際に測定したところ、ボトム幅wの平均値Awは表1に示すような値となった。平均値AwはL/SのLを表す。また、「50μm-平均値Aw」はL/SのSを表す。各実施例及び各比較例ごとに、それぞれ各回路のボトム幅wを図2に示すようにして50カ所測定し、平均値Awを求めた。
なお、各実施例はそれぞれ同じ銅箔について、36~54秒の範囲でエッチング時間をそれぞれ変えた。同様に、各比較例はそれぞれ同じ銅箔について、36~54秒の範囲でエッチング時間をそれぞれ変えた。
<Evaluation of circuit linearity>
According to the etching conditions described above, the conditions were set by changing the etching time variously for each example and each comparative example so that it was close to the target L/S (L/S = 10/40 to 30/20). When measured, the average value Aw of the bottom width w was as shown in Table 1. The average value Aw represents L of L/S. Further, "50 μm-average value Aw" represents S of L/S. For each example and each comparative example, the bottom width w of each circuit was measured at 50 locations as shown in FIG. 2, and the average value Aw was determined.
In each example, the etching time was changed in the range of 36 to 54 seconds for the same copper foil. Similarly, in each comparative example, the etching time was changed in the range of 36 to 54 seconds for the same copper foil.
得られた結果を表1に示す。ここで、実施例1~7のP濃度は10~50質量ppmの範囲であり、比較例1~7のP濃度は10ppm未満であった。P濃度の分析は上述した方法により行った。 The results obtained are shown in Table 1. Here, the P concentrations in Examples 1 to 7 were in the range of 10 to 50 mass ppm, and the P concentrations in Comparative Examples 1 to 7 were less than 10 ppm. Analysis of P concentration was performed by the method described above.
平均結晶粒径が5.0μm以下である実施例の銅箔を用いてフレキシブルプリント基板を作成したところ、σ/Awが0.03未満であり、隣り合う回路との接触がほとんど見られず、回路直線性に優れていることがわかった。
一方、平均結晶粒径が5.0μmを超えた比較例銅箔を用いてフレキシブルプリント基板を作成したところ、σ/Awが0.03以上であり、隣り合う回路との接触が散見され、回路直線性に劣ることがわかった。
When a flexible printed circuit board was created using the copper foil of the example with an average crystal grain size of 5.0 μm or less, σ/Aw was less than 0.03, and almost no contact with adjacent circuits was observed. It was found that the circuit linearity was excellent.
On the other hand, when a flexible printed circuit board was created using a comparative example copper foil with an average crystal grain size exceeding 5.0 μm, the σ/Aw was 0.03 or more, and contact with adjacent circuits was observed here and there. It was found that the linearity was poor.
Claims (7)
300℃×30分の熱処理を行ったとき、前記圧延銅箔の圧延面の測定視野150μm×150μmをEBSD測定し、方位差5°以上を結晶粒界とみなしたときの平均結晶粒径が5.0μm以下であるフレキシブルプリント基板用銅箔。 A rolled copper foil containing 99.96% by mass or more of Cu, the remainder consisting of unavoidable impurities,
When heat treatment was performed at 300°C for 30 minutes, EBSD measurement was performed on a measurement field of 150 μm x 150 μm on the rolled surface of the rolled copper foil, and the average crystal grain size was 5 when misorientation of 5° or more was regarded as a grain boundary. Copper foil for flexible printed circuit boards with a thickness of .0μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022168095A JP2024012029A (en) | 2022-07-14 | 2022-10-20 | Copper foil for flexible printed substrate, and copper-clad laminate, flexible printed substrate and electronic device that employ the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022112952A JP7194857B1 (en) | 2022-07-14 | 2022-07-14 | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic equipment |
JP2022168095A JP2024012029A (en) | 2022-07-14 | 2022-10-20 | Copper foil for flexible printed substrate, and copper-clad laminate, flexible printed substrate and electronic device that employ the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022112952A Division JP7194857B1 (en) | 2022-07-14 | 2022-07-14 | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2024012029A true JP2024012029A (en) | 2024-01-25 |
Family
ID=84534790
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022112952A Active JP7194857B1 (en) | 2022-07-14 | 2022-07-14 | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic equipment |
JP2022168095A Pending JP2024012029A (en) | 2022-07-14 | 2022-10-20 | Copper foil for flexible printed substrate, and copper-clad laminate, flexible printed substrate and electronic device that employ the same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022112952A Active JP7194857B1 (en) | 2022-07-14 | 2022-07-14 | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic equipment |
