JP2024002387A - タイヤ - Google Patents

タイヤ Download PDF

Info

Publication number
JP2024002387A
JP2024002387A JP2022101539A JP2022101539A JP2024002387A JP 2024002387 A JP2024002387 A JP 2024002387A JP 2022101539 A JP2022101539 A JP 2022101539A JP 2022101539 A JP2022101539 A JP 2022101539A JP 2024002387 A JP2024002387 A JP 2024002387A
Authority
JP
Japan
Prior art keywords
mass
rubber
parts
less
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022101539A
Other languages
English (en)
Inventor
直也 北村
Naoya Kitamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2022101539A priority Critical patent/JP2024002387A/ja
Priority to EP23175380.7A priority patent/EP4296082A1/en
Priority to CN202310605055.4A priority patent/CN117285760A/zh
Priority to US18/211,750 priority patent/US20230415514A1/en
Publication of JP2024002387A publication Critical patent/JP2024002387A/ja
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0041Tyre tread bands; Tread patterns; Anti-skid inserts comprising different tread rubber layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0041Tyre tread bands; Tread patterns; Anti-skid inserts comprising different tread rubber layers
    • B60C11/005Tyre tread bands; Tread patterns; Anti-skid inserts comprising different tread rubber layers with cap and base layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • B60C2011/0016Physical properties or dimensions
    • B60C2011/0025Modulus or tan delta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • B60C2011/0016Physical properties or dimensions
    • B60C2011/0033Thickness of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

【課題】悪路路面を高速で走行するに際して、耐チッピング性能の向上を図る。【解決手段】厚み15mm以下のトレッド部を備えたタイヤであって、トレッド部を形成するキャップゴム層が、スチレン量25質量%以下のスチレンブタジエンゴム(SBR)を、ゴム成分100質量部中に40質量部以上、80質量部以下含有すると共に、シリカおよびカーボンブラックを含有し、温度30℃、周波数10Hz、初期歪5%、動歪率1%の条件下、変形モード:引張で測定された損失正接30℃tanδが、0.18超のゴム組成物から形成されており、ゴム組成物において、カーボンブラックの含有量がゴム成分100質量部に対して15質量部以上であると共に、カーボンブラックの含有量に対するシリカの含有量の比率が1以上であるタイヤ。【選択図】なし

