JP2024004030A - レドックスフロー電池 - Google Patents

レドックスフロー電池 Download PDF

Info

Publication number
JP2024004030A
JP2024004030A JP2022103460A JP2022103460A JP2024004030A JP 2024004030 A JP2024004030 A JP 2024004030A JP 2022103460 A JP2022103460 A JP 2022103460A JP 2022103460 A JP2022103460 A JP 2022103460A JP 2024004030 A JP2024004030 A JP 2024004030A
Authority
JP
Japan
Prior art keywords
layer
negative electrode
cell
positive electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022103460A
Other languages
English (en)
Inventor
公人 中尾
Kimihito Nakao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP2022103460A priority Critical patent/JP2024004030A/ja
Publication of JP2024004030A publication Critical patent/JP2024004030A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】高効率かつ高出力なレドックスフロー電池を提供する。【解決手段】レドックスフロー電池1は、開口部22を有する枠体21と、開口部22に収容された複数の積層シート31からなり、一方の側の隔膜13との間に正極セル11を形成するとともに、他方の側の隔膜13との間に負極セル12を形成する電極組立体30とを有するセルユニット20を有し、各積層シート31が、互いに積層された第1および第2の層32,33であって、第1の層32が、第2の層33の一端面33aよりも外側に突出して正極セル11内に位置するシート状の正極電極14と、第2の層33の他端面33bよりも外側に突出して負極セル12内に位置するシート状の負極電極15とを含み、第1および第2の層32,33のいずれかが、正極電極14と負極電極15とを電気的に接続する導電性材料を含む、第1および第2の層32,33を有している。【選択図】図4