Country Status (3)
Country | Link |
---|---|
JP (2) | JP7194857B1 (en) |
TW (1) | TW202428899A (en) |
WO (1) | WO2024014057A1 (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4794802B2 (en) * | 2002-11-21 | 2011-10-19 | Jx日鉱日石金属株式会社 | Copper alloy sputtering target and semiconductor device wiring |
JP4401180B2 (en) | 2004-01-30 | 2010-01-20 | 日鉱金属株式会社 | Rolled copper foil, method for producing the same, and laminated substrate |
JP5356714B2 (en) | 2008-03-31 | 2013-12-04 | Jx日鉱日石金属株式会社 | Copper alloy foil for flexible printed circuit board excellent in etching property and flexible printed circuit board using the same |
JP4790782B2 (en) | 2008-11-04 | 2011-10-12 | Jx日鉱日石金属株式会社 | Copper alloy sputtering target and semiconductor device wiring |
JP6147077B2 (en) | 2013-05-10 | 2017-06-14 | 古河電気工業株式会社 | Rolled copper foil and method for producing rolled copper foil |
JP6781562B2 (en) | 2016-03-28 | 2020-11-04 | Jx金属株式会社 | Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices |
JP6793138B2 (en) | 2018-01-22 | 2020-12-02 | Jx金属株式会社 | Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices |
-
2022
- 2022-07-14 JP JP2022112952A patent/JP7194857B1/en active Active
- 2022-10-20 JP JP2022168095A patent/JP2024012029A/en active Pending
-
2023
- 2023-03-15 WO PCT/JP2023/010013 patent/WO2024014057A1/en unknown
- 2023-05-02 TW TW113109294A patent/TW202428899A/en unknown
Also Published As
Publication number | Publication date |
---|---|
JP2024011164A (en) | 2024-01-25 |
TW202428899A (en) | 2024-07-16 |
JP7194857B1 (en) | 2022-12-22 |
WO2024014057A1 (en) | 2024-01-18 |
TW202403113A (en) | 2024-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101935128B1 (en) | Copper foil for flexible printed wiring board, copper-clad laminate using the same, flexible printed wiring board and electronic device | |
JP2007107036A (en) | Rolled copper alloy foil to be bent | |
TWI687526B (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board and electronic equipment | |
JP2004256879A (en) | Rolled copper foil having high elongation | |
TWI663270B (en) | Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device | |
CN110072333B (en) | Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device | |
JP2022095855A (en) | Copper foil for flexible printed substrate | |
JP2006283078A (en) | Rolled copper foil for copper-clad laminate, and manufacturing method therefor | |
WO2024014057A1 (en) | Copper foil for flexible printed substrate, and copper-clad laminate, flexible printed substrate and electronic device using same | |
WO2024014056A1 (en) | Copper foil for flexible printed substrate, and copper-clad laminate, flexible printed substrate and electronic device using same | |
JP5753115B2 (en) | Rolled copper foil for printed wiring boards | |
TWI528875B (en) | Rolled copper foil for flexible dielectric wiring boards | |
TWI852523B (en) | Copper foil for flexible printed circuit board, copper-clad multilayer using the same, flexible printed circuit board and electronic device | |
TWI715964B (en) | Copper foil for flexible printed circuit boards, copper-clad laminates, flexible printed circuit boards and electronic devices using the same | |
TWI718025B (en) | Copper foil for flexible printed circuit boards, copper-clad laminates, flexible printed circuit boards and electronic devices using the same | |
TWI731247B (en) | Copper foil for flexible printed circuit boards, copper-clad laminates using the same, flexible printed circuit boards and electronic devices | |
JP5671902B2 (en) | Method for manufacturing resistive thin film element with copper conductor layer | |
JP6926013B2 (en) | Copper foil for flexible printed circuit, products for sale of copper foil for flexible printed circuit, copper-clad laminate using it, flexible printed circuit, and electronic equipment | |
KR102260207B1 (en) | Copper foil for flexible printed substrate, copper-clad laminate using the same, flexible printed substrate, and electronic equipment | |
JP2007261174A (en) | Manufacturing process of copper cladding laminate |