Description

本発明は、タイヤに関する。
車両が悪路路面を走行した場合、路面との接触により、タイヤのトレッド部の表面の一部に傷が生じることがある。この状態のまま走行を続けると、傷に応力が集中して大きく成長し、トレッド部の表面に設けられたブロックに欠けを生じる(チッピング)。このため、タイヤには十分な耐チッピング性能を確保する必要がある。
そこで、従来より、タイヤのトレッド部を構成するゴム組成物や、トレッド部の表面形状などの工夫により耐チッピング性能の向上を図ることが提案されている(例えば、特許文献1~3)。
特開2021-165324号公報 特開2021-95507号公報 特開2020-128131号公報
しかしながら、上記した従来技術に基づいて製造されたタイヤにおける耐チッピング性能は、悪路路面を高速で走行する場合、未だ、十分とは言えず、さらなる向上が望まれている。
そこで、本発明は、悪路路面を高速で走行する際の耐チッピング性能の向上を図ることを課題とする。
本発明は、
厚み15mm以下のトレッド部を備えたタイヤであって、
前記トレッド部を形成するキャップゴム層が、
スチレン量25質量%以下のスチレンブタジエンゴム(SBR)を、ゴム成分100質量部中に40質量部以上、80質量部以下含有すると共に、前記ゴム成分に加えて、シリカおよびカーボンブラックを含有し、温度30℃、周波数10Hz、初期歪5%、動歪率1%の条件下、変形モード:引張で測定された損失正接30℃tanδが、0.18超のゴム組成物から形成されており、
前記ゴム組成物において、前記カーボンブラックの含有量がゴム成分100質量部に対して15質量部以上であると共に、前記カーボンブラックの含有量に対する前記シリカの含有量の比率が1以上であることを特徴とするタイヤである。
本発明によれば、悪路路面を高速で走行する際の耐チッピング性能の向上を図ることができる。
[1]本発明に係るタイヤの特徴
最初に、本発明に係るタイヤの特徴について説明する。
1.概要
本発明に係るタイヤは、厚み15mm以下のトレッド部を備えたタイヤであって、トレッド部の最外層を形成するキャップゴム層が、スチレン量25質量%以下のSBRを、ゴム成分100質量部中に40質量部以上、80質量部以下含有すると共に、ゴム成分に加えて、シリカおよびカーボンブラックを含有し、温度30℃、周波数10Hz、初期歪5%、動歪率1%の条件下、変形モード:引張で測定された損失正接30℃tanδが、0.18超のゴム組成物から形成されている。そして、このゴム組成物において、カーボンブラックの含有量がゴム成分100質量部に対して15質量部以上であると共に、カーボンブラックの含有量に対するシリカの含有量の比率が1以上である。
なお、ここにいうキャップゴム層は、トレッド部の最外層を形成するキャップゴム層に限られず、トレッド表面から内側に向かって5mm以内に2層以上ある場合は、少なくともいずれか1つの層が、前記ゴム組成物の要件を満たしていればよい。
これらの特徴を有することにより、後述するように、悪路路面を高速で走行する際の耐チッピング性能の向上を図ることができる。
2.本発明に係るタイヤにおける効果発現のメカニズム
本発明に係るタイヤにおける上記した効果発現のメカニズムについては、以下のように考えられる。
前記したように、本発明に係るタイヤのキャップゴム層は、スチレン量25質量%以下のSBRを、ゴム成分100質量部中に40質量部以上、80質量部以下含有しており、これにより、ゴムマトリックス内に少量のスチレンドメインによるネットワークを適切に形成することができ、ゴムの変形による歪みを緩和され易くすることができる。
そして、このような低スチレン量のSBRは、発熱性が低いため、上記したスチレンドメインによるゴムの歪みの緩和とも相俟って、耐チッピング性能を向上させることができる。
なお、前記したスチレン量は、20質量%以下であるとより好ましく、15質量%以下であるとさらに好ましい。一方、下限としては、3質量%以上であることが好ましく、5質量%以上であるとより好ましく、8質量%以上であるとさらに好ましい。
そして、本発明において、「スチレン量25質量%以下のSBRを、ゴム成分100質量部中に40質量部以上、80質量部以下含有する」とは、ゴム成分100質量部中に占めるSBR量が40質量部以上、80質量部以下であり、SBR全体におけるスチレン量が25質量%以下であることを示している。
即ち、ゴム成分中にスチレン含有ポリマー(SBR)が単独で含有されている場合には、そのスチレン量が25質量%以下であることを示し、ゴム成分中にスチレン含有ポリマー(SBR)が複数含有されている場合には、それぞれのポリマー中のスチレン量(質量%)と、そのポリマーのゴム成分100質量部に対する配合量(質量部)との積の総和により求められたスチレン量が25質量%以下であることを示している。
より具体的には、ゴム成分100質量部中に、スチレン量S1質量%のSBR1(X1質量部)とスチレン量S2質量%のSBR2(X2質量部)とが含有されている場合、{(S1×X1)+(S2×X2)}/(X1+X2)の式から算出されたスチレン量が、25質量%以下であることを示している。
また、加硫後のゴム組成物においては、アセトン抽出後のゴム成分中に含まれるスチレン量を固体核磁気共鳴(固体NMR)やフーリエ変換赤外分光光度計(FTIR)を用いて求めることによっても、スチレン量を算出することが可能である。
そして、本発明においては、キャップゴム層を形成するゴム組成物の温度30℃、周波数10Hz、初期歪5%、動歪率1%の条件下、変形モード:引張で測定された損失正接30℃tanδが、0.18超である。
損失正接tanδは、エネルギーの吸収性能を示す粘弾性パラメータであり、値が大きいほど、ゴムの変形によるエネルギーを吸収し、熱として放出することができるため、ゴムの変形による欠けの発生を抑制して、耐チッピング性能を向上させることができる。前記した損失正接30℃tanδは、0.24以上であるとより好ましく、0.30以上であるとさらに好ましい。上限は特に限定されないが、0.45以下であることが好ましく、0.43以下であるとより好ましく、0.40以下であるとさらに好ましい。
なお、上記において、損失正接(tanδ)は、例えば、GABO社製「イプレクサー(登録商標)」などの粘弾性測定装置を用いて、測定することができる。
また、上記した30℃tanδは後述の配合材料の種類及び含有量により適宜調整することが可能である。具体的には、ゴム成分中のSBR含有量を増やす、SBR成分中のスチレン含有量を増やす、カーボンブラック、シリカなどの充填剤の含有量を増やす、充填剤の粒子径を小さくする、樹脂成分の含有量を増やすことなどにより高めることが可能である。一方、ゴム成分中のSBR含有量を減らす、SBR成分中のスチレン含有量を減らす、カーボンブラック、シリカなどの充填剤の含有量を減らす、充填剤の粒子径を大きくする、樹脂成分の含有量を減らすことなどにより低くすることが可能である。
また、このゴム組成物には、ゴム成分100質量部に対して15質量部以上のカーボンブラックを含有していると共に、カーボンブラックの含有量に対するシリカの含有量の比率を1以上として、シリカの含有比率を大きくしているため、ゴム成分を十分に補強しつつ、良好な破断伸びを得ることができ、ゴム自体を変形に対して強くすることができる。
なお、本発明において、カーボンブラックの含有量は、ゴム成分100質量部に対して、35質量部以上であるとより好ましく、42質量部以上であるとさらに好ましい。上限としては特に限定されないが、70質量部以下であることが好ましく、60質量部以下であるとより好ましく、50質量部以下であるとさらに好ましい。また、カーボンブラックの含有量に対するシリカの含有量の比率は、1.2以上であるとより好ましく、1.3以上であるとさらに好ましい。上限としては特に限定されないが、2.4以下であることが好ましく、2.2以下であるとより好ましく、1.6以下であるとさらに好ましい。
さらに、本発明においては、トレッド部の厚みを15mm以下に設定しているため、ゴムの変形量を小さくすることができると共に、トレッド部における蓄熱を抑制して、ゴムの高温化に伴う強度低下を抑制することができる。
なお、本発明において、トレッド部とはタイヤの接地面を形成する領域の部材であるが、カーカス、ベルト層、ベルト補強層などの繊維材料等を含む部材よりタイヤ半径方向外側の部分を指す。
そして、トレッド部の厚みとは、タイヤ半径方向断面におけるタイヤ赤道面上でのトレッド部の厚みを指し、単一のゴム組成物でトレッド部が形成される場合においては、当該ゴム組成物の厚みであり、後述する複数のゴム組成物の積層構造で形成される場合においては、これらの層の全厚を指す。タイヤ赤道面上に溝を有する場合においては当該溝のタイヤ半径方向最外部の端点を繋いだ直線とタイヤ赤道面の交点から、トレッド部のタイヤ半径方向最内部の界面までの厚みを指す。前記したトレッド部の厚みは、タイヤを半径方向に切り出した断面において、ビード部を正規リム幅に合わせた状態にすることで測定することが可能である。
なお、「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えば、JATMA(日本自動車タイヤ協会)であれば「JATMA YEAR BOOK」に記載されている適用サイズにおける標準リム、ETRTO(The European Tyre and Rim Technical Organisation)であれば「STANDARDS MANUAL」に記載されている“Measuring Rim”、TRA(The Tire and Rim Association,Inc.)であれば「YEAR BOOK」に記載されている“Design Rim”を指し、JATMA、ETRTO、TRAの順に参照し、参照時に適用サイズがあればその規格に従う。そして、規格に定められていないタイヤの場合には、リム組み可能であって、内圧が保持できるリム、即ちリム/タイヤ間からエア漏れを生じさせないリムの内、最もリム径が小さく、次いでリム幅が最も狭いものを指す。
以上のように、本発明においては、キャップゴム層自体を、変形が吸収され易く、高い強度に形成するとともに、トレッド部の厚みを薄くして、ゴムの変形量、蓄熱量を抑制して、転動中における強度が高い状態を維持できるようにしているため、悪路を高速で走行させた場合であっても、十分な耐チッピング性能を発揮させることができる。
[2]本発明に係るタイヤにおけるより好ましい態様
本発明に係るタイヤは、以下の態様を取ることにより、さらに大きな効果を得ることができる。
1.ガラス転移温度Tg
悪路路面を高速で走行した場合、トレッド部のキャップゴム層と路面の間では、滑りが発生し易いため、トレッド部(キャップゴム層)の表面は、雰囲気温度よりも低い温度における物性の影響を強く受け易い。
そこで、本発明においては、キャップゴム層を構成するゴム組成物のガラス転移温度Tg(℃)が、-45℃以上、-10℃以下であることが好ましく、これにより、ゴム表面での変形を効率よく吸収できるようになるため、悪路路面を高速で走行した場合であっても、十分な耐チッピング性能を安定して発揮させることができる。-15℃以下であるとより好ましく、-20℃以下であると更により好ましい。
上記したゴム組成物のガラス転移温度(Tg)は、GABO社製のイプレクサーシリーズなどの粘弾性測定装置を用い、周波数10Hz、初期歪10%、振幅±0.5%及び昇温速度2℃/minの条件下で測定されたtanδの温度分布曲線を基にして求めることができ、本発明の場合には、測定された温度分布曲線の-60℃以上、40℃以下の範囲における最も大きいtanδ値に対応する温度をガラス転移点(Tg)とする。なお、-60℃以上、40℃以下の範囲内に、最も大きいtanδ値の点が2点以上ある場合は、最も温度が低い点をTgとする。例えば、本発明において、tanδの最大値が-60℃以上、40℃以下の範囲内にあれば、上記の定義により、その最大値を示す温度がTgとなる。また、例えば、-60℃以上、40℃以下の範囲内では温度上昇に従いtanδが漸減するなど、tanδの最大値を示す温度が-60℃となる温度分布曲線が得られた場合、上記の定義により、ガラス転移温度(Tg)は、-60℃となる。
なお、上記したガラス転移温度(Tg)は、後述の配合材料の種類及び含有量により適宜調整することが可能である。具体的にはゴム成分中のSBR含有量を減らす、SBR成分中のスチレン含有量を減らす、樹脂成分の含有量を減らすことなどにより、低くすることができ、ゴム成分中のSBR含有量を増やす、SBR成分中のスチレン含有量を増やす、樹脂成分の含有量を増やすことなどにより高くすることが可能である。
2.100%モジュラス(M100)
本発明において、キャップゴム層を構成するゴム組成物の100%モジュラス(M100)は、2.0MPa超であることが好ましく、2.2MPa超であるとより好ましい。
なお、上限としては特に限定されないが、6.0MPa未満であると好ましく、3.5MPa未満であるとより好ましい。
モジュラスはゴムの変形に対する強度を示す指標であり、本発明のように、大変形時における強度を高くすることにより、ゴムの破壊が抑制され易くなるため、耐チッピング性能のさらなる向上を図ることができる。
上記したモジュラスは後述の配合材料の種類及び含有量により適宜調整することが可能である。具体的にはカーボンブラック、シリカなどの充填剤の含有量を増やす、充填剤中のカーボンブラックの比率を増やす、樹脂成分の含有量を増やす、可塑剤量を減らす、硫黄、促進剤などの加硫剤を増やすことにより高めることが可能である。一方、カーボンブラック、シリカなどの充填剤量を減らす、充填剤中のカーボンブラック比率を減らす、樹脂成分の含有量を減らす、可塑剤量を増やす、硫黄、促進剤などの加硫剤を減らすことにより低くすることが可能である。
3.微粒子シリカの含有
前記したように、本発明において、キャップゴム層を構成するゴム組成物には、シリカを含有させているが、耐チッピング性能のさらなる向上を図るためには、このシリカの1/2超が微粒子シリカであることが好ましく、これにより、微粒子シリカによる補強性が十分に発揮されて、耐チッピング性能を向上させることができる。
なお、ここで、微粒子シリカとは、平均粒子径が18nm以下のシリカを指しており、16nm以下であるとより好ましく、15nm以下であるとさらに好ましい。一方、下限としては、6nm以上であることが好ましく、9nm以上であるとより好ましく、12nm以上であるとさらに好ましい。
上記した平均粒子径は、透過型電子顕微鏡(TEM)を用いて写真撮影し、粒子の形状が球形の場合には球の直径を粒子径とし、針状又は棒状の場合には短径を粒子径とし、不定型の場合には中心部からの平均粒径を粒子径とし、微粒子100個の粒径の平均値を平均粒子径とすることにより求めることができる。
4.アミン化合物の含有
本発明のゴム組成物には、シリカと併せて、下記式で表されるアミン化合物を含有することが好ましい。
Figure 2024002387000001
上記式中、Rは、炭化水素基を表す。R、Rは、同一若しくは異なって、水素原子、炭化水素基、又は-(AO)-H基(nは1以上の整数)を表し、R、Rの各nは、それぞれ同一でも異なっていてもよい。AOは、同一又は異なって、炭素数2以上のオキシアルキレン基を表し、R、Rのうち少なくとも1つが-(AO)-H基である。
当該化合物中のオキシアルキレン基とシリカ表面の水酸基とが相互作用し、これにより、ゴムマトリックス中でシリカを十分に分散させることができ、より耐チッピング性能を向上させることができる。
~Rの炭化水素基は、直鎖状、分岐状、環状のいずれでもよく、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基等が挙げられる。なかでも、脂肪族炭化水素基が好ましい。炭化水素基の炭素数は、好ましくは1以上、より好ましくは5以上、更に好ましくは8以上、特に好ましくは12以上であり、好ましくは30以下、より好ましくは25以下、更に好ましくは22以下、特に好ましくは20以下である。上記範囲内であると、効果がより好適に得られる傾向がある。
