JP2024002386A - タイヤ - Google Patents

タイヤ Download PDF

Info

Publication number
JP2024002386A
JP2024002386A JP2022101538A JP2022101538A JP2024002386A JP 2024002386 A JP2024002386 A JP 2024002386A JP 2022101538 A JP2022101538 A JP 2022101538A JP 2022101538 A JP2022101538 A JP 2022101538A JP 2024002386 A JP2024002386 A JP 2024002386A
Authority
JP
Japan
Prior art keywords
mass
less
parts
rubber
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022101538A
Other languages
English (en)
Inventor
亜由子 山田
Ayuko Yamada
健太郎 中村
Kentaro Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2022101538A priority Critical patent/JP2024002386A/ja
Priority to PCT/JP2023/021485 priority patent/WO2023248828A1/ja
Publication of JP2024002386A publication Critical patent/JP2024002386A/ja
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C3/00Tyres characterised by the transverse section
    • B60C3/04Tyres characterised by the transverse section characterised by the relative dimensions of the section, e.g. low profile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】高速走行時における耐摩耗性の向上を図る。【解決手段】トレッド部を備えたタイヤであって、トレッド部を形成するキャップゴム層が、スチレン量25質量%以下のスチレンブタジエンゴム(SBR)を、ゴム成分100質量部中に60質量部以上、80質量部以下含有すると共に、ゴム成分100質量部に対して、シリカを100質量部以下含有し、温度30℃、周波数10Hz、初期歪5%、動歪率1%の条件下、変形モード:引張で測定された損失正接(30℃tanδ)が、0.25超であるゴム組成物から形成されており、トレッド部の厚みが、6mm以上、15mm以下であるタイヤ。【選択図】なし

