JP2024001087A - 光電変換素子および固体撮像装置 - Google Patents

光電変換素子および固体撮像装置 Download PDF

Info

Publication number
JP2024001087A
JP2024001087A JP2023169028A JP2023169028A JP2024001087A JP 2024001087 A JP2024001087 A JP 2024001087A JP 2023169028 A JP2023169028 A JP 2023169028A JP 2023169028 A JP2023169028 A JP 2023169028A JP 2024001087 A JP2024001087 A JP 2024001087A
Authority
JP
Japan
Prior art keywords
group
semiconductor material
organic semiconductor
photoelectric conversion
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023169028A
Other languages
English (en)
Inventor
雄大 長谷川
Takehiro Hasegawa
雅史 坂東
Masashi Bando
晋太郎 平田
Shintaro Hirata
英昭 茂木
Hideaki Mogi
巖 八木
Iwao Yagi
康晴 氏家
Yasuharu Ujiie
佑樹 根岸
Yuki Negishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Group Corp
Original Assignee
Sony Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017219374A external-priority patent/JP7013805B2/ja
Application filed by Sony Group Corp filed Critical Sony Group Corp
Publication of JP2024001087A publication Critical patent/JP2024001087A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/63Noise processing, e.g. detecting, correcting, reducing or removing noise applied to dark current
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/779Circuitry for scanning or addressing the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/60Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation in which radiation controls flow of current through the devices, e.g. photoresistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/85Layers having high electron mobility, e.g. electron-transporting layers or hole-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Nanotechnology (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】暗電流特性を改善することが可能な光電変換素子および固体撮像装置を提供する。【解決手段】本開示の一実施形態の光電変換素子は、対向配置された第1電極および第2電極と、第1電極と第2電極との間に設けられると共に、互いに異なる母骨格を有する第1有機半導体材料、第2有機半導体材料および第3有機半導体材料を含む光電変換層とを備え、第1有機半導体材料は、フラーレンまたはフラーレン誘導体であり、第2有機半導体材料は、単層膜として形成した状態において、第1有機半導体材料の単層膜および第3有機半導体材料の単層膜よりも可視光領域における極大吸収波長の線吸収係数が高く、第3有機半導体材料は、結晶性を有する。【選択図】図1

Description

本開示は、例えば、有機半導体を用いた光電変換素子およびこれを備えた固体撮像装置に関する。
近年、CCD(Charge Coupled Device)イメージセンサ、あるいはCMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等の固体撮像装置では、画素サイズの縮小化が進んでいる。これにより、単位画素へ入射するフォトン数が減少することから感度が低下すると共に、S/N比の低下が生じている。また、カラー化のために、赤,緑,青の原色フィルタを2次元配列してなるカラーフィルタを用いた場合、赤画素では、緑と青の光がカラーフィルタによって吸収されるために、感度の低下を招いている。また、各色信号を生成する際に、画素間で補間処理を行うことから、いわゆる偽色が発生する。
そこで、例えば、特許文献1では、青色光(B)に感度を持つ有機光電変換膜、緑色光(G)に感度を持つ有機光電変換膜、赤色光(R)に感度を持つ有機光電変換膜が順次積層された多層構造の有機光電変換膜を用いたイメージセンサが開示されている。このイメージセンサでは、1画素から、B/G/Rの信号を別々に取り出すことで、感度向上が図られている。特許文献2では、1層の有機光電変換膜を形成し、この有機光電変換膜で1色の信号を取り出し、シリコン(Si)バルク分光で2色の信号を取り出す撮像素子が開示されている。
特開2003-234460号公報 特開2005-303266号公報
ところで、撮像素子として用いる光電変換素子には、暗電流の発生を抑制することが求められている。
暗電流特性を改善することが可能な光電変換素子および固体撮像装置を提供することが望ましい。
本開示の一実施形態の光電変換素子は、対向配置された第1電極および第2電極と、第1電極と第2電極との間に設けられると共に、互いに異なる母骨格を有する第1有機半導体材料、第2有機半導体材料および第3有機半導体材料を含む光電変換層とを備えたものであり、第1有機半導体材料は、フラーレンまたはフラーレン誘導体であり、第2有機半導体材料は、単層膜として形成した状態において、第1有機半導体材料の単層膜および第3有機半導体材料の単層膜よりも可視光領域における極大吸収波長の線吸収係数が高く、第3有機半導体材料は、結晶性を有する。
本開示の一実施形態の固体撮像装置は、各画素が1または複数の有機光電変換部を含み、有機光電変換部として上記本開示の一実施形態の光電変換素子を有するものである。
本開示の一実施形態の光電変換素子および一実施形態の固体撮像装置では、対向配置された第1電極と第2電極との間の光電変換層を、互いに異なる母骨格を有する第1有機半導体材料、第2有機半導体材料および第3有機半導体材料を用いて形成するようにした。光電変換層を構成する第1有機半導体材料は、フラーレンまたはフラーレン誘導体である。第2有機半導体材料は、単層膜として形成した状態において、第1有機半導体材料の単層膜および第3有機半導体材料の単層膜よりも可視光領域における極大吸収波長の線吸収係数が高く、第3有機半導体材料は、結晶性を有する。これにより、光電変換層内において、第1有機半導体材料と第3有機半導体材料との間および第2有機半導体材料と第3有機半導体材料との間での暗電流の発生を抑制することが可能となる。
本開示の一実施の形態に係る光電変換素子の概略構成を表す断面図である。 有機光電変換層を構成する3種の材料のエネルギー準位の一例を表す図である。 有機光電変換層を構成する3種の材料のエネルギー準位の他の例を表す図である。 有機光電変換層を構成する3種の材料のエネルギー準位の具体的な一例を表す図である。 有機光電変換層を構成する3種の材料のエネルギー準位の具体的な他の例を表す図である。 有機光電変換層、保護膜(上部電極)およびコンタクトホールの形成位置関係を表す平面図である。 無機光電変換部の一構成例を表す断面図である。 図4Aに示した無機光電変換部の他の断面図である。 有機光電変換部の電荷(電子)蓄積層の構成(下部側電子取り出し)を表す断面図である。 図1に示した光電変換素子の製造方法を説明するための断面図である。 図6Aに続く工程を表す断面図である。 図6Bに続く工程を表す断面図である。 図7Aに続く工程を表す断面図である。 図7Bに続く工程を表す断面図である。 図8Aに続く工程を表す断面図である。 図8Bに続く工程を表す断面図である。 図1に示した光電変換素子の作用を説明する要部断面図である。 図1に示した光電変換素子の作用を説明するための模式図である。 図1に示した光電変換素子を画素として用いた固体撮像装置の機能ブロック図である。 図11に示した固体撮像装置を用いた電子機器の概略構成を表すブロック図である。 体内情報取得システムの概略的な構成の一例を示すブロック図である。 車両制御システムの概略的な構成例を示すブロック図である。 撮像部の設置位置の一例を示す説明図である。 第2有機半導体材料と第1有機半導体材料とのLUMO準位差および第2有機半導体材料のLUMO準位と、暗電流との関係を表す特性図である。 第3有機半導体材料と第1有機半導体材料とのHOMO準位差および第3有機半導体材料のHOMO準位と、暗電流との関係を表す特性図である。 実験例23における有機光電変換層のX線回折の測定結果である。 実験例24における有機光電変換層のX線回折の測定結果である。 実験例25における有機光電変換層のX線回折の測定結果である。 実験例26における有機光電変換層のX線回折の測定結果である。 実験例27における有機光電変換層のX線回折の測定結果である。 実験例28における有機光電変換層のX線回折の測定結果である。 実験例29における有機光電変換層のX線回折の測定結果である。
以下、本開示における実施の形態について、図面を参照して詳細に説明する。以下の説明は本開示の一具体例であって、本開示は以下の態様に限定されるものではない。また、本開示は、各図に示す各構成要素の配置や寸法、寸法比等についても、それらに限定されるものではない。なお、説明する順序は、下記の通りである。
1.実施の形態(有機光電変換層を3種類の材料によって形成した例)
1-1.光電変換素子の構成
1-2.光電変換素子の製造方法
1-3.作用・効果
2.適用例
3.実施例
<1.実施の形態>
図1は、本開示の一実施の形態の光電変換素子(光電変換素子10)の断面構成を表したものである。光電変換素子10は、例えば、CCDイメージセンサまたはCMOSイメージセンサ等の固体撮像装置(固体撮像装置1、図11)において1つの画素(単位画素P)を構成するものである。光電変換素子10は、半導体基板11の表面(受光面(面S1)とは反対側の面S2)側に、画素トランジスタ(後述の転送トランジスタTr1~3を含む)が形成されると共に、多層配線層(多層配線層51)を有するものである。
本実施の形態の光電変換素子10は、それぞれ異なる波長域の光を選択的に検出して光電変換を行う1つの有機光電変換部11Gと、2つの無機光電変換部11B,11Rとが縦方向に積層された構造を有し、有機光電変換部11Gは、3種類の有機半導体材料を含んで構成されたものである。
(1-1.光電変換素子の構成)
光電変換素子10は、1つの有機光電変換部11Gと、2つの無機光電変換部11B,11Rとの積層構造を有しており、これにより、1つの素子で赤(R),緑(G),青(B)の各色信号を取得するようになっている。有機光電変換部11Gは、半導体基板11の裏面(面S1)上に形成され、無機光電変換部11B,11Rは、半導体基板11内に埋め込み形成されている。以下、各部の構成について説明する。
(有機光電変換部11G)
有機光電変換部11Gは、有機半導体を用いて、選択的な波長域の光(ここでは緑色光)を吸収して、電子-正孔対を発生させる有機光電変換素子である。有機光電変換部11Gは、信号電荷を取り出すための一対の電極(下部電極15a,上部電極18)間に有機光電変換層17を挟み込んだ構成を有している。下部電極15aおよび上部電極18は、後述するように、配線層13a,13b,15bやコンタクトメタル層20を介して、半導体基板11内に埋設された導電性プラグ120a1,120b1に電気的に接続されている。
具体的には、有機光電変換部11Gでは、半導体基板11の面S1上に、層間絶縁膜12,14が形成され、層間絶縁膜12には、後述する導電性プラグ120a1,120b1のそれぞれと対向する領域に貫通孔が設けられ、各貫通孔に導電性プラグ120a2,120b2が埋設されている。層間絶縁膜14には、導電性プラグ120a2,120b2のそれぞれと対向する領域に、配線層13a,13bが埋設されている。この層間絶縁膜14上に、下部電極15aが設けられると共に、この下部電極15aと絶縁膜16によって電気的に分離された配線層15bが設けられている。これらのうち、下部電極15a上に、有機光電変換層17が形成され、有機光電変換層17を覆うように上部電極18が形成されている。詳細は後述するが、上部電極18上には、その表面を覆うように保護層19が形成されている。保護層19の所定の領域にはコンタクトホールHが設けられ、保護層19上には、コンタクトホールHを埋め込み、かつ配線層15bの上面まで延在するコンタクトメタル層20が形成されている。
導電性プラグ120a2は、導電性プラグ120a1と共にコネクタとして機能するものである。また、導電性プラグ120a2は、導電性プラグ120a1および配線層13aと共に、下部電極15aから後述する緑用蓄電層110Gへの電荷(電子)の伝送経路を形成するものである。導電性プラグ120b2は、導電性プラグ120b1と共にコネクタとして機能するものである。また、導電性プラグ120b2は、導電性プラグ120b1、配線層13b、配線層15bおよびコンタクトメタル層20と共に、上部電極18からの電荷(正孔)の排出経路を形成するものである。導電性プラグ120a2,120b2は、遮光膜としても機能させるために、例えば、チタン(Ti)、窒化チタン(TiN)およびタングステン等の金属材料の積層膜により構成されることが望ましい。また、このような積層膜を用いることにより、導電性プラグ120a1,120b1をn型またはp型の半導体層として形成した場合にも、シリコンとのコンタクトを確保することができるため望ましい。