Description

本発明は、レドックスフロー電池に関する。
従来から、電力貯蔵用の二次電池として、電解液に含まれる活物質の酸化還元反応を利用して充放電を行うレドックスフロー電池が知られている。レドックスフロー電池は、大容量化が容易、長寿命、電池の充電状態が正確に監視可能であるなどの特徴を有している。このような特徴から、近年では、特に発電量の変動が大きい再生可能エネルギーの出力安定化や電力負荷平準化の用途としてレドックスフロー電池は大きな注目を集めている。
一般に、レドックスフロー電池は、所定の電圧を得るために、複数の電池セルが積層されたセルスタックから構成されている。このようなレドックスフロー電池には、システム全体の高効率化を実現するために、電池セルの内部抵抗の低減と電解液が電池セルを通過する際の圧力損失の低減とが求められる。こうした要求を満たすものとして、特許文献1には、電池セルを構成する双極板に櫛歯流路を備えたレドックスフロー電池が記載されている。櫛歯流路は、双極板のうち電極に対向する面にそれぞれ櫛歯状に形成され、互いに噛み合うように配置された供給側と排出側の2種類の流路溝から構成されている。このような構成により、電解液は、供給側の流路溝から隣接する排出側の流路溝へと電極内を流れるため、電極の厚みを薄くして上記内部抵抗を低減し、かつ電極内の電解液の流れ抵抗を低減して上記圧力損失を低減することが期待される。また、特許文献1には、櫛歯流路を備えた構造に固有の問題に対処するために、電極を2層構造とし、隔膜側の層の透過率を双極板側の層の透過率よりも大きくする技術も記載されている。これにより、電極内での電解液の不均一な流れを軽減することができ、電極内での電解液の流れが不均一となり、電極全体が反応に有効に利用されないという問題を解決することが期待される。
一方で、上述の要求を満たす別の構造として、特許文献2には、電解液が電極内を厚み方向に流れるように電解液を流通させる流路構造を備えたものが記載されている。このような流路構造により、電極の薄型化による上記内部抵抗の低減と上記圧力損失の低減が期待されることに加え、電極内での電解液の不均一な流れの低減も期待される。
特開2015-122230号公報 特表2015-530709号公報
特許文献1,2に記載のレドックスフロー電池では、電解液が電極内をできるだけ均一に流れるようにするために電池セル内の流路構造を工夫する必要がある。したがって、電池セル内の流路構造は必然的に複雑になる。そのため、レドックスフロー電池の高出力化の要求に対して電池セルを大型化しようとすると、電池セル全体の電解液の流れ抵抗が大きくなり、結果的に、圧力損失が増大することになる。
そこで、本発明の目的は、高効率かつ高出力なレドックスフロー電池を提供することである。
上述した目的を達成するために、本発明のレドックスフロー電池は、第1の方向に交互に積層されたセルユニットおよび隔膜を有し、セルユニットが、第1の方向に貫通する開口部を有する枠体と、開口部に収容され、第1の方向と直交する第2の方向に積層された複数の積層シートからなる電極組立体であって、第1の方向における一方の側の隔膜との間に正極セルを形成するとともに、第1の方向における他方の側の隔膜との間に負極セルを形成する電極組立体と、を有し、枠体が、正極活物質を含む正極流体を正極セル内で第1の方向と直交する第2の方向に流通させる正極側流路と、負極活物質を含む負極流体を負極セル内で第2の方向に流通させる負極側流路とを有し、複数の積層シートのそれぞれが、互いに積層された第1および第2の層であって、第1の層が、第2の層の一方の側の端面よりも外側に突出して正極セル内に位置するシート状の正極電極と、第2の層の他方の側の端面よりも外側に突出して負極セル内に位置するシート状の負極電極とを含み、第1および第2の層のいずれかが、正極電極と負極電極とを電気的に接続する導電性材料を含む、第1および第2の層を有している。
このようなレドックスフロー電池によれば、特別かつ複雑な流路構造を必要とすることなく、電解液(活物質を含む流体)をシート状の電極の厚み方向に通過させることができる。そのため、電池セルのサイズを大きくしても、電解液の流れ抵抗が著しく大きくなることがなく、電解液が電池セルを通過する際の圧力損失が大幅に増大することもない。また、セルユニットが簡易な構造を有しているため、セルスタックの組立精度を向上させることができる。それにより、電解液の偏流を抑制することと合わせて、充放電性能を最大限に発揮させることが可能になる。
以上、本発明によれば、高効率かつ高出力なレドックスフロー電池を提供することができる。
本発明の第1の実施形態に係るレドックスフロー電池の概略構成図である。 本発明の第1の実施形態に係るセルフレームの概略平面図である。 本発明の第1の実施形態に係る電極組立体の概略図である。 本発明の第1の実施形態に係る電池セルの内部構造を示す概略図である。 本発明の第2の実施形態に係る電極組立体の概略図である。 本発明の第3の実施形態に係る電極組立体の概略図である。
以下、図面を参照して、本発明の実施の形態について説明する。
(第1の実施形態)
図1(a)は、本発明の第1の実施形態に係るレドックスフロー電池の概略構成図である。図1(b)は、本実施形態のレドックスフロー電池を構成するセルスタックの概略構成図である。なお、図1(b)は、構成要素間の相対的な関係を示しているに過ぎず、各構成要素の配置や形状を正確に表しているわけではない。