Description

本発明は、タイヤに関する。
タイヤは、走行により摩耗を招くため、従来より、耐摩耗性の向上に関して、種々の技術が提案されている(例えば、特許文献1~4)。
特開2021-187860号公報 WO2019/235526号公報 WO2019/240226号公報
しかしながら、近年の高速道の整備に伴い、高速で長距離を移動する機会が飛躍的に増加している状況下、上記した従来技術に基づいて製造されたタイヤでは、高速走行時における耐摩耗性は、未だ、十分とは言えず、さらなる改善が強く望まれている。
そこで、本発明は、高速走行時における耐摩耗性の向上を図ることを課題とする。
本発明は、
トレッド部を備えたタイヤであって、
前記トレッド部を形成するキャップゴム層が、
スチレン量25質量%以下のスチレンブタジエンゴム(SBR)を、ゴム成分100質量部中に60質量部以上、80質量部以下含有すると共に、
前記ゴム成分100質量部に対して、シリカを100質量部未満含有し、
温度30℃、周波数10Hz、初期歪5%、動歪率1%の条件下、変形モード:引張で測定された損失正接(30℃tanδ)が、0.25超であるゴム組成物から形成されており、
前記トレッド部の厚みが、15mm以下であることを特徴とするタイヤである。
本発明によれば、高速走行時における耐摩耗性の向上を図ることができる。
[1]本発明に係るタイヤの特徴
最初に、本発明に係るタイヤの特徴について説明する。
1.概要
本発明に係るタイヤは、トレッド部を備えたタイヤであって、トレッド部を形成するキャップゴム層が、スチレン量25質量%以下のSBRを、ゴム成分100質量部中に60質量部以上、80質量部以下含有すると共に、ゴム成分100質量部に対してシリカを100質量部未満含有し、温度30℃、周波数10Hz、初期歪5%、動歪率1%の条件下、変形モード:引張で測定された損失正接(30℃tanδ)が、0.25超であるゴム組成物から形成されている。そして、トレッド部の厚みが、15mm以下である。
なお、ここにいうキャップゴム層は、トレッド部の最外層を形成するキャップゴム層に限られず、トレッド表面から内側に向かって5mm以内に2層以上ある場合は、少なくともいずれか1つの層が、前記ゴム組成物の要件を満たしていればよい。
これらの特徴を有することにより、後述するように、高速走行時における耐摩耗性の向上を図ることができる。
2.本発明に係るタイヤにおける効果発現のメカニズム
本発明に係るタイヤにおける上記した効果発現のメカニズムについては、以下のように考えられる。
上記したように、本発明に係るタイヤのキャップゴム層を形成するゴム組成物は、スチレン量25質量%以下のSBRを、ゴム成分100質量部中に60質量部以上、80質量部以下含有すると共に、シリカをゴム成分100質量部に対して100質量部以下含有している。
ゴム成分100質量部中のSBR成分を60質量部以上、80質量部以下とすることにより、ゴムマトリックス中に、SBR相が連続相となった相分離構造を形成させることができ、そして、SBR中のスチレン量を25質量%以下とすることにより、ゴムマトリックス中のSBR相内で、補強剤としてゴム組成物に含有されたシリカが相互作用を発揮し易くなり、シリカによる補強効果が得られ易くなると考えられる。
また、スチレン量が少ない(スチレン量25質量%以下)SBRを、適量含有させることによって、ゴムマトリックス系内にスチレン部に由来する微小なスチレンドメインを適切に形成させることができる。この形成された微小なスチレンドメインは、他のポリマー分子鎖との界面で力を緩和させやすいため、タイヤの高速走行時における路面との摩擦によって発生する変形を緩和させ易くできると考えられる。
なお、前記したスチレン量は、20質量%以下であるとより好ましく、15質量%以下であるとさらに好ましい。一方、下限としては、4質量%以上であることが好ましく、5質量%以上であるとより好ましく、6質量%以上であるとさらに好ましい。
そして、本発明において、「スチレン量25質量%以下のSBRを、ゴム成分100質量部中に60質量部以上、80質量部以下含有」とは、ゴム成分100質量部中に占めるSBR量が60質量部以上、80質量部以下であり、SBR全体におけるスチレン量が25質量%以下であることを示している。
即ち、ゴム成分中にスチレン含有ポリマー(SBR)が単独で含有されている場合には、そのスチレン量が25質量%以下であることを示し、ゴム成分中にスチレン含有ポリマー(SBR)が複数含有されている場合には、それぞれのポリマー中のスチレン量(質量%)と、そのポリマーのゴム成分100質量部に対する配合量(質量部)との積の総和により求められたスチレン量が25質量%以下であることを示している。
より具体的には、ゴム成分100質量部中に、スチレン量S1質量%のSBR1(X1質量部)とスチレン量S2質量%のSBR2(X2質量部)とが含有されている場合、{(S1×X1)+(S2×X2)}/(X1+X2)の式から算出されたスチレン量が、25質量%以下であることを示している。
また、加硫後のゴム組成物においては、アセトン抽出後のゴム成分中に含まれるスチレン量を固体核磁気共鳴(固体NMR)やフーリエ変換赤外分光光度計(FTIR)により求めることによっても、算出することが可能である。
本発明において、キャップゴム層を形成するゴム組成物は、ゴム成分100質量部に対して100質量部未満と、ゴム成分を上回らない量のシリカを含有している。これにより、前記したシリカの相互作用による補強効果に加えて、微小なスチレンドメインとシリカとが摩擦を生じて発熱することにより、変形のエネルギーを逃がすことができるため、高速走行時における耐摩耗性を十分に向上させることができると考えられる。
さらに、本発明においては、キャップゴム層を形成するゴム組成物の、温度30℃、周波数10Hz、初期歪5%、動歪率1%の条件下、変形モード:引張で測定された損失正接(30℃tanδ)を、0.25超としている。
損失正接tanδは、エネルギーの吸収性能を示す粘弾性パラメータであり、値が大きいほどエネルギーを吸収して、熱に変換することができる。本発明においては、走行温度に近い30℃tanδを、0.25超と高くしているため、高周波数の振動が発生する高速走行時においても、振動のエネルギーを十分に吸収して熱に変換し、放出することで、ゴム組成物内で十分なエネルギーロスを生じさせて、グリップ性能を高めることができる。そして、グリップ性能の向上に合わせて、トレッド部表面における滑りの発生を抑制することができるため、高速走行時における耐摩耗性を十分に向上させることができると考えられる。
なお、30℃tanδは、0.30以上であるとより好ましく、0.35以上であるとさらに好ましい。上限は特に限定されないが、0.50以下であることが好ましく、0.45以下であるとより好ましく、0.40以下であるとさらに好ましい。
上記において、損失正接(tanδ)は、例えば、GABO社製「イプレクサー(登録商標)」などの粘弾性測定装置を用いて、測定することができる。
なお、tanδの調整方法は特に限定されないが、例えば、ポリマーのスチレン量を増やす、樹脂成分の含有量を増やす、カーボンブラックの含有量を増やす等の方法で高く、ポリマーのスチレン量を減らす、樹脂成分の含有量を減らす、カーボンブラックの含有量を減らす、とすることで低くすることができる。
さらに、本発明に係るタイヤにおいては、上記したように、トレッド部の厚みを、15mm以下としている。このような適切な厚みに制御することにより、路面との摩擦によって発生する熱のトレッド部での蓄熱を抑制し、蓄熱によるトレッド部の温度上昇に伴う耐摩耗性の低下を抑制することができると考えられる。前記トレッド部の厚みは13mm以下であるとより好ましく、9mm以下であるとさらに好ましい。なお、下限としては特に限定されないが、4mm以上であることが好ましく、5mm以上であるとより好ましく、6mm以上であるとさらに好ましい。
なお、本発明において、トレッド部の厚みとは、タイヤ半径方向断面におけるタイヤ赤道面上でのトレッド部の厚みを指し、単一のゴム組成物でトレッド部が形成される場合においては、当該ゴム組成物の厚みであり、後述する複数のゴム組成物の積層構造で形成される場合においては、これらの層の全厚を指す。
タイヤ赤道面上に溝を有する場合においては当該溝のタイヤ半径方向最外部の端点を繋いだ直線とタイヤ赤道面の交点から、トレッド部のタイヤ半径方向最内部の界面までの厚みを指す。
なお、トレッド部とはタイヤの接地面を形成する領域の部材であるが、カーカス、ベルト層、ベルト補強層などの繊維材料等を含む部材よりタイヤ半径方向外側の部分を指す。前記したトレッド部の厚みは、タイヤを半径方向に切り出した断面において、ビード部を正規リム幅に合わせた状態にすることで測定することが可能である。
上記において、「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えば、JATMA(日本自動車タイヤ協会)であれば「JATMA YEAR BOOK」に記載されている適用サイズにおける標準リム、ETRTO(The European Tyre and Rim Technical Organisation)であれば「STANDARDS MANUAL」に記載されている“Measuring Rim”、TRA(The Tire and Rim Association,Inc.)であれば「YEAR BOOK」に記載されている“Design Rim”を指し、JATMA、ETRTO、TRAの順に参照し、参照時に適用サイズがあればその規格に従う。そして、規格に定められていないタイヤの場合には、リム組み可能であって、内圧が保持できるリム、即ちリム/タイヤ間からエア漏れを生じさせないリムの内、最もリム径が小さく、次いでリム幅が最も狭いものを指す。
以上のように、本発明に係るタイヤにおいては、ゴム組成物中におけるシリカの補強効果、適切なスチレン量による変形に対する緩和効果、適切な30℃tanδによるトレッド部表面における滑りの抑制効果、および、適切な厚み制御による蓄熱の抑制効果などのため、高速走行時における耐摩耗性を十分に向上させることができると考えられる。
[2]本発明に係るタイヤにおけるより好ましい態様
本発明に係るタイヤは、以下の態様を採ることにより、さらに大きな効果を得ることができる。
1.キャップゴム層の30℃tanδとトレッド部の厚みとの関係
本発明者は、高速走行時における耐摩耗性の向上には、30℃tanδとトレッド部の厚みG(mm)との間に好ましい関係があると考え、実験と検討を行った。その結果、30℃tanδ/G>0.03であれば、前記した適切な30℃tanδによるトレッド部表面における滑りの抑制効果と、適切な厚み制御による蓄熱の抑制効果との協働がさらに十分に発揮されて、高速走行時における耐摩耗性がさらに向上することが分かった。なお、上記αの上限としては、0.045以下であることが好ましい。
2.キャップゴム層のガラス転移温度(Tg)
本発明において、キャップゴム層のガラス転移温度(Tg)は、-15℃以下であることが好ましく、―40℃以下であるとより好ましい。ガラス転移温度(Tg)が高いゴム組成物を用いてキャップゴム層を形成した場合、走行温度付近において、トレッド部が硬くなり、路面との摩擦によって耐摩耗性の低下を招く恐れがある。-15℃以下のTgとすることにより、トレッド部の硬化を抑制して、高速走行時における耐摩耗性をさらに向上させることができると考えられる。なお、Tgの下限は特に限定されないが、-60℃以上であることが好ましく、-50℃以上であるとより好ましい。
なお、前記したゴム組成物のガラス転移温度(Tg)は、GABO社製のイプレクサーシリーズなどの粘弾性測定装置を用い、周波数10Hz、初期歪10%、振幅±0.5%及び昇温速度2℃/minの条件下で測定されたtanδの温度分布曲線を基にして求めることができ、本発明の場合には、測定された温度分布曲線の-60℃以上、40℃以下の範囲における最も大きいtanδ値に対応する温度をガラス転移点(Tg)とする。なお、-60℃以上、40℃以下の範囲内に、最も大きいtanδ値の点が2点以上ある場合は、最も温度が低い点をTgとする。例えば、本発明において、tanδの最大値が-60℃以上、40℃以下の範囲内にあれば、上記の定義により、その最大値を示す温度がTgとなる。また、例えば、-60℃以上、40℃以下の範囲内では温度上昇に従いtanδが漸減するなど、tanδの最大値を示す温度が-60℃となる温度分布曲線が得られた場合、上記の定義により、ガラス転移温度(Tg)は、-60℃となる。
また、前記したガラス転移温度(Tg)の調整方法は特に限定されないが、例えば、ゴム成分中のTgが高いポリマー成分の比率を増やす、ゴム成分中のスチレン量を増やす、樹脂成分の含有量を増やすなどの方法で高くすることができ、逆に、ゴム成分中のTgが高いポリマー成分の比率を減らす、ゴム成分中のスチレン量を減らす、樹脂成分の含有量を減らすなどの方法で低くすることができる。
3.キャップゴム層の複素弾性率(E
本発明において、温度30℃、周波数10Hz、初期歪5%、動歪率1%、変形モード:伸長で測定されたキャップゴム層の複素弾性率(30℃E)は、6.0MPa以下であることが好ましく、5.5MPa以下であるとより好ましい。複素弾性率Eは、ゴム層の剛性を示すパラメータであり、30℃Eを6.0MPa以下とした場合、剛性が高くなり過ぎることを抑制して、高速走行時において、路面とのすべりを抑制し、耐摩耗性をさらに向上させることができると考えられる。なお、下限は特に限定されないが、4.00MPa以上であることが好ましく、5.00MPa以上であるとより好ましく、5.30MPa以上であるとさらに好ましい。
そして、上記した30℃E(MPa)は、前記したトレッド部の厚みG(mm)との間で、(30℃E/G)≧0.50を満足していることが好ましく、0.55以上であるとより好ましい。一方、上限としては、1.00以下であることが好ましく、0.65以下であるとより好ましい。トレッド部の厚みが厚いほど、転動時の熱が蓄熱しやすくなり、ゴムの強度が低下し、転動時の変形量が大きくなり、摩耗しやすくなると考えられる。従って、トレッドゴムの厚みに対して、十分な剛性が確保できるよう、30℃Eとトレッド部の厚みとの関係を適切に制御することにより、高速走行時においてトレッド部の変形を最適化し、耐摩耗性をさらに向上させることができると考えられる。
上記した複素弾性率は、例えば、GABO社製「イプレクサー(登録商標)」などの粘弾性測定装置を用いて、測定することができる。
また、上記した30℃Eの調整方法は特に限定されないが、例えば、ポリマーのスチレン量を増やす、シリカ、カーボンブラックなどの充填剤量を増やす、可塑剤成分の含有量を減らす、樹脂成分の含有量を増やす等の方法で高く、ポリマーのスチレン量を減らす、シリカ、カーボンブラックなどの充填剤量を減らす、可塑剤成分の含有量を増やす、樹脂成分の含有量を減らす等の方法で低くすることができる。
4.0℃における損失正接(0℃tanδ)および複素弾性率(0℃E
上記では、走行中を想定して、30℃tanδおよび30℃Eを規定しているが、走行開始時にタイヤは冷えた状態であり、低温時における走行を考慮すると、キャップゴム層を形成するゴム組成物の、温度0℃、周波数10Hz、初期歪5%、動歪率1%の条件下、変形モード:引張で測定された損失正接(0℃tanδ)は、0.60以上であることが好ましく、0.70以上であるとより好ましく、0.80以上であるとさらに好ましい。上限は特に限定されないが、1.00以下であることが好ましく、0.95以下であるとより好ましく、0.90以下であるとさらに好ましい。
同様に、温度0℃、周波数10Hz、初期歪5%、動歪率1%、変形モード:伸長で測定されたキャップゴム層の複素弾性率(0℃E)は、25.0MPa以下であることが好ましく、23.5MPa以下であるとより好ましい。下限は特に限定されないが、20.0MPa以上であることが好ましく、23.0MPa以上であるとより好ましい。