上記式で表される化合物の具体例としては、例えば、POE(2)オクチルアミン、POE(4)デシルアミン、POE(2)ドデシルアミン、POE(5)ドデシルアミン、POE(15)ドデシルアミン、POE(2)テトラデシルアミン、POE(2)ヘキサデシルアミン、POE(2)オクタデシルアミン、POE(20)オクタデシルアミン、POE(2)オクタデセニルアミンなども挙げられる。なお、POE(m)は、ポリオキシエチレンが平均mモル付加していることを示す。これらの市販品として、花王(株)、ライオン・スペシャリティ・ケミカルズ(株)等の製品を使用できる。
分散剤の含有量としては、ゴム成分100質量部に対して、0.5質量部超、10質量部未満であることが好ましく、1質量部以上、8質量部以下であるとより好ましい。
5.トレッド部の厚みとtanδの関係
上述の通り、キャップゴム層の30℃におけるtanδを0.18超とすることにより、キャップゴム層でのエネルギーロスを高め、トレッド部の厚みを15mm以下とすることで、変形と蓄熱を抑制しているものと考えられる。その中でも、トレッド部の厚みT(mm)に対するキャップゴム層の30℃におけるtanδ(30℃tanδ)の比(30℃tanδ/T)を0.025以上とすることにより、キャップゴム層でのエネルギーロスとトレッド部厚みによる変形と蓄熱の抑制効果の両立度が向上し、さらに高速での耐チッピング性を向上させることができると考えられる。前記した30℃tanδ/Tは0.027以上であるとより好ましい。一方、上限としては特に限定されないが、0.050以下が好ましく、0.045以下がより好ましい。
6.トレッド部の厚みとM100の関係
上述の通り、キャップゴムの100%モジュラス(M100)を2.0MPa超とすることにより、強度を高め、耐チッピング性能を向上させることが可能になると考えられる。一方で、トレッド部の厚みは厚くなるほど、トレッド部での変形量が大きくなりやすくなると考えられることから、トレッド部の厚みTに対するM100の比を0.15以上とすることにより、トレッド部での変形に対し、十分な強度を得ることが可能になり、より耐チッピング性能を向上させやすくなると考えられる。M100/Tは0.17以上であるとより好ましく、0.20以上がさらに好ましい。一方、上限は特に限定されないが、0.80以下が好ましく、0.70以下がより好ましく、0.65以下がさらに好ましい。
7.トレッド部の複層化
本発明において、トレッド部は、キャップゴム層の1層のみで形成されていてもよく、キャップゴム層の内側にベースゴム層を設けて2層にされていてもよく、また、3層でもよく、4層以上であってもよい。2層以上の場合、路面骨材により傷が生じた際に、傷の成長によりチッピングが発生して早期に界面が露出することを防ぐため、キャップゴム層の厚みは10%以上であることが好ましく、70%以上であるとより好ましい。
なお、この場合、タイヤ内部での蓄熱を抑制し、キャップゴム層の温度上昇を抑制することを考慮すると、ベースゴム層の30℃tanδは、キャップゴム層における30℃tanδよりも小さくすることが好ましい。また、ベースゴム層の30℃tanδは、キャップゴム層の30℃tanδと同様に後述の配合材料の種類及び含有量により適宜調整することが可能である。
8.キャップゴム層のアセトン抽出分(AE)
本発明において、キャップゴム層のアセトン抽出分(AE)は、5.0質量%以上であることが好ましく、6.0質量%以上であるとより好ましく、8.0質量%以上であるとさらに好ましい。一方、上限としては特に限定されないが、25.0質量%以下であることが好ましく、15.0質量%以下であるとより好ましく、14.0質量%以下であるとさらに好ましい。
アセトン抽出分(AE)は、ゴム組成物において、可塑剤などの量を示す指標と考えることができ、ゴム組成物の軟らかさを示す指標とも考えることができる。このため、キャップゴム層において、AE量を上記のように制御することにより、キャップゴム層が適切に変形して、路面骨材により切断されることを抑制しやすくなると考えられる。
なお、アセトン抽出分(AE)の測定は、JIS K 6229:2015に準拠して行うことができる。具体的には、測定部位から切り出した加硫ゴム試験片を常温、常圧下で、72時間、アセトンに浸漬して、試験片の質量減少率(%)を求めることにより、AE(質量%)を得ることができる。
より詳細には、常温、常圧下、各加硫ゴム試験片を72時間アセトンに浸漬して可溶成分を抽出し、抽出前後の各試験片の質量を測定し、下記式により求めることができる。
アセトン抽出量(%)={(抽出前のゴム試験片の質量-抽出後のゴム試験片の質量)
/(抽出前のゴム試験片の質量)}×100
また、前記したアセトン抽出分は、ゴム組成物内の可塑剤の配合比率を変更することにより、適宜変更することが可能である。
9.ランド比
本発明に係るタイヤにおいては、正規リムに組み込み、正規内圧としたタイヤのトレッド部におけるランド比が、40%以上であることが好ましく、55%以上であることがより好ましく、60%以上であるとさらに好ましく、63%以上であるとさらに好ましい。
「ランド比」は、トレッド部の表面に配された溝部を全て埋めた仮想の接地面に対する、実際の接地面の比率であり、ランド比が大きいと、路面と接する面積が大きくなるため、耐チッピング性を向上させることができる。
なお、ランド比の上限は特に限定されないが95%以下が好ましい。
また、ゴム成分100質量部中におけるスチレン量25質量%以下のスチレンブタジエンゴム(SBR)の含有量(質量部)と、トレッド部におけるランド比(%)との積が、2500以上であると、スチレンドメインによるネットワークによる効果が協働して、耐チッピング性のさらなる向上を図ることができる。
前記したランド比は、正規リム、正規内圧、正規荷重条件下における接地形状から求めることができる。
具体的には、タイヤを正規リムに組み付け、正規内圧を加え、25℃で24時間静置した後、タイヤトレッド表面に墨を塗り、正規荷重を負荷して厚紙に押しつけ(キャンバー角は0°)、紙に転写させることにより、接地形状を得ることができるため、タイヤを周方向に72°ずつ回転させて、5か所で転写させる。すなわち、5回、接地形状を得る。このとき、5つの接地形状について、その接地形状の輪郭の溝で途切れた部分を滑らかに繋ぎ、得られる形状を仮想接地面とする。
そして、ランド比は、(厚紙に転写された5つの接地形状(墨部分)の平均面積/5つの接地形状から得られた仮想接地面の面積の平均値)×100(%)から求めることができる。
なお、「正規内圧」とは、前記規格がタイヤ毎に定めている空気圧であり、JATMAであれば最高空気圧、ETRTOであれば“INFLATION PRESSURE”、TRAであれば表“TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”に記載の最大値を指し、「正規リム」の場合と同様に、JATMA、ETRTO、TRAの順に参照し、その規格に従う。そして、規格に定められていないタイヤの場合、前記正規リムを標準リムとして記載されている別のタイヤサイズ(規格に定められているもの)の正規内圧(但し、250KPa以上)を指す。なお、250KPa以上の正規内圧が複数記載されている場合には、その中の最小値を指す。
また、「正規荷重」とは、前記したタイヤが基づいている規格を含む規格体系における各規格がタイヤ毎に定めている荷重であり、タイヤに負荷されることが許容される最大の質量を指しており、JATMAであれば最大負荷能力、ETRTOであれば“LOAD CAPACITY”、TRAであれば表“TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”に記載の最大値を指し、前記した「正規リム」や「正規内圧」の場合と同様に、JATMA、ETRTO、TRAの順に参照し、その規格に従う。そして、規格に定められていないタイヤの場合は、以下の計算により、正規荷重Wを求める。
V={(Dt/2)-(Dt/2-Ht)}×π×Wt
=0.000011×V+175
:正規荷重(kg)
V:タイヤの仮想体積(mm
Dt:タイヤ外径Dt(mm)
Ht:タイヤの断面高さ(mm)
Wt:タイヤの断面幅(mm)
10.扁平率
扁平率は、タイヤ断面幅に対する断面高さであり、この比率が大きいほどトレッド部で生じた力をサイド部でも吸収しやすくすることができるため、耐チッピング性を向上させることができると考えられる。その一方、扁平率が高くなると、サイド部でのたわみ量が大きくなるため、操縦安定性の低下を招く恐れがある。
これらの点を考慮すると、本発明に係るタイヤにおいて、具体的な扁平率としては、40%以上であることが好ましい。
また、ゴム成分100質量部に対する充填剤の含有量(質量部)と、扁平率との積が、3000以上であると、シリカによるネットワークによる効果が協働して、耐チッピング性のさらなる向上を図ることができる。
なお、前記した扁平率(%)は、内圧を250kPaとしたときのタイヤの断面高さHt(mm)と断面幅Wt(mm)とタイヤ外径Dt(mm)とリム径R(mm)を用いて、下式により求めることができる。
扁平率(%)=(Ht/Wt)×100(%)
Ht=(Dt-R)/2
[3]実施の形態
以下、実施の形態に基づいて、本発明を具体的に説明する。
1.キャップ層を形成するゴム組成物
本発明に係るタイヤにおいて、キャップゴム層を形成するゴム組成物は、以下に記載するゴム成分、充填剤、可塑剤、加硫剤および加硫促進剤などの各種配合材料について、その種類や量を、適宜、調整することにより得ることができる。
(1)配合材料
(a)ゴム成分
ゴム成分としては特に限定されず、イソプレン系ゴム、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、ニトリルゴム(NBR)などのジエン系ゴム、ブチルゴムなどのブチル系ゴム、スチレンブタジエンスチレンブロック共重合体(SBS)、スチレンブタジエンブロック共重合体(SB)などの熱可塑性エラストマーなど、タイヤの製造に一般的に用いられるゴム(ポリマー)を用いることができる。
本発明においては、これらの中でも、ゴム成分中にスチレンを含ませる点から、SBR、SBS、SBなどのスチレン系のポリマーのいずれか1種を含み、SBRを含むことが好ましい。また、これらのスチレン系ポリマーと他のゴム成分を併用してもよく、例えば、SBRとBRの併用、SBRとBRとイソプレン系ゴムの併用が好ましい。また、上記したゴム成分は後述のオイル、樹脂、液状ゴムなどの可塑剤を予め伸展させた、伸展ゴムを用いても良い。
(イ)SBR
SBRの重量平均分子量は、例えば、10万超、200万未満である。そして、本発明においては、前記したように、SBR成分中におけるスチレン量を25質量%以下とする。20質量%以下であるとより好ましく、15質量%以下であるとさらに好ましい。一方、下限としては、3質量%以上であることが好ましく、5質量%以上であるとより好ましく、8質量%以上であるとさらに好ましい。
SBRのビニル含量(1,2-結合ブタジエン含量)は、例えば、5質量%超、70質量%未満である。なお、SBRのビニル含量とは、SBR成分内におけるブタジエン部全体に対する1,2-結合ブタジエン含量を指す。そして、SBRの構造同定(スチレン量、ビニル含量の測定)は、例えば、日本電子(株)製JNM-ECAシリーズの装置を用いて行うことができる。
本発明において、ゴム成分100質量部中のSBRの含有量は、前記したように、40質量部以上、80質量部以下としているが、50質量部以上、70質量部以下であるとより好ましく、55質量部以上、65質量部以下であるとさらに好ましい。
SBRとしては特に限定されず、例えば、乳化重合スチレンブタジエンゴム(E-SBR)、溶液重合スチレンブタジエンゴム(S-SBR)等を使用できる。SBRは、非変性SBR、変性SBRのいずれであってもよい。また、SBR中のブタジエン部を水素添加させた水添SBRを用いてもよく、水添SBRはSBR中のBR部を後発的に水素添加処理して得てもよく、スチレン、エチレン、ブタジエンを共重合させて同様の構造を得てもよい。
変性SBRとしては、シリカ等の充填剤と相互作用する官能基を有するSBRであればよく、例えば、SBRの少なくとも一方の末端を、上記官能基を有する化合物(変性剤)で変性された末端変性SBR(末端に上記官能基を有する末端変性SBR)や、主鎖に上記官能基を有する主鎖変性SBRや、主鎖および末端に上記官能基を有する主鎖末端変性SBR(例えば、主鎖に上記官能基を有し、少なくとも一方の末端を上記変性剤で変性された主鎖末端変性SBR)や、分子中に2個以上のエポキシ基を有する多官能化合物により変性(カップリング)され、水酸基やエポキシ基が導入された末端変性SBR等が挙げられる。
上記官能基としては、例えば、アミノ基、アミド基、シリル基、アルコキシシリル基、イソシアネート基、イミノ基、イミダゾール基、ウレア基、エーテル基、カルボニル基、オキシカルボニル基、メルカプト基、スルフィド基、ジスルフィド基、スルホニル基、スルフィニル基、チオカルボニル基、アンモニウム基、イミド基、ヒドラゾ基、アゾ基、ジアゾ基、カルボキシル基、ニトリル基、ピリジル基、アルコキシ基、水酸基、オキシ基、エポキシ基等が挙げられる。なお、これらの官能基は、置換基を有していてもよい。
また、変性SBRとして、例えば、下記式で表される化合物(変性剤)により変性されたSBRを使用できる。
Figure 2024002387000002
なお、式中、R、RおよびRは、同一または異なって、アルキル基、アルコキシ基、シリルオキシ基、アセタール基、カルボキシル基(-COOH)、メルカプト基(-SH)またはこれらの誘導体を表す。RおよびRは、同一または異なって、水素原子またはアルキル基を表す。RおよびRは結合して窒素原子と共に環構造を形成してもよい。nは整数を表す。
上記式で表される化合物(変性剤)により変性された変性SBRとしては、溶液重合のスチレンブタジエンゴム(S-SBR)の重合末端(活性末端)を上記式で表される化合物により変性されたSBR(特開2010-111753号公報に記載の変性SBR等)を使用できる。
、RおよびRとしてはアルコキシ基が好適である(好ましくは炭素数1~8、より好ましくは炭素数1~4のアルコキシ基)。RおよびRとしてはアルキル基(好ましくは炭素数1~3のアルキル基)が好適である。nは、好ましくは1~5、より好ましくは2~4、更に好ましくは3である。また、RおよびRが結合して窒素原子と共に環構造を形成する場合、4~8員環であることが好ましい。なお、アルコキシ基には、シクロアルコキシ基(シクロヘキシルオキシ基等)、アリールオキシ基(フェノキシ基、ベンジルオキシ基等)も含まれる。
上記変性剤の具体例としては、2-ジメチルアミノエチルトリメトキシシラン、3-ジメチルアミノプロピルトリメトキシシラン、2-ジメチルアミノエチルトリエトキシシラン、3-ジメチルアミノプロピルトリエトキシシラン、2-ジエチルアミノエチルトリメトキシシラン、3-ジエチルアミノプロピルトリメトキシシラン、2-ジエチルアミノエチルトリエトキシシラン、3-ジエチルアミノプロピルトリエトキシシラン等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