層間絶縁膜12は、半導体基板11(シリコン層110)との界面準位を低減させると共に、シリコン層110との界面からの暗電流の発生を抑制するために、界面準位の小さな絶縁膜から構成されることが望ましい。このような絶縁膜としては、例えば、酸化ハフニウム(HfO2)膜と酸化シリコン(SiO)膜との積層膜を用いることができる。層間絶縁膜14は、例えば、酸化シリコン、窒化シリコンおよび酸窒化シリコン(SiON)等のうちの1種よりなる単層膜か、あるいはこれらのうちの2種以上よりなる積層膜により構成されている。
絶縁膜16は、例えば、酸化シリコン、窒化シリコンおよび酸窒化シリコン(SiON)等のうちの1種よりなる単層膜か、あるいはこれらのうちの2種以上よりなる積層膜により構成されている。絶縁膜16は、例えば、その表面が平坦化されており、下部電極15aとほぼ段差のない形状およびパターンを有している。この絶縁膜16は、光電変換素子10が、固体撮像装置1の単位画素Pとして用いられる場合に、各画素の下部電極15a間を電気的に分離する機能を有している。
下部電極15aは、半導体基板11内に形成された無機光電変換部11B,11Rの受光面と正対して、これらの受光面を覆う領域に設けられている。この下部電極15aは、光透過性を有する導電膜により構成され、例えば、ITO(インジウム錫酸化物)により構成されている。但し、下部電極15aの構成材料としては、このITOの他にも、ドーパントを添加した酸化スズ(SnO)系材料、あるいはアルミニウム亜鉛酸化物にドーパントを添加してなる酸化亜鉛系材料を用いてもよい。酸化亜鉛系材料としては、例えば、ドーパントとしてアルミニウム(Al)を添加したアルミニウム亜鉛酸化物(AZO)、ガリウム(Ga)添加のガリウム亜鉛酸化物(GZO)、インジウム(In)添加のインジウム亜鉛酸化物(IZO)が挙げられる。また、この他にも、CuI、InSbO、ZnMgO、CuInO、MgIN、CdO、ZnSnO等が用いられてもよい。なお、本実施の形態では、下部電極15aから信号電荷(電子)の取り出しがなされるので、光電変換素子10を単位画素Pとして用いた後述の固体撮像装置1では、この下部電極15aは画素毎に分離されて形成される。
有機光電変換層17は、第1有機半導体材料、第2有機半導体材料および第3有機半導体材料の3種類を含んで構成されたものである。有機光電変換層17は、p型半導体およびn型半導体のうちの一方または両方を含んで構成されていることが好ましく、上記3種類の有機半導体材料のいずれかは、p型半導体またはn型半導体である。有機光電変換層17は、選択的な波長域の光を光電変換する一方、他の波長域の光を透過させるものであり、本実施の形態では、例えば、450nm以上650nm以下の範囲において極大吸収波長を有するものである。
第1有機半導体材料としては、高い電子輸送性を有する材料であることが好ましく、例えば、下記式(1)で示したC60フラーレンまたはその誘導体、あるいは、下記式(2)で示したC70フラーレンまたはその誘導体が挙げられる。なお、本実施の形態では、フラーレンは、有機半導体材料として取り扱う。
Figure 2024001087000002

(R1,R2は、各々独立して水素原子、ハロゲン原子、直鎖,分岐または環状のアルキル基、フェニル基、直鎖または縮環した芳香族化合物を有する基、ハロゲン化物を有する基、パーシャルフルオロアルキル基、パーフルオロアルキル基、シリルアルキル基、シリルアルコキシ基、アリールシリル基、アリールスルファニル基、アルキルスルファニル基、アリールスルホニル基、アルキルスルホニル基、アリールスルフィド基、アルキルスルフィド基、アミノ基、アルキルアミノ基、アリールアミノ基、ヒドロキシ基、アルコキシ基、アシルアミノ基、アシルオキシ基、カルボニル基、カルボキシ基、カルボキシアミド基、カルボアルコキシ基、アシル基、スルホニル基、シアノ基、ニトロ基、カルコゲン化物を有する基、ホスフィン基、ホスホン基あるいはそれらの誘導体である。n,mは0または1以上の整数である。)
第1有機半導体材料の具体例としては、式(1-1)に示したC60フラーレンおよび式(2-1)に示したC70フラーレンの他、それらの誘導体として、例えば、以下の式(1-2),(1―3)および式(2-2)等の化合物が挙げられる。
Figure 2024001087000003
表1は、C60フラーレン(式(1-1))、C70フラーレン(式(2-1))および上記式(1-2),(1―3)および式(2-2)に示したフラーレン誘導体の電子移動度をまとめたものである。高い電子移動度、好ましくは、10-7cm/Vs以上、より好ましくは、10-4cm/Vs以上を有する有機半導体材料を用いることにより、励起子が電荷に分離した結果生じる電子の移動度が改善され、有機光電変換部11Gの応答性が向上する。
Figure 2024001087000004
第2有機半導体材料としては、第1有機半導体材料のLUMO(Lowest Unoccupied Molecular Orbital)準位よりも浅いLUMO準位を有するものが好ましい。更には、第2有機半導体材料は、第1有機半導体材料のLUMO準位よりも0.2eV以上浅いLUMO準位を有する材料であることが好ましい。これにより、有機光電変換層17内において、第2有機半導体材料と第3有機半導体材料との間での暗電流の発生が抑制される。第2有機半導体材料の具体的なLUMO準位としては、例えば、-4.5eVよりも浅いことが好ましく、さらに-4.3eV以上であることが望ましい。詳細は後述するが、これにより、暗電流の発生を抑制することが可能となる。
また、第2有機半導体材料は、単層膜として形成した状態において、第1有機半導体材料の単層膜および後述する第3有機半導体材料の単層膜よりも可視光領域における極大吸収波長の線吸収係数が高いものが好ましい。これにより、有機光電変換層17の可視光領域の光の吸収能を高めることができ、かつ分光形状をシャープにすることも可能となる。特に、有機光電変換部11Gが緑色光を吸収する本実施の形態では、第2有機半導体材料は、500nm以上600nm以下の波長領域において極大吸収波長を有することが好ましい。なお、ここで、可視光領域とは、450nm以上800nm以下の範囲とする。ここで、単層膜とは、1種類の有機半導体材料から構成されたものである。以下の第2有機半導体材料および第3有機半導体材料における単層膜についても同様である。
なお、有機光電変換部11Gが緑色光を吸収する本実施の形態では、第2有機半導体材料は、例えば530nm以上580nm以下の波長領域において極大吸収波長を有することが好ましい。
第2有機半導体材料の具体的な材料としては、下記式(3)に示したサブフタロシアニンおよびその誘導体が挙げられる。
Figure 2024001087000005

(R3~R14は、各々独立して、水素原子、ハロゲン原子、直鎖,分岐,または環状アルキル基、チオアルキル基、チオアリール基、アリールスルホニル基、アルキルスルホニル基、アミノ基、アルキルアミノ基、アリールアミノ基、ヒドロキシ基、アルコキシ基、アシルアミノ基、アシルオキシ基、フェニル基、カルボキシ基、カルボキシアミド基、カルボアルコキシ基、アシル基、スルホニル基、シアノ基およびニトロ基からなる群から選択され、且つ、隣接する任意のR3~R14は縮合脂肪族環または縮合芳香環の一部であってもよい。前記縮合脂肪族環または縮合芳香環は、炭素以外の1または複数の原子を含んでいてもよい。Mはホウ素または2価あるいは3価の金属である。Xはアニオン性基である。)
式(3)に示したサブフタロシアニン誘導体の具体例としては、以下の式(3-1)~式(3-23)等の化合物が挙げられる。式(3-1)~式(3-23)の中でも、式(3-1)~式(3-18)に示した、R4,R5,R8,R9,R12,R13がフッ素(F)で置換されているFサブフタロシアニン(FSubPc)誘導体が好ましい。更に、式(3-2)~式(3-5),式(3-8),式(3-9),式(3-11)~式(3-15)に示した、ホウ素(B)に対して-OPh基がアキシアル結合したFSubPc誘導体がより好ましく、特に、式(3-2),式(3-3),式(3-5),式(3-8),式(3-9),式(3-11)~式(3-13),式(3-15)に示した、Bに対してアキシアル結合した-OPh基の水素(H)が1以上4以下のフッ素(F)で置換されているFSubPc誘導体が望ましい。
これは、式(3)に示したサブフタロシアニン誘導体のMがホウ素(B)である場合、このBと結合するX内の原子が塩素(Cl)や臭素(Br)等のハロゲン原子の場合、Bとの結合力が比較的弱く、熱や光等の負荷によってXがサブフタロシアニン骨格から脱離する虞があるためである。Bとの結合力が高い原子としては、上記-OPh基の酸素(O)の他に、窒素(N)および炭素(C)が挙げられる。
Figure 2024001087000006
Figure 2024001087000007
第3有機半導体材料としては、高い正孔輸送性を有することが好ましい。具体的には、単層膜として形成した状態における正孔の移動度が第2有機半導体材料の単層膜における正孔の移動度よりも高くなる材料であることが好ましい。また、第3有機半導体材料は、第1有機半導体材料および第2有機半導体材料のHOMO(Highest Occupied Molecular Orbital)準位よりも浅いHOMO準位を有することが好ましい。具体的には、第3有機半導体材料のHOMO準位は、第1有機半導体材料のHOMO準位との差が0.9eVよりも小さい材料であることが好ましい。これにより、有機光電変換層17内において、第1有機半導体材料と第3有機半導体材料との間で暗電流の発生が抑制される。
また、第1有機半導体材料のHOMO準位との差は、より好ましくは、0.7eV未満である。これにより、有機光電変換層17内における第1有機半導体材料と第3有機半導体材料との間の暗電流の発生が安定して抑制される。更に、第1有機半導体材料のHOMO準位と、第1有機半導体材料のHOMO準位との差を0.5eV以上0.7eV未満とすることで、暗電流の発生の抑制に加えて、光電変換効率を向上させることが可能となる。
第3有機半導体材料の具体的なHOMO準位としては、例えば、-5.4eVよりも深いことが好ましく、さらに、-5.6eVよりも深いことが望ましい。
第3有機半導体材料は、第2有機半導体材料のLUMO準位よりも浅いLUMO準位を有することが好ましい。また、第3有機半導体材料は、第1有機半導体材料のLUMO準位よりも浅いLUMO準位を有することが好ましい。即ち、第3有機半導体材料は、第1有機半導体材料、第2有機半導体材料および第3有機半導体材料のうちで最も浅いLUMO準位を有する材料であることが好ましい。
更に、第3有機半導体材料は、有機光電変換層17内において結晶性を示す材料であることが好ましく、その結晶成分の粒径は、例えば、6nm以上12nm以下であることが好ましい。特に、第3有機半導体材料は、有機光電変換層17内においてへリングボーン型の結晶構造をとる材料であることが好ましい。これにより、有機光電変換層17内において、第1有機半導体材料と第3有機半導体材料との接触面積が小さくなり、第1有機半導体材料と第3有機半導体材料との間の暗電流の発生が抑制される。また、有機光電変換層17内において、第2有機半導体材料と第3有機半導体材料との接触面積が小さくなり、第2有機半導体材料と第3有機半導体材料との間の暗電流の発生が抑制される。更に、結晶性を有することで、第3有機半導体材料の正孔輸送性が向上し、光電変換素子10の応答性が向上する。
また、有機光電変換部11Gが緑色光を吸収する本実施の形態では、第3有機半導体材料は、500nmより長い波長領域に吸収を持たず、500nm以下の領域にのみ吸収を有することが好ましい。更には、第3有機半導体材料は、450nmよりも長い波長領域に吸収を持たず、450nm以下の領域にのみ吸収を有することが望ましい。
第3有機半導体材料の具体的な材料としては、例えば、下記式(4)および下記式(5)に示した化合物が挙げられる。
Figure 2024001087000008

(A1,A2は、それぞれ、共役芳香環、縮合芳香環、ヘテロ元素を含む縮合芳香環、オリゴチオフェン、チオフェンである。これらは更に、ハロゲン原子、直鎖,分岐または環状のアルキル基、チオアルキル基、チオアリール基、アリールスルホニル基、アルキルスルホニル基、アルキルスルホニル基、アミノ基、アルキルアミノ基、アリールアミノ基、ヒドロキシ基、アルコキシ基、アシルアミノ基、アシルオキシ基、カルボキシ基、カルボキシアミド基、カルボアルコキシ基、アシル基、スルホニル基、シアノ基、およびニトロ基によって置換されていてもよい。R15~R58は、各々独立して、水素原子、ハロゲン原子、直鎖,分岐または環状のアルキル基、チオアルキル基、アリール基、チオアリール基、アリールスルホニル基、アルキルスルホニル基、アルキルスルホニル基、アミノ基、アルキルアミノ基、アリールアミノ基、ヒドロキシ基、アルコキシ基、アシルアミノ基、アシルオキシ基、フェニル基、カルボキシ基、カルボキシアミド基、カルボアルコキシ基、アシル基、スルホニル基、シアノ基、およびニトロ基からなる群から選択され、且つ、隣接する任意のR15~R23、R24~R32、R33~R45およびR46~R58は、それぞれ、互いに結合して縮合芳香環を形成してもいてもよい。)
式(4)および式(5)に示した化合物の中でも、A1,A2は、置換基を含まないことが好ましい。R15~R58は、水素原子であることが好ましい。また、式(4)に示した化合物および式(5)に示した化合物は、それぞれ、A1,A2を中心に対称構造を有することが好ましい。式(4)に示した化合物のA1に結合した2つのビフェニルおよび式(5)に示した化合物のA2に結合した2つのターフェニルは、それぞれおなじ化学構造を有することが好ましい。
式(4)に示した化合物の具体例としては、以下の式(4-1)~(4-11)等の化合物が挙げられる。
Figure 2024001087000009
式(5)に示した化合物の具体例としては、以下の式(5-1)~(5-6)等の化合物が挙げられる。
Figure 2024001087000010