なお上記した0℃tanδおよび0℃Eの調整方法は特に限定されないが、例えば、0℃tanδであれば、ゴム成分中のスチレン量を増やす、樹脂成分の含有量を増やす等の方法で高く、ゴム成分中のスチレン量を減らす、樹脂成分の含有量を減らすことで低くすることができる。また、0℃Eであればゴム成分中のスチレン量を増やす、シリカ、カーボンブラックなどの充填剤量を増やす、可塑剤成分の含有量を減らす、樹脂成分の含有量を増やす等の方法で高くすることができ、ゴム成分中のスチレン量を減らす、シリカ、カーボンブラックなどの充填剤量を減らす、可塑剤成分の含有量を増やす、樹脂成分の含有量を減らす等の方法で低くすることができる。
5.トレッド部の複層化
本発明において、トレッド部は、キャップゴム層の1層のみで形成されていることが好ましいが、キャップゴム層の内側にベースゴム層を設けて複層化されたトレッド部を形成してもよく、この場合、トレッド部全体におけるキャップゴム層の厚みは、10%以上であることが好ましい。これにより、トレッド部表面と路面との間に生じたエネルギーをキャップゴム層とベースゴム層の界面において、吸収させやすくすることができ、高速走行時における耐摩耗性をさらに向上させることができると考えられる。なお、トレッド部全体におけるキャップゴム層の厚みは、70%以上であるとより好ましい。
キャップゴム層の厚みおよびベースゴム層の厚みは、前記したように、トレッド部の厚みにおけるキャップゴム層の厚みおよびベースゴム層の厚みを合計することにより算出することが出来る。
なお、この場合には、ベースゴム層の30℃tanδをキャップゴム層の30℃tanδよりも小さくすることが好ましい。これにより、トレッド部の内側での発熱を抑制し、蓄熱によりトレッド部が軟化することを抑制しやすくなり、高速走行時における耐摩耗性をさらに向上させることができると考えられる。
そして、複層化されたトレッド部の場合、ベースゴム層の温度30℃、周波数10Hz、初期歪5%、動歪率1%、変形モード:伸長で測定された複素弾性率(30℃E)が、同様に測定されたキャップゴム層の30℃Eよりも小さいことが好ましい。
6.シリカの粒子径
本発明において、シリカの粒子径(平均一次粒子径)としては、ポリマーとの摩擦のし易さなどを考慮すると、17nm以下であることが好ましい。
なお、平均一次粒子径は、タイヤから切り出したゴム組成物から取り出したシリカを電子顕微鏡(TEM)などを用いて直接観察し、得られたそれぞれのシリカの粒子の面積から、等断面積径を算出し、平均値を求めることにより算出することができる。
7.キャップゴム層における樹脂成分の含有
本発明において、キャップゴム層を形成するゴム組成物には、樹脂成分が含有されていることが好ましい。
ゴム組成物に樹脂成分が含有されることにより、樹脂成分の粘着性によって路面に対する接地性が向上し、高速走行時における耐摩耗性を十分に向上させることができると考えられる。
好ましい樹脂成分としては、後述するロジン系樹脂、スチレン系樹脂、クマロン系樹脂、テルペン系樹脂、C5樹脂、C9樹脂、C5C9樹脂、アクリル系樹脂などが好ましく、これらの内でも、α-メチルスチレンなどのスチレン系樹脂がより好ましい。そして、ゴム成分100質量部に対する含有量としては、50質量部以上であることが好ましく、60質量部以上であるとより好ましく、65質量部以上であるとさらに好ましい。
8.キャップゴム層のアセトン抽出分(AE)
本発明において、キャップゴム層のアセトン抽出分(AE)は、28質量%以上であることが好ましく、30質量%以上であるとより好ましい。一方、上限としては特に限定されないが、35質量%以下であることが好ましく、34質量%以下であるとより好ましい。
アセトン抽出分(AE)は、ゴム組成物において、軟化剤などの量を示す指標と考えることができ、ゴム成分の分子鎖の動きやすさを示す指標とも考えることができる。このため、キャップゴム層において上記したように、AE量をある程度多くした場合、タイヤが路面と接する面積を十分に確保して接地性が向上し、高速走行時における耐摩耗性を十分に向上させることができる。
なお、アセトン抽出分(AE)の測定は、JIS K 6229:2015に準拠して行うことができる。具体的には、測定部位から切り出した加硫ゴム試験片を所定の時間、アセトンに浸漬して、試験片の質量減少率(%)を求めることにより、AE(質量%)を得ることができる。
より詳細には、常温、常圧下、各加硫ゴム試験片を72時間アセトンに浸漬して可溶成分を抽出し、抽出前後の各試験片の質量を測定し、下記式により求めることができる。
アセトン抽出量(%)={(抽出前のゴム試験片の質量-抽出後のゴム試験片の質量)
/(抽出前のゴム試験片の質量)}×100
また、前記したアセトン抽出分は、ゴム組成物内の可塑剤の配合比率を変更することにより、適宜変更することが可能である。
9.ランド比
本発明に係るタイヤにおいては、正規リムに組み込み、正規内圧としたタイヤのトレッド部におけるランド比が40%以上であり、ゴム成分100質量部中におけるスチレン量25質量%以下のスチレンブタジエンゴム(SBR)の含有量(質量部)と、トレッド部におけるランド比(%)との比(スチレン量25質量%以下のSBR量(質量部)/ランド比(%))が、1.2以下であることが好ましく、1.0以下であることがより好ましい。
「ランド比」は、トレッド部の表面に配された溝部を全て埋めた仮想の接地面に対する、実際の接地面の比率であり、ランド比が大きいと、路面と接する面積が大きくなるため、接地する際に単位面積当たり生じる力を小さくし易くすることができる。そして、そのランド比に対するスチレン25質量%以下のSBR量の比を一定以下とすることにより、ゴム組成物内に生じたスチレンドメインに過度に力が集中し、摩耗の起点となることを抑制しやすくなるため、高速走行時の耐摩耗性を向上させやすくすることができると考えられる。
なお、上記したスチレン量25質量%以下のSBRの含有量とランド比との比の下限は特に限定されないが0.2以上が好ましく、0.5以上がより好ましい。
前記したランド比は、正規リム、正規内圧、正規荷重条件下における接地形状から求めることができる。
具体的には、タイヤを正規リムに組み付け、正規内圧を加え、25℃で24時間静置した後、タイヤトレッド表面に墨を塗り、正規荷重を負荷して厚紙に押しつけ(キャンバー角は0°)、紙に転写させることにより、接地形状を得ることができるため、タイヤを周方向に72°ずつ回転させて、5か所で転写させる。すなわち、5回、接地形状を得る。このとき、5つの接地形状について、その接地形状の輪郭の溝で途切れた部分を滑らかに繋ぎ、得られる形状を仮想接地面とする。
そして、ランド比は、(厚紙に転写された5つの接地形状(墨部分)の平均面積/5つの接地形状から得られた仮想接地面の面積の平均値)×100(%)から求めることができる。
なお、「正規内圧」とは、前記規格がタイヤ毎に定めている空気圧であり、JATMAであれば最高空気圧、ETRTOであれば“INFLATION PRESSURE”、TRAであれば表“TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”に記載の最大値を指し、「正規リム」の場合と同様に、JATMA、ETRTO、TRAの順に参照し、その規格に従う。そして、規格に定められていないタイヤの場合、前記正規リムを標準リムとして記載されている別のタイヤサイズ(規格に定められているもの)の正規内圧(但し、250KPa以上)を指す。なお、250KPa以上の正規内圧が複数記載されている場合には、その中の最小値を指す。
ここで、「正規荷重」とは、前記したタイヤが基づいている規格を含む規格体系における各規格がタイヤ毎に定めている荷重であり、タイヤに負荷されることが許容される最大の質量を指しており、JATMAであれば最大負荷能力、ETRTOであれば“LOAD CAPACITY”、TRAであれば表“TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”に記載の最大値を指し、前記した「正規リム」や「正規内圧」の場合と同様に、JATMA、ETRTO、TRAの順に参照し、その規格に従う。そして、規格に定められていないタイヤの場合は、以下の計算により、正規荷重Wを求める。
V={(Dt/2)-(Dt/2-Ht)}×π×Wt
=0.000011×V+175
:正規荷重(kg)
V:タイヤの仮想体積(mm
Dt:タイヤ外径Dt(mm)
Ht:タイヤの断面高さ(mm)
Wt:タイヤの断面幅(mm)
そして、ゴム成分100質量部中におけるスチレン量は、例えば、ゴム成分100質量部中に、スチレン量S1質量%のSBR1(X1質量部)とスチレン量S2質量%のSBR2(X2質量部)とが含有されている場合、{(S1×X1)+(S2×X2)}/100の式から算出することができる。
10.扁平率
本発明に係るタイヤにおいては、扁平率が80%以下であり、ゴム成分100質量部に対するシリカの含有量(質量部)と、扁平率(%)との比(シリカ含有量(質量部)/扁平率(%))が、1.7以上であることが好ましい。
扁平率は、タイヤ断面幅に対する断面高さであり、この比率が小さいほどトレッド部で転動時のリムからの力がトレッド部に伝わりやすく、トレッド部での摩耗を進行させやすくなると考えられる。そのため、扁平率に対して、十分な量のシリカ量を含ませることにより、シリカによるネットワークでの補強性を担保させることができ、高速走行時の耐摩耗性を向上させやすくすることができると考えられる。
なお、前記した扁平率(%)は、内圧を250kPaとしたときのタイヤの断面高さHt(mm)と断面幅Wt(mm)とタイヤ外径Dt(mm)とリム径R(mm)を用いて、下式により求めることができる。
扁平率(%)=(Ht/Wt)×100(%)
Ht=(Dt-R)/2
また、上記した、扁平率に対するシリカ含有量の比の上限は特に限定されないが、4.0以下が好ましく、3.0以下がより好ましく、2.0以下がさらに好ましい。
[3]実施の形態
以下、実施の形態に基づいて、本発明を具体的に説明する。
1.ゴム組成物
本発明に係るタイヤにおいて、キャップゴム層を形成するゴム組成物は、以下に記載するゴム成分、充填剤、軟化剤、加硫剤および加硫促進剤などの各種配合材料について、その種類や量を、適宜、調整することにより得ることができる。
(1)配合材料
(a)ゴム成分
ゴム成分としては特に限定されず、イソプレン系ゴム、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、ニトリルゴム(NBR)などのジエン系ゴム、ブチルゴムなどのブチル系ゴム、スチレンブタジエンスチレンブロック共重合体(SBS)、スチレンブタジエンブロック共重合体(SB)などの熱可塑性エラストマーなど、タイヤの製造に一般的に用いられるゴム(ポリマー)を用いることができる。なお、これらのゴム成分は、後述のオイル、樹脂、液状ゴム成分などで予め伸展した伸展ゴムを用いても良い。
本発明においては、これらの中でも、ゴム成分中にSBRと他のゴム成分を含む。他のゴム成分としては特に限定されないが、BRとの併用、BRとイソプレン系ゴムとの併用が好ましい。
(イ)SBR
SBRの重量平均分子量は、例えば、10万超、200万未満である。そして、本発明においては、前記したように、SBR成分中におけるスチレン量を25質量%以下とする。SBRのビニル含量(1,2-結合ブタジエン含量)は、例えば、5質量%超、70質量%未満である。なお、SBRのビニル含量とは、SBR成分内におけるブタジエン部全体に対する1,2-結合ブタジエン含量のことを指す。また、SBRの構造同定(スチレン量、ビニル含量の測定)は、例えば、日本電子(株)製JNM-ECAシリーズの装置を用いて行うことができる。
本発明において、ゴム成分100質量部中のSBRの含有量は、前記したように、60質量部以上、80質量部以下であるが、65質量部以上、75質量部以下であるとより好ましい。なお、伸展SBRの場合には、伸展成分量を除いた純ゴム量が、SBRの含有量となる。
SBRとしては特に限定されず、例えば、乳化重合スチレンブタジエンゴム(E-SBR)、溶液重合スチレンブタジエンゴム(S-SBR)等を使用できる。SBRは、非変性SBR、変性SBRのいずれであってもよい。また、SBR中のブタジエン部を水素添加させた水添SBRを用いてもよく、水添SBRはSBR中のBR部を後発的に水素添加処理して得てもよく、スチレン、エチレン、ブタジエンを共重合させて同様の構造を得てもよい。
変性SBRとしては、シリカ等の充填剤と相互作用する官能基を有するSBRであればよく、例えば、SBRの少なくとも一方の末端を、上記官能基を有する化合物(変性剤)で変性された末端変性SBR(末端に上記官能基を有する末端変性SBR)や、主鎖に上記官能基を有する主鎖変性SBRや、主鎖および末端に上記官能基を有する主鎖末端変性SBR(例えば、主鎖に上記官能基を有し、少なくとも一方の末端を上記変性剤で変性された主鎖末端変性SBR)や、分子中に2個以上のエポキシ基を有する多官能化合物により変性(カップリング)され、水酸基やエポキシ基が導入された末端変性SBR等が挙げられる。
上記官能基としては、例えば、アミノ基、アミド基、シリル基、アルコキシシリル基、イソシアネート基、イミノ基、イミダゾール基、ウレア基、エーテル基、カルボニル基、オキシカルボニル基、メルカプト基、スルフィド基、ジスルフィド基、スルホニル基、スルフィニル基、チオカルボニル基、アンモニウム基、イミド基、ヒドラゾ基、アゾ基、ジアゾ基、カルボキシル基、ニトリル基、ピリジル基、アルコキシ基、水酸基、オキシ基、エポキシ基等が挙げられる。なお、これらの官能基は、置換基を有していてもよい。
また、変性SBRとして、例えば、下記式で表される化合物(変性剤)により変性されたSBRを使用できる。
Figure 2024002386000001
なお、式中、R、RおよびRは、同一または異なって、アルキル基、アルコキシ基、シリルオキシ基、アセタール基、カルボキシル基(-COOH)、メルカプト基(-SH)またはこれらの誘導体を表す。RおよびRは、同一または異なって、水素原子またはアルキル基を表す。RおよびRは結合して窒素原子と共に環構造を形成してもよい。nは整数を表す。
上記式で表される化合物(変性剤)により変性された変性SBRとしては、溶液重合のスチレンブタジエンゴム(S-SBR)の重合末端(活性末端)を上記式で表される化合物により変性されたSBR(特開2010-111753号公報に記載の変性SBR等)を使用できる。
、RおよびRとしてはアルコキシ基が好適である(好ましくは炭素数1~8、より好ましくは炭素数1~4のアルコキシ基)。RおよびRとしてはアルキル基(好ましくは炭素数1~3のアルキル基)が好適である。nは、好ましくは1~5、より好ましくは2~4、更に好ましくは3である。また、RおよびRが結合して窒素原子と共に環構造を形成する場合、4~8員環であることが好ましい。なお、アルコキシ基には、シクロアルコキシ基(シクロヘキシルオキシ基等)、アリールオキシ基(フェノキシ基、ベンジルオキシ基等)も含まれる。
上記変性剤の具体例としては、2-ジメチルアミノエチルトリメトキシシラン、3-ジメチルアミノプロピルトリメトキシシラン、2-ジメチルアミノエチルトリエトキシシラン、3-ジメチルアミノプロピルトリエトキシシラン、2-ジエチルアミノエチルトリメトキシシラン、3-ジエチルアミノプロピルトリメトキシシラン、2-ジエチルアミノエチルトリエトキシシラン、3-ジエチルアミノプロピルトリエトキシシラン等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