また、変性SBRとしては、以下の化合物(変性剤)により変性された変性SBRも使用できる。変性剤としては、例えば、エチレングリコールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールエタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル等の多価アルコールのポリグリシジルエーテル;ジグリシジル化ビスフェノールA等の2個以上のフェノール基を有する芳香族化合物のポリグリシジルエーテル;1,4-ジグリシジルベンゼン、1,3,5-トリグリシジルベンゼン、ポリエポキシ化液状ポリブタジエン等のポリエポキシ化合物;4,4’-ジグリシジル-ジフェニルメチルアミン、4,4’-ジグリシジル-ジベンジルメチルアミン等のエポキシ基含有3級アミン;ジグリシジルアニリン、N,N’-ジグリシジル-4-グリシジルオキシアニリン、ジグリシジルオルソトルイジン、テトラグリシジルメタキシレンジアミン、テトラグリシジルアミノジフェニルメタン、テトラグリシジル-p-フェニレンジアミン、ジグリシジルアミノメチルシクロヘキサン、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン等のジグリシジルアミノ化合物;ビス-(1-メチルプロピル)カルバミン酸クロリド、4-モルホリンカルボニルクロリド、1-ピロリジンカルボニルクロリド、N,N-ジメチルカルバミド酸クロリド、N,N-ジエチルカルバミド酸クロリド等のアミノ基含有酸クロリド;1,3-ビス-(グリシジルオキシプロピル)-テトラメチルジシロキサン、(3-グリシジルオキシプロピル)-ペンタメチルジシロキサン等のエポキシ基含有シラン化合物;(トリメチルシリル)[3-(トリメトキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(トリエトキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(トリプロポキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(トリブトキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(メチルジメトキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(メチルジエトキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(メチルジプロポキシシリル)プロピル]スルフィド、(トリメチルシリル)[3-(メチルジブトキシシリル)プロピル]スルフィド等のスルフィド基含有シラン化合物;エチレンイミン、プロピレンイミン等のN-置換アジリジン化合物;メチルトリエトキシシラン、N,N-ビス(トリメチルシリル)-3-アミノプロピルトリメトキシシラン、N,N-ビス(トリメチルシリル)-3-アミノプロピルトリエトキシシラン、N,N-ビス(トリメチルシリル)アミノエチルトリメトキシシラン、N,N-ビス(トリメチルシリル)アミノエチルトリエトキシシラン等のアルコキシシラン;4-N,N-ジメチルアミノベンゾフェノン、4-N,N-ジ-t-ブチルアミノベンゾフェノン、4-N,N-ジフェニルアミノベンゾフェノン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’-ビス(ジフェニルアミノ)ベンゾフェノン、N,N,N’,N’-ビス-(テトラエチルアミノ)ベンゾフェノン等のアミノ基および/または置換アミノ基を有する(チオ)ベンゾフェノン化合物;4-N,N-ジメチルアミノベンズアルデヒド、4-N,N-ジフェニルアミノベンズアルデヒド、4-N,N-ジビニルアミノベンズアルデヒド等のアミノ基および/または置換アミノ基を有するベンズアルデヒド化合物;N-メチル-2-ピロリドン、N-ビニル-2-ピロリドン、N-フェニル-2-ピロリドン、N-t-ブチル-2-ピロリドン、N-メチル-5-メチル-2-ピロリドン等のN-置換ピロリドンN-メチル-2-ピペリドン、N-ビニル-2-ピペリドン、N-フェニル-2-ピペリドン等のN-置換ピペリドン;N-メチル-ε-カプロラクタム、N-フェニル-ε-カプロラクタム、N-メチル-ω-ラウリロラクタム、N-ビニル-ω-ラウリロラクタム、N-メチル-β-プロピオラクタム、N-フェニル-β-プロピオラクタム等のN-置換ラクタム類;の他、N,N-ビス-(2,3-エポキシプロポキシ)-アニリン、4,4-メチレン-ビス-(N,N-グリシジルアニリン)、トリス-(2,3-エポキシプロピル)-1,3,5-トリアジン-2,4,6-トリオン類、N,N-ジエチルアセトアミド、N-メチルマレイミド、N,N-ジエチル尿素、1,3-ジメチルエチレン尿素、1,3-ジビニルエチレン尿素、1,3-ジエチル-2-イミダゾリジノン、1-メチル-3-エチル-2-イミダゾリジノン、4-N,N-ジメチルアミノアセトフェン、4-N,N-ジエチルアミノアセトフェノン、1,3-ビス(ジフェニルアミノ)-2-プロパノン、1,7-ビス(メチルエチルアミノ)-4-ヘプタノン等を挙げることができる。なお、上記化合物(変性剤)による変性は公知の方法で実施可能である。
SBRとしては、例えば、住友化学(株)、JSR(株)、旭化成(株)、日本ゼオン(株)等により製造・販売されているSBRを使用できる。なお、SBRは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(ロ)BR
本発明においては、必要に応じて、さらに、BRを含んでもよい。この場合、ゴム成分100質量部中のBRの含有量は、20質量部超であることが好ましく、30質量部超であるとより好ましい。一方、50質量部未満であることが好ましく、45質量部未満であるとより好ましい。
BRの重量平均分子量は、例えば、10万超、200万未満である。BRのビニル含量は、例えば1質量%超、30質量%未満である。BRのシス量は、例えば1質量%超、98質量%未満である。BRのトランス量は、例えば1質量%超、60質量%未満である。
BRとしては特に限定されず、高シス含量(シス含量が90%以上)のBR、低シス含量のBR、シンジオタクチックポリブタジエン結晶を含有するBR等を使用できる。BRは、非変性BR、変性BRのいずれでもよく、変性BRとしては、前述の官能基が導入された変性BRが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なお、シス含量は、赤外吸収スペクトル分析法によって測定できる。
BRとしては、例えば、宇部興産(株)、JSR(株)、旭化成(株)、日本ゼオン(株)等の製品を使用できる。
(ハ)イソプレン系ゴム
本発明においては、必要に応じて、さらに、イソプレン系ゴムを含んでもよい。この場合、ゴム成分100質量部中のイソプレン系ゴムの含有量は、20質量部以上、40質量部以下であることが好ましい。
イソプレン系ゴムとしては、天然ゴム(NR)、イソプレンゴム(IR)、改質NR、変性NR、変性IR等が挙げられる。
NRとしては、例えば、SIR20、RSS♯3、TSR20等、タイヤ工業において一般的なものを使用できる。IRとしては、特に限定されず、例えば、IR2200等、タイヤ工業において一般的なものを使用できる。改質NRとしては、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(UPNR)等、変性NRとしては、エポキシ化天然ゴム(ENR)、水素添加天然ゴム(HNR)、グラフト化天然ゴム等、変性IRとしては、エポキシ化イソプレンゴム、水素添加イソプレンゴム、グラフト化イソプレンゴム等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
(ニ)その他のゴム成分
また、その他のゴム成分として、ニトリルゴム(NBR)などのタイヤの製造に一般的に用いられるゴム(ポリマー)を含んでもよい。
(b)ゴム成分以外の配合材料
(イ)充填剤
本発明において、ゴム組成物は、充填剤を含有することが好ましい。本発明において、具体的な充填剤としては、前記したように、シリカおよびカーボンブラックを、(シリカの含有量/カーボンブラックの含有量)が1以上となるように含有させて使用するが、必要に応じて、これ以外の、例えば、グラファイト、炭酸カルシウム、タルク、アルミナ、クレー、水酸化アルミニウム、マイカ、バイオ炭(BIO CHAR)などを含有させてもよい。
(i―1)シリカ
本発明において、ゴム組成物にはシリカを含有させるが、このとき、シリカと共にシランカップリング剤を含有することが好ましい。
シリカのBET比表面積は、良好な耐久性能が得られる観点から140m/g超であることが好ましく、160m/g超であるとより好ましく、180m/g超の微粒子シリカであるとさらに好ましい。一方、良好な高速走行時の転がり抵抗性を得られる観点からは300m/g未満が好ましい。なお、BET比表面積は、ASTM D3037-93に準じてBET法で測定されるNSAの値である。
本発明において、シリカの含有量は、ゴム成分100質量部に対して、40質量部以上であることが好ましく、50質量部以上であるとより好ましく、60質量部以上であるとさらに好ましい。一方、150質量部以下であることが好ましく、100質量部以下であるとより好ましく、70質量部以下であるとさらに好ましい。
シリカとしては、例えば、乾式法シリカ(無水シリカ)、湿式法シリカ(含水シリカ)などが挙げられる。なかでも、シラノール基が多いという理由から、湿式法シリカが好ましい。また、含水ガラスなどを原料としたシリカや、もみ殻などのバイオマス材用を原料としたシリカなどを用いてもよい。
シリカとしては、例えば、エボニックインダストリーズ社、ローディア社、東ソー・シリカ(株)、ソルベイジャパン(株)、(株)トクヤマ等の製品を使用できる。
(i-2)シランカップリング剤
前記したように、本発明において、ゴム組成物は、シリカと共にシランカップリング剤を含むことが好ましい。シランカップリング剤としては、特に限定されず、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(4-トリエトキシシリルブチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)トリスルフィド、ビス(4-トリメトキシシリルブチル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)ジスルフィド、ビス(4-トリエトキシシリルブチル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、ビス(2-トリメトキシシリルエチル)ジスルフィド、ビス(4-トリメトキシシリルブチル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、などのスルフィド系、3-メルカプトプロピルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、Momentive社製のNXT、NXT-Zなどのメルカプト系、ビニルトリエトキシシラン、ビニルトリメトキシシランなどのビニル系、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシランなどのアミノ系、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシランなどのグリシドキシ系、3-ニトロプロピルトリメトキシシラン、3-ニトロプロピルトリエトキシシランなどのニトロ系、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシランなどのクロロ系などが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
シランカップリング剤としては、例えば、エボニックインダストリーズ社、Momentive社、信越シリコーン(株)、東京化成工業(株)、アヅマックス(株)、東レ・ダウコーニング(株)等の製品を使用できる。
シランカップリング剤の含有量は、シリカ100質量部に対して、例えば、3質量部超、25質量部未満である。
(ii)カーボンブラック
本発明において、ゴム組成物には、補強性の観点から、カーボンブラックを含むことが好ましい。
ゴム成分100質量部に対するカーボンブラックの具体的な含有量は、シリカと同量以下で、20質量部以上であることが好ましく、30質量部以上であるとより好ましく、40質量部以上であるとより好ましい。一方、70質量部以下であることが好ましく、60質量部以下であるとより好ましく、50質量部以下であるとより好ましい。
カーボンブラックとしては特に限定されず、SAF、ISAF、HAF、MAF、FEF、SRF、GPF、APF、FF、CF、SCFおよびECFのようなファーネスブラック(ファーネスカーボンブラック);アセチレンブラック(アセチレンカーボンブラック);FTおよびMTのようなサーマルブラック(サーマルカーボンブラック);EPC、MPCおよびCCのようなチャンネルブラック(チャンネルカーボンブラック)などを挙げることができる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。
カーボンブラックのCTAB比表面積(Cetyl Tri-methyl Ammonium Bromide)は、130m/g以上が好ましく、160m/g以上であるとより好ましく、170m/g以上であるとさらに好ましい。一方、250m/g以下が好ましく、200m/g以下であるであるとより好ましい。なお、CTAB比表面積は、ASTM D3765-92に準拠して測定される値である。
具体的なカーボンブラックとしては特に限定されず、N134、N110、N220、N234、N219、N339、N330、N326、N351、N550、N762等が挙げられる。市販品としては、例えば、旭カーボン(株)、キャボットジャパン(株)、東海カーボン(株)、三菱化学(株)、ライオン(株)、新日化カーボン(株)、コロンビアカーボン社等の製品を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。なお、カーボンブラックとしては、従来の鉱物油を原料としたものの他、リグニンなどを原料としたカーボンブラックを用いても良い。
(iii)その他の充填剤
ゴム組成物には、必要に応じて、上記したシリカやカーボンブラックの他に、タイヤ工業において一般的に用いられている、例えば、グラファイト、炭酸カルシウム、タルク、アルミナ、クレー、水酸化アルミニウム、マイカ等の充填剤をさらに含有してもよい。これらの含有量は、ゴム成分100質量部に対して、例えば、0.1質量部超、200質量部未満である。
(ロ)可塑剤成分
ゴム組成物は、ゴムを軟化させる成分として、オイル、液状ゴム、および樹脂を可塑剤成分として含んでもよい。なお、可塑剤成分は、加硫ゴム中からアセトンにより抽出可能な成分である。可塑剤成分の合計含有量は、ゴム成分100質量部に対して、15質量部以上であることが好ましく、20質量部以上であるとより好ましく、30質量部以上であるとより好ましい。一方、55質量部以下であることが好ましく、50質量部以下であるとより好ましく、45質量部以下であるとより好ましい。なお、前記したゴム成分が伸展ゴムを含む場合、その伸展成分は可塑剤成分に含まれる。
(i)オイル
オイルとしては、例えば、鉱物油(一般にプロセスオイルと言われる)、植物油脂、またはその混合物が挙げられる。鉱物油(プロセスオイル)としては、例えば、MES(Mild Extract Solvated)、DAE(Distillate Aromatic Extract)、TDAE(Treated Dstillate Aromatic Extract)、TRAE(Treated Residual Aromatic Extract)、RAE(Residual Aromatic Extract)などのパラフィン系プロセスオイル、アロマ系プロセスオイル、ナフテン系プロセスオイルなどを用いることができる。植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生油、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、べに花油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、桐油等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。また、ライフサイクルアセスメントの観点から、ゴム混合用のミキサーや自動車用エンジンなどの潤滑油として用いられた後の廃オイルや、廃食用油などを適宜用いてもよい。
具体的なプロセスオイル(鉱物油)としては、例えば、出光興産(株)、三共油化工業(株)、ENEOS(株)、オリソイ社、H&R社、豊国製油(株)、昭和シェル石油(株)、富士興産(株)等の製品を使用できる。
(ii)液状ゴム
可塑剤として挙げた液状ゴムとは、常温(25℃)で液体状態の重合体であり、加硫後のタイヤからアセトン抽出により抽出可能なゴム成分である。液状ゴムとしては、ファルネセン系ポリマー、液状ジエン系重合体及びそれらの水素添加物等が挙げられる。