先に、第2有機半導体材料は、第1有機半導体材料のLUMO準位よりも浅いLUMO準位を有するものが好ましいと述べたが、これは、第3有機半導体材料のHOMO準位と第2有機半導体材料のLUMO準位との間のエネルギーレベルの差が大きくなるからである。図2Aは、C60、F-SubPc-OCおよび第3有機半導体材料のエネルギー準位を表したものである。図2Bは、C60、F-SubPc-OPh2,6Fおよび第3有機半導体材料のエネルギー準位を表したものである。図2Cは、第3有機半導体材料として、式(4-1)に示したBP-2Tを用いた場合の、C60、F-SubPc-OPh2,6Fおよび第3有機半導体材料のエネルギー準位を表したものである。図2Dは、第3有機半導体材料として、式(4-3)に示したBP-rBDTを用いた場合の、C60、F-SubPc-OPh2,6Fおよび第3有機半導体材料のエネルギー準位を表したものである。
図2Bからわかるように、第2有機半導体材料として、LUMO準位が第1有機半導体材料(C60)のLUMO準位よりも浅いLUMO準位を有するサブフタロシアニン誘導体(F-SubPc-OPh2,6F)を用いることにより、第2有機半導体材料のエネルギーの下端が第1有機半導体材料のエネルギーの下端よりも高い位置となる。即ち、第3有機半導体材料のHOMOと第2有機半導体材料のLUMOとの間のエネルギーレベルの差が大きくなる。このように、高い正孔輸送性を有する第3有機半導体材料のHOMOと第2有機半導体材料のLUMOとの間のエネルギーレベルの差を大きくすることで、第3有機半導体材料のHOMOから第2有機半導体材料のLUMOへの暗電流の発生が抑制される。
なお、上述した条件を満たすものであれば、上記式(4)および式(5)に示した化合物以外のものを第3有機半導体材料として用いることができる。上記以外の第3有機半導体材料としては、例えば、下記式(6)に示したキナクリドンおよびその誘導体、式(7)に示したトリアリルアミンおよびその誘導体、式(8)に示したベンゾチエノベンゾチオフェノンおよびその誘導体が挙げられる。
Figure 2024001087000011

(R59、R60は各々独立して水素原子、アルキル基、アリール基、または複素環基である。R61、R62はいかなるものでもよく、特に制限はないが、例えば、各々独立してアルキル鎖、アルケニル基、アルキニル基、アリール基、シアノ基、ニトロ基、シリル基であり、2つ以上のR61もしくはR62が共同して環を形成してもよい。n1,n2は、各々独立した0または1以上整数である。)
Figure 2024001087000012

(R63~R66は各々独立して、式(7)’で表わされる置換基である。R67~R71は各々独立して、水素原子、ハロゲン原子、アリール基、芳香族炭化水素環基またはアルキル鎖または置換基を有する芳香族炭化水素環基、芳香族複素環基またはアルキル鎖または置換基を有する芳香族複素環基である。隣接するR67~R71は、互いに結合して環を形成する飽和もしくは、不飽和の2価の基でもよい。)
Figure 2024001087000013

(R72,R73は、各々独立して水素原子または式(8)’で表わされる置換基である。R74は、芳香環基あるいは置換基を有する芳香環基である。)
式(6)に示したキナクリドン誘導体の具体例としては、以下の式(6-1)~(6-3)等の化合物が挙げられる。
Figure 2024001087000014
式(7)に示したトリアリルアミン誘導体の具体例としては、以下の式(7-1)~(7-13)等の化合物が挙げられる。
Figure 2024001087000015
なお、トリアリルアミン誘導体を第3有機半導体材料として用いる場合には、上記式(7-1)~(7-13)に示した化合物に限らず、第2有機半導体材料以上のHOMO準位を有するものであればよい。また、単層膜における正孔移動度が、第2有機半導体材料
の単層膜における正孔移動度よりも高いものであればよい。
式(8)に示したベンゾチエノベンゾチオフェノン誘導体の具体例としては、以下の式(8-1)~(8-6)等の化合物が挙げられる。
Figure 2024001087000016
第3有機半導体材料としては、上記キナクリドンおよびその誘導体、トリアリルアミンおよびその誘導体、ベンゾチエノベンゾチオフェノンおよびその誘導体の他に、例えば、下記式(9)に示したルブレンまたは上記式(7-2)に示したN,N’-ジ(1-ナフチル)-N,N’-ジフェニルベンジジン(αNPD)およびその誘導体が挙げられる。但し、第3有機半導体材料としては、その分子内に、炭素(C)および水素(H)以外のヘテロ原子を含んでいることがより好ましい。ヘテロ原子とは、例えば、窒素(N)、リン(P)および酸素(O)、硫黄(S)、セレン(Se)等のカルコゲン元素である。
Figure 2024001087000017
表2および表3は、第2有機半導体材料として用いることが可能な材料の一例として、式(3-19)で表わされるSubPcOCおよび式(3-17)で表わされるFSubPcClおよび第3有機半導体材料として用いることが可能な材料の一例として、式(6-1)で表わされるキナクリドン(QD)、式(6-2)で表わされるブチルキナクリドン(BQD)、式(7-2)で表わされるαNPD、式(8-1)で表わされる[1]ベンゾチオフェン(BTBT)、式(9)で表わされるルブレン、また、参考として、Du-HのHOMO準位(表2)および正孔移動度(表3)をまとめたものである。第3有機半導体材料としては、第2有機半導体材料以上のHOMO準位を有することが好ましい。また、第3有機半導体材料としては、単層膜における正孔の移動度が、第2有機半導体材料の単層膜における正孔の移動度よりも高いことが好ましい。第3有機半導体材料の好ましいHOMO準位は、例えば、10-7cm/Vs以上であり、より好ましくは10-4cm/Vs以上である。このような有機半導体材料を用いることにより、励起子が電荷に分離した結果生じる正孔の移動度が改善される。これによって、第1有機半導体材料によって担持される高い電子輸送性とのバランスがとられ、有機光電変換部11Gの応答性が向上する。なお、QDのHOMO準位-5.5eVと、FSubPcOClのHOMO準位-6.3eVとでは、QDの方が、FSubPcOClよりもHOMO準位が高くて浅い。
なお、表2に示したHOMO準位および表3に示した正孔移動度は、以下の算出方法によって得られたものである。HOMO準位は、表2に示した各有機半導体材料の単層膜(膜厚20nm)を成膜し、21.23eVの紫外光を照射してサンプル表面から放出される電子の運動エネルギー分布を取得し、そのスペクトルのエネルギー幅を、照射した紫外光のエネルギー値から減じることで得た。正孔移動度は、各有機半導体材料の単層膜を備えた光電変換素子を作製し、半導体パラメータアナライザを用いて算出した。具体的には、電極間に印加されるバイアス電圧を0Vから-5Vまで掃引し、電流―電圧曲線を得たのち、この曲線を空間電荷制限電流モデルに従いフィッティングすることで、移動度と電圧の関係式を求めて得た。なお、表3に示した正孔移動度は、-1Vにおけるものである。
Figure 2024001087000018
Figure 2024001087000019
また、第2有機半導体材料として用いることが可能なサブフタロシアニン誘導体は、式(3)に示したXを変化させることによってHOMO準位を変化させることができる(表5参照)。後述する表5は、上記式(3-1)~(3-15)に示した化合物のHOMO準位、LUMO準位、極大吸収波長および極大線吸収係数をまとめたものである。表5からわかるように、Xを構成する-OPh基がFまたはFを含む置換基で置換された化合物のHOMO準位は、-6.0eV~-6.7eVの値を示す。また、Mと直接結合する原子としてNまたはCを有する化合物でも、同様の値を示している。上記の中でも、第2有機半導体材料としては、-6.5eV以上のHOMO準位を有することが好ましく、さらに-6.3eV以上であることが望ましい。HOMO準位が-6.5eV以上の第2有機半導体材料を用いることでも、暗電流の発生を抑制することが可能となる。これは、第2有機半導体材料のHOMO準位を-6.5eV以上とすることにより、第2有機半導体材料と第3有機半導体材料との間の暗電流の発生が抑制されるからと考えられる。
なお、本実施の形態の有機光電変換層17は、第2有機半導体材料として、第1有機半導体材料のLUMO準位よりも浅いLUMO準位を有するもの、および-6.58eV以上のHOMO準位を有するものの少なくとも一方を用いることで暗電流の発生を抑制することが可能となる。また、第2有機半導体材料は、上記2つの特性(第1有機半導体材料のLUMO準位よりも浅いLUMO準位を有すると共に、-6.58eV以上のHOMO準位を有する)を両方備えたものであってもよい。
有機光電変換層17を構成する第1有機半導体材料、第2有機半導体材料および第3有機半導体材料の含有率は、以下の範囲であることが好ましい。第1有機半導体材料は、例えば、10体積%以上35体積%以下であることが好ましく、第2有機半導体材料は、例えば、30体積%以上80体積%以下であることが好ましく、第3有機半導体材料は、例えば、10体積%以上60体積%以下であることが好ましい。更に、第1有機半導体材料、第2有機半導体材料および第3有機半導体材料が略同量ずつ含有されていることが望ましい。第1有機半導体材料が少なすぎる場合は、有機光電変換層17の電子輸送性能が低下するため応答性が悪化する。多すぎる場合には、分光形状が悪化する虞がある。第2有機半導体材料が少なすぎる場合には、可視光領域の光吸収能および分光形状が悪化する虞がある。多すぎる場合には、電子および正孔の輸送性能が低下する。第3有機半導体材料が少なすぎる場合には、正孔輸送性が低下するため応答性が悪化する。多すぎる場合には、可視光領域の光吸収能および分光形状が悪化する虞がある。
有機光電変換層17と下部電極15aとの間、および上部電極18との間には、図示しない他の層が設けられていてもよい。例えば、下部電極15a側から順に、下引き膜、正孔輸送層、電子ブロッキング膜 、有機光電変換層17、正孔ブロッキング膜、バッファ膜、電子輸送層および仕事関数調整膜が積層されていてもよい。
上部電極18は、下部電極15aと同様の光透過性を有する導電膜により構成されている。光電変換素子10を画素として用いた固体撮像装置では、この上部電極18が画素毎に分離されていてもよいし、各画素に共通の電極として形成されていてもよい。上部電極18の厚みは、例えば、10nm~200nmである。
保護層19は、光透過性を有する材料により構成され、例えば、酸化シリコン、窒化シリコンおよび酸窒化シリコン等のうちのいずれかよりなる単層膜、あるいはそれらのうちの2種以上よりなる積層膜である。この保護層19の厚みは、例えば、100nm~30000nmである。
コンタクトメタル層20は、例えば、チタン(Ti)、タングステン(W)、窒化チタン(TiN)およびアルミニウム(Al)等のいずれか、あるいはそれらのうちの2種以上よりなる積層膜により構成されている。
上部電極18および保護層19は、例えば、有機光電変換層17を覆うように設けられている。図3は、有機光電変換層17、保護層19(上部電極18)およびコンタクトホールHの平面構成を表したものである。
具体的には、保護層19(上部電極18も同様)の周縁部e2は、有機光電変換層17の周縁部e1よりも外側に位置しており、保護層19および上部電極18は、有機光電変換層17よりも外側に張り出して形成されている。詳細には、上部電極18は、有機光電変換層17の上面および側面を覆うと共に、絶縁膜16上まで延在するように形成されている。保護層19は、そのような上部電極18の上面を覆って、上部電極18と同等の平面形状で形成されている。コンタクトホールHは、保護層19のうちの有機光電変換層17に非対向の領域(周縁部e1よりも外側の領域)に設けられ、上部電極18の表面の一部を露出させている。周縁部e1,e2間の距離は、特に限定されるものではないが、例えば、1μm~500μmである。なお、図3では、有機光電変換層17の端辺に沿った1つの矩形状のコンタクトホールHを設けているが、コンタクトホールHの形状や個数はこれに限定されず、他の形状(例えば、円形、正方形等)であってもよいし、複数設けられていてもよい。
保護層19およびコンタクトメタル層20上には、全面を覆うように、平坦化層21が形成されている。平坦化層21上には、オンチップレンズ22(マイクロレンズ)が設けられている。オンチップレンズ22は、その上方から入射した光を、有機光電変換部11G、無機光電変換部11B,11Rの各受光面へ集光させるものである。本実施の形態では、多層配線層51が半導体基板11の面S2側に形成されていることから、有機光電変換部11G、無機光電変換部11B,11Rの各受光面を互いに近づけて配置することができ、オンチップレンズ22のF値に依存して生じる各色間の感度のばらつきを低減することができる。
なお、本実施の形態の光電変換素子10では、下部電極15aから信号電荷(電子)を取り出すことから、これを画素として用いる固体撮像装置においては、上部電極18を共通電極としてもよい。この場合には、上述したコンタクトホールH、コンタクトメタル層20、配線層15b,13b、導電性プラグ120b1,120b2からなる伝送経路は、全画素に対して少なくとも1箇所に形成されればよい。
半導体基板11は、例えば、n型のシリコン(Si)層110の所定の領域に、無機光電変換部11B,11Rと緑用蓄電層110Gとが埋め込み形成されたものである。半導体基板11には、また、有機光電変換部11Gからの電荷(電子または正孔)の伝送経路となる導電性プラグ120a1,120b1が埋設されている。本実施の形態では、この半導体基板11の裏面(面S1)が受光面となっていえる。半導体基板11の表面(面S2)側には、有機光電変換部11G,無機光電変換部11B,11Rのそれぞれに対応する複数の画素トランジスタ(転送トランジスタTr1~Tr3を含む)が形成されると共に、ロジック回路等からなる周辺回路が形成されている。
画素トランジスタとしては、例えば、転送トランジスタ、リセットトランジスタ、増幅トランジスタおよび選択トランジスタが挙げられる。これらの画素トランジスタは、いずれも例えば、MOSトランジスタにより構成され、面S2側のp型半導体ウェル領域に形成されている。このような画素トランジスタを含む回路が、赤、緑、青の光電変換部毎に形成されている。各回路では、これらの画素トランジスタのうち、例えば、転送トランジスタ、リセットトランジスタおよび増幅トランジスタからなる、計3つのトランジスタを含む3トランジスタ構成を有していてもよいし、これに選択トランジスタを加えた4トランジスタ構成であってもよい。ここでは、これらの画素トランジスタのうち、転送トランジスタTr1~Tr3についてのみ図示および説明を行っている。また、転送トランジスタ以外の他の画素トランジスタについては、光電変換部間あるいは画素間において共有することもできる。また、フローティングディフージョンを共有する、いわゆる画素共有構造を適用することもできる。