レドックスフロー電池1は、電池セル10内での正極活物質および負極活物質の酸化還元反応を利用して充放電を行うものであり、積層された複数の電池セル10を有するセルスタック2を備えている。複数の電池セル10は、後述するセルユニット20と隔膜13とが交互に積層されることで構成されている。セルユニット20の詳細な構成については後述する。図1(b)には、4つの電池セル10が示されているが、セルスタック2を構成する電池セル10の個数はこれに限定されるものではない。
セルスタック2は、正極側往路配管L1および正極側復路配管L2を介して、正極電解液を貯留する正極側タンク3に接続されている。正極側往路配管L1には、正極側タンク3とセルスタック2との間で正極電解液を循環させる正極側ポンプ4が設けられている。また、セルスタック2は、負極側往路配管L3および負極側復路配管L4を介して、負極電解液を貯留する負極側タンク5に接続されている。負極側往路配管L3には、負極側タンク5とセルスタック2との間で負極電解液を循環させる負極側ポンプ6が設けられている。なお、電解液としては、液相中に粒状の活物質を懸濁・分散させて形成されたスラリーや、液状になった活物質そのものなど、活物質を含むあらゆる流体を用いることができる。したがって、ここでいう電解液は、活物質の溶液に限定されるものではない。
各電池セル10は、正極セル11と、負極セル12と、正極セル11と負極セル12とを分離する隔膜13とを有している。正極セル11は、正極電極14を含み、正極電解液(正極流体)が正極セル11内をセルスタック2の積層方向と直交する方向に流通するように構成されている。負極セル12は、負極電極15を含み、負極電解液(負極流体)が負極セル12内をセルスタック2の積層方向と直交する方向に流通するように構成されている。以下、セルスタック2の積層方向(第1の方向)をZ方向とし、電池セル10内での電解液の流通方向(第2の方向)をX方向とする。
正極セル11は、個別供給流路P1および共通供給流路C1を介して、正極側往路配管L1に接続され、個別回収流路P2および共通回収流路C2を介して、正極側復路配管L2に接続されている。これにより、正極セル11には、正極側タンク3から正極活物質を含む正極電解液が供給される。こうして、正極セル11では、充電動作時に還元状態の正極活物質が酸化状態に変化する酸化反応が起こり、放電動作時に酸化状態の正極活物質が還元状態に変化する還元反応が起こる。一方、負極セル12は、個別供給流路P3および共通供給流路C3を介して、負極側往路配管L3に接続され、個別回収流路P4および共通回収流路C4を介して、負極側復路配管L4に接続されている。これにより、負極セル12には、負極側タンク5から負極活物質を含む負極電解液が供給される。こうして、負極セル12では、充電動作時に酸化状態の負極活物質が還元状態に変化する還元反応が起こり、放電動作時に還元状態の負極活物質が酸化状態に変化する酸化反応が起こる。
図2は、本実施形態の電池セルを構成するセルユニットの概略平面図であり、セルスタックの積層方向から見た平面を示している。なお、図2を含む以下の図面に示す各構成要素の配置は、便宜的なものであり、電池セルの使用時における姿勢を限定するものではない。また、以下の説明における「上」および「下」という用語は、相対的なものであり、電池セルの使用時における姿勢を限定するものではない。
セルユニット20は、隔膜13と共にZ方向に積層されて複数の電池セル10を構成するものであり、枠体21と、正極電極14および負極電極15を含む電極組立体30とを有している。枠体21は、Z方向に貫通する矩形状の開口部22を備え、電極組立体20は、その開口部22に液密に収容されている。枠体21の開口部22は、セルユニット20の両側に積層される隔膜13によって塞がれ、それにより、電極組立体30と隔膜13との間に正極セル11または負極セル12が形成される。すなわち、電極組立体30と一方の側(図2の紙面表側)の隔膜13との間に正極セル11が形成され、電極組立体30と他方の側(図2の紙面裏側)の隔膜13との間に負極セル12が形成される。
なお、枠体21の全面にイオン交換膜である隔膜13が設けられていても、開口部22を除いた部分、すなわち、電極組立体30と対向しない部分は、電池セル10として機能しない。そのため、結果的に高価なイオン交換膜が無駄になってしまう。したがって、隔膜13は、枠体21のうち電極組立体30と対向する部分にのみ設けられていてもよく、そのために、枠体21は、例えば、電極組立体30のみを露出させる開口部を備えたカバー部材をさらに有していてもよい。すなわち、セルユニット20と隔膜13は、そのようなカバー部材を介して交互に積層されていてもよい。
枠体21は、4つの角部付近に形成され、それぞれ枠体21をZ方向に貫通する貫通孔23a~26aを有している。加えて、枠体21は、一方の面(図2の紙面表側の面)に、貫通孔23a,24aと開口部22とを接続する流路溝23b,24bを有し、他方の面(図2の紙面裏側の面)に、貫通孔25a,26aと開口部22とを接続する流路溝25b,26bを有している。なお、詳細は図示しないが、他方の側の流路溝25b,26bは、それぞれ一方の側の流路溝23b,24bと同様の構造を有している。