ファルネセン系ポリマーとは、ファルネセンを重合することで得られる重合体であり、ファルネセンに基づく構成単位を有する。ファルネセンには、α-ファルネセン((3E,7E)-3,7,11-トリメチル-1,3,6,10-ドデカテトラエン)やβ-ファルネセン(7,11-ジメチル-3-メチレン-1,6,10-ドデカトリエン)などの異性体が存在する。
ファルネセン系ポリマーは、ファルネセンの単独重合体(ファルネセン単独重合体)でも、ファルネセンとビニルモノマーとの共重合体(ファルネセン-ビニルモノマー共重合体)でもよい。
液状ジエン系重合体としては、液状スチレンブタジエン共重合体(液状SBR)、液状ブタジエン重合体(液状BR)、液状イソプレン重合体(液状IR)、液状スチレンイソプレン共重合体(液状SIR)などが挙げられる。
液状ジエン系重合体は、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の重量平均分子量(Mw)が、例えば、1.0×10超、2.0×10未満である。なお、本明細書において、液状ジエン系重合体のMwは、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算値である。
液状ゴムの含有量(液状ファルネセン系ポリマー、液状ジエン系重合体等の合計含有量)は、ゴム成分100質量部に対して、例えば、1質量部超、100質量部未満である。
液状ゴムとしては、例えば、クラレ(株)、クレイバレー社等の製品を使用できる。
(iii)樹脂成分
樹脂成分は、粘着性付与成分としても機能し、常温で固体であっても、液体であってもよく、具体的な樹脂成分としては、例えば、ロジン系樹脂、スチレン系樹脂、クマロン系樹脂、テルペン系樹脂、C5樹脂、C9樹脂、C5C9樹脂、アクリル系樹脂などの樹脂が挙げられ、2種以上を併用しても良い。樹脂成分の含有量は、ゴム成分100質量部に対して、2質量部超で、45質量部未満が好ましく、30質量部未満がより好ましい。なお、これらの樹脂成分は、必要に応じて、シリカ等と反応できる変性基を付与してもよい。
ロジン系樹脂は、松脂を加工することにより得られるロジン酸を主成分とする樹脂である。このロジン系樹脂(ロジン類)は、変性の有無によって分類可能であり、無変性ロジン(未変性ロジン)、ロジン変性体(ロジン誘導体)に分類できる。無変性ロジンとしては、トールロジン(別名トール油ロジン)、ガムロジン、ウッドロジン、不均斉化ロジン、重合ロジン、水素化ロジン、その他の化学的に修飾されたロジンなどが挙げられる。ロジン変性体は無変性ロジンの変性体であって、ロジンエステル類、不飽和カルボン酸変性ロジン類、不飽和カルボン酸変性ロジンエステル類、ロジンのアミド化合物、ロジンのアミン塩などが挙げられる。
スチレン系樹脂は、スチレン系単量体を構成モノマーとして用いたポリマーであり、スチレン系単量体を主成分(50質量%以上)として重合させたポリマー等が挙げられる。具体的には、スチレン系単量体(スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、p-メトキシスチレン、p-tert-ブチルスチレン、p-フェニルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン等)をそれぞれ単独で重合した単独重合体、2種以上のスチレン系単量体を共重合した共重合体の他、スチレン系単量体およびこれと共重合し得る他の単量体のコポリマーも挙げられる。
前記他の単量体としては、アクリロニトリル、メタクリロニトリルなどのアクリロニトリル類、アクリル類、メタクリル酸などの不飽和カルボン酸類、アクリル酸メチル、メタクリル酸メチルなどの不飽和カルボン酸エステル類、クロロプレン、ブタジエンイソプレンなどのジエン類、1-ブテン、1-ペンテンのようなオレフィン類;無水マレイン酸等のα,β-不飽和カルボン酸またはその酸無水物等が例示できる。
クマロン系樹脂の中でも、クマロンインデン樹脂が好ましい。クマロンインデン樹脂は、樹脂の骨格(主鎖)を構成するモノマー成分として、クマロンおよびインデンを含む樹脂である。クマロン、インデン以外に骨格に含まれるモノマー成分としては、スチレン、α-メチルスチレン、メチルインデン、ビニルトルエンなどが挙げられる。
クマロンインデン樹脂の含有量は、ゴム成分100質量部に対して、例えば、1.0質量部超、50.0質量部未満である。
クマロンインデン樹脂の水酸基価(OH価)は、例えば、15mgKOH/g超、150mgKOH/g未満である。なお、OH価とは、樹脂1gをアセチル化するとき、水酸基と結合した酢酸を中和するのに要する水酸化カリウムの量をミリグラム数で表したものであり、電位差滴定法(JIS K 0070:1992)により測定した値である。
クマロンインデン樹脂の軟化点は、例えば、30℃超、160℃未満である。なお、軟化点は、JIS K 6220-1:2001に規定される軟化点を環球式軟化点測定装置で測定し、球が降下した温度である。
テルペン系樹脂としては、ポリテルペン、テルペンフェノール、芳香族変性テルペン樹脂などが挙げられる。ポリテルペンは、テルペン化合物を重合して得られる樹脂およびそれらの水素添加物である。テルペン化合物は、(Cの組成で表される炭化水素およびその含酸素誘導体で、モノテルペン(C1016)、セスキテルペン(C1524)、ジテルペン(C2032)などに分類されるテルペンを基本骨格とする化合物であり、例えば、α-ピネン、β-ピネン、ジペンテン、リモネン、ミルセン、アロオシメン、オシメン、α-フェランドレン、α-テルピネン、γ-テルピネン、テルピノレン、1,8-シネオール、1,4-シネオール、α-テルピネオール、β-テルピネオール、γ-テルピネオールなどが挙げられる。
ポリテルペンとしては、上述したテルペン化合物を原料とするα-ピネン樹脂、β-ピネン樹脂、リモネン樹脂、ジペンテン樹脂、β-ピネン/リモネン樹脂などのテルペン樹脂の他、該テルペン樹脂に水素添加処理した水素添加テルペン樹脂も挙げられる。テルペンフェノールとしては、上記テルペン化合物とフェノール系化合物とを共重合した樹脂、および該樹脂に水素添加処理した樹脂が挙げられ、具体的には、上記テルペン化合物、フェノール系化合物およびホルマリンを縮合させた樹脂が挙げられる。なお、フェノール系化合物としては、例えば、フェノール、ビスフェノールA、クレゾール、キシレノールなどが挙げられる。芳香族変性テルペン樹脂としては、テルペン樹脂を芳香族化合物で変性して得られる樹脂、および該樹脂に水素添加処理した樹脂が挙げられる。なお、芳香族化合物としては、芳香環を有する化合物であれば特に限定されないが、例えば、フェノール、アルキルフェノール、アルコキシフェノール、不飽和炭化水素基含有フェノールなどのフェノール化合物;ナフトール、アルキルナフトール、アルコキシナフトール、不飽和炭化水素基含有ナフトールなどのナフトール化合物;スチレン、アルキルスチレン、アルコキシスチレン、不飽和炭化水素基含有スチレンなどのスチレン誘導体;クマロン、インデンなどが挙げられる。
「C5樹脂」とは、C5留分を重合することにより得られる樹脂をいう。C5留分としては、例えば、シクロペンタジエン、ペンテン、ペンタジエン、イソプレン等の炭素数4~5個相当の石油留分が挙げられる。C5系石油樹脂しては、ジシクロペンタジエン樹脂(DCPD樹脂)が好適に用いられる。
「C9樹脂」とは、C9留分を重合することにより得られる樹脂をいい、それらを水素添加したものや変性したものであってもよい。C9留分としては、例えば、ビニルトルエン、アルキルスチレン、インデン、メチルインデン等の炭素数8~10個相当の石油留分が挙げられる。具体例としては、例えば、クマロンインデン樹脂、クマロン樹脂、インデン樹脂、および芳香族ビニル系樹脂が好適に用いられる。芳香族ビニル系樹脂としては、経済的で、加工しやすく、発熱性に優れているという理由から、α-メチルスチレンもしくはスチレンの単独重合体またはα-メチルスチレンとスチレンとの共重合体が好ましく、α-メチルスチレンとスチレンとの共重合体がより好ましい。芳香族ビニル系樹脂としては、例えば、クレイトン社、イーストマンケミカル社等より市販されているものを使用することができる。
「C5C9樹脂」とは、前記C5留分と前記C9留分を共重合することにより得られる樹脂をいい、それらを水素添加したものや変性したものであってもよい。C5留分およびC9留分としては、前記の石油留分が挙げられる。C5C9樹脂としては、例えば、東ソー(株)、LUHUA社等より市販されているものを使用することができる。
アクリル系樹脂としては特に限定されないが、例えば、無溶剤型アクリル系樹脂を使用できる。
無溶剤型アクリル系樹脂は、副原料となる重合開始剤、連鎖移動剤、有機溶媒などを極力使用せずに、高温連続重合法(高温連続塊重合法)(米国特許第4,414,370号明細書、特開昭59-6207号公報、特公平5-58005号公報、特開平1-313522号公報、米国特許第5,010,166号明細書、東亜合成研究年報TREND2000第3号p42-45等に記載の方法)により合成された(メタ)アクリル系樹脂(重合体)が挙げられる。なお、本発明において、(メタ)アクリルは、メタクリルおよびアクリルを意味する。
上記アクリル系樹脂を構成するモノマー成分としては、例えば、(メタ)アクリル酸や、(メタ)アクリル酸エステル(アルキルエステル、アリールエステル、アラルキルエステルなど)、(メタ)アクリルアミド、および(メタ)アクリルアミド誘導体などの(メタ)アクリル酸誘導体が挙げられる。
また、上記アクリル系樹脂を構成するモノマー成分として、(メタ)アクリル酸や(メタ)アクリル酸誘導体と共に、スチレン、α-メチルスチレン、ビニルトルエン、ビニルナフタレン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレンなどの芳香族ビニルを使用してもよい。
上記アクリル系樹脂は、(メタ)アクリル成分のみで構成される樹脂であっても、(メタ)アクリル成分以外の成分をも構成要素とする樹脂であっても良い。また、上記アクリル系樹脂は、水酸基、カルボキシル基、シラノール基等を有していても良い。
樹脂成分としては、例えば、丸善石油化学(株)、住友ベークライト(株)、ヤスハラケミカル(株)、東ソー(株)、Rutgers Chemicals社、BASF社、アリゾナケミカル社、日塗化学(株)、(株)日本触媒、ENEOS(株)、荒川化学工業(株)、田岡化学工業(株)等の製品を使用できる。
(ハ)ステアリン酸
本発明において、ゴム組成物には、ステアリン酸を含むことが好ましい。ステアリン酸の含有量は、ゴム成分100質量部に対して、例えば、0.5質量部超、10.0質量部未満である。ステアリン酸としては、従来公知のものを使用でき、例えば、日油(株)、NOF社、花王(株)、富士フイルム和光純薬(株)、千葉脂肪酸(株)等の製品を使用できる。
(ニ)老化防止剤
本発明において、ゴム組成物には、老化防止剤を含むことが好ましい。老化防止剤の含有量は、ゴム成分100質量部に対して、例えば、0.5質量部超、10質量部未満であり、1質量部以上がより好ましい。
老化防止剤としては、例えば、フェニル-α-ナフチルアミン等のナフチルアミン系老化防止剤;オクチル化ジフェニルアミン、4,4′-ビス(α,α′-ジメチルベンジル)ジフェニルアミン等のジフェニルアミン系老化防止剤;N-イソプロピル-N′-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N′-フェニル-p-フェニレンジアミン、N,N′-ジ-2-ナフチル-p-フェニレンジアミン等のp-フェニレンジアミン系老化防止剤;2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物等のキノリン系老化防止剤;2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノール等のモノフェノール系老化防止剤;テトラキス-[メチレン-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)プロピオネート]メタン等のビス、トリス、ポリフェノール系老化防止剤などが挙げられる。これらは単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。
なお、老化防止剤としては、例えば、精工化学(株)、住友化学(株)、大内新興化学工業(株)、フレクシス社等の製品を使用できる。
(ホ)ワックス
本発明において、ゴム組成物には、ワックスを含むことが好ましい。ワックオフ含有量は、ゴム成分100質量部に対して、例えば、0.5~20質量部、好ましくは1.0~15質量部、より好ましくは1.5~10質量部である。
ワックスとしては、特に限定されず、パラフィンワックス、マイクロクリスタリンワックス等の石油系ワックス;植物系ワックス、動物系ワックス等の天然系ワックス;エチレン、プロピレン等の重合物等の合成ワックスなどが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
なお、ワックスとしては、例えば、大内新興化学工業(株)、日本精蝋(株)、精工化学(株)等の製品を使用できる。
(ヘ)酸化亜鉛
ゴム組成物は、酸化亜鉛を含んでもよい。酸化亜鉛の含有量は、ゴム成分100質量部に対し、例えば、0.5質量部超、10質量部未満である。酸化亜鉛としては、従来公知のものを使用でき、例えば、三井金属鉱業(株)、東邦亜鉛(株)、ハクスイテック(株)、正同化学工業(株)、堺化学工業(株)等の製品を使用できる。
(ト)分散剤
ゴム組成物は、分散剤を含んでもよい。シリカと併用することにより、ゴムマトリックス中でシリカを十分に分散させることができる。分散剤の含有量としては、ゴム成分100質量部に対して、0.5質量部超、10質量部未満であることが好ましく、1質量部以上、5質量部以下であるとより好ましい。
分散剤としては、前記したアミン化合物が挙げられる。また、例えば、ヘキシルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジフェニルジメトキシシラン等のアルコキシシランのようなシラン化合物などが挙げられ、市販品としては、例えば、信越化学工業(株)製のKBE-103(フェニルトリエトキシシラン)等を使用することができる。
(チ)架橋剤および加硫促進剤
ゴム組成物は、硫黄等の架橋剤を含むことが好ましい。架橋剤の含有量は、ゴム成分100質量部に対して、例えば、0.1質量部超、10.0質量部未満である。
硫黄としては、ゴム工業において一般的に用いられる粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄、可溶性硫黄などが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
なお、硫黄としては、例えば、鶴見化学工業(株)、軽井沢硫黄(株)、四国化成工業(株)、フレクシス社、日本乾溜工業(株)、細井化学工業(株)等の製品を使用できる。
硫黄以外の架橋剤としては、例えば、田岡化学工業(株)製のタッキロールV200、ランクセス社製のKA9188(1,6-ビス(N,N’-ジベンジルチオカルバモイルジチオ)ヘキサン)等の硫黄原子を含む加硫剤や、ジクミルパーオキサイド等の有機過酸化物等が挙げられる。
ゴム組成物は、加硫促進剤を含むことが好ましい。加硫促進剤の含有量は、ゴム成分100質量部に対して、例えば、0.3質量部超、10.0質量部未満である。
加硫促進剤としては、2-メルカプトベンゾチアゾール、ジ-2-ベンゾチアゾリルジスルフィド、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド等のチアゾール系加硫促進剤;テトラメチルチウラムジスルフィド(TMTD)、テトラベンジルチウラムジスルフィド(TBzTD)、テトラキス(2-エチルヘキシル)チウラムジスルフィド(TOT-N)等のチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N-t-ブチル-2-ベンゾチアゾリルスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド等のスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジン等のグアニジン系加硫促進剤を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。