また、変性SBRとしては、以下の化合物(変性剤)により変性された変性SBRも使用できる。変性剤としては、例えば、エチレングリコールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールエタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル等の多価アルコールのポリグリシジルエーテル;ジグリシジル化ビスフェノールA等の2個以上のフェノール基を有する芳香族化合物のポリグリシジルエーテル;1,4-ジグリシジルベンゼン、1,3,5-トリグリシジルベンゼン、ポリエポキシ化液状ポリブタジエン等のポリエポキシ化合物;4,4’-ジグリシジル-ジフェニルメチルアミン、4,4’-ジグリシジル-ジベンジルメチルアミン等のエポキシ基含有3級アミン;ジグリシジルアニリン、N,N’-ジグリシジル-4-グリシジルオキシアニリン、ジグリシジルオルソトルイジン、テトラグリシジルメタキシレンジアミン、テトラグリシジルアミノジフェニルメタン、テトラグリシジル-p-フェニレンジアミン、ジグリシジルアミノメチルシクロヘキサン、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン等のジグリシジルアミノ化合物;ビス-(1-メチルプロピル)カルバミン酸クロリド、4-モルホリンカルボニルクロリド、1-ピロリジンカルボニルクロリド、N,N-ジメチルカルバミド酸クロリド、N,N-ジエチルカルバミド酸クロリド等のアミノ基含有酸クロリド;1,3-ビス-(グリシジルオキシプロピル)-テトラメチルジシロキサン、(3-グリシジルオキシプロピル)-ペンタメチルジシロキサン等のエポキシ基含有シラン化合物;(トリメチルシリル)[3-(トリメトキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(トリエトキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(トリプロポキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(トリブトキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(メチルジメトキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(メチルジエトキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(メチルジプロポキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(メチルジブトキシシリル)プロピル]スルフィド等のスルフィド基含有シラン化合物;エチレンイミン、プロピレンイミン等のN-置換アジリジン化合物;メチルトリエトキシシラン、N,N-ビス(トリメチルシリル)-3-アミノプロピルトリメトキシシラン、N,N-ビス(トリメチルシリル)-3-アミノプロピルトリエトキシシラン、N,N-ビス(トリメチルシリル)アミノエチルトリメトキシシラン、N,N-ビス(トリメチルシリル)アミノエチルトリエトキシシラン等のアルコキシシラン;4-N,N-ジメチルアミノベンゾフェノン、4-N,N-ジ-t-ブチルアミノベンゾフェノン、4-N,N-ジフェニルアミノベンゾフェノン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’-ビス(ジフェニルアミノ)ベンゾフェノン、N,N,N’,N’-ビス-(テトラエチルアミノ)ベンゾフェノン等のアミノ基および/または置換アミノ基を有する(チオ)ベンゾフェノン化合物;4-N,N-ジメチルアミノベンズアルデヒド、4-N,N-ジフェニルアミノベンズアルデヒド、4-N,N-ジビニルアミノベンズアルデヒド等のアミノ基および/または置換アミノ基を有するベンズアルデヒド化合物;N-メチル-2-ピロリドン、N-ビニル-2-ピロリドン、N-フェニル-2-ピロリドン、N-t-ブチル-2-ピロリドン、N-メチル-5-メチル-2-ピロリドン等のN-置換ピロリドンN-メチル-2-ピペリドン、N-ビニル-2-ピペリドン、N-フェニル-2-ピペリドン等のN-置換ピペリドン;N-メチル-ε-カプロラクタム、N-フェニル-ε-カプロラクタム、N-メチル-ω-ラウリロラクタム、N-ビニル-ω-ラウリロラクタム、N-メチル-β-プロピオラクタム、N-フェニル-β-プロピオラクタム等のN-置換ラクタム類;の他、N,N-ビス-(2,3-エポキシプロポキシ)-アニリン、4,4-メチレン-ビス-(N,N-グリシジルアニリン)、トリス-(2,3-エポキシプロピル)-1,3,5-トリアジン-2,4,6-トリオン類、N,N-ジエチルアセトアミド、N-メチルマレイミド、N,N-ジエチル尿素、1,3-ジメチルエチレン尿素、1,3-ジビニルエチレン尿素、1,3-ジエチル-2-イミダゾリジノン、1-メチル-3-エチル-2-イミダゾリジノン、4-N,N-ジメチルアミノアセトフェン、4-N,N-ジエチルアミノアセトフェノン、1,3-ビス(ジフェニルアミノ)-2-プロパノン、1,7-ビス(メチルエチルアミノ)-4-ヘプタノン等を挙げることができる。なお、上記化合物(変性剤)による変性は公知の方法で実施可能である。
SBRとしては、例えば、住友化学(株)、JSR(株)、旭化成(株)、日本ゼオン(株)等により製造・販売されているSBRを使用できる。なお、SBRは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(ロ)BR
本発明において、ゴム組成物には、BRを含んでもよい。この場合、ゴム成分100質量部中のBRの含有量は、20質量部以上、40質量部以下であることが好ましく、25質量部以上、35質量部以下であるとより好ましい。
BRの重量平均分子量は、例えば、10万超、200万未満である。BRのビニル含量は、例えば1質量%超、30質量%未満である。BRのシス量は、例えば1質量%超、98質量%未満である。BRのトランス量は、例えば1質量%超、60質量%未満である。
BRとしては特に限定されず、高シス含量(シス含量が90%以上)のBR、低シス含量のBR、シンジオタクチックポリブタジエン結晶を含有するBR等を使用できる。BRは、非変性BR、変性BRのいずれでもよく、変性BRとしては、前述の官能基が導入された変性BRが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なお、シス含量は、赤外吸収スペクトル分析法によって測定できる。
BRとしては、例えば、宇部興産(株)、JSR(株)、旭化成(株)、日本ゼオン(株)等の製品を使用できる。
(ハ)イソプレン系ゴム
本発明において、ゴム組成物には、必要に応じて、イソプレン系ゴムを含んでもよい。この場合、ゴム成分100質量部中のイソプレン系ゴムの含有量は、20質量部以上、40質量部以下であることが好ましく、25質量部以上、35質量部以下であるとより好ましい。
イソプレン系ゴムとしては、天然ゴム(NR)、イソプレンゴム(IR)、改質NR、変性NR、変性IR等が挙げられる。
NRとしては、例えば、SIR20、RSS♯3、TSR20、SVR-L等、タイヤ工業において一般的なものを使用できる。IRとしては、特に限定されず、例えば、IR2200等、タイヤ工業において一般的なものを使用できる。改質NRとしては、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(UPNR)等、変性NRとしては、エポキシ化天然ゴム(ENR)、水素添加天然ゴム(HNR)、グラフト化天然ゴム等、変性IRとしては、エポキシ化イソプレンゴム、水素添加イソプレンゴム、グラフト化イソプレンゴム等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
(ニ)その他のゴム成分
また、その他のゴム成分として、ニトリルゴム(NBR)などのタイヤの製造に一般的に用いられるゴム(ポリマー)を含んでもよい。
(b)ゴム成分以外の配合材料
(イ)充填剤
本発明において、ゴム組成物には、前記したように、充填剤として、シリカを含有しているが、その他の充填剤を含有してもよい。シリカ以外の具体的な充填剤としては、例えば、カーボンブラック、グラファイト、炭酸カルシウム、タルク、アルミナ、クレー、水酸化アルミニウム、マイカなどを挙げることができる。
(i―1)シリカ
本発明において、ゴム組成物に含有されるシリカのBET比表面積は、良好な耐久性能が得られる観点から140m/g超が好ましく、160m/g超がより好ましい。一方、良好な高速走行時の転がり抵抗性を得られる観点からは250m/g未満が好ましく、220m/g未満であることがより好ましい。なお、上記したBET比表面積は、ASTM D3037-93に準じてBET法で測定されるNSAの値である。
本発明において、シリカとしては、前記したように、粒子径が17nm以下のシリカを使用することが好ましく、小粒子径のシリカを使用することにより、ポリマー(スチレンドメイン)との接触頻度を上げて、ポリマーの運動性を高めさせてエネルギーロスを生じさせることができるため、高速走行時における耐摩耗性を向上させることができる。なお、下限は特に限定されないが、混合時の分散性の観点から10nm以上であると好ましい。
シリカの含有量は、前記したように、ゴム成分100質量部に対して、100質量部以下と、ゴム成分を上回らない量とするが、95質量部以下であることが好ましく、90質量部以下であるとより好ましい。下限は特に限定されないが、シリカによる補強性の発揮を考慮すると、70質量部以上であることが好ましく、80質量部以上であるとより好ましい。
シリカとしては、例えば、乾式法シリカ(無水シリカ)、湿式法シリカ(含水シリカ)などが挙げられる。なかでも、シラノール基が多いという理由から、湿式法シリカが好ましい。また、含水ガラスなどを原料としたシリカや、もみ殻などのバイオマス材用を原料としたシリカなどを用いてもよい。
シリカとしては、例えば、エボニックインダストリーズ社、ローディア社、東ソー・シリカ(株)、ソルベイジャパン(株)、(株)トクヤマ等の製品を使用できる。
(i-2)シランカップリング剤
本発明のキャップゴム層を形成するゴム組成物には、シリカと共にシランカップリング剤を含むことが好ましい。シランカップリング剤としては、特に限定されず、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(4-トリエトキシシリルブチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)トリスルフィド、ビス(4-トリメトキシシリルブチル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)ジスルフィド、ビス(4-トリエトキシシリルブチル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、ビス(2-トリメトキシシリルエチル)ジスルフィド、ビス(4-トリメトキシシリルブチル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、などのスルフィド系、3-メルカプトプロピルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、Momentive社製のNXT、NXT-Zなどのメルカプト系、ビニルトリエトキシシラン、ビニルトリメトキシシランなどのビニル系、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシランなどのアミノ系、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシランなどのグリシドキシ系、3-ニトロプロピルトリメトキシシラン、3-ニトロプロピルトリエトキシシランなどのニトロ系、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシランなどのクロロ系などがあげられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
シランカップリング剤としては、例えば、エボニックインダストリーズ社、Momentive社、信越シリコーン(株)、東京化成工業(株)、アヅマックス(株)、東レ・ダウコーニング(株)等の製品を使用できる。
シランカップリング剤の含有量は、シリカ100質量部に対して、例えば、3質量部超、25質量部未満である。
(ii)カーボンブラック
本発明において、ゴム組成物には、補強性の観点からカーボンブラックを含むことが好ましい。
ゴム成分100質量部に対するカーボンブラックの含有量は、10質量部以上であることが好ましく、20質量部以上であるとより好ましい。一方、60質量部以下であることが好ましく、50質量部以下であるとより好ましい。
カーボンブラックとしては特に限定されず、SAF、ISAF、HAF、MAF、FEF、SRF、GPF、APF、FF、CF、SCFおよびECFのようなファーネスブラック(ファーネスカーボンブラック);アセチレンブラック(アセチレンカーボンブラック);FTおよびMTのようなサーマルブラック(サーマルカーボンブラック);EPC、MPCおよびCCのようなチャンネルブラック(チャンネルカーボンブラック)などを挙げることができる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。
カーボンブラックのCTAB比表面積(Cetyl Tri-methyl Ammonium Bromide)は、130m/g以上が好ましく、160m/g以上であるとより好ましく、170m/g以上であるとさらに好ましい。一方、250m/g以下が好ましく、200m/g以下であるであるとより好ましい。なお、CTAB比表面積は、ASTM D3765-92に準拠して測定される値である。
具体的なカーボンブラックとしては特に限定されず、N134、N110、N220、N234、N219、N339、N330、N326、N351、N550、N762等が挙げられる。市販品としては、例えば、旭カーボン(株)、キャボットジャパン(株)、東海カーボン(株)、三菱化学(株)、ライオン(株)、新日化カーボン(株)、コロンビアカーボン社等の製品を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
(iii)その他の充填剤
ゴム組成物には、必要に応じて、上記したシリカやカーボンブラックの他に、タイヤ工業において一般的に用いられている、例えば、グラファイト、炭酸カルシウム、タルク、アルミナ、クレー、水酸化アルミニウム、マイカ等の充填剤をさらに含有してもよい。これらの含有量は、ゴム成分100質量部に対して、例えば、0.1質量部超、200質量部未満である。
(ロ)可塑剤成分
ゴム組成物は、ゴムを軟化させる成分として、オイル(伸展油を含む)、液状ゴム、および樹脂を可塑剤成分として含んでもよい。なお、可塑剤成分は、加硫ゴム中からアセトンにより抽出可能な成分である。可塑剤成分の合計含有量は、ゴム成分100質量部に対して、85質量部以上であることが好ましく、100質量部以上であるとより好ましい。一方、120質量部以下であることが好ましく、110質量部以下であるとより好ましい。なお、ゴム成分として伸展ゴムが使用されている場合には、伸展成分量はこれらの可塑剤成分量に含まれる。
(i)オイル
オイルとしては、例えば、鉱物油(一般にプロセスオイルと言われる)、植物油脂、またはその混合物が挙げられる。鉱物油(プロセスオイル)としては、例えば、パラフィン系プロセスオイル、アロマ系プロセスオイル、ナフテン系プロセスオイルなどを用いることができる。植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生油、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、べに花油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、桐油等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。また、ライフサイクルアセスメントの観点から、ゴム混合用のミキサーや自動車用エンジンなどの潤滑油として用いられた後の廃オイルや、廃食用油などを適宜用いてもよい。
また、環境対策で多環式芳香族(polycyclic aromatic compound:PCA)化合物の含量の低いプロセスオイルを使用することもできる。前記低PCA含量プロセスオイルとしては、軽度抽出溶媒和物(MES)、処理留出物芳香族系抽出物(TDAE)、重ナフテン系オイル等が挙げられる。
具体的なプロセスオイル(鉱物油)としては、例えば、出光興産(株)、三共油化工業(株)、ENEOS(株)、オリソイ社、H&R社、豊国製油(株)、昭和シェル石油(株)、富士興産(株)等の製品を使用できる。