転送トランジスタTr1~Tr3は、ゲート電極(ゲート電極TG1~TG3)と、フローティングディフージョン(FD113,114,116)とを含んで構成されている。転送トランジスタTr1は、有機光電変換部11Gにおいて発生し、緑用蓄電層110Gに蓄積された、緑色に対応する信号電荷(本実施の形態では電子)を、後述の垂直信号線Lsigへ転送するものである。転送トランジスタTr2は、無機光電変換部11Bにおいて発生し、蓄積された、青色に対応する信号電荷(本実施の形態では電子)を、後述の垂直信号線Lsigへ転送するものである。同様に、転送トランジスタTr3は、無機光電変換部11Rにおいて発生し、蓄積された、赤色に対応する信号電荷(本実施の形態では電子)を、後述の垂直信号線Lsigへ転送するものである。
無機光電変換部11B,11Rはそれぞれ、pn接合を有するフォトダイオード(Photo Diode)であり、半導体基板11内の光路上において、面S1側から無機光電変換部1
1B,11Rの順に形成されている。これらのうち、無機光電変換部11Bは、青色光を選択的に検出して青色に対応する信号電荷を蓄積させるものであり、例えば、半導体基板11の面S1に沿った選択的な領域から、多層配線層51との界面近傍の領域にかけて延在して形成されている。無機光電変換部11Rは、赤色光を選択的に検出して赤色に対応する信号電荷を蓄積させるものであり、例えば、無機光電変換部11Bよりも下層(面S2側)の領域にわたって形成されている。なお、青(B)は、例えば、450nm~495nmの波長域、赤(R)は、例えば、620nm~750nmの波長域にそれぞれ対応する色であり、無機光電変換部11B,11Rはそれぞれ、各波長域のうちの一部または全部の波長域の光を検出可能となっていればよい。
図4Aは、無機光電変換部11B,11Rの詳細構成例を表したものである。図4Bは、図4Aの他の断面における構成に相当するものである。なお、本実施の形態では、光電変換によって生じる電子および正孔の対のうち、電子を信号電荷として読み出す場合(n型半導体領域を光電変換層とする場合)について説明を行う。また、図中において、「p」「n」に上付きで記した「+(プラス)」は、p型またはn型の不純物濃度が高いことを表している。また、画素トランジスタのうち、転送トランジスタTr2,Tr3のゲート電極TG2,TG3についても示している。
無機光電変換部11Bは、例えば、正孔蓄積層となるp型半導体領域(以下、単にp型領域という、n型の場合についても同様。)111pと、電子蓄積層となるn型光電変換層(n型領域)111nとを含んで構成されている。p型領域111pおよびn型光電変換層111nはそれぞれ、面S1近傍の選択的な領域に形成されると共に、その一部が屈曲し、面S2との界面に達するように延在形成されている。p型領域111pは、面S1側において、図示しないp型半導体ウェル領域に接続されている。n型光電変換層111nは、青色用の転送トランジスタTr2のFD113(n型領域)に接続されている。なお、p型領域111pおよびn型光電変換層111nの面S2側の各端部と面S2との界面近傍には、p型領域113p(正孔蓄積層)が形成されている。
無機光電変換部11Rは、例えば、p型領域112p1,112p2(正孔蓄積層)間に、n型光電変換層112n(電子蓄積層)を挟み込んで形成されている(p-n-pの積層構造を有する)。n型光電変換層112nは、その一部が屈曲し、面S2との界面に達するように延在形成されている。n型光電変換層112nは、赤色用の転送トランジスタTr3のFD114(n型領域)に接続されている。なお、少なくともn型光電変換層111nの面S2側の端部と面S2との界面近傍にはp型領域113p(正孔蓄積層)が形成されている。
図5は、緑用蓄電層110Gの詳細構成例を表したものである。なお、ここでは、有機光電変換部11Gによって生じる電子および正孔の対のうち、電子を信号電荷として、下部電極15a側から読み出す場合について説明を行う。また、図5には、画素トランジスタのうち、転送トランジスタTr1のゲート電極TG1についても示している。
緑用蓄電層110Gは、電子蓄積層となるn型領域115nを含んで構成されている。n型領域115nの一部は、導電性プラグ120a1に接続されており、下部電極15a側から導電性プラグ120a1を介して伝送される電子を蓄積するようになっている。このn型領域115nは、また、緑色用の転送トランジスタTr1のFD116(n型領域)に接続されている。なお、n型領域115nと面S2との界面近傍には、p型領域115p(正孔蓄積層)が形成されている。
導電性プラグ120a1,120b1は、後述の導電性プラグ120a2,120b2と共に、有機光電変換部11Gと半導体基板11とのコネクタとして機能すると共に、有機光電変換部11Gにおいて生じた電子または正孔の伝送経路となるものである。本実施の形態では、導電性プラグ120a1は、有機光電変換部11Gの下部電極15aと導通しており、緑用蓄電層110Gと接続されている。導電性プラグ120b1は、有機光電変換部11Gの上部電極18と導通しており、正孔を排出するための配線となっている。
これらの導電性プラグ120a1,120b1はそれぞれ、例えば、導電型の半導体層により構成され、半導体基板11に埋め込み形成されたものである。この場合、導電性プラグ120a1はn型とし(電子の伝送経路となるため)、導電性プラグ120b1は、p型とする(正孔の伝送経路となるため)とよい。あるいは、導電性プラグ120a1,120b1は、例えば、貫通ビアにタングステン(W)等の導電膜材料が埋設されたものであってもよい。この場合、例えば、シリコン(Si)との短絡を抑制するために、酸化シリコン(SiO)または窒化シリコン(SiN)等の絶縁膜でビア側面が覆われていることが望ましい。
半導体基板11の面S2上には、多層配線層51が形成されている。多層配線層51では、複数の配線51aが層間絶縁膜52を介して配設されている。このように、光電変換素子10では、多層配線層51が受光面とは反対側に形成されており、いわゆる裏面照射型の固体撮像装置を実現可能となっている。この多層配線層51には、例えば、シリコン(Si)よりなる支持基板53が貼り合わせられている。
(1-2.光電変換素子の製造方法)
光電変換素子10は、例えば、次のようにして製造することができる。図6A~図8Cは、光電変換素子10の製造方法を工程順に表したものである。なお、図8A~図8Cでは、光電変換素子10の要部構成のみを示している。
まず、半導体基板11を形成する。具体的には、シリコン基体1101上にシリコン酸化膜1102を介して、シリコン層110が形成された、いわゆるSOI基板を用意する。なお、シリコン層110のシリコン酸化膜1102側の面が半導体基板11の裏面(面S1)となる。図6A,図6Bでは、図1に示した構造と上下を逆転させた状態で図示している。続いて、図6Aに示したように、シリコン層110に、導電性プラグ120a1,120b1を形成する。この際、導電性プラグ120a1,120b1は、例えば、シリコン層110に貫通ビアを形成した後、この貫通ビア内に、上述したような窒化シリコン等のバリアメタルと、タングステンを埋め込むことにより形成することができる。あるいは、例えば、シリコン層110へのイオン注入により導電型不純物半導体層を形成してもよい。この場合、導電性プラグ120a1をn型半導体層、導電性プラグ120b1をp型半導体層として形成する。この後、シリコン層110内の深さの異なる領域に(互いに重畳するように)、例えば、図4Aに示したようなp型領域およびn型領域をそれぞれ有する無機光電変換部11B,11Rを、イオン注入により形成する。また、導電性プラグ120a1に隣接する領域には、緑用蓄電層110Gをイオン注入により形成する。このようにして、半導体基板11が形成される。
次いで、半導体基板11の面S2側に、転送トランジスタTr1~Tr3を含む画素トランジスタと、ロジック回路等の周辺回路を形成したのち、図6Bに示したように、半導体基板11の面S2上に、層間絶縁膜52を介して複数層の配線51aを形成することにより、多層配線層51を形成する。続いて、多層配線層51上に、シリコンよりなる支持基板53を貼り付けたのち、半導体基板11の面S1側から、シリコン基体1101およびシリコン酸化膜1102を剥離し、半導体基板11の面S1を露出させる。
次に、半導体基板11の面S1上に、有機光電変換部11Gを形成する。具体的には、まず、図7Aに示したように、半導体基板11の面S1上に、上述したような酸化ハフニウム膜と酸化シリコン膜との積層膜よりなる層間絶縁膜12を形成する。例えば、ALD(原子層堆積)法により酸化ハフニウム膜を成膜した後、例えば、プラズマCVD(Chemical Vapor Deposition:化学気相成長)法により酸化シリコン膜を成膜する。この後、層間絶縁膜12の導電性プラグ120a1,120b1に対向する位置に、コンタクトホールH1a,H1bを形成し、これらのコンタクトホールH1a,H1bをそれぞれ埋め込むように、上述した材料よりなる導電性プラグ120a2,120b2を形成する。この際、導電性プラグ120a2,120b2を、遮光したい領域まで張り出して(遮光したい領域を覆うように)形成してもよいし、導電性プラグ120a2,120b2とは分離した領域に遮光層を形成してもよい。
続いて、図7Bに示したように、上述した材料よりなる層間絶縁膜14を、例えば、プラズマCVD法により成膜する。なお、成膜後、例えば、CMP(Chemical Mechanical Polishing:化学機械研磨)法により、層間絶縁膜14の表面を平坦化することが望ましい。次いで、層間絶縁膜14の導電性プラグ120a2,120b2に対向する位置に、コンタクトホールをそれぞれ開口し、上述した材料を埋め込むことにより、配線層13a,13bを形成する。なお、この後、例えば、CMP法等を用いて、層間絶縁膜14上の余剰の配線層材料(タングステン等)を除去することが望ましい。次いで、層間絶縁膜14上に下部電極15aを形成する。具体的には、まず、層間絶縁膜14上の全面にわたって、例えば、スパッタ法により、上述した透明導電膜を成膜する。この後、フォトリソグラフィ法を用いて(フォトレジスト膜の露光、現像、ポストベーク等を行い)、例えば、ドライエッチングまたはウェットエッチングを用いて、選択的な部分を除去することにより、下部電極15aを形成する。この際、下部電極15aを、配線層13aに対向する領域に形成する。また、透明導電膜の加工の際には、配線層13bに対向する領域にも透明導電膜を残存させることにより、正孔の伝送経路の一部を構成する配線層15bを、下部電極15aと共に形成する。
続いて、絶縁膜16を形成する。この際、まず半導体基板11上の全面にわたって、層間絶縁膜14、下部電極15aおよび配線層15bを覆うように、上述した材料よりなる絶縁膜16を、例えば、プラズマCVD法により成膜する。この後、図8Aに示したように、成膜した絶縁膜16を、例えば、CMP法により研磨することにより、下部電極15aおよび配線層15bを絶縁膜16から露出させると共に、下部電極15aおよび絶縁膜16間の段差を緩和する(望ましくは、平坦化する)。
次に、図8Bに示したように、下部電極15a上に有機光電変換層17を形成する。この際、上述した材料よりなる3種の有機半導体材料を、例えば、真空蒸着法によりパターン形成する。なお、上述のように、有機光電変換層17の上層または下層に、他の有機層(電子ブロッキング層等)を形成する際には、真空工程において連続的に(真空一貫プロセスで)形成することが望ましい。また、有機光電変換層17の成膜方法としては、必ずしも上記のような真空蒸着法を用いた手法に限られず、他の手法、例えば、プリント技術等を用いても構わない。
続いて、図8Cに示したように、上部電極18および保護層19を形成する。まず、上述した透明導電膜よりなる上部電極18を半導体基板11全面にわたって、例えば、真空蒸着法またはスパッタ法により、有機光電変換層17の上面および側面を覆うように成膜する。なお、有機光電変換層17は、水分、酸素、水素等の影響を受けて特性が変動し易いため、上部電極18は、有機光電変換層17と真空一貫プロセスにより成膜することが望ましい。この後(上部電極18をパターニングする前に)、上部電極18の上面を覆うように、上述した材料よりなる保護層19を、例えば、プラズマCVD法により成膜する。次いで、上部電極18上に保護層19を形成した後、上部電極18を加工する。
この後、フォトリソグラフィ法を用いたエッチングにより、上部電極18および保護層19の選択的な部分を一括除去する。続いて、保護層19に、コンタクトホールHを、例えば、フォトリソグラフィ法を用いたエッチングにより形成する。この際、コンタクトホールHは、有機光電変換層17と非対向の領域に形成することが望ましい。このコンタクトホールHの形成後においても、上記と同様、フォトレジストを剥離して、薬液を用いた洗浄を行うため、コンタクトホールHに対向する領域では、上部電極18が保護層19から露出することになる。このため、ピン正孔の発生を考慮すると、有機光電変換層17の形成領域を避けて、コンタクトホールHが設けられることが望ましい。続いて、上述した材料よりなるコンタクトメタル層20を、例えば、スパッタ法等を用いて形成する。この際、コンタクトメタル層20は、保護層19上に、コンタクトホールHを埋め込み、かつ配線層15bの上面まで延在するように形成する。最後に、半導体基板11上の全面にわたって、平坦化層21を形成した後、この平坦化層21上にオンチップレンズ22を形成することにより、図1に示した光電変換素子10が完成する。
上記のような光電変換素子10では、例えば、固体撮像装置1の単位画素Pとして、次のようにして信号電荷が取得される。即ち、図9に示したように、光電変換素子10に、オンチップレンズ22(図9には図示せず)を介して光Lが入射すると、光Lは、有機光電変換部11G、無機光電変換部11B,11Rの順に通過し、その通過過程において赤、緑、青の色光毎に光電変換される。図10に、入射光に基づく信号電荷(電子)取得の流れを模式的に示す。以下、各光電変換部における具体的な信号取得動作について説明する。
(有機光電変換部11Gによる緑色信号の取得)