(リ)その他
ゴム組成物には、前記成分の他、タイヤ工業において一般的に用いられている添加剤、例えば、脂肪酸金属塩、カルボン酸金属塩、有機過酸化物、リバージョン(加硫戻り)防止剤等を、必要に応じて、さらに配合してもよい。これらの添加剤の含有量は、ゴム成分100質量部に対して、例えば、0.1質量部超、200質量部未満である。
(2)ゴム組成物の作製
キャップゴム層を形成するゴム組成物は、上記した各種配合材料の適宜、調整して、一般的な方法、例えば、ゴム成分とカーボンブラック等のフィラーとを混練するベース練り工程と、前記ベース練り工程で得られた混練物と架橋剤とを混練する仕上げ練り工程とを含む製造方法により作製される。
混練は、例えば、バンバリーミキサー、ニーダー、オープンロールなどの公知の(密閉式)混練機を用いて行うことができる。
ベース練り工程の混練温度は、例えば、50℃超、200℃未満であり、混練時間は、例えば、30秒超、30分未満である。ベース練り工程では、上記成分以外にも、従来ゴム工業で使用される配合剤、例えば、オイル等の可塑剤、酸化亜鉛、老化防止剤、ワックス、加硫促進剤などを必要に応じて適宜添加、混練してもよい。なお、混合時の材料の投入順序は特に制限されず、ゴム成分をミキサー内で粉砕した後、充填剤や軟化剤を加えても良く、ミキサー内で予め充填剤と軟化剤を混ぜ合わせた後、ゴム成分を投入しても良い。
仕上げ練り工程では、前記ベース練り工程で得られた混練物と架橋剤とが混練される。仕上げ練り工程の混練温度は、例えば、室温超、80℃未満であり、混練時間は、例えば、1分超、15分未満である。仕上げ練り工程では、上記成分以外にも、加硫促進剤、酸化亜鉛等を必要に応じて適宜添加、混練してもよい。
2.タイヤの製造
本発明に係るタイヤは、上記で得られたゴム組成物をキャップゴム層として、所定の形状のトレッドゴムに成形した後、他のタイヤ部材と共に、タイヤ成型機上にて通常の方法で成形することにより、未加硫タイヤとして作製することができる。
なお、トレッド部をベースゴム層との複層構造とする場合には、基本的には、上記したゴム成分および配合材料を用いて、その配合量を適宜変更して、同様に混練することにより、ベースゴム層を形成するゴム組成物を得ることができる。そして、キャップゴム層とともに押し出して所定の形状のトレッドゴムに成形した後、他のタイヤ部材と共に、タイヤ成型機上にて通常の方法で成形することにより、未加硫タイヤとして作製することができる。
具体的には、成形ドラム上に、タイヤの気密保持性を確保するための部材としてのインナーライナー、タイヤの受ける荷重、衝撃、充填空気圧に耐える部材としてのカーカス、カーカスを強く締付けトレッドの剛性を高める部材としてのベルト部材などを巻回し、両側縁部にカーカスの両端を固定すると共に、タイヤをリムに固定させるための部材としてのビード部を配置して、トロイド状に成形した後、外周の中央部にトレッド、径方向外側にサイドウォールを貼り合せてサイド部を構成させることにより、未加硫タイヤを作製する。
その後、作製された未加硫タイヤを加硫機中で加熱加圧することによりタイヤを得る。加硫工程は、公知の加硫手段を適用することで実施できる。加硫温度としては、例えば、120℃超、200℃未満であり、加硫時間は、例えば、5分超、15分未満である。
得られたタイヤは、前記したように、キャップゴム層自体を、変形が吸収され易く、高い強度に形成するとともに、トレッド部の厚みを薄くして、ゴムの変形量、蓄熱量を抑制して、転動中における強度が高い状態を維持できるようにしているため、悪路を高速で走行させた場合であっても、十分な耐チッピング性能を発揮させることができる。
なお、本発明に係るタイヤは、特にカテゴリーは限定されず、乗用車用タイヤ、トラックやバス等の重荷重車用タイヤ、二輪自動車用タイヤ、ランフラットタイヤ、非空気入りタイヤ等として使用することができるが、重荷重車用タイヤとすることが好ましい。また、空気入りタイヤとすることが好ましい。
以下では、実施をする際に好ましいと考えられる例(実施例)を示すが、本発明の範囲は当該実施例に限られない。実施例においては、以下に示す各種薬品を用いて各表に従って配合を変化させて得られる組成物から作製される空気入りタイヤ(タイヤサイズ235/65R18(扁平率:65%、ランド比:60%))を検討して下記評価方法に基づいて算出した結果を表2~表4に示す。
1.キャップゴム層を形成するゴム組成物
(1)配合材料
(a)ゴム成分
(イ)SBR-1:次段落に示す方法により得られた変性S-SBR
(スチレン量:25質量%、ビニル含量:25質量%)
(ロ)SBR-2:JSR(株)製のHPR840(変性S-SBR)
(スチレン量:10質量%、ビニル含量:42質量%)
(ハ)SBR-3:SR(株)製のHPR850(変性S-SBR)
(スチレン量:27.5質量%、ビニル含量:59.0質量%)
(ニ)NR:TSR20
(ホ)BR:宇部興産(株)製のウベポールBR150B(ハイシスBR)
(シス含量97質量%、トランス含量2質量%、ビニル含量1質量%)
(SBR-1の製造)
上記SBR-1は、以下の手順に従って作製する。まず、内容積10Lで、底部に入口、頭部に出口を有し、撹拌機およびジャケットを付けたオートクレーブを反応器として2基直列に連結し、ブタジエン、スチレン、シクロヘキサンを各々所定の比率で混合する。この混合溶液を、活性アルミナを充填した脱水カラムを経由し、不純物を除去するためにn-ブチルリチウムをスタティックミキサー中で混合した後、1基目の反応器底部より連続的に供給し、さらに極性物質として2,2-ビス(2-オキソラニル)プロパンを、重合開始剤としてn-ブチルリチウムを所定の速度でそれぞれ1基目の反応器底部より連続的に供給し、反応器内温を95℃に保持する。反応器頭部より重合体溶液を連続的に抜き出し、2基目の反応器へ供給する。2基目の反応器の温度を95℃に保ち、変性剤としてテトラグリシジル-1,3-ビスアミノメチルシクロヘキサン(単量体)と、オリゴマー成分との混合物を所定の速度でシクロヘキサン1000倍希釈液として連続的に加えて変性反応を行なう。この重合体溶液を反応器から連続的に抜き出し、スタティックミキサーで連続的に酸化防止剤を添加した後、溶媒を除去して、目的とする変性ジエン系重合体(SBR-1)を得る。
当該SBR-1のビニル結合量(単位:モル%)は、赤外分光分析法により、ビニル基の吸収ピークである910cm-1付近の吸収強度より求める。また、スチレン量(単位:質量%)は、JIS K6383(1995)に従って、屈折率より求める。
(b)ゴム成分以外の配合材料
(イ)カーボンブラック:キャボットジャパン(株)製のショウブラックN134
(CTAB比表面積:135m/g)
(ロ)シリカ-1:エボニックインダストリーズ社製のウルトラシルVN3
(NSA:175m/g、平均粒子径:18nm)
(ハ)シリカ-2:エボニックインダストリーズ社製のウルトラシル9100Gr
(NSA:235m/g、平均粒子径:15nmの微粒子シリカ)
(ニ)シランカップリング剤-1:エボニックインダストリーズ社製のSi266
(ビス(3-トリエトキシシリルプロピル)ジスルフィド)
(ホ)シランカップリング剤-2:Momentive社製のNXT
(3-オクタノイルチオプロピルトリエトキシシラン)
(ヘ)樹脂:東ソー(株)製のペトロタック90(C5/C9共重合系石油樹脂)
(ト)分散剤:ライオン・スペシャリティ・ケミカルズ(株)製のリポノールHT/14
(ポリオキシエチレンアルキル(C14~C18)アミン(4E.O.)
(チ)オイル:出光興産(株)製のダイアナプロセスAH-24(アロマオイル)
(リ)ワックス:大内新興化学工業(株)製のサンノックN
(ヌ)老化防止剤-1:住友化学(株)製のアンチゲン6C
(N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン)
(ル)老化防止剤-2:住友化学(株)製のアンチゲンRD
(2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物)
(ヲ)ステアリン酸:日油(株)製のビーズステアリン酸「椿」
(ワ)酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
(カ)硫黄:鶴見化学工業(株)製の粉末硫黄(5%オイル含有)
(ヨ)加硫促進剤-1:大内新興化学工業(株)製のノクセラーCZ
(N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド(CBS))
(タ)加硫促進剤-2:住友化学工業(株)製のソクシールD(DPG)
(N,N’-ジフェニルグアニジン)
(2)キャップゴム層を形成するゴム組成物
表2~表4に示す各配合内容に従い、バンバリーミキサーを用いて、硫黄および加硫促進剤以外の材料を150℃の条件下で5分間混練りして、混練物を得る。なお、各配合量は、質量部である。
次に、当該混練物に、硫黄および加硫促進剤を添加し、オープンロールを用いて、80℃の条件下で5分間練り込み、キャップゴム層を形成するゴム組成物を得る。
2.ベースゴム層を形成するゴム組成物
並行して、ベースゴム層を形成するゴム組成物を表1に示す配合に基づいて、キャップゴム層を形成するゴム組成物の製造と同様にして、ベースゴム層を形成するゴム組成物を得る。
Figure 2024002387000003
3.キャップゴムおよび空気入りタイヤの製造
各ゴム組成物を用いて、加硫後のキャップゴム層の厚み/ベースゴム層の厚み=70/30、トレッド厚みが12mm及び10mmとなる様、所定形状に押出加工してトレッド部を製造する。
その後、他のタイヤ部材と共に貼り合わせて未加硫タイヤを形成し、170℃の条件下で10分間プレス加硫して、実施例1~実施例11、比較例1~比較例6の各空気入りタイヤ(試験用タイヤ)を製造する。
4.パラメータの算出
その後、各試験用タイヤについて、以下のパラメータを求める。
(1) 30℃tanδ
各試験用タイヤのトレッド部のキャップゴム層から、タイヤ周方向が長辺となるように、長さ20mm×幅4mm×厚さ2mmのサイズで切り出して、粘弾性測定用ゴム試験片を作製し、各ゴム試験片について、GABO社製のイプレクサーシリーズを用いて、測定温度:30℃、周波数10Hz、初期歪5%、動歪1%、変形モード:引張の条件下、tanδを測定する。なお、ベースゴム層の30℃tanδは0.07とする。
(2)Tg
キャップゴム層から同様に切り出して作製した粘弾性測定用ゴム試験片について、GABO社製「イプレクサー(登録商標)」を用いて、周波数10Hz、初期歪2%、振幅±1%及び昇温速度2℃/minの条件下、-60℃から40℃まで温度を変化させてtanδを測定し、得られた温度分布曲線における最も大きいtanδ値に対応する温度を、Tg(℃)として求める。
(3)M100
各試験用タイヤのキャップゴム層から採取したサンプルから厚さ1mmの7号ダンベル形状の試験片を作製し、JIS K6251:2010に準拠して、23℃において引張試験を実施して、100%伸長時モジュラス(M100:MPa)を測定する。
(4)AE
各試験用タイヤのトレッド部のキャップゴム層から切り出した加硫ゴム試験片を用い、JIS K 6229:2015に準拠してAE(質量%)を求める。
(5)その他のパラメータ
併せて、各試験用タイヤにおけるシリカ量/カーボンブラック量(シリカ/CB)、30℃tanδ/トレッド部厚み、M100(MPa)/トレッド部厚み、スチレン量25質量%以下のSBR含有量×ランド比(SBR含有量×ランド比)、シリカ含有量×扁平率を算出する。
5.性能評価(耐チッピング性能)
各試験用タイヤをテスト車両(排気量2000cc、前輪駆動車)の全輪に装着させて、正規内圧となるように空気を充填した後、岩場を想定した悪路試験コースを10周回走行(100km)して、タイヤのトレッド部に生じたブロックの欠けの数及び大きさを計測し、比較例1における結果を100として、下式に基づいて指数化し、耐チッピング性能の評価とする。数値が大きいほど、耐チッピング性能が優れていることを示す。
耐チッピング性能=[(比較例1の結果)/(試験タイヤの結果)]×100
Figure 2024002387000004
Figure 2024002387000005
Figure 2024002387000006
以上、本発明を実施の形態に基づいて説明したが、本発明は上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることができる。
本発明(1)は、
厚み15mm以下のトレッド部を備えたタイヤであって、
前記トレッド部を形成するキャップゴム層が、
スチレン量25質量%以下のスチレンブタジエンゴム(SBR)を、ゴム成分100質量部中に40質量部以上、80質量部以下含有すると共に、前記ゴム成分に加えて、シリカおよびカーボンブラックを含有し、温度30℃、周波数10Hz、初期歪5%、動歪率1%の条件下、変形モード:引張で測定された損失正接30℃tanδが、0.18超のゴム組成物から形成されており、
前記ゴム組成物において、前記カーボンブラックの含有量がゴム成分100質量部に対して15質量部以上であると共に、前記カーボンブラックの含有量に対する前記シリカの含有量の比率が1以上であることを特徴とするタイヤである。
本発明(2)は、
前記30℃tanδが、0.24以上であることを特徴とし、本発明(1)に記載のタイヤである。
本発明(3)は、
前記カーボンブラックの含有量が、ゴム成分100質量部に対して、30質量部以上であることを特徴とし、本発明(1)または(2)に記載のタイヤである。
本発明(4)は、
前記キャップゴム層を構成するゴム組成物のガラス転移温度Tg(℃)が、-45℃以上、-10℃以下であることを特徴とし、本発明(1)から(3)のいずれかとの任意の組合せのタイヤである。
本発明(5)は、
前記キャップゴム層を構成するゴム組成物のガラス転移温度Tg(℃)が、-40℃以上、-30℃以下であることを特徴とし、本発明(4)に記載のタイヤである。
本発明(6)は、
前記キャップゴム層を構成するゴム組成物の100%モジュラス(M100)が、2.0MPa超であることを特徴とし、本発明(1)から(5)のいずれかとの任意の組合せのタイヤである。
本発明(7)は、
前記キャップゴム層を構成するゴム組成物の100%モジュラス(M100)が、2.2MPa超であることを特徴とし、本発明(6)に記載のタイヤである。
本発明(8)は、
前記キャップゴム層を構成するゴム組成物に、分散剤が含有されていることを特徴とし、本発明(1)から(7)のいずれかとの任意の組合せのタイヤである。
本発明(9)は、
前記分散剤の含有量が、ゴム成分100質量部に対して、0.5質量部超、10質量部未満であることを特徴とし、本発明(8)に記載のタイヤである。
本発明(10)は、
前記トレッド部全体に占める前記キャップゴム層の厚みが10%以上であることを特徴とし、本発明(1)から(9)のいずれかとの任意の組合せのタイヤである。
本発明(11)は、
前記トレッド部におけるランド比が、40%以上であり、
ゴム成分100質量部中における前記スチレン量25質量%以下のスチレンブタジエンゴム(SBR)の含有量(質量部)と、トレッド部におけるランド比(%)との積が、2500以上であることを特徴とし、本発明(1)から(10)のいずれかとの任意の組合せのタイヤである。
本発明(12)は、
扁平率が、80%以下であり、
ゴム成分100質量部に対する前記シリカの含有量(質量部)と、扁平率との積が、3000以上であることを特徴とし、本発明(1)から(11)のいずれかとの任意の組合せのタイヤである。
本発明(13)は、
前記トレッド部の厚みT(mm)に対する前記30℃tanδの比(30℃tanδ/T)が0.025以上であることを特徴とし、本発明(1)から(12)のいずれかとの任意の組合せのタイヤである。
本発明(14)は、
前記トレッド部の厚みT(mm)に対する前記M100(MPa)の比(M100/T)が0.15以上であることを特徴とし、本発明(1)から(13)のいずれかとの任意の組合せのタイヤである。