(ii)液状ゴム
可塑剤として挙げた液状ゴムとは、常温(25℃)で液体状態の重合体であり、加硫後のタイヤからアセトン抽出により抽出可能なゴム成分である。液状ゴムとしては、ファルネセン系ポリマー、液状ジエン系重合体及びそれらの水素添加物等が挙げられる。
ファルネセン系ポリマーとは、ファルネセンを重合することで得られる重合体であり、ファルネセンに基づく構成単位を有する。ファルネセンには、α-ファルネセン((3E,7E)-3,7,11-トリメチル-1,3,6,10-ドデカテトラエン)やβ-ファルネセン(7,11-ジメチル-3-メチレン-1,6,10-ドデカトリエン)などの異性体が存在する。
ファルネセン系ポリマーは、ファルネセンの単独重合体(ファルネセン単独重合体)でも、ファルネセンとビニルモノマーとの共重合体(ファルネセン-ビニルモノマー共重合体)でもよい。
液状ジエン系重合体としては、液状スチレンブタジエン共重合体(液状SBR)、液状ブタジエン重合体(液状BR)、液状イソプレン重合体(液状IR)、液状スチレンイソプレン共重合体(液状SIR)などが挙げられる。
液状ジエン系重合体は、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の重量平均分子量(Mw)が、例えば、1.0×10超、2.0×10未満である。なお、本明細書において、液状ジエン系重合体のMwは、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算値である。
液状ゴムの含有量(液状ファルネセン系ポリマー、液状ジエン系重合体等の合計含有量)は、ゴム成分100質量部に対して、例えば、1質量部超、100質量部未満である。
液状ゴムとしては、例えば、クラレ(株)、クレイバレー社等の製品を使用できる。
(iii)樹脂成分
樹脂成分は、粘着性付与成分としても機能し、常温で固体であっても、液体であってもよく、具体的な樹脂成分としては、例えば、ロジン系樹脂、スチレン系樹脂、クマロン系樹脂、テルペン系樹脂、C5樹脂、C9樹脂、C5C9樹脂、アクリル系樹脂などの樹脂が挙げられ、2種以上を併用しても良い。樹脂成分の含有量は、ゴム成分100質量部に対して、50質量部以上であることが好ましく、60質量部以上であるとより好ましく、65質量部以上であるとさらに好ましい。なお、これらの樹脂成分は、必要に応じて、シリカ等と反応できる変性基を付与してもよい。
ロジン系樹脂は、松脂を加工することにより得られるロジン酸を主成分とする樹脂である。このロジン系樹脂(ロジン類)は、変性の有無によって分類可能であり、無変性ロジン(未変性ロジン)、ロジン変性体(ロジン誘導体)に分類できる。無変性ロジンとしては、トールロジン(別名トール油ロジン)、ガムロジン、ウッドロジン、不均斉化ロジン、重合ロジン、水素化ロジン、その他の化学的に修飾されたロジンなどが挙げられる。ロジン変性体は無変性ロジンの変性体であって、ロジンエステル類、不飽和カルボン酸変性ロジン類、不飽和カルボン酸変性ロジンエステル類、ロジンのアミド化合物、ロジンのアミン塩などが挙げられる。
スチレン系樹脂は、スチレン系単量体を構成モノマーとして用いたポリマーであり、スチレン系単量体を主成分(50質量%以上)として重合させたポリマー等が挙げられる。具体的には、スチレン系単量体(スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、p-メトキシスチレン、p-tert-ブチルスチレン、p-フェニルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン等)をそれぞれ単独で重合した単独重合体、2種以上のスチレン系単量体を共重合した共重合体の他、スチレン系単量体およびこれと共重合し得る他の単量体のコポリマーも挙げられる。
前記他の単量体としては、アクリロニトリル、メタクリロニトリルなどのアクリロニトリル類、アクリル類、メタクリル酸などの不飽和カルボン酸類、アクリル酸メチル、メタクリル酸メチルなどの不飽和カルボン酸エステル類、クロロプレン、ブタジエンイソプレンなどのジエン類、1-ブテン、1-ペンテンのようなオレフィン類;無水マレイン酸等のα,β-不飽和カルボン酸またはその酸無水物等が例示できる。
クマロン系樹脂の中でも、クマロンインデン樹脂が好ましい。クマロンインデン樹脂は、樹脂の骨格(主鎖)を構成するモノマー成分として、クマロンおよびインデンを含む樹脂である。クマロン、インデン以外に骨格に含まれるモノマー成分としては、スチレン、α-メチルスチレン、メチルインデン、ビニルトルエンなどが挙げられる。
クマロンインデン樹脂の含有量は、ゴム成分100質量部に対して、例えば、1.0質量部超、50.0質量部未満である。
クマロンインデン樹脂の水酸基価(OH価)は、例えば、15mgKOH/g超、150mgKOH/g未満である。なお、OH価とは、樹脂1gをアセチル化するとき、水酸基と結合した酢酸を中和するのに要する水酸化カリウムの量をミリグラム数で表したものであり、電位差滴定法(JIS K 0070:1992)により測定した値である。
クマロンインデン樹脂の軟化点は、例えば、30℃超、160℃未満である。なお、軟化点は、JIS K 6220-1:2001に規定される軟化点を環球式軟化点測定装置で測定し、球が降下した温度である。
テルペン系樹脂としては、ポリテルペン、テルペンフェノール、芳香族変性テルペン樹脂などが挙げられる。ポリテルペンは、テルペン化合物を重合して得られる樹脂およびそれらの水素添加物である。テルペン化合物は、(Cの組成で表される炭化水素およびその含酸素誘導体で、モノテルペン(C1016)、セスキテルペン(C1524)、ジテルペン(C2032)などに分類されるテルペンを基本骨格とする化合物であり、例えば、α-ピネン、β-ピネン、ジペンテン、リモネン、ミルセン、アロオシメン、オシメン、α-フェランドレン、α-テルピネン、γ-テルピネン、テルピノレン、1,8-シネオール、1,4-シネオール、α-テルピネオール、β-テルピネオール、γ-テルピネオールなどが挙げられる。
ポリテルペンとしては、上述したテルペン化合物を原料とするα-ピネン樹脂、β-ピネン樹脂、リモネン樹脂、ジペンテン樹脂、β-ピネン/リモネン樹脂などのテルペン樹脂の他、該テルペン樹脂に水素添加処理した水素添加テルペン樹脂も挙げられる。テルペンフェノールとしては、上記テルペン化合物とフェノール系化合物とを共重合した樹脂、および該樹脂に水素添加処理した樹脂が挙げられ、具体的には、上記テルペン化合物、フェノール系化合物およびホルマリンを縮合させた樹脂が挙げられる。なお、フェノール系化合物としては、例えば、フェノール、ビスフェノールA、クレゾール、キシレノールなどが挙げられる。芳香族変性テルペン樹脂としては、テルペン樹脂を芳香族化合物で変性して得られる樹脂、および該樹脂に水素添加処理した樹脂が挙げられる。なお、芳香族化合物としては、芳香環を有する化合物であれば特に限定されないが、例えば、フェノール、アルキルフェノール、アルコキシフェノール、不飽和炭化水素基含有フェノールなどのフェノール化合物;ナフトール、アルキルナフトール、アルコキシナフトール、不飽和炭化水素基含有ナフトールなどのナフトール化合物;スチレン、アルキルスチレン、アルコキシスチレン、不飽和炭化水素基含有スチレンなどのスチレン誘導体;クマロン、インデンなどが挙げられる。
「C5樹脂」とは、C5留分を重合することにより得られる樹脂をいう。C5留分としては、例えば、シクロペンタジエン、ペンテン、ペンタジエン、イソプレン等の炭素数4~5個相当の石油留分が挙げられる。C5系石油樹脂しては、ジシクロペンタジエン樹脂(DCPD樹脂)が好適に用いられる。
「C9樹脂」とは、C9留分を重合することにより得られる樹脂をいい、それらを水素添加したものや変性したものであってもよい。C9留分としては、例えば、ビニルトルエン、アルキルスチレン、インデン、メチルインデン等の炭素数8~10個相当の石油留分が挙げられる。具体例としては、例えば、クマロンインデン樹脂、クマロン樹脂、インデン樹脂、および芳香族ビニル系樹脂が好適に用いられる。芳香族ビニル系樹脂としては、経済的で、加工しやすく、発熱性に優れているという理由から、α-メチルスチレンもしくはスチレンの単独重合体またはα-メチルスチレンとスチレンとの共重合体が好ましく、α-メチルスチレンとスチレンとの共重合体がより好ましい。芳香族ビニル系樹脂としては、例えば、クレイトン社、イーストマンケミカル社等より市販されているものを使用することができる。
「C5C9樹脂」とは、前記C5留分と前記C9留分を共重合することにより得られる樹脂をいい、それらを水素添加したものや変性したものであってもよい。C5留分およびC9留分としては、前記の石油留分が挙げられる。C5C9樹脂としては、例えば、東ソー(株)、LUHUA社等より市販されているものを使用することができる。
アクリル系樹脂としては特に限定されないが、例えば、無溶剤型アクリル系樹脂を使用できる。
無溶剤型アクリル系樹脂は、副原料となる重合開始剤、連鎖移動剤、有機溶媒などを極力使用せずに、高温連続重合法(高温連続塊重合法)(米国特許第4,414,370号明細書、特開昭59-6207号公報、特公平5-58005号公報、特開平1-313522号公報、米国特許第5,010,166号明細書、東亜合成研究年報TREND2000第3号p42-45等に記載の方法)により合成された(メタ)アクリル系樹脂(重合体)が挙げられる。なお、本発明において、(メタ)アクリルは、メタクリルおよびアクリルを意味する。
上記アクリル系樹脂を構成するモノマー成分としては、例えば、(メタ)アクリル酸や、(メタ)アクリル酸エステル(アルキルエステル、アリールエステル、アラルキルエステルなど)、(メタ)アクリルアミド、および(メタ)アクリルアミド誘導体などの(メタ)アクリル酸誘導体が挙げられる。
また、上記アクリル系樹脂を構成するモノマー成分として、(メタ)アクリル酸や(メタ)アクリル酸誘導体と共に、スチレン、α-メチルスチレン、ビニルトルエン、ビニルナフタレン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレンなどの芳香族ビニルを使用してもよい。
上記アクリル系樹脂は、(メタ)アクリル成分のみで構成される樹脂であっても、(メタ)アクリル成分以外の成分をも構成要素とする樹脂であっても良い。また、上記アクリル系樹脂は、水酸基、カルボキシル基、シラノール基等を有していても良い。
樹脂成分としては、例えば、丸善石油化学(株)、住友ベークライト(株)、ヤスハラケミカル(株)、東ソー(株)、Rutgers Chemicals社、BASF社、アリゾナケミカル社、日塗化学(株)、(株)日本触媒、ENEOS(株)、荒川化学工業(株)、田岡化学工業(株)等の製品を使用できる。
(ハ)ステアリン酸
本発明において、ゴム組成物には、ステアリン酸を含むことが好ましい。ステアリン酸の含有量は、ゴム成分100質量部に対して、例えば、0.5質量部超、10.0質量部未満である。ステアリン酸としては、従来公知のものを使用でき、例えば、日油(株)、NOF社、花王(株)、富士フイルム和光純薬(株)、千葉脂肪酸(株)等の製品を使用できる。
(ニ)老化防止剤
本発明において、ゴム組成物には、老化防止剤を含むことが好ましい。老化防止剤の含有量は、ゴム成分100質量部に対して、例えば、0.5質量部超、10質量部未満であり、1質量部以上がより好ましい。
老化防止剤としては、例えば、フェニル-α-ナフチルアミン等のナフチルアミン系老化防止剤;オクチル化ジフェニルアミン、4,4′-ビス(α,α′-ジメチルベンジル)ジフェニルアミン等のジフェニルアミン系老化防止剤;N-イソプロピル-N′-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N′-フェニル-p-フェニレンジアミン、N,N′-ジ-2-ナフチル-p-フェニレンジアミン等のp-フェニレンジアミン系老化防止剤;2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物等のキノリン系老化防止剤;2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノール等のモノフェノール系老化防止剤;テトラキス-[メチレン-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)プロピオネート]メタン等のビス、トリス、ポリフェノール系老化防止剤などが挙げられる。これらは単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
なお、老化防止剤としては、例えば、精工化学(株)、住友化学(株)、大内新興化学工業(株)、フレクシス社等の製品を使用できる。
(ホ)ワックス
本発明において、ゴム組成物には、ワックスを含むことが好ましい。ワックスの含有量は、ゴム成分100質量部に対して、例えば、0.5~20質量部、好ましくは1.0~15質量部、より好ましくは1.5~10質量部である。
ワックスとしては、特に限定されず、パラフィンワックス、マイクロクリスタリンワックス等の石油系ワックス;植物系ワックス、動物系ワックス等の天然系ワックス;エチレン、プロピレン等の重合物等の合成ワックスなどが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
なお、ワックスとしては、例えば、大内新興化学工業(株)、日本精蝋(株)、精工化学(株)等の製品を使用できる。
(ヘ)酸化亜鉛
ゴム組成物は、酸化亜鉛を含んでもよい。酸化亜鉛の含有量は、ゴム成分100質量部に対し、例えば、0.5質量部超、10質量部未満である。酸化亜鉛としては、従来公知のものを使用でき、例えば、三井金属鉱業(株)、東邦亜鉛(株)、ハクスイテック(株)、正同化学工業(株)、堺化学工業(株)等の製品を使用できる。
(ト)架橋剤および加硫促進剤
ゴム組成物は、硫黄等の架橋剤を含むことが好ましい。架橋剤の含有量は、ゴム成分100質量部に対して、例えば、0.1質量部超、10.0質量部未満である。
硫黄としては、ゴム工業において一般的に用いられる粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄、可溶性硫黄などが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
なお、硫黄としては、例えば、鶴見化学工業(株)、軽井沢硫黄(株)、四国化成工業(株)、フレクシス社、日本乾溜工業(株)、細井化学工業(株)等の製品を使用できる。
硫黄以外の架橋剤としては、例えば、田岡化学工業(株)製のタッキロールV200、ランクセス社製のKA9188(1,6-ビス(N,N’-ジベンジルチオカルバモイルジチオ)ヘキサン)等の硫黄原子を含む加硫剤や、ジクミルパーオキサイド等の有機過酸化物等が挙げられる。
ゴム組成物は、加硫促進剤を含むことが好ましい。加硫促進剤の含有量は、ゴム成分100質量部に対して、例えば、0.3質量部超、10.0質量部未満である。
加硫促進剤としては、2-メルカプトベンゾチアゾール、ジ-2-ベンゾチアゾリルジスルフィド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド等のチアゾール系加硫促進剤;テトラメチルチウラムジスルフィド(TMTD)、テトラベンジルチウラムジスルフィド(TBzTD)、テトラキス(2-エチルヘキシル)チウラムジスルフィド(TOT-N)等のチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾリルスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド等のスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジン等のグアニジン系加硫促進剤を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。
(チ)その他