貫通孔23a,24aと流路溝23b,24bは、セルユニット20と隔膜13とが交互に積層されてセルスタック2を構成したときに、正極電解液を正極セル11内でX方向に流通させる正極側流路C1,C2,P1,P2を構成する。具体的には、貫通孔23aおよび流路溝23bは、それぞれ正極電解液用の共通供給流路C1および個別供給流路P1を構成し、貫通孔24aおよび流路溝24bは、それぞれ正極電解液用の共通回収流路C2および個別回収流路P2を構成する。こうして、正極電解液は、共通供給流路C1から個別供給流路P1を通じて正極セル11に供給され、正極セル11内をX方向に流れた後、個別回収流路P2から共通回収流路C2へと回収される。
一方、貫通孔25a,26aと流路溝25b,26bは、セルユニット20と隔膜13とが交互に積層されてセルスタック2を構成したときに、負極電解液を負極セル12内でX方向に流通させる負極側流路C3,C4,P3,P4を構成する。具体的には、貫通孔25aおよび流路溝25bは、それぞれ負極電解液用の共通供給流路C3および個別供給流路P3を構成し、貫通孔26aおよび流路溝26bは、それぞれ負極電解液用の共通供給流路C4および個別供給流路P4を構成する。こうして、負極電解液は、共通供給流路C3から個別供給流路P3を通じて負極セル12に供給され、負極セル12内をX方向に流れた後、個別回収流路P4から共通回収流路C4へと回収される。
このとき、電解液は、流路P1~P4内で滞留することなく、各セル11,12に対してY方向に偏らずに供給および回収されることが好ましい。そのために、各流路溝23b,24bは、図示したように、開口部22に向かって途中から徐々に拡幅した後、複数に分岐して開口部22に接続されていることが好ましい。また、詳細は図示しないが、各流路溝25b,26bも同様に、開口部22に向かって途中から徐々に拡幅した後、複数に分岐して開口部22に接続されていることが好ましい。
なお、枠体21は、複数の部材、例えば、上下左右4つの枠部材から構成されていてもよく、加えて、上述したカバー部材を有していてもよい。枠体21の材料としては、絶縁性材料を用いることができ、特に、適度な剛性を有するとともに、電解液と反応せず、電解液に対する耐性(耐薬品性、耐酸性など)を有するものを用いることができる。そのような材料として、例えば、塩化ビニル、ポリエチレン、ポリプロピレンなどのプラスチックが挙げられる。
図3(a)は、本実施形態の電極組立体の概略断面図であり、セルスタックの積層方向に平行な断面を示している。図3(b)は、本実施形態の電極組立体を構成する積層シートの分解平面図である。図4は、本実施形態の電池セルの内部構造を示す概略図であり、セルスタックの積層方向と電池セル内での電解液の流通方向とに直交する方向から見た構造を示している。
電極組立体30は、X方向に積層された複数の積層シート31からなり、各積層シート31は、電極層(第1の層)32と、電極層32に積層されたスペーサ層(第2の層)33とを有している。なお、電極組立体30を構成する積層シート31の枚数は、図示した数に限定されるものではない。
電極層32は、いずれもシート状の正極電極14および負極電極15を含んでいる。正極電極14と負極電極15は、Z方向に互いに間隔をおいて設けられ、それぞれがY方向に延びている。また、正極電極14は、スペーサ層33のZ方向の一端面(一方の側の端面)33aよりも外側に突出し、負極電極15は、スペーサ層33のZ方向の他端面(他方の側の端面)33bよりも外側に突出している。これにより、セルユニット20と隔膜13とが交互に積層されてセルスタック2を構成したときに、図4に示すように、正極電極14は、X方向(正極電解液の流通方向)に対して垂直に正極セル11内に配置され、負極電極15は、X方向(負極電解液の流通方向)に対して垂直に負極しセル12内に配置される。電極14,15の材料としては、炭素材料を用いることが好ましく、例えば、カーボンペーパー、カーボンクロス、またはカーボンフェルトからなる電極14,15を用いることができる。各電極14,15の厚みは特に限定されず、例えば、0.3mm程度である。
また、電極層32は、正極電極14と負極電極15との間に設けられた中間領域34を含んでいる。中間領域34は、電極層32とスペーサ層33との間をシールして両者の隙間から電解液が漏れるのを抑制する機能を有している。そのため、中間領域34の材料は、電解液に対する耐性を有し、ある程度の液圧(正負極間の差圧)に耐え得るものであることが好ましい。そのような材料としては、例えば、軟質塩化ビニル、熱可塑性エラストマー、ゴム、ポリテトラフルオロエチレン(PTFE)などの樹脂材料が挙げられる。なお、中間領域34は、上述したシール機能を十分に発揮することができれば、必ずしも各電極14,15と接触している必要はない。
スペーサ層33は、電極組立体30内で電極層32間に介在することから、隣接する2つの電極層32の正極電極14間および負極電極15間に空隙を形成する機能を有している。また、スペーサ層33は、導電性材料からなり、電極層32内の正極電極14と負極電極15とを電気的に接続する機能、すなわち、セルスタック2内で隣接する2つの電池セル10を電気的に接続する機能も有している。スペーサ層33の導電性材料としては、高い導電性と電解液に対する耐性を有する炭素材料を用いることが好ましい。加えて、スペーサ層33の導電性材料は、量産化やコストの観点から選択されることが好ましい。そのような材料としては、例えば、ロール状に製造可能で、加工性に優れた膨張黒鉛が挙げられる。スペーサ層33の厚みは特に限定されず、例えば、0.2mm程度である。