光電変換素子10へ入射した光Lのうち、まず、緑色光Lgが、有機光電変換部11Gにおいて選択的に検出(吸収)され、光電変換される。これにより、発生した電子-正孔対のうちの電子Egが下部電極15a側から取り出された後、伝送経路A(配線層13aおよび導電性プラグ120a1,120a2)を介して緑用蓄電層110Gへ蓄積される。蓄積された電子Egは、読み出し動作の際にFD116へ転送される。なお、正孔Hgは、上部電極18側から伝送経路B(コンタクトメタル層20、配線層13b,15bおよび導電性プラグ120b1,120b2)を介して排出される。
具体的には、次のようにして信号電荷を蓄積する。即ち、本実施の形態では、下部電極15aに、例えば、所定の負の電位VL(<0V)が印加され、上部電極18には、電位VLよりも低い電位VU(<VL)が印加される。なお、電位VLは、例えば、多層配線層51内の配線51aから、伝送経路Aを通じて、下部電極15aへ与えられる。電位VLは、例えば、多層配線層51内の配線51aから、伝送経路Bを通じて、上部電極18へ与えられる。これにより、電荷蓄積状態(図示しないリセットトランジスタおよび転送トランジスタTr1のオフ状態)では、有機光電変換層17で発生した電子-正孔対のうち、電子が、相対的に高電位となっている下部電極15a側へ導かれる(正孔は上部電極18側へ導かれる)。このようにして、下部電極15aから電子Egが取り出され、伝送経路Aを介して緑用蓄電層110G(詳細には、n型領域115n)に蓄積される。また、この電子Egの蓄積により、緑用蓄電層110Gと導通する下部電極15aの電位VLも変動する。この電位VLの変化量が信号電位(ここでは、緑色信号の電位)に相当する。
そして、読み出し動作の際には、転送トランジスタTr1がオン状態となり、緑用蓄電層110Gに蓄積された電子Egが、FD116に転送される。これにより、緑色光Lgの受光量に基づく緑色信号が、図示しない他の画素トランジスタを通じて後述の垂直信号線Lsigに読み出される。この後、図示しないリセットトランジスタおよび転送トランジスタTr1がオン状態となり、n型領域であるFD116と、緑用蓄電層110Gの蓄電領域(n型領域115n)とが、例えば、電源電圧VDDにリセットされる。
(無機光電変換部11B,11Rによる青色信号,赤色信号の取得)
続いて、有機光電変換部11Gを透過した光のうち、青色光は無機光電変換部11B、赤色光は無機光電変換部11Rにおいて、それぞれ順に吸収され、光電変換される。無機光電変換部11Bでは、入射した青色光に対応した電子Ebがn型領域(n型光電変換層111n)に蓄積され、蓄積された電子Edは、読み出し動作の際にFD113へと転送される。なお、正孔は、図示しないp型領域に蓄積される。同様に、無機光電変換部11Rでは、入射した赤色光に対応した電子Erがn型領域(n型光電変換層112n)に蓄積され、蓄積された電子Erは、読み出し動作の際にFD114へと転送される。なお、正孔は、図示しないp型領域に蓄積される。
電荷蓄積状態では、上述のように、有機光電変換部11Gの下部電極15aに負の電位VLが印加されることから、無機光電変換部11Bの正孔蓄積層であるp型領域(図3のp型領域111p)の正孔濃度が増える傾向になる。このため、p型領域111pと層間絶縁膜12との界面における暗電流の発生を抑制することができる。
読み出し動作の際には、上記有機光電変換部11Gと同様、転送トランジスタTr2,Tr3がオン状態となり、n型光電変換層111n,112nにそれぞれ蓄積された電子Eb,Erが、FD113,114に転送される。これにより、青色光Lbの受光量に基づく青色信号と、赤色光Lrの受光量に基づく赤色信号とがそれぞれ、図示しない他の画素トランジスタを通じて後述の垂直信号線Lsigに読み出される。この後、図示しないリセットトランジスタおよび転送トランジスタTr2,3がオン状態となり、n型領域であるFD113,114が、例えば、電源電圧VDDにリセットされる。
このように、縦方向に有機光電変換部11Gを、無機光電変換部11B,11Rを積層することにより、カラーフィルタを設けることなく、赤、緑、青の色光を分離して検出すし、各色の信号電荷を得ることができる。これにより、カラーフィルタの色光吸収に起因する光損失(感度低下)や、画素補間処理に伴う偽色の発生を抑制することができる。
(1-3.作用・効果)
前述したように、近年、CCDイメージセンサ、あるいはCMOSイメージセンサ等の固体撮像装置では、高い色再現性、高フレームレートおよび高感度が求められている。これらを実現するためには、優れた分光形状、高い応答性および高い外部量子効率(EQE)が求められる。有機材料から構成された光電変換部(有機光電変換部)とSi等の無機材料から構成された光電変換部(無機光電変換部)とが積層され、有機光電変換部で1色の信号を、無機光電変換部で2色の信号を取り出す固体撮像装置では、有機光電変換部には、p型有機半導体材料とn型有機半導体材料を共蒸着することで電荷分離界面を増やし変換効率を向上させることが可能なバルクヘテロ構造が用いられている。このため、一般的な固体撮像装置では、2種類の材料を用いて有機光電変換部の分光形状、応答性およびEQEの向上が図られている。2種類の材料(2元系)からなる有機光電変換部には、例えば、フラーレン類とキナクリドン類またはサブフタロシアニン類、キナクリドン類とサブフタロシアニン類等が用いられている。
しかしながら、一般に、固体膜においてシャープな分光形状を有する材料は、高い電荷輸送特性を有していない傾向がある。分子性材料を用いて高い電荷輸送特性を発現するには、各分子同士が構成している軌道が、固体状態で重なりを有することが求められるが、この軌道間の相互作用が発現した場合、固体状態おける吸収スペクトルの形状はブロード化してしまう。例えば、ジインデノペリレン類は、その固体膜において最大で10-2cm/Vs程度の高い正孔移動度を有する。特に、基板温度を90℃に上げて成膜されたジインデノペリレン類の固体膜は、高い正孔移動度を有する。これは、ジインデノペリレン類の結晶性および配向性が変化するためで、基板温度90℃で成膜した場合には、分子間相互作用の1種であるπ-スタッキングが形成される方向に電流を流しやすい固体膜が成膜されるためである。このように、固体膜中でより強い分子間の相互作用を有する材料は、より高い電荷移動度を発現しやすい。
一方、ジインデノペリレン類の吸収スペクトルは、ジクロロメタン等の有機溶媒に溶解した場合には、シャープな形状の吸収スペクトルを有するものの、固体膜ではブロードな吸収スペクトルを示す知見が得られている。これは、溶液中では、ジインデノペリレン類はジクロロメタンによって希釈されているため単分子状態であるが、固体膜では、分子間相互作用が発現するためと推察される。このように、シャープな分光形状を有し、且つ、高い電荷輸送特性を有する固体膜を形成することは、原理的な困難を伴うことがわかる。
また、2元系のバルクヘテロ構造を有する有機光電変換部では、固体膜内におけるP/N界面で発生した電荷(正孔および電子)はそれぞれ、正孔はp型有機半導体材料によって、電子はn型有機半導体材料によって輸送される。このため、高い応答性を実現するためには、p型有機半導体材料およびn型有機半導体材料の両方が高い電荷輸送特性を有する必要がある。従って、優れた分光形状と高い応答性とを両立するためには、p型有機半導体材料およびn型有機半導体材料のどちらか一方は、シャープな分光特性および高い電荷移動度の両方を有する必要がある。しかしながら、上述した理由からシャープな分光形状を有し、且つ、高い電荷輸送特性を有する材料を用意することは困難であり、2種類の材料によって優れた分光形状、高い応答性および高いEQEを実現することは困難であった。
これに対して、有機光電変換層を、互いに異なる母骨格を有する3種類の有機半導体材料(3元系)を用いて形成することで、シャープな分光形状、高い応答性および高い外部量子効率を実現することが可能となる。これは、2元系においてp型半導体およびn型半導体の少なくとも一方に求められる、シャープな分光形状および高い電荷移動度のうち、その一方を他材料に委ねることが可能となり、優れた分光形状、高い応答性および高EQEが実現することができるからである。この3種類の有機半導体材料を用いて形成された有機光電変換層では、光吸収材料(例えば、本実施の形態における第2有機半導体材料)が光を吸収することで発生した励起子は、3種類の有機半導体材料のうちの2つから選ばれる有機半導体材料の界面において分離される。
上記のような3元系の光電変換素子およびこれを撮像素子として備えた固体撮像装置では、さらに精細な画像を得るために、暗電流の発生を抑制することが求められている。なお、暗電流の発生の抑制は、2元系の光電変換素子にも求められるものである。
これに対して、本実施の形態の光電変換素子では、有機光電変換層17を、互いに異なる母骨格を有する第1有機半導体材料,第2有機半導体材料および第3有機半導体材料を用いて形成するようにした。ここで、第1有機半導体材料は、フラーレンまたはフラーレン誘導体である。第3有機半導体材料は、第1有機半導体材料および第2有機半導体材料のHOMO準位よりも浅く、第1有機半導体材料のHOMO準位との差が、0.9eVよりも小さいHOMO準位を有するものである。これにより、有機光電変換層17内において、第1有機半導体材料と第3有機半導体材料との間および第2有機半導体材料と第3有機半導体材料との間での暗電流の発生を抑制することが可能となる。
以上、本実施の形態では、有機光電変換層17を上記第1有機半導体材料、第2有機半導体材料および第3有機半導体材料の3種類を用いて形成するようにし、第1有機半導体材料としてフラーレンまたはフラーレン誘導体を用いるようにした。第3有機半導体材料としては、第1有機半導体材料および第2有機半導体材料のHOMO準位よりも浅く、第1有機半導体材料のHOMO準位との差が0.9eVよりも小さいHOMO準位を有する有機半導体材料を用いるようにした。これにより、有機光電変換層17内において、第1有機半導体材料と第3有機半導体材料との間および第2有機半導体材料と第3有機半導体材料との間での暗電流の発生が抑制され、暗電流特性を改善することが可能となる。
<2.適用例>
(適用例1)
図11は、上記実施の形態において説明した光電変換素子10を単位画素Pに用いた固体撮像装置(固体撮像装置1)の全体構成を表したものである。この固体撮像装置1は、CMOSイメージセンサであり、半導体基板11上に、撮像エリアとしての画素部1aを有すると共に、この画素部1aの周辺領域に、例えば、行走査部131、水平選択部133、列走査部134およびシステム制御部132からなる周辺回路部130を有している。
画素部1aは、例えば、行列状に2次元配置された複数の単位画素P(光電変換素子10に相当)を有している。この単位画素Pには、例えば、画素行ごとに画素駆動線Lread(具体的には行選択線およびリセット制御線)が配線され、画素列ごとに垂直信号線Lsigが配線されている。画素駆動線Lreadは、画素からの信号読み出しのための駆動信号を
伝送するものである。画素駆動線Lreadの一端は、行走査部131の各行に対応した出力端に接続されている。
行走査部131は、シフトレジスタやアドレスデコーダ等によって構成され、画素部1aの各単位画素Pを、例えば、行単位で駆動する画素駆動部である。行走査部131によって選択走査された画素行の各単位画素Pから出力される信号は、垂直信号線Lsigの各々を通して水平選択部133に供給される。水平選択部133は、垂直信号線Lsigごとに設けられたアンプや水平選択スイッチ等によって構成されている。
列走査部134は、シフトレジスタやアドレスデコーダ等によって構成され、水平選択部133の各水平選択スイッチを走査しつつ順番に駆動するものである。この列走査部134による選択走査により、垂直信号線Lsigの各々を通して伝送される各画素の信号が順番に水平信号線135に出力され、当該水平信号線135を通して半導体基板11の外部へ伝送される。
行走査部131、水平選択部133、列走査部134および水平信号線135からなる回路部分は、半導体基板11上に直に形成されていてもよいし、あるいは外部制御ICに配設されたものであってもよい。また、それらの回路部分は、ケーブル等により接続された他の基板に形成されていてもよい。
システム制御部132は、半導体基板11の外部から与えられるクロックや、動作モードを指令するデータ等を受け取り、また、固体撮像装置1の内部情報等のデータを出力するものである。システム制御部132はさらに、各種のタイミング信号を生成するタイミングジェネレータを有し、当該タイミングジェネレータで生成された各種のタイミング信号を基に行走査部131、水平選択部133および列走査部134等の周辺回路の駆動制御を行う。
(適用例2)
上述の固体撮像装置1は、例えば、デジタルスチルカメラやビデオカメラ等のカメラシステムや、撮像機能を有する携帯電話等、撮像機能を備えたあらゆるタイプの電子機器に適用することができる。図12に、その一例として、電子機器2(カメラ)の概略構成を示す。この電子機器2は、例えば、静止画または動画を撮影可能なビデオカメラであり、固体撮像装置1と、光学系(光学レンズ)310と、シャッタ装置311と、固体撮像装
置1およびシャッタ装置311を駆動する駆動部313と、信号処理部312とを有する。
光学系310は、被写体からの像光(入射光)を固体撮像装置1の画素部1aへ導くものである。この光学系310は、複数の光学レンズから構成されていてもよい。シャッタ装置311は、固体撮像装置1への光照射期間および遮光期間を制御するものである。駆動部313は、固体撮像装置1の転送動作およびシャッタ装置311のシャッタ動作を制御するものである。信号処理部312は、固体撮像装置1から出力された信号に対し、各種の信号処理を行うものである。信号処理後の映像信号Doutは、メモリ等の記憶媒体に
記憶されるか、あるいは、モニタ等に出力される。
更に、上記固体撮像装置1は、下記電子機器(カプセル型内視鏡10100および車両等の移動体)にも適用することが可能である。
(適用例3)
<体内情報取得システムへの応用例>
図13は、本開示に係る技術(本技術)が適用され得る、カプセル型内視鏡を用いた患者の体内情報取得システムの概略的な構成の一例を示すブロック図である。
体内情報取得システム10001は、カプセル型内視鏡10100と、外部制御装置10200とから構成される。
カプセル型内視鏡10100は、検査時に、患者によって飲み込まれる。カプセル型内視鏡10100は、撮像機能および無線通信機能を有し、患者から自然排出されるまでの間、胃や腸等の臓器の内部を蠕動運動等によって移動しつつ、当該臓器の内部の画像(以下、体内画像ともいう)を所定の間隔で順次撮像し、その体内画像についての情報を体外の外部制御装置10200に順次無線送信する。