ゴム組成物には、前記成分の他、タイヤ工業において一般的に用いられている添加剤、例えば、脂肪酸金属塩、カルボン酸金属塩、有機過酸化物、リバージョン(加硫戻り)防止剤等を、必要に応じて、さらに配合してもよい。これらの添加剤の含有量は、ゴム成分100質量部に対して、例えば、0.1質量部超、200質量部未満である。
(2)ゴム組成物の作製
キャップゴム層を形成するゴム組成物は、上記した各種配合材料の適宜、調整して、一般的な方法、例えば、ゴム成分とカーボンブラック等のフィラーとを混練するベース練り工程と、前記ベース練り工程で得られた混練物と架橋剤とを混練する仕上げ練り工程とを含む製造方法により作製される。
混練は、例えば、バンバリーミキサー、ニーダー、オープンロールなどの公知の(密閉式)混練機を用いて行うことができる。
ベース練り工程の混練温度は、例えば、50℃超、200℃未満であり、混練時間は、例えば、30秒超、30分未満である。ベース練り工程では、上記成分以外にも、従来ゴム工業で使用される配合剤、例えば、オイル等の軟化剤、酸化亜鉛、老化防止剤、ワックス、加硫促進剤などを必要に応じて適宜添加、混練してもよい。
仕上げ練り工程では、前記ベース練り工程で得られた混練物と架橋剤とが混練される。仕上げ練り工程の混練温度は、例えば、室温超、80℃未満であり、混練時間は、例えば、1分超、15分未満である。仕上げ練り工程では、上記成分以外にも、加硫促進剤、酸化亜鉛等を必要に応じて適宜添加、混練してもよい。
2.タイヤの製造
本発明に係るタイヤは、上記で得られたゴム組成物をキャップゴム層として、所定の形状のトレッドゴムに成形した後、他のタイヤ部材と共に、タイヤ成型機上にて通常の方法で成形することにより、未加硫タイヤとして作製することができる。
なお、トレッド部をベースゴム層との複層構造とする場合には、基本的には、上記したゴム成分および配合材料を用いて、その配合量を適宜変更して、同様に混練することにより、ベースゴム層を形成するゴム組成物を得ることができる。そして、キャップゴム層と共に押し出して所定の形状のトレッドゴムに成形した後、他のタイヤ部材と共に、タイヤ成型機上にて通常の方法で成形することにより、未加硫タイヤとして作製することができる。
具体的には、成形ドラム上に、タイヤの気密保持性を確保するための部材としてのインナーライナー、タイヤの受ける荷重、衝撃、充填空気圧に耐える部材としてのカーカス、カーカスを強く締付けトレッドの剛性を高める部材としてのベルト部材などを巻回し、両側縁部にカーカスの両端を固定すると共に、タイヤをリムに固定させるための部材としてのビード部を配置して、トロイド状に成形した後、外周の中央部にトレッド、径方向外側にサイドウォールを貼り合せてサイド部を構成させることにより、未加硫タイヤを作製する。
その後、作製された未加硫タイヤを加硫機中で加熱加圧することによりタイヤを得る。加硫工程は、公知の加硫手段を適用することで実施できる。加硫温度としては、例えば、120℃超、200℃未満であり、加硫時間は、例えば、5分超、15分未満である。
得られたタイヤは、先に述べたように、ゴム組成物中におけるシリカの補強効果、適切なスチレン量による変形に対する緩和効果、適切な30℃tanδによるトレッド部表面における滑りの抑制効果、および、適切な厚み制御による蓄熱の抑制効果などのため、高速走行時における耐摩耗性を十分に向上させることができる。
なお、本発明に係るタイヤは、特にカテゴリーは限定されず、乗用車用タイヤ、トラックやバス等の重荷重車用タイヤ、二輪自動車用タイヤ、ランフラットタイヤ、非空気入りタイヤ等として使用することができるが、乗用車用タイヤとすることが好ましい。また、空気入りタイヤとすることが好ましい。
以下では、実施をする際に好ましいと考えられる例(実施例)を示すが、本発明の範囲は当該実施例に限られない。実施例においては、以下に示す各種薬品を用いて各表に従って配合を変化させて得られる組成物から作製される空気入りタイヤ(タイヤサイズ205/55R16、扁平率:55%、ランド比:65%)を検討して下記評価方法に基づいて算出した結果を表2、表3に示す。
1.キャップゴム層を形成するゴム組成物
(1)配合材料
(a)ゴム成分
(イ)SBR-1:次段落に示す方法により得られた変性S-SBR
(スチレン量:25質量%、ビニル含量:25質量%)
(ロ)SBR-2:JSR(株)製のHPR850(変性S-SBR)
(スチレン量:27.5質量%、ビニル含量:59.0質量%)
(ハ)SBR-3:JSR(株)制のHPR840(S-SBR)
(スチレン量:10質量%、ビニル含量:42質量%)
(ニ)BR:宇部興産(株)のウベポールBR150B(ハイシスBR)
(シス含量97質量%、トランス含量2質量%、ビニル含量1質量%)
(SBR-1の製造)
上記SBR-1は、以下の手順に従って作製する。まず、内容積10Lで、底部に入口、頭部に出口を有し、撹拌機およびジャケットを付けたオートクレーブを反応器として2基直列に連結し、ブタジエン、スチレン、シクロヘキサンを各々所定の比率で混合する。この混合溶液を、活性アルミナを充填した脱水カラムを経由し、不純物を除去するためにn-ブチルリチウムをスタティックミキサー中で混合した後、1基目の反応器底部より連続的に供給し、さらに極性物質として2,2-ビス(2-オキソラニル)プロパンを、重合開始剤としてn-ブチルリチウムを所定の速度でそれぞれ1基目の反応器底部より連続的に供給し、反応器内温を95℃に保持する。反応器頭部より重合体溶液を連続的に抜き出し、2基目の反応器へ供給する。2基目の反応器の温度を95℃に保ち、変性剤としてテトラグリシジル-1,3-ビスアミノメチルシクロヘキサン(単量体)と、オリゴマー成分との混合物を所定の速度でシクロヘキサン1000倍希釈液として連続的に加えて変性反応を行なう。この重合体溶液を反応器から連続的に抜き出し、スタティックミキサーで連続的に酸化防止剤を添加した後、溶媒を除去して、目的とする変性ジエン系重合体(SBR-1)を得る。
当該SBR-1のビニル含量(単位:質量%)は、赤外分光分析法により、ビニル基の吸収ピークである910cm-1付近の吸収強度より求める。また、スチレン量(単位:質量%)は、JIS K6383(1995)に従って、屈折率より求める。
(b)ゴム成分以外の配合材料
(イ)カーボンブラック:三菱化学社製のダイヤブラックN220
(N2SA:115m2/g)
(ロ)シリカ:エボニックインダストリーズ社製のウルトラシルVN3
(N2SA:175m2/g、平均一次粒子径:17nm)
(ハ)シランカップリング剤:エボニックインダストリーズ社製のSi266
(ビス(3-トリエトキシシリルプロピル)ジスルフィド)
(ニ)樹脂:クレイトン社製のSYLVATRAXX4401
(α-メチルスチレン系樹脂)
(ホ)オイル:出光興産(株)製のダイアナプロセスNH-70S
(アロマ系プロセスオイル)
(ヘ)ステアリン酸:日油(株)製のビーズステアリン酸「椿」
(ト)酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
(チ)老化防止剤-1:住友化学(株)製のアンチゲン6C
(N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン)
(リ)老化防止剤-2:住友化学(株)製のアンチゲンRD
(2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物)
(ヌ)ワックス:日本精蝋(株)製のオゾエース0355
(ル)硫黄:鶴見化学工業(株)製の粉末硫黄(5%オイル含有)
(ヲ)加硫促進剤-1:大内新興化学工業(株)製のノクセラーCZ
(N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド(CBS))
(ワ)加硫促進剤-2:住友化学工業(株)製のソクシールD(DPG)
(N,N’-ジフェニルグアニジン)
(2)キャップゴム層を形成するゴム組成物
表2、表3に示す各配合内容に従い、バンバリーミキサーを用いて、硫黄および加硫促進剤以外の材料を150℃の条件下で5分間混練りして、混練物を得る。なお、各配合量は、質量部である。
次に、当該混練物に、硫黄および加硫促進剤を添加し、オープンロールを用いて、80℃の条件下で5分間練り込み、キャップゴム層を形成するゴム組成物を得る。
2.ベースゴム層を形成するゴム組成物
並行して、ベースゴム層を形成するゴム組成物を表1に示す配合に基づいて、キャップゴム層を形成するゴム組成物の製造と同様にして、ベースゴム層を形成するゴム組成物を得る。
Figure 2024002386000002
3.空気入りタイヤの製造
各ゴム組成物を用いて、(キャップゴム層の厚み/ベースゴム層の厚み)比率が80/20となるように、所定の形状で押出成形して、表2、表3に示す厚みG(mm)のトレッド部を形成する。
その後、他のタイヤ部材と共に貼り合わせて未加硫タイヤを形成し、170℃の条件下で10分間プレス加硫して、表2および表3に示す実施例1~実施例7および比較例1~比較例11の各空気入りタイヤ(試験用タイヤ)を製造する。
4.パラメータの算出
その後、各試験用タイヤについて、以下のパラメータを求める。
(1)損失正接(tanδ)
各試験用タイヤのトレッド部のキャップゴム層から、タイヤ周方向が長辺となるように、長さ20mm×幅4mm×厚さ2mmで切り出して、粘弾性測定用ゴム試験片を作製し、各ゴム試験片について、GABO社製のイプレクサーシリーズを用いて、周波数10Hz、初期歪5%、動歪1%、変形モード:引張の条件下、測定温度:0℃、30℃で、tanδを測定し、それぞれ、0℃tanδ、30℃tanδを求める。なお、ベースゴム層の30℃tanδは0.07とする。
そして、キャップゴム層の30℃tanδとトレッド部の厚みG(mm)とに基づいて、(30℃tanδ/G)を算出する。
(2)Tg
キャップゴム層から同様に切り出して作製した粘弾性測定用ゴム試験片について、GABO社製「イプレクサー(登録商標)」を用いて、周波数10Hz、初期歪2%、振幅±1%及び昇温速度2℃/minの条件下、-60℃から40℃まで温度を変化させてtanδを測定し、前記の方法によりTgを求める。
(3)複素弾性率(E
キャップゴム層から同様に切り出して作製した粘弾性測定用ゴム試験片について、GABO社製のイプレクサーシリーズを用いて、周波数10Hz、初期歪5%、動歪1%、変形モード:伸長の条件下、測定温度:0℃、30℃で、E(MPa)を測定し、それぞれ、0℃E、30℃Eを求める。なお、ベースゴム層の30℃Eは、4.0MPaとする。
そして、30℃E(MPa)とトレッド部の厚みG(mm)とに基づいて、(30℃E/G)を算出する。
(4)キャップゴム層のアセトン抽出分(AE)
各試験用タイヤのトレッド部のキャップゴム層から切り出した加硫ゴム試験片を用い、JIS K 6229:2015に準拠してAE(質量%)を求める。
(5)(SBR含有量/ランド比)、(シリカ含有量/扁平率)
併せて、各試験用タイヤの仕様、および、配合内容に基づいて、ゴム成分100質量部中におけるスチレン量25質量%以下のスチレンブタジエンゴム(SBR)の含有量(質量部)とトレッド部におけるランド比(%)との比(SBR含有量/ランド比)、ゴム成分100質量部に対するシリカの含有量(質量部)と扁平率(%)との比(シリカ含有量/扁平率)を算出する。
5.性能評価試験(高速走行時における耐摩耗性能の評価)
各試験用タイヤを車輌(国産のFF車、排気量2000cc)の全輪に装着させて、内圧が250kPa(乗用車の正規内圧)となるように空気を充填して、テストコース上を100km/hで8000km走行した後、トレッド部の溝深さを測定し、その減少の程度を求めた。そして、溝深さの1mm減少に相当する走行距離を算出する。
次いで、比較例8における結果を100として、下式に基づいて指数化し、高速走行時における耐摩耗性能の評価とする。数値が大きいほど、高速走行時における耐摩耗性能が優れていることを示す。
高速走行時における耐摩耗性能
=[(試験用タイヤの結果)/(比較例8の結果)]×100
Figure 2024002386000003
Figure 2024002386000004
以上、本発明を実施の形態に基づいて説明したが、本発明は上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることができる。
本発明(1)は、
トレッド部を備えたタイヤであって、
前記トレッド部を形成するキャップゴム層が、
スチレン量25質量%以下のスチレンブタジエンゴム(SBR)を、ゴム成分100質量部中に60質量部以上、80質量部以下含有すると共に、
前記ゴム成分100質量部に対して、シリカを100質量部未満含有し、
温度30℃、周波数10Hz、初期歪5%、動歪率1%の条件下、変形モード:引張で測定された損失正接(30℃tanδ)が、0.25超であるゴム組成物から形成されており、
前記トレッド部の厚みが、15mm以下であることを特徴とするタイヤである。
本発明(2)は、
前記30℃tanδが、0.30以上であることを特徴とし、本発明(1)に記載のタイヤである。
本発明(3)は、
前記キャップゴム層を形成するゴム組成物の、温度0℃、周波数10Hz、初期歪5%、動歪率1%の条件下、変形モード:引張で測定された損失正接(0℃tanδ)が、0.60以上であることを特徴とし、本発明(1)または(2)に記載のタイヤである。
本発明(4)は、
前記0℃tanδが、0.70以上であることを特徴とし、本発明(3)に記載のタイヤである。
本発明(5)は、
前記キャップゴム層のガラス転移温度(Tg)が、-15℃以下であることを特徴とし、本発明(1)から(4)のいずれかとの任意の組合せのタイヤである。
本発明(6)は、
前記キャップゴム層の温度30℃、周波数10Hz、初期歪5%、動歪率1%、変形モード:伸長で測定された複素弾性率(30℃E)が、6.0MPa以下であることを特徴とし、本発明(1)から(5)のいずれかとの任意の組合せのタイヤである。
本発明(7)は、
前記30℃E(MPa)と前記トレッド部の厚み(mm)とが、(30℃E/トレッド部の厚み)≧0.50を満足していることを特徴とし、本発明(1)から(6)のいずれかとの任意の組合せのタイヤである。
本発明(8)は、
前記キャップゴム層の温度0℃、周波数10Hz、初期歪5%、動歪率1%、変形モード:伸長で測定された複素弾性率(0℃E)が、25.0MPa以下であることを特徴とし、本発明(1)から(7)のいずれかとの任意の組合せのタイヤである。
本発明(9)は、
前記トレッド部の厚みが、4mm以上、11mm以下であることを特徴とし、本発明(1)から(8)のいずれかとの任意の組合せのタイヤである。
本発明(10)は、
前記キャップゴム層の厚みが、前記トレッド部全体の厚みに対して、10%以上、100%未満であることを特徴とし、本発明(1)から(9)のいずれかとの任意の組合せのタイヤである。
本発明(11)は、
前記キャップゴム層に、ロジン系樹脂、スチレン系樹脂、クマロン系樹脂、テルペン系樹脂、C5樹脂、C9樹脂、C5C9樹脂、アクリル系樹脂の群から選択される樹脂成分が含有されることを特徴とし、本発明(1)から(10)のいずれかとの任意の組合せのタイヤである。
本発明(12)は、
前記キャップゴム層の30℃tanδと前記トレッド部の厚み(mm)とが、(30℃tanδ/トレッド部の厚み)>0.03を満足していることを特徴とし、本発明(1)から(11)のいずれかとの任意の組合せのタイヤである。
本発明(13)は、
前記トレッド部におけるランド比が、40%以上であり、
ゴム成分100質量部中における前記スチレン量25質量%以下のスチレンブタジエンゴム(SBR)の含有量(質量部)と、トレッド部におけるランド比(%)との比(スチレン量25質量%以下のSBRの含有量(質量部)/ランド比(%))が、1.2以下であることを特徴とし、本発明(1)から(12)のいずれかとの任意の組合せのタイヤである。
本発明(14)は、
扁平率が、80%以下であり、
ゴム成分100質量部に対する前記シリカの含有量(質量部)と、扁平率(%)との比(シリカの含有量(質量部)/扁平率(%))が、1.7以上であることを特徴とし、本発明(1)から(13)のいずれかとの任意の組合せのタイヤである。