このような構成によれば、シート状の電極14,15を、セル11,12の内部空間を規定するスペーサ層33の両端面33a,33bよりも外側に突出させることで、セル11,12内で電解液の流通方向(X方向)に対して垂直に配置することができる。このとき、電解液が電極14,15を通過する際の圧力損失は、セル11,12内のその他の領域(スペーサ層33による空隙部分)を通過する際の圧力損失に比べて非常に大きい。そのため、セル11,12内の流路構造を複雑にすることなく、電極14,15内での偏流の発生も抑制しつつ、電極14,15の厚み方向に電解液を通過させることができる。その結果、電池セル10のサイズを大きくしても、電解液の流れ抵抗が著しく大きくなることがなく、電解液が電池セル10を通過する際の圧力損失が大幅に増加することもない。
さらに、セルスタック2の組立時に、セルユニット20を単一部品として扱うことができるため、部品点数の削減と製造工程の簡略化とにより、レドックスフロー電池1の量産化を低コストで実現することができる。加えて、セルユニット20が簡易な構造を有しているため、電池セル10内に多くの電極14,15を配置することを容易に実現しつつ、セルスタック2をより高精度に組み立てることができる。そのため、隔膜13を挟んで正極電極14と負極電極15を設計通りの位置に配置したり、電極間に空隙を確実に形成し、電池セル10内に適切な流路を確保したりすることができ、部材同士が干渉するなどの不具合の発生も抑制することができる。こうして、電池セル10の充放電性能を最大限に発揮させることができ、高効率かつ高出力なレドックスフロー電池1を実現することができる。
スペーサ層33の各端面33a,33bからの各電極14,15の突出長さは、想定される電解液の圧力損失や突出部分の機械的強度を考慮して適切に設定されれば、特に限定されず、例えば、0.5~3mm程度である。なお、充放電動作に伴う水素イオンの移動の大きな妨げにならない限り、各電極14,15の突出部分を機械的に支持するために、各セル11,12内の空隙部分にそれぞれ、樹脂材料からなる多孔質または繊維状のスペーサが挿入されていてもよい。また、電解液の圧力損失が許容範囲内であれば、各セル11,12内の空隙部分にそれぞれ、シート状の電極が挿入されていてもよい。
積層シート31の製造方法は特に限定されず、例えば、別々に製造した電極層32とスペーサ層33を熱圧着により貼り合わせることで、積層シート31を製造することができる。また、積層シート31は、予め用意したスペーサ層33上に電極層32を形成することで製造されてもよい。このような方法としては、例えば、スペーサ層33上の所定の位置に電極14,15をそれぞれ配置した後、それらの間に液体状の樹脂材料を塗布して硬化させる方法が挙げられる。この場合、スペーサ層33と電極14,15との電気的な接続は、この積層シート31に他の積層シート31(スペーサ層33)が積層されることで生じる押圧力により確保される。また、積層シート31は、電極層32とスペーサ層33を1つずつ有する構成に限定されず、電極層32と、その両側に積層された一対のスペーサ層33とから構成されていてもよい。このような構成では、例えば、電極層32の中間領域34となる領域を予め一対のスペーサ層33にそれぞれ形成しておき、そのような一対のスペーサ層33で電極14,15を挟み込むことで、積層シート31を製造してもよい。
なお、製造工程の簡略化の観点から、電極層32を構成する各電極14,15それ自体が、多層構造を有していてもよい。これにより、電極層32の厚みが大きくなるため、より少ない工程数で同じ厚みの電極組立体30を組み立てることができる。ただし、各電極14,15の厚みも大きくなることから、厚み方向の導電性の低下が懸念される。そのため、各電極14,15が多層構造を有する場合、電極層32の厚みは、厚み方向の導電性が大幅に低下しない程度に大きいことが好ましく、例えば、5mm程度である。
図示した実施形態では、複数の電池セル10は、各電解液が複数の電池セル10を並列に流れるように互いに接続されているが、複数の電池セル10の接続形態はこれに限定されるものではない。例えば、複数の電池セル10は、各電解液が複数の電池セル10を直列に流れるように互いに接続されていてもよく、すなわち、直列流路を構成していてもよい。あるいは、複数の電池セル10は、並列流路と直列流路が組み合わされた階層的な流路構成、具体的には、複数の直列流路が並列に接続された流路構成を有していてもよい。すなわち、セルスタック2が複数のセルグループに分割され、各セルグループを構成する複数の電池セル10が直列流路を構成し、各セルグループが並列流路を構成していてもよい。