外部制御装置10200は、体内情報取得システム10001の動作を統括的に制御する。また、外部制御装置10200は、カプセル型内視鏡10100から送信されてくる体内画像についての情報を受信し、受信した体内画像についての情報に基づいて、表示装置(図示せず)に当該体内画像を表示するための画像データを生成する。
体内情報取得システム10001では、このようにして、カプセル型内視鏡10100が飲み込まれてから排出されるまでの間、患者の体内の様子を撮像した体内画像を随時得ることができる。
カプセル型内視鏡10100と外部制御装置10200の構成および機能についてより詳細に説明する。
カプセル型内視鏡10100は、カプセル型の筐体10101を有し、その筐体10101内には、光源部10111、撮像部10112、画像処理部10113、無線通信部10114、給電部10115、電源部10116、および制御部10117が収納されている。
光源部10111は、例えばLED(light emitting diode)等の光源から構成され、撮像部10112の撮像視野に対して光を照射する。
撮像部10112は、撮像素子、および当該撮像素子の前段に設けられる複数のレンズからなる光学系から構成される。観察対象である体組織に照射された光の反射光(以下、観察光という)は、当該光学系によって集光され、当該撮像素子に入射する。撮像部10112では、撮像素子において、そこに入射した観察光が光電変換され、その観察光に対応する画像信号が生成される。撮像部10112によって生成された画像信号は、画像処理部10113に提供される。
画像処理部10113は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等のプロセッサによって構成され、撮像部10112によって生成され
た画像信号に対して各種の信号処理を行う。画像処理部10113は、信号処理を施した画像信号を、RAWデータとして無線通信部10114に提供する。
無線通信部10114は、画像処理部10113によって信号処理が施された画像信号に対して変調処理等の所定の処理を行い、その画像信号を、アンテナ10114Aを介して外部制御装置10200に送信する。また、無線通信部10114は、外部制御装置10200から、カプセル型内視鏡10100の駆動制御に関する制御信号を、アンテナ10114Aを介して受信する。無線通信部10114は、外部制御装置10200から受信した制御信号を制御部10117に提供する。
給電部10115は、受電用のアンテナコイル、当該アンテナコイルに発生した電流から電力を再生する電力再生回路、および昇圧回路等から構成される。給電部10115では、いわゆる非接触充電の原理を用いて電力が生成される。
電源部10116は、二次電池によって構成され、給電部10115によって生成された電力を蓄電する。図13では、図面が煩雑になることを避けるために、電源部10116からの電力の供給先を示す矢印等の図示を省略しているが、電源部10116に蓄電された電力は、光源部10111、撮像部10112、画像処理部10113、無線通信部10114、および制御部10117に供給され、これらの駆動に用いられ得る。
制御部10117は、CPU等のプロセッサによって構成され、光源部10111、撮像部10112、画像処理部10113、無線通信部10114、および、給電部10115の駆動を、外部制御装置10200から送信される制御信号に従って適宜制御する。
外部制御装置10200は、CPU,GPU等のプロセッサ、又はプロセッサとメモリ等の記憶素子が混載されたマイクロコンピュータ若しくは制御基板等で構成される。外部制御装置10200は、カプセル型内視鏡10100の制御部10117に対して制御信号を、アンテナ10200Aを介して送信することにより、カプセル型内視鏡10100の動作を制御する。カプセル型内視鏡10100では、例えば、外部制御装置10200からの制御信号により、光源部10111における観察対象に対する光の照射条件が変更され得る。また、外部制御装置10200からの制御信号により、撮像条件(例えば、撮像部10112におけるフレームレート、露出値等)が変更され得る。また、外部制御装置10200からの制御信号により、画像処理部10113における処理の内容や、無線通信部10114が画像信号を送信する条件(例えば、送信間隔、送信画像数等)が変更されてもよい。
また、外部制御装置10200は、カプセル型内視鏡10100から送信される画像信号に対して、各種の画像処理を施し、撮像された体内画像を表示装置に表示するための画像データを生成する。当該画像処理としては、例えば現像処理(デモザイク処理)、高画質化処理(帯域強調処理、超解像処理、NR(Noise reduction)処理および/又は手ブレ補正処理等)、並びに/又は拡大処理(電子ズーム処理)等、各種の信号処理を行うことができる。外部制御装置10200は、表示装置の駆動を制御して、生成した画像データに基づいて撮像された体内画像を表示させる。あるいは、外部制御装置10200は、生成した画像データを記録装置(図示せず)に記録させたり、印刷装置(図示せず)に印刷出力させてもよい。
以上、本開示に係る技術が適用され得る体内情報取得システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部10112に適用され得る。これにより、精細な術部画像を得ることができるため、検査の精度が向上する。
(適用例4)
<移動体への応用例>
本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
図14は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図14に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、および統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、および車載ネットワークI/F(interface)12053が図示されている。
駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、および、車両の制動力を発生させる制動装置等の制御装置として機能する。
ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の
機能実現を目的とした協調制御を行うことができる。
また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声および画像のうちの少なくとも一方の出力信号を送信する。図14の例では、出力装置として、オーディオスピーカ12061、表示部12062およびインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイおよびヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
図15は、撮像部12031の設置位置の例を示す図である。
図15では、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドアおよび車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101および車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
なお、図15には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
<3.実施例>
次に、本開示の実施例について詳細に説明する。実験1では、第1有機半導体材料、第2有機半導体材料および第3有機半導体材料のエネルギー準位の算出および分光特性の評価を行った。実験2では、本開示の光電変換素子を作製し、その電気特性を評価した。実験3では、本開示の有機光電変換層における第1有機半導体材料、第2有機半導体材料および第3有機半導体材料のX線回折法による回折ピーク位置、結晶粒径および結晶性を評価した。
(実験1:エネルギー準位の算出および分光特性の評価)
まず、第1有機半導体材料、第2有機半導体材料および第3有機半導体材料の分光特性について、以下の方法を用いてサンプルを作製して評価した。
UV/オゾン処理にて洗浄した該ガラス基板上に、有機蒸着装置を用い、1×10-5Pa以下の真空下で基板ホルダを回転させながら抵抗加熱法によってフラーレンC60(式(1-1))を蒸着した。蒸着速度は0.1nm/秒とし、これを分光特性用サンプルとした。この他、フラーレンC60(式(1-1))の代わりに、式(3-1)~式(3-15)、式(4-1)~式(4-6)、式(5-1)および式(6-1)に示した有機半導体材料を用いた分光特性用サンプルそれぞれ作製、各サンプルの分光特性を評価した。なお、各有機半導体材料からなる単層膜の膜厚は50nmとした。
分光特性は、紫外可視分光光度計を用い、300nm~800nmの波長領域における波長毎の透過率と反射率を測定し、各単層膜で吸収された光吸収率(%)を求めた。この光吸収率および単層膜の膜厚をパラメータとして、ランベルトベールの法則から、各単層膜における波長毎の線吸収係数α(cm-1)を評価した。線吸収係数の波長依存性から、可視領域の極大吸収波長、極大吸収波長における線吸収係数(極大線吸収係数)およびスペクトルの吸収端(光吸収端)を算出した。
続いて、第1有機半導体材料、第2有機半導体材料および第3有機半導体材料のHOMO準位およびLUMO準位を算出した。
各有機半導体材料のHOMO準位は、以下の方法を用いて算出した。まず、HOMO準位測定用サンプルは、上記分光特性用サンプルと同様の方法を用いて作製した。なお、各有機半導体材料からなる単層膜の膜厚は20nmとした。続いて、得られたHOMO準位測定用サンプルに21.23eVの紫外光を照射してサンプル表面から放出される電子の運動エネルギー分布を取得し、そのスペクトルのエネルギー幅を、照射した紫外光のエネルギー値から減じた値を、その有機半導体材料のHOMO準位とした。有機半導体材料は、第1有機半導体としてフラーレンC60(式(1-1))を、第2有機半導体材料として、式(3-1)~式(3-15)に示したサブフタロシアニン誘導体を、第3有機半導体材料として、式(4-1)~式(4-6)、式(5-1)および式(6-1)に示したキナクリドン(QD)を用いた。
各有機半導体材料のLUMO準位は、分光特性評価で得られた光吸収端のエネルギー値をHOMO準位に加えた値として算出した。
Figure 2024001087000020
Figure 2024001087000021
Figure 2024001087000022
表4は、第1有機半導体材料として用いられるフラーレンC60(式(1-1))のHOMO準位およびLUMO準位を表したものである。表5は、第2有機半導体材料として
用いられる式(3-1)~式(3-15)のHOMO凖位、LUMO凖位ならびに単層膜の可視領域の極大吸収波長および極大線吸収係数をまとめたものである。表6は、第3有機半導体材料として用いられる式(4-1)~式(4-6)および式(5-1)に示した化合物ならびに式(6-1)示したQDのHOMO凖位、LUMO凖位およびそれら単層膜の光吸収端をまとめたものである。
式(3-1)~式(3-15)に示したサブフタロシアニン誘導体は、緑色光を選択的に吸収する色素である。これらサブフタロシアニン誘導体は、表5に示したように、500~600nmの領域に極大吸収波長を有し、その極大線吸収係数は200000cm-1よりも高く、フラーレンC60(式(1-1))および式(4-1)~式(4-6)および式(5-1)に示した化合物等よりも可視領域において高い極大線吸収係数を有していた。これらのことから、サブフタロシアニン誘導体を第2有機半導体材料として用いることにより、所定の領域の波長を選択的に吸収する光電変換素子を作製できることがわかった。
また、表6から、式(4-1)~式(4-6)および式(5-1)に示した化合物は、500nm以降の波長領域に吸収を持たず、480nm以下に光吸収端を有することがわかった。換言すると、式(4-1)~式(4-6)および式(5-1)に示した化合物は、青色光に対する光透過性が高いことがわかった。即ち、上記のような有機半導体材料を第3有機半導体材料として用いることにより、本開示の光電変換素子において第3有機半導体材料がR,G,Bの分離を妨げないことがわかった。
(実験2:電気特性の評価)
以下の方法を用いて電気特性評価用サンプルを作製し、その外部量子効率(EQE)、暗電流特性および応答性を評価した。
まず、サンプル1(実験例1)として、膜厚50nmのITO電極が設けられたガラス基板をUV/オゾン処理にて洗浄したのち、有機蒸着装置を用い、1×10-5Pa以下の真空下で基板ホルダを回転させながら抵抗加熱法によって、第1有機半導体材料としてC60(式(1-1)),第2有機半導体材料として式(3-1)に示したサブフタロシアニン誘導体、第3有機半導体材料として式(4-3)に示した化合物(BP-rBDT)を同時蒸着して有機光電変換層を成膜した。蒸着速度は、第1有機半導体材料、第2有機半導体材料および第3有機半導体材料に対して、それぞれ0.025nm/秒、0.050nm/秒、0.050nm/秒とし、合計200nmの厚みに成膜した。これにより、組成比20vol%(第1有機半導体材料):40vol%(第2有機半導体材料):40vol%(第3有機半導体材料)の有機光電変換層を得た。続いて、正孔ブロッキング層として、下記式(10)に示したB4PyMPMを蒸着速度0.5Å/secにて5nmの厚みとなるように成膜した。次に、この正孔ブロッキング層上に、AlSiCu膜を蒸着法にて膜厚100nmで成膜し、これを上部電極とした。以上により、1mm×1mmの光電変換領域を有する光電変換素子を作製した。
Figure 2024001087000023
この他、実験例2~実験例15として、第2有機半導体材料として式(3-1)に示したサブフタロシアニン誘導体の替わりに、式(3-2)~式(3-15)に示したサブフタロシアニン誘導体を用いた以外は、サンプル1と同様の方法を用いたサンプル2~サンプル15を作製した。また、実験例16~実験例22として、第2有機半導体材料として式(3-2)に示したサブフタロシアニン誘導体を、第3有機半導体材料として式(4-1)、式(4-2)、式(5-1)、式(4-4)~式(4-6)、式(6-1)に示した化合物を用いた以外は、サンプル1と同様の方法を用いたサンプル16~サンプル22を作製した。