Claims (14)

  1. トレッド部を備えたタイヤであって、
    前記トレッド部を形成するキャップゴム層が、
    スチレン量25質量%以下のスチレンブタジエンゴム(SBR)を、ゴム成分100質量部中に60質量部以上、80質量部以下含有すると共に、
    前記ゴム成分100質量部に対して、シリカを100質量部未満含有し、
    温度30℃、周波数10Hz、初期歪5%、動歪率1%の条件下、変形モード:引張で測定された損失正接(30℃tanδ)が、0.25超であるゴム組成物から形成されており、
    前記トレッド部の厚みが、15mm以下であることを特徴とするタイヤ。
  2. 前記30℃tanδが、0.30以上であることを特徴とする請求項1に記載のタイヤ。
  3. 前記キャップゴム層を形成するゴム組成物の、温度0℃、周波数10Hz、初期歪5%、動歪率1%の条件下、変形モード:引張で測定された損失正接(0℃tanδ)が、0.60以上であることを特徴とする請求項1または請求項2に記載のタイヤ。
  4. 前記0℃tanδが、0.70以上であることを特徴とする請求項3に記載のタイヤ。
  5. 前記キャップゴム層のガラス転移温度(Tg)が、-15℃以下であることを特徴とする請求項1ないし請求項4のいずれか1項に記載のタイヤ。
  6. 前記キャップゴム層の温度30℃、周波数10Hz、初期歪5%、動歪率1%、変形モード:伸長で測定された複素弾性率(30℃E)が、6.0MPa以下であることを特徴とする請求項1ないし請求項5のいずれか1項に記載のタイヤ。
  7. 前記30℃E(MPa)と前記トレッド部の厚み(mm)とが、(30℃E/トレッド部の厚み)≧0.50を満足していることを特徴とする請求項1ないし請求項6のいずれか1項に記載のタイヤ。
  8. 前記キャップゴム層の温度0℃、周波数10Hz、初期歪5%、動歪率1%、変形モード:伸長で測定された複素弾性率(0℃E)が、25.0MPa以下であることを特徴とする請求項1ないし請求項7のいずれか1項に記載のタイヤ。
  9. 前記トレッド部の厚みが、4mm以上、11mm以下であることを特徴とする請求項1ないし請求項8のいずれか1項に記載のタイヤ。
  10. 前記キャップゴム層の厚みが、前記トレッド部全体の厚みに対して、10%以上、100%未満であることを特徴とする請求項1ないし請求項9のいずれか1項に記載のタイヤ。
  11. 前記キャップゴム層に、ロジン系樹脂、スチレン系樹脂、クマロン系樹脂、テルペン系樹脂、C5樹脂、C9樹脂、C5C9樹脂、アクリル系樹脂の群から選択される樹脂成分が含有されることを特徴とする請求項1ないし請求項10のいずれか1項に記載のタイヤ。
  12. 前記キャップゴム層の30℃tanδと前記トレッド部の厚み(mm)とが、(30℃tanδ/トレッド部の厚み)>0.03を満足していることを特徴とする請求項1ないし請求項11のいずれか1項に記載のタイヤ。
  13. 前記トレッド部におけるランド比が、40%以上であり、
    ゴム成分100質量部中における前記スチレン量25質量%以下のスチレンブタジエンゴム(SBR)の含有量(質量部)と、トレッド部におけるランド比(%)との比(スチレン量25質量%以下のSBRの含有量(質量部)/ランド比(%))が、1.2以下であることを特徴とする請求項1ないし請求項12のいずれか1項に記載のタイヤ。
  14. 扁平率が、80%以下であり、
    ゴム成分100質量部に対する前記シリカの含有量(質量部)と、扁平率(%)との比(シリカの含有量(質量部)/扁平率(%))が、1.7以上であることを特徴とする請求項1ないし請求項13のいずれか1項に記載のタイヤ。
JP2022101538A 2022-06-24 2022-06-24 タイヤ Pending JP2024002386A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022101538A JP2024002386A (ja) 2022-06-24 2022-06-24 タイヤ
PCT/JP2023/021485 WO2023248828A1 (ja) 2022-06-24 2023-06-09 タイヤ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022101538A JP2024002386A (ja) 2022-06-24 2022-06-24 タイヤ