なお、複数の直列流路が並列に接続された流路構成を有する場合、正極側タンク3を配管L1に接続されたタンクと配管L2に接続されたタンクの2つに分け、これら2つのタンクに、還元状態の活物質濃度と酸化状態の活物質濃度の割合が異なる2種類の正極電解液を別々に貯留してもよい。すなわち、充放電動作時に酸化還元反応の前後で正極電解液が別々のタンクに貯留されてもよい。同様に、負極側タンク5を配管L3に接続されたタンクと配管L4に接続されたタンクの2つに分け、これら2つのタンクに、還元状態の活物質濃度と酸化状態の活物質濃度の割合が異なる2種類の負極電解液を別々に貯留してもよい。すなわち、充放電動作時に酸化還元反応の前後で負極電解液が別々のタンクに貯留されてもよい。
(第2の実施形態)
図5(a)は、本発明の第2の実施形態に係る電極組立体の概略断面図であり、セルスタックの積層方向に平行な断面を示している。図5(b)は、本実施形態の電極組立体を構成する積層シートの分解平面図である。本実施形態は、第1の実施形態の変形例であり、電極組立体の構成を変更した変形例である。以下では、本実施形態の電極組立体のうち第1の実施形態と異なる構成のみ説明する。
本実施形態では、積層シート31が、電極層32とスペーサ層33に加え、第3の層である補強層35をさらに備えている。補強層35は、スペーサ層33の電極層32とは反対側に積層され、好ましくは膨張黒鉛からなるスペーサ層33を補強する機能を有している。そのため、補強層35の材料は、電解液に対する耐性と適度な機械的強度を有するものが好ましい。そのような材料としては、軟質塩化ビニルや熱可塑性エラストマーなどの樹脂材料が挙げられる。例えば、補強層35は、樹脂シートをスペーサ層33に熱圧着により貼り付ける方法や、液体状の樹脂材料をスペーサ層33に塗布した後に硬化させる方法を用いて、スペーサ層33に積層することができる。
また、補強層35は、スペーサ層33と同じ形状を有する主領域36と、主領域36のZ方向の両端面36a,36bにそれぞれY方向に互いに間隔をおいて形成された複数の突起37a,37bとを有している。主領域36の一端面36aに形成された複数の突起37aは、正極電極14のうちスペーサ層33の一端面33aから突出した部分を支持する機能を有している。一方、主領域36の他端面36bに形成された複数の突起37bは、負極電極15のうちスペーサ層33の他端面33bから突出した部分を支持する機能を有している。こうして、補強層35は、スペーサ層33を補強するだけでなく、各電極14,15の突出部分を機械的に支持することもできる。なお、各電極14,15の突出部分の機械的強度が十分に確保されている場合には、複数の突起37a,37bは省略されてもよい。
(第3の実施形態)
図6(a)は、本発明の第3の実施形態に係る電極組立体の概略断面図であり、セルスタックの積層方向に平行な断面を示している。図6(b)は、本実施形態の電極組立体を構成する積層シートの分解平面図である。本実施形態は、第1の実施形態の変形例であり、電極組立体を構成する材料の組み合わせを変更した変形例である。以下では、本実施形態の電極組立体のうち第1の実施形態と異なる構成のみ説明する。
本実施形態では、電極層32の中間領域34を構成する材料とスペーサ層33を構成する材料がそれぞれ第1の実施形態のものと異なっている。具体的には、電極層32の中間領域34は、第1の実施形態のスペーサ層33と同様の導電性材料からなり、スペーサ層33は、第1の実施形態の電極層32の中間領域34と同様の樹脂材料からなる。したがって、電極層32の中間領域34は、第1の実施形態のスペーサ層33と同様の機能、すなわち、電極層32内の正極電極14と負極電極15とを電気的に接続する機能を有している。また、スペーサ層33は、第1の実施形態と同様に、正極電極14間および負極電極15間に空隙を形成する機能に加え、第1の実施形態の電極層32の中間領域34と同様の機能、すなわち、電極層32とスペーサ層33との間をシールする機能も有している。
なお、電極層32とスペーサ層33の積層方法としては、例えば、樹脂シートを電極層32に熱圧着により貼り付ける方法や、液体状の樹脂材料を電極層32に塗布した後に硬化させる方法を用いることができる。また、電極層32は、例えば、中間領域34が膨張黒鉛からなる場合、膨張黒鉛をシート状に圧延成形するのと同時に電極14,15をプレスにより膨張黒鉛と一体化させることで製造することができる。
また、本実施形態では、スペーサ層33の両端面33a,33bに、第2の実施形態の補強層35に形成されていたのと同様の複数の突起37a,37bがそれぞれ形成されている。すなわち、スペーサ層33の一端面33aには、正極電極14のうちスペーサ層33の一端面33aから突出した部分を支持する複数の突起37aが形成されている。また、スペーサ層33の他端面33bには、負極電極15のうちスペーサ層33の他端面33bから突出した部分を支持する複数の突起37bが形成されている。なお、各電極14,15の突出部分の機械的強度が十分に確保されている場合に複数の突起37a,37bが省略されてもよい点は、第2の実施形態と同様である。
1 レドックスフロー電池
10 電池セル
11 正極セル
12 負極セル
13 隔膜
14 正極電極
15 負極電極
20 セルユニット
21 枠体
22 開口部
23a~26a 貫通孔
23b~26b 流路溝
30 電極組立体
31 積層シート
32 電極層
33 スペーサ層
33a,33b 端面
34 中間領域
35 補強層
36 主領域
36a,36b 端面
37a,37b 突起