(EQEおよび暗電流特性の評価方法)
EQEおよび暗電流特性の評価は、半導体パラメータアナライザを用いて行った。具体的には、フィルタを介して光源から光電変換素子に照射される光の光量を1.62μW/cmとし、電極間に印加されるバイアス電圧を-2.6Vとした場合の電流値(明電流値)および光の光量を0μW/cmとした場合の電流値(暗電流値)をそれぞれ測定し、これらの値から、EQEおよび暗電流特性を算出した。
(応答性の評価方法)
応答性の評価は、半導体パラメータアナライザを用いて光照射時に観測される明電流値が、光照射を止めてから立ち下がる速さを基に行った。具体的には、フィルタを介して光源から光電変換素子に照射される光の光量を1.62μW/cmとし、電極間に印加されるバイアス電圧を-2.6Vとした。この状態で定常電流を観測した後、光照射を止めて、電流が減衰していく様子を観測した。続いて、得られた電流-時間曲線から暗電流値を差し引くことで得られる電流-時間曲線を用い、光照射を止めてからの電流値が、定常状態において観測される電流値が3%にまで減衰するのに要する時間を応答性の指標とした。
Figure 2024001087000024
Figure 2024001087000025
表7は、実験例1~実験例15における有機光電変換層の構成、EQE、暗電流特性、応答性、第1有機半導体材料および第2有機半導体材料のLUMO準位およびその差ならびに有機光電変換層中における第3有機半導体材料の結晶性についてまとめたものである。なお、有機光電変換層中における第3有機半導体材料の結晶性の詳細については後述する(実験3)。表8は、実験例2,実験例16~実験例22における有機光電変換層の構成、EQE、暗電流特性、応答性、第1有機半導体材料および第3有機半導体材料のHOMO準位およびその差ならびに第1有機半導体材料、第2有機半導体材料および第3有機半導体材料のLUMO準位をまとめたものである。図16は、第2有機半導体材料および第1有機半導体材料のLUMO準位差および第2有機半導体材料のLUMO準位と、暗電流との関係を表したものである。図17は、第3有機半導体材料および第1有機半導体材料のHOMO準位差および第3有機半導体材料のHOMO準位と、暗電流との関係を表したものである。
なお、表7に記載されているEQE、暗電流特性および応答性の数値は、実験例15の値を基準(1.0)とした場合の相対値である。表8に記載されているEQE、暗電流特性および応答性の数値は、実験例16の値を基準(1.0)とした場合の相対値である。また、実験例1~実験例15において用いた第3有機半導体材料(式(4-3))のHOMO準位は、-5.64eVであった。
表7および図16からは、第2有機半導体材料として-4.50eV以上のLUMO準位を有する有機半導体材料(式(3-1)~式(3-14);実験例1~14)を用いることで、-4.50eVよりも深いLUMO準位を有する有機半導体材料(式(3-15);実験例15)と比較して、優れた暗電流特性が得られることがわかった。更に、表7および図16からは、第1有機半導体材料と第2有機半導体材料とのLUMO準位の差が0.0eVを境に、優れた暗電流特性が得られることがわかった。これは、第3有機半導体材料のHOMOから第2有機半導体材料のLUMOへの暗電流の発生が抑制されたためと考えられる。即ち、第2有機半導体材料として、第1有機半導体材料のLUMO準位よりも浅い有機半導体材料を用いることが好ましいことがわかった。
表8および図17からは、第1有機半導体材料と第3有機半導体材料とのHOMO準位の差が1eV未満とすることで優れた暗電流特性が得られることがわかった。更に、表8および図17からは、第1有機半導体材料と第3有機半導体材料のHOMO準位との差が0.9eVを境に、より優れた暗電流特性が得られることがわかった。これは、第3有機半導体材料のHOMOから第1有機半導体材料のLUMOへの暗電流の発生が抑制されたためと考えられる。即ち、第3有機半導体材料として、第1有機半導体材料のHOMO準位と、第3有機半導体材料のHOMO準位との差が0.9eVよりも小さい有機半導体材料を用いることが好ましいことがわかった。
また、表7および図16から、第2有機半導体材料および第1有機半導体材料のLUMO準位の差が0.2eVを境に、さらに優れた暗電流特性が安定して得られることがわかった。例えば、実験例15と実験例7とを比較した場合、その効果は10倍以上に及ぶ。このことから、第2有機半導体材料としては、第1有機半導体材料のLUMO準位よりも0.2eV以上浅いLUMO準位を有する有機半導体材料を用いることがより好ましいことがわかった。
更に、第2有機半導体材料が第1有機半導体材料のLUMO準位よりも浅いLUMO準位を有する実験例1~13は、実験例14,15と比較して第3の有機半導体材料の結晶性が向上していることがわかった。暗電流特性が優れた理由は、第3有機半導体材料のHOMOから第2有機半導体材料のLUMOへの暗電流の発生が抑制されたことが考えられるが、これに加えて、第3有機半導体材料の結晶性の向上が考えられる。第3有機半導体材料は、第2有機半導体材料が第1有機半導体材料のLUMO凖位よりも浅いLUMO準位を有する場合、有機光電変換層内において結晶性が向上する。これにより、第3有機半導体材料と第1有機半導体材料との接触面積がより小さくなり、暗電流の発生が抑制されたと考えられる。また、第3有機半導体材料と第2有機半導体材料との接触面積がより小さくなり、暗電流の発生が抑制されたと考えられる。
また、表7および図16から、第2有機半導体材料が第1有機半導体材料のLUMO準位よりも浅いLUMO準位を有する場合、優れた暗電流特性に加えて、高い応答性が得られることがわかった。これは、上記のように、実験例14,15と比較して、第2有機半導体材料が第1有機半導体材料のLUMO準位よりも浅いLUMO準位を有する実験例1~13において第3の有機半導体材料の結晶性が向上したことにより、正孔キャリアの輸送をより高速に行うことができるようになったためと考えられる。
更に、表8および図17から、第3有機半導体材料および第1有機半導体材料のHOMO準位の差が0.7eVを境に、さらに優れた暗電流特性が安定して得られることがわかった。例えば、実験例16と実験例19とを比較した場合、その効果は100倍以上に及ぶ。このことから、第3有機半導体材料としては、第1有機半導体材料のHOMO準位との差が0.7eVより小さいLUMO準位を有する有機半導体材料を用いることがより好ましいことがわかった。
更に、表8および図17から、第3有機半導体材料および第1有機半導体材料のHOMO準位の差を0.5eV以上とすることで、良好なEQEが得られることがわかった。即ち、第3有機半導体材料のHOMO準位と第1有機半導体材料のHOMO準位との差を0.5eV以上0.7eV未満となる第3有機半導体材料を用いることにより、非常に優れた暗電流特性および良好なEQEを両立することができることがわかった。
更にまた、表7および表8ならびに図16および図17から、第1有機半導体材料として、HOMO準位-6.33eVおよびLUMO準位-4.50eVのC60フラーレン(式(1-1))を用いた場合、第2有機半導体材料のLUMO準位および第3有機半導体材料のHOMO準位は、以下の数値範囲をとることで、優れた暗電流特性が得られることがわかった。例えば、第2有機半導体材料として、-4.50eVよりも浅いLUMO準位を有する有機半導体材料を用いることで、優れた暗電流特性を得ることができ、さらに、-4.3eV以上のLUMO準位を有する有機半導体材料を用いることで、さらに優れた暗電流特性を得ることができることがわかった。例えば、第3有機半導体材料として、-5.4eVよりも深いHOMO準位を有する有機半導体材料を用いることで、優れた暗電流特性を得ることができ、さらに、-5.6eVよりも深いHOMO準位を有する有機半導体材料を用いることで、さらに優れた暗電流特性を得ることができることがわかった。
また、第3有機半導体材料は、第2有機半導体材料のLUMO準位よりも浅いLUMO準位を有することが好ましい。このようなエネルギー準位関係とすることで、励起子分離によって、電子が第3有機半導体材料内に発生することが抑制され、電荷(電子および正孔)の再結合によるEQEの低下を防ぐことが可能となると考えられる。
更に、第3有機半導体材料は、第1有機半導体材料のLUMO準位よりも浅いLUMO準位を有することが好ましい。このようなエネルギー準位関係とすることで、第1有機半導体材料、第2有機半導体材料および第3有機半導体材料のHOMO準位のうち、少なくとも1つのHOMO準位から第3有機半導体材料のLUMO準位への暗電流の発生を抑制することが可能となると考えられる。
以上のことから、第3有機半導体材料は、第2有機半導体材料のLUMO準位よりも浅いLUMO準位を有することが好ましいといえる。更に、第3有機半導体材料は、第1有機半導体材料、第2有機半導体材料および第3有機半導体材料のうちで最も浅いLUMO準位を有することが好ましいといえる。
なお、本実験結果から、第2有機半導体材料としては、上記化4および化5において挙げた式(3-1)~式(3-23)の中でも、式(3-1)~式(3-13)に示したサブフタロシアニン誘導体を用いることが好ましく、より好ましくは、式(3-1)~式(3-8)に示したサブフタロシアニン誘導体であるといえる。
(実験3:X線回折法による回折ピーク位置、結晶粒径および結晶性の評価)
以下の方法を用いて結晶性評価用サンプルを作製し、その回折ピーク位置、結晶粒径および結晶性を評価した。
まず、サンプル23(実験例23)として、膜厚50nmのITO電極が設けられたガラス基板をUV/オゾン処理にて洗浄したのち、有機蒸着装置を用い、1×10-5Pa以下の真空下で基板ホルダを回転させながら抵抗加熱法によって、第1有機半導体材料としてC60(式(1-1)),第2有機半導体材料として式(3-2)に示したサブフタロシアニン誘導体、第3有機半導体材料として式(4-3)に示した化合物(BP-rBDT)を同時蒸着して有機光電変換層を成膜した。蒸着速度は、第1有機半導体材料、第2有機半導体材料および第3有機半導体材料に対して、それぞれ0.025nm/秒、0.050nm/秒、0.050nm/秒、合計200nmの厚みに成膜し、これを結晶評価用サンプルとした。この他、式(4-3)に示したBP-rBDTの替わりに、式(4-1)、式(4-2)、式(5-1)および式(4-4)~式(4-6)に示した有機半導体材料を用いた結晶評価用サンプル(サンプル24(実験例24)~サンプル29(実験例29))をそれぞれ作製した。
これらサンプル23~サンプル29に対して、CuKαをX線の発生源としたX線回折装置を用い、それぞれにX線を照射し、斜入射法を用いて面外方向のX線回折測定を2θ=2~35°の範囲で行い、ピーク位置、結晶粒径および結晶性を評価した。また、式(3-2)に示したサブフタロシアニン誘導体の代わりに、式(3-1)、式(3-3)~式(3-15)に示したサブフタロシアニン誘導体を用いた結晶評価用サンプルも作製し、その結晶性を評価した。なお、実験例23~実験例29で成膜した有機光電変換層は、それぞれ、実験例16,17,18,2,19,20,21における有機光電変換層と同様の構成を有する。
図18~図24は、それぞれ、実験例23~実験例29における有機光電変換層のX線回折の測定結果を表したものである。図18~図24では、横軸を2θとし、縦軸に各結晶性評価用サンプル23~29のX線回折強度をプロットし、左側に測定全範囲(2θ=2~35°)の特性図を、右側に2θ=14~30°の範囲の拡大を示した特性図を示した。拡大図においてピークの位置が分かりにくい場合には、矢印でピークの位置を示した。
いずれの実験例においてもX線回折スペクトルにおいてブラッグ角(2θ)18~21°、22~24°、26~30°の領域に、それぞれ1本以上の回折ピークが確認できた。これらのピークを順に、第1、第2、第3のピークと記載する。表9は、実験例23~実験例29における有機光電変換層の構成、第1、第2、第3のピーク位置および結晶粒径についてまとめたものである。なお、2θ=30~31°に常に観測される1つのピークは、有機光電変換層に由来したピークではなく、基板に配置されたITOに由来するものである。
Figure 2024001087000026
(ピーク位置および結晶粒径の評価方法)
第1,第2,第3のピーク位置は、それぞれ、バックグラウンド減算後のスペクトルからPearsonVII関数を用いて各ピークをフィッティングして求めた。結晶粒径は、PearsonVII関数を用いて第2のピークをフィッティングし、その半値幅を求め、シェラーの式に代入することで求めた。その際、シェラー定数Kは0.94を用いた。
(結晶性の評価方法)
結晶性については、バックグラウンド減算後のスペクトルからPearsonVII関数を用いて第1のピークをフィッティングし、その面積を求め、結晶性(結晶化の度合い)を示す指標とした。
図18~24において、ブラッグ角(2θ)18°以上に確認できるピークは、有機光電変換層内において第3有機半導体材料が結晶性を示し、その分子間距離が4.9Å以下になりうることを意味している。分子間距離が短くなるほど、分子間の軌道の重なりが大きくなり、正孔の輸送をより高速に行うことができるようになると期待される。
図18~24において、ブラッグ角(2θ)18~21°、22~24°、26~30°の領域にそれぞれ確認できる3つの回折ピーク(第1,第2,第3のピーク)は、有機光電変換層内において第3有機半導体材料が結晶性を示していることを意味している。加えて、第3の有機半導体材料が、有機光電変換層内においてヘリングボーン構造と呼ばれるパッキング様式をとっていることを意味している。
例えば、文献等において開示されているBP-2T(式(4-3))の結晶構造データを用いると、CuKαをX線源とした場合、19.5°、23.4°、28.2°の3カ所に強い回折ピークを示すことが容易に推測される。これら3つの回折ピークのうち、19.5°のピークは、面方位(110)、(11-2)からの回折ピークに相当する。23.4°のピークは面方位(200)からの回折ピークに相当し、28.2°のピークは面方位(12-1)からの回折ピークに相当する。これらの回折ピークはいずれもヘリングボーン構造の形成を示す重要なピークである。なお、BP-2Tの結晶構造データによると、BP-2Tの空間群はP21/cである。