Publications (1)

Publication Number Publication Date
JP2024002386A true JP2024002386A (ja) 2024-01-11

Family

ID=89379682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022101538A Pending JP2024002386A (ja) 2022-06-24 2022-06-24 タイヤ

Country Status (2)

Country Link
JP (1) JP2024002386A (ja)
WO (1) WO2023248828A1 (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6436734B2 (ja) * 2014-11-14 2018-12-12 住友ゴム工業株式会社 空気入りタイヤ
JP6784066B2 (ja) * 2016-06-08 2020-11-11 住友ゴム工業株式会社 空気入りタイヤ
JP7251071B2 (ja) * 2018-08-08 2023-04-04 住友ゴム工業株式会社 トレッド用ゴム組成物及び空気入りタイヤ
JP2021001267A (ja) * 2019-06-21 2021-01-07 住友ゴム工業株式会社 ゴム組成物、トレッド、タイヤおよび製造方法
JP2021142862A (ja) * 2020-03-11 2021-09-24 株式会社ブリヂストン タイヤ
JP6863504B1 (ja) * 2020-04-24 2021-04-21 住友ゴム工業株式会社 タイヤ
EP4166354A1 (en) * 2020-06-15 2023-04-19 Sumitomo Rubber Industries, Ltd. Tire
JP2022086476A (ja) * 2020-11-30 2022-06-09 住友ゴム工業株式会社 タイヤ

Also Published As

Publication number Publication date
WO2023248828A1 (ja) 2023-12-28

Similar Documents

Publication Publication Date Title
WO2022025006A1 (ja) 空気入りタイヤ
US20230415516A1 (en) Tire
JP2022024795A (ja) 空気入りタイヤ
JP7321429B1 (ja) タイヤ
JP7282319B1 (ja) タイヤ
JP7278538B1 (ja) タイヤ
JP7337333B1 (ja) タイヤ
JP7282320B1 (ja) タイヤ
JP7312363B1 (ja) タイヤ
WO2023248828A1 (ja) タイヤ
JP7459448B2 (ja) 空気入りタイヤ
WO2023248655A1 (ja) タイヤ
WO2023248826A1 (ja) タイヤ
WO2023248553A1 (ja) タイヤ
JP2024002375A (ja) タイヤ
JP2024002911A (ja) タイヤ
JP2024002393A (ja) タイヤ
JP2024002387A (ja) タイヤ
JP2024002394A (ja) タイヤ
JP2023078783A (ja) 空気入りタイヤ
JP2023078762A (ja) 空気入りタイヤ
JP2022106495A (ja) 空気入りタイヤ