Claims (11)

  1. 第1の方向に交互に積層されたセルユニットおよび隔膜を有し、
    前記セルユニットが、
    前記第1の方向に貫通する開口部を有する枠体と、
    前記開口部に収容され、前記第1の方向と直交する第2の方向に積層された複数の積層シートからなる電極組立体であって、前記第1の方向における一方の側の前記隔膜との間に正極セルを形成するとともに、前記第1の方向における他方の側の前記隔膜との間に負極セルを形成する電極組立体と、を有し、
    前記枠体が、正極活物質を含む正極流体を前記正極セル内で前記第1の方向と直交する第2の方向に流通させる正極側流路と、負極活物質を含む負極流体を前記負極セル内で前記第2の方向に流通させる負極側流路とを有し、
    前記複数の積層シートのそれぞれが、互いに積層された第1および第2の層であって、前記第1の層が、前記第2の層の前記一方の側の端面よりも外側に突出して前記正極セル内に位置するシート状の正極電極と、前記第2の層の前記他方の側の端面よりも外側に突出して前記負極セル内に位置するシート状の負極電極とを含み、前記第1および第2の層のいずれかが、前記正極電極と前記負極電極とを電気的に接続する導電性材料を含む、第1および第2の層を有する、レドックスフロー電池。
  2. 前記正極電極および前記負極電極は、前記第1の方向に互いに間隔をおいて設けられ、それぞれが前記第1の方向と前記第2の方向とに直行する第3の方向に延びている、請求項1に記載のレドックスフロー電池。
  3. 前記第2の層が前記導電性材料からなる、請求項2に記載のレドックスフロー電池。
  4. 前記複数の積層シートのそれぞれが、前記第2の層の前記第1の層とは反対側に積層され、前記第2の層を補強するための樹脂材料からなる第3の層をさらに有する、請求項3に記載のレドックスフロー電池。
  5. 前記第3の層が、前記第2の層と同じ形状を有する領域と、前記第1の方向における前記領域の端面に前記第3の方向に互いに間隔をおいて形成され、前記正極電極または前記負極電極のうち前記第2の層の前記端面から突出した部分を支持する複数の突起とを有する、請求項4に記載のレドックスフロー電池。
  6. 前記第1の層が、前記正極電極と前記負極電極との間に設けられ、前記第1の層と前記第2の層との間をシールするための樹脂材料からなる領域を含む、請求項2に記載のレドックスフロー電池。
  7. 前記第1の層が、前記正極電極と前記負極電極との間に設けられた前記導電性材料からなる領域を含み、前記第2の層が、樹脂材料からなり、前記第1の層を補強する機能を有する、請求項2に記載のレドックスフロー電池。
  8. 前記第2の層が、前記端面に前記第3の方向に互いに間隔をおいて形成され、前記正極電極または前記負極電極のうち前記第2の層の前記端面から突出した部分を支持する複数の突起を有する、請求項7に記載のレドックスフロー電池。
  9. 前記導電性材料が膨張黒鉛である、請求項1から8のいずれか1項に記載のレドックスフロー電池。
  10. 前記セルユニットが、前記正極セル内または前記負極セル内に挿入された多孔質または繊維状のスペーサを有する、請求項1から8のいずれか1項に記載のレドックスフロー電池。
  11. 前記正極電極および前記負極電極が、カーボンペーパー、カーボンクロス、またはカーボンフェルトからなる、請求項1から8のいずれか1項に記載のレドックスフロー電池。
JP2022103460A 2022-06-28 2022-06-28 レドックスフロー電池 Pending JP2024004030A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022103460A JP2024004030A (ja) 2022-06-28 2022-06-28 レドックスフロー電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022103460A JP2024004030A (ja) 2022-06-28 2022-06-28 レドックスフロー電池