Claims (14)

  1. 厚み15mm以下のトレッド部を備えたタイヤであって、
    前記トレッド部を形成するキャップゴム層が、
    スチレン量25質量%以下のスチレンブタジエンゴム(SBR)を、ゴム成分100質量部中に40質量部以上、80質量部以下含有すると共に、前記ゴム成分に加えて、シリカおよびカーボンブラックを含有し、温度30℃、周波数10Hz、初期歪5%、動歪率1%の条件下、変形モード:引張で測定された損失正接30℃tanδが、0.18超のゴム組成物から形成されており、
    前記ゴム組成物において、前記カーボンブラックの含有量がゴム成分100質量部に対して15質量部以上であると共に、前記カーボンブラックの含有量に対する前記シリカの含有量の比率が1以上であることを特徴とするタイヤ。
  2. 前記30℃tanδが、0.24以上であることを特徴とする請求項1に記載のタイヤ。
  3. 前記カーボンブラックの含有量が、ゴム成分100質量部に対して、30質量部以上であることを特徴とする請求項1または請求項2に記載のタイヤ。
  4. 前記キャップゴム層を構成するゴム組成物のガラス転移温度Tg(℃)が、-45℃以上、-10℃以下であることを特徴とする請求項1ないし請求項3のいずれか1項に記載のタイヤ。
  5. 前記キャップゴム層を構成するゴム組成物のガラス転移温度Tg(℃)が、-40℃以上、-30℃以下であることを特徴とする請求項4に記載のタイヤ。
  6. 前記キャップゴム層を構成するゴム組成物の100%モジュラス(M100)が、2.0MPa超であることを特徴とする請求項1ないし請求項5のいずれか1項に記載のタイヤ。
  7. 前記キャップゴム層を構成するゴム組成物の100%モジュラス(M100)が、2.2MPa超であることを特徴とする請求項6に記載のタイヤ。
  8. 前記キャップゴム層を構成するゴム組成物に、分散剤が含有されていることを特徴とする請求項1ないし請求項7のいずれか1項に記載のタイヤ。
  9. 前記分散剤の含有量が、ゴム成分100質量部に対して、0.5質量部超、10質量部未満であることを特徴とする請求項8に記載のタイヤ。
  10. 前記トレッド部全体に占める前記キャップゴム層の厚みが10%以上であることを特徴とする請求項1ないし請求項9のいずれか1項に記載のタイヤ。
  11. 前記トレッド部におけるランド比が、40%以上であり、
    ゴム成分100質量部中における前記スチレン量25質量%以下のスチレンブタジエンゴム(SBR)の含有量(質量部)と、トレッド部におけるランド比(%)との積が、2500以上であることを特徴とする請求項1ないし請求項10のいずれか1項に記載のタイヤ。
  12. 扁平率が、80%以下であり、
    ゴム成分100質量部に対する前記シリカの含有量(質量部)と、扁平率との積が、3000以上であることを特徴とする請求項1ないし請求項11のいずれか1項に記載のタイヤ。
  13. 前記トレッド部の厚みT(mm)に対する前記30℃tanδの比(30℃tanδ/T)が0.025以上であることを特徴とする請求項1ないし請求項12のいずれか1項に記載のタイヤ。
  14. 前記トレッド部の厚みT(mm)に対する前記M100(MPa)の比(M100/T)が0.15以上であることを特徴とする請求項1ないし請求項13のいずれか1項に記載のタイヤ。
JP2022101539A 2022-06-24 2022-06-24 タイヤ Pending JP2024002387A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022101539A JP2024002387A (ja) 2022-06-24 2022-06-24 タイヤ
EP23175380.7A EP4296082A1 (en) 2022-06-24 2023-05-25 Tire
CN202310605055.4A CN117285760A (zh) 2022-06-24 2023-05-26 轮胎
US18/211,750 US20230415514A1 (en) 2022-06-24 2023-06-20 Tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022101539A JP2024002387A (ja) 2022-06-24 2022-06-24 タイヤ