Publications (1)

Publication Number Publication Date
JP2024004030A true JP2024004030A (ja) 2024-01-16

Family

ID=89538149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022103460A Pending JP2024004030A (ja) 2022-06-28 2022-06-28 レドックスフロー電池

Country Status (1)

Country Link
JP (1) JP2024004030A (ja)

Similar Documents

Publication Publication Date Title
KR102382373B1 (ko) 전지 셀 및 레독스 플로우 전지
CN109713344B (zh) 发电单电池
JP5349184B2 (ja) 燃料電池スタック
JP5960366B2 (ja) 燃料電池スタック
CA2881864A1 (en) Design of bipolar plates for use in electrochemical cells
JP6607357B2 (ja) 電池セル、およびレドックスフロー電池
JPWO2009072291A1 (ja) 電極−膜−枠接合体の製造方法
US10741861B2 (en) Power generating cell
AU2016342919B2 (en) Redox flow battery electrode, and redox flow battery
WO2018026005A1 (ja) レドックスフロー電池
CN104247116A (zh) 燃料电池堆
WO2020129022A2 (en) Redox flow battery comprising stack of flow frames and redox flow frame thereof
JP5144226B2 (ja) 燃料電池
WO2021220960A1 (ja) レドックスフロー電池
JP2024004030A (ja) レドックスフロー電池
WO2020241741A1 (ja) レドックスフロー電池
WO2023026745A1 (ja) レドックスフロー電池
JP2019160665A (ja) 燃料電池スタック及び燃料電池スタック用ダミーセル
JP6559980B2 (ja) 燃料電池
WO2020158623A1 (ja) 電池セル、セルスタック、及びレドックスフロー電池
KR102014821B1 (ko) 레독스 흐름 전지용 일체형 분리판
TW202036970A (zh) 電池單元、單元堆及氧化還原電池
JP2014241222A (ja) 燃料電池
JP4615266B2 (ja) 高分子電解質型燃料電池
JP2020129502A (ja) 電池セル、セルスタック、及びレドックスフロー電池