Publications (1)

Publication Number Publication Date
JP2024002387A true JP2024002387A (ja) 2024-01-11

Family

ID=86603797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022101539A Pending JP2024002387A (ja) 2022-06-24 2022-06-24 タイヤ

Country Status (4)

Country Link
US (1) US20230415514A1 (ja)
EP (1) EP4296082A1 (ja)
JP (1) JP2024002387A (ja)
CN (1) CN117285760A (ja)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414370A (en) 1981-01-09 1983-11-08 S. C. Johnson & Son, Inc. Process for continuous bulk copolymerization of vinyl monomers
US4529787A (en) 1982-06-15 1985-07-16 S. C. Johnson & Son, Inc. Bulk polymerization process for preparing high solids and uniform copolymers
JPS611408A (ja) 1984-06-14 1986-01-07 Nippon Steel Corp 内部欠陥を有する鋼片の圧延処理方法
US5010166A (en) 1987-03-05 1991-04-23 S. C. Johnson & Son, Inc. Process and apparatus for producing polyol polymers and polyol polymers so produced
JP2007313522A (ja) 2006-05-23 2007-12-06 Nissan Motor Co Ltd プレス型およびプレス加工方法
JP4881362B2 (ja) 2008-11-05 2012-02-22 住友ゴム工業株式会社 ゴム組成物及びタイヤ
JP7259374B2 (ja) 2019-02-07 2023-04-18 住友ゴム工業株式会社 トレッド用ゴム組成物およびタイヤ
JP7406363B2 (ja) 2019-12-18 2023-12-27 株式会社ブリヂストン ゴム組成物及びタイヤ
JP2021165324A (ja) 2020-04-06 2021-10-14 横浜ゴム株式会社 タイヤ用ゴム組成物およびそれを用いた重荷重用タイヤ
JP6863504B1 (ja) * 2020-04-24 2021-04-21 住友ゴム工業株式会社 タイヤ
JP6835284B1 (ja) * 2020-07-28 2021-02-24 住友ゴム工業株式会社 空気入りタイヤ

Also Published As

Publication number Publication date
EP4296082A1 (en) 2023-12-27
CN117285760A (zh) 2023-12-26
US20230415514A1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
WO2022025006A1 (ja) 空気入りタイヤ
EP4296080A1 (en) Tire
JP7321429B1 (ja) タイヤ
JP7282320B1 (ja) タイヤ
JP7282319B1 (ja) タイヤ
JP7278538B1 (ja) タイヤ
JP2024002387A (ja) タイヤ
JP7337333B1 (ja) タイヤ
JP7312363B1 (ja) タイヤ
JP7459448B2 (ja) 空気入りタイヤ
WO2023248655A1 (ja) タイヤ
WO2023248826A1 (ja) タイヤ
WO2023248828A1 (ja) タイヤ
WO2023248553A1 (ja) タイヤ
JP2024002393A (ja) タイヤ
JP2024002375A (ja) タイヤ
JP2024002911A (ja) タイヤ
JP2024002394A (ja) タイヤ
EP4209360A1 (en) Pneumatic tire
JP2024074869A (ja) タイヤ
JP2023078783A (ja) 空気入りタイヤ