ところで、BP-4T(式(4-1)で表されるBP-2Tのチオフェン環の数が4つになったもの)は、文献等に開示されている結晶構造データを用い、BP-2Tの場合と同様にして、CuKαをX線源とした場合、BP-4Tは、ヘリングボーン構造の形成を示す19.5°、23.4°、28.3°の3カ所に強い回折ピークを示すことが容易に推測される。BP-4Tの空間群はP21/nである。以上のことから、第3の有機半導体材料は、空間群に関わらず、また、ピーク位置のシフトを考慮して、ブラッグ角(2θ±0.2°)18~21°、22~24°、26~30°の領域にそれぞれ確認できる3つの回折ピークをもって、有機光電変換層内においてヘリングボーン構造と呼ばれるパッキング様式をとっていることを意味することがわかる。
本実験では、表9および図18に示したように、第3有機半導体材料としてBP-2T(式4-1)を用いた実験例23において、それぞれ19.7°、23.3°、28.2°の位置に第1,第2,第3の回折ピークが確認できた。これは、上記の文献の回折ピークの位置と略同一である。即ち、実験例23において用いた第3有機半導体材料は、有機光電変換層内において結晶性を示し、ヘリングボーン構造をとることがわかった。
同様に、表9および図19~図24においても、第1,第2,第3のピークが確認された。即ち、式(4-1)に示したBP-2T以外にも、式(4-2)、式(5-1)、式(4-3)~式(4-6)に示した化合物も有機光電変換層内において結晶性を示し、ヘリングボーン構造をとることがわかった。
第3有機半導体材料の結晶性およびヘリングボーン構造の有無による光電変換素子の電気特性への影響は、例えば、実験2における実験例2および実験例22の結果(表8参照)から確認できる。第3有機半導体材料として式(4-3)(BP-rBDT)を用いた実験例2および式(6-1)(QD)を用いた実験例22では、それぞれ、-5.64eVおよび-5.58eVと近いHOMO準位を有するが、実験例2の方が優れた暗電流特性および応答性が得られた。BP-rBDTは、図21において、ブラッグ角(2θ)18~21°、22~24°、26~30°の領域に、それぞれ1本以上の回折ピークが確認できたことから、有機光電変換層内において結晶性を示すと共に、へリングボーン構造をとることがわかっている。QDは、ここでは示していないが、X線回折スペクトルにおいてブラッグ角(2θ)18~21°、22~24°、26~30°の領域に、回折ピークが確認されなかったことから、QDは有機光電変換層内において結晶性を示さず、へリングボーン構造もとらないと推察される。このことから、実験例2および実験例22の暗電流特性および応答性の差は、有機光電変換層中における第3有機半導体材料の結晶性の有無およびへリングボーン構造をとるかとらないかの差によるものと考えられる。即ち、実験例2では、BP-rBDTが有機光電変換層内で結晶性を示すと共に、へリングボーン構造をとることで、第1有機半導体材料との接触面積が小さくなり、これによって暗電流の発生が抑制されたのではないかと推察される。応答性に関しては、BP-rBDTが有機光電変換層内で結晶性を示すと共に、へリングボーン構造をとることで、正孔の輸送をより高速に行うことができるようになったためではないかと推察される。
また、表7に示した結晶性の評価結果から、第2有機半導体材料として第1有機半導体材料のLUMO準位よりも浅いLUMOを有する有機半導体材料を用いることで、第3有機半導体材料の有機光電変換層内における結晶性が向上することがわかった。これは、第2有機半導体材料のエネルギー準位に応じて第1有機半導体材料、第2有機半導体材料および3有機半導体材料のそれぞれの間の相互作用が変化した結果、第3有機半導体材料の結晶性に違いが現れたものと推察される。これにより、より優れた暗電流特性および応答性が得られたものと推測される。
また、表7に示した結晶粒径の評価結果から、第3有機半導体材料の結晶粒径は6nm以上12nm以下が好ましいでことがわかった。即ち、第3の有機半導体材料が6~12nmの結晶粒径を持つことにより、上述の優れた暗電流特性と応答性が得られることがわかった。
なお、何らかの理由でブラッグ角(2θ)18~21°、22~24°、26~20°の領域に、ヘリングボーン構造をとっていることを示す回折ピークを確認できない場合には、上記のように、第3有機半導体材料の結晶構造データの結果と、上記方法を用いて測定されたX線回折スペクトルを照らし合わせることで確認できる。なお、X線回折測定には、第3有機半導体材料の単層膜を用いてもよい。因みに、ここで確認できないとは、例えば、各領域に各多くのピークが検出されている場合等が考えられる。
以上、実施の形態、変形例および実施例を挙げて説明したが、本開示内容は上記実施の形態等に限定されるものではなく、種々変形が可能である。例えば、上記実施の形態では、光電変換素子(固体撮像装置)として、緑色光を検出する有機光電変換部11Gと、青色光,赤色光をそれぞれ検出する無機光電変換部11B,11Rとを積層させた構成としたが、本開示内容はこのような構造に限定されるものではない。即ち、有機光電変換部において赤色光あるいは青色光を検出するようにしてもよいし、無機光電変換部において緑色光を検出するようにしてもよい。
また、これらの有機光電変換部および無機光電変換部の数やその比率も限定されるものではなく、2以上の有機光電変換部を設けてもよいし、有機光電変換部だけで複数色の色信号が得られるようにしてもよい。更に、有機光電変換部および無機光電変換部を縦方向に積層させる構造に限らず、基板面に沿って並列させてもよい。
更にまた、上記実施の形態では、裏面照射型の固体撮像装置の構成を例示したが、本開示内容は表面照射型の固体撮像装置にも適用可能である。また、本開示の固体撮像装置(光電変換素子)では、上記実施の形態で説明した各構成要素を全て備えている必要はなく、また逆に他の層を備えていてもよい。
なお、本明細書中に記載された効果はあくまで例示であって限定されるものではなく、また、他の効果があってもよい。
なお、本開示は、以下のような構成であってもよい。以下の構成の本技術によれば、光電変換層内において、第1有機半導体材料と第3有機半導体材料との間および第2有機半導体材料と第3有機半導体材料との間での暗電流の発生が抑制され、暗電流特性を改善することが可能となる。
[1]
対向配置された第1電極および第2電極と、
前記第1電極と前記第2電極との間に設けられると共に、互いに異なる母骨格を有する第1有機半導体材料、第2有機半導体材料および第3有機半導体材料を含む光電変換層とを備え、
前記第1有機半導体材料は、フラーレンまたはフラーレン誘導体であり、
前記第2有機半導体材料は、単層膜として形成した状態において、前記第1有機半導体材料の単層膜および前記第3有機半導体材料の単層膜よりも可視光領域における極大吸収波長の線吸収係数が高く、
前記第3有機半導体材料は、結晶性を有する
光電変換素子。
[2]
前記第3有機半導体材料は、前記光電変換層内においてヘリングボーン型の結晶構造をとる、前記[1]に記載の光電変換素子。
[3]
前記光電変換層は、CuKαをX線の発生源としたX線回折スペクトルにおいて、ブラッグ角(2θ±0.2°)18°以上の領域に少なくとも1本の回折ピークを有し、前記回折ピークは、前記第3有機半導体材料由来である、前記[1]または前記[2]に記載の光電変換素子。
[4]
前記光電変換層は、CuKαをX線の発生源としたX線回折スペクトルにおいて、ブラッグ角(2θ±0.2°)18°以上21°以下、22°以上24°以下および26°以上30°以下の領域にそれぞれ少なくとも1本の回折ピークを有し、前記回折ピークは、前記第3有機半導体材料由来である、前記[1]乃至[3]のうちのいずれか1つに記載の光電変換素子。
[5]
前記可視光領域は、450nm以上800nm以下である、前記[1]乃至[4]のうちのいずれか1つに記載の光電変換素子。
[6]
前記光電変換層を構成する前記第1有機半導体材料の含有率は、10体積%以上35体積%以下である、前記[1]乃至[5]のうちのいずれか1つに記載の光電変換素子。
[7]
前記光電変換層を構成する前記第2有機半導体材料の含有率は、10体積%以上80体積%以下である、前記[1]乃至[6]のうちのいずれか1つに記載の光電変換素子。
[8]
前記光電変換層を構成する前記第3有機半導体材料の含有率は、10体積%以上60体積%以下である、前記[1]乃至[7]のうちのいずれか1つに記載の光電変換素子。
[9]
前記光電変換層は、前記第1有機半導体材料、前記第2有機半導体材料および前記第3有機半導体材料が略同量ずつ含有されている、前記[1]乃至[8]のうちのいずれか1つに記載の光電変換素子。
[10]
前記第1有機半導体材料はフラーレンである、前記[1]乃至[9]のうちのいずれか1つに記載の光電変換素子。
[11]
前記第1有機半導体材料はC60フラーレンまたはC70フラーレンである、前記[10]に記載の光電変換素子。
[12]
前記第1有機半導体材料はC60フラーレンである、前記[11]に記載の光電変換素子。
[13]
前記フラーレンおよび前記フラーレン誘導体は、下記式(1)または式(2)で表わされる、前記[1]乃至[12]のうちのいずれか1つに記載の光電変換素子。
Figure 2024001087000027

(R1,R2は、各々独立して水素原子、ハロゲン原子、直鎖,分岐または環状のアルキル基、フェニル基、直鎖または縮環した芳香族化合物を有する基、ハロゲン化物を有する基、パーシャルフルオロアルキル基、パーフルオロアルキル基、シリルアルキル基、シリルアルコキシ基、アリールシリル基、アリールスルファニル基、アルキルスルファニル基、アリールスルホニル基、アルキルスルホニル基、アリールスルフィド基、アルキルスルフィド基、アミノ基、アルキルアミノ基、アリールアミノ基、ヒドロキシ基、アルコキシ基、アシルアミノ基、アシルオキシ基、カルボニル基、カルボキシ基、カルボキシアミド基、カルボアルコキシ基、アシル基、スルホニル基、シアノ基、ニトロ基、カルコゲン化物を有する基、ホスフィン基、ホスホン基あるいはそれらの誘導体である。n,mは0または1以上の整数である。)
[14]
前記第2有機半導体材料は、下記式(3)で表わされるサブフタロシアニンまたはサブフタロシアニン誘導体である、前記[1]乃至[13]のうちのいずれか1つに記載の光電変換素子。
Figure 2024001087000028

(R3~R14は、各々独立して、水素原子、ハロゲン原子、直鎖,分岐,または環状アルキル基、チオアルキル基、チオアリール基、アリールスルホニル基、アルキルスルホニル基、アミノ基、アルキルアミノ基、アリールアミノ基、ヒドロキシ基、アルコキシ基、アシルアミノ基、アシルオキシ基、フェニル基、カルボキシ基、カルボキシアミド基、カルボアルコキシ基、アシル基、スルホニル基、シアノ基およびニトロ基からなる群から選択され、且つ、隣接する任意のR3~R14は縮合脂肪族環または縮合芳香環の一部であってもよい。前記縮合脂肪族環または縮合芳香環は、炭素以外の1または複数の原子を含んでいてもよい。Mはホウ素または2価あるいは3価の金属である。Xはアニオン性基である。)
[15]
前記第3有機半導体材料は、下記式(4)または下記式(5)で表される化合物である、前記[1]乃至[14]のうちのいずれか1つに記載の光電変換素子。
Figure 2024001087000029

(A1,A2は、それぞれ、共役芳香環、縮合芳香環、ヘテロ元素を含む縮合芳香環、オリゴチオフェン、チオフェンである。これらは更に、ハロゲン原子、直鎖,分岐または環状のアルキル基、チオアルキル基、チオアリール基、アリールスルホニル基、アルキルスルホニル基、アルキルスルホニル基、アミノ基、アルキルアミノ基、アリールアミノ基、ヒドロキシ基、アルコキシ基、アシルアミノ基、アシルオキシ基、カルボキシ基、カルボキシアミド基、カルボアルコキシ基、アシル基、スルホニル基、シアノ基、およびニトロ基によって置換されていてもよい。R15~R58は、各々独立して、水素原子、ハロゲン原子、直鎖,分岐または環状のアルキル基、チオアルキル基、アリール基、チオアリール基、アリールスルホニル基、アルキルスルホニル基、アルキルスルホニル基、アミノ基、アルキルアミノ基、アリールアミノ基、ヒドロキシ基、アルコキシ基、アシルアミノ基、アシルオキシ基、フェニル基、カルボキシ基、カルボキシアミド基、カルボアルコキシ基、アシル基、スルホニル基、シアノ基、およびニトロ基からなる群から選択され、且つ、隣接する任意のR15~R23、R24~R32、R33~R45およびR46~R58は、それぞれ、互いに結合して縮合芳香環を形成してもいてもよい。)
[16]
前記第3有機半導体材料の結晶成分の粒径は、6nm以上12nm以下である、前記[1]乃至[15]のうちのいずれか1つに記載の光電変換素子。
[17]
前記第3有機半導体材料は、500nm以上の波長領域に吸収を持たない、前記[1]乃至[16]のうちのいずれか1つに記載の光電変換素子。
[18]
前記第2有機半導体材料は、500nm以上600nm以下の波長領域に極大吸収波長を有する、前記[1]乃至[17]のうちのいずれか1つに記載の光電変換素子。
[19]
前記光電変換層は、CuKαをX線の発生源としたX線回折スペクトルにおいて、ブラッグ角(2θ±0.2°)18°以上30°以下の領域に少なくとも3本の回折ピークを有する、前記[1]乃至[18]のうちのいずれか1つに記載の光電変換素子。
[20]
各画素が1または複数の有機光電変換部を含み、
前記有機光電変換部は、
対向配置された第1電極および第2電極と、
前記第1電極と前記第2電極との間に設けられると共に、互いに異なる母骨格を有する第1有機半導体材料、第2有機半導体材料および第3有機半導体材料を含む光電変換層とを備え、
前記第1有機半導体材料は、フラーレンまたはフラーレン誘導体であり、
前記第2有機半導体材料は、単層膜として形成した状態において、前記第1有機半導体材料の単層膜および前記第3有機半導体材料の単層膜よりも可視光領域における極大吸収波長の線吸収係数が高く、
前記第3有機半導体材料は、結晶性を有する
固体撮像装置。
1…固体撮像装置、10…光電変換素子、11…半導体基板、11G…有機光電変換部、11B,11R…無機光電変換部、12,14…層間絶縁膜、13a,13b,15b…配線層、15a…下部電極、16,16a…絶縁膜、17…有機光電変換層、18…上部電極、19…保護層、20…コンタクトメタル層、21…平坦化層、22…オンチップレンズ、110…シリコン層、110G,110G1,110G2…緑用蓄電層、120a1,120a2,120b1,120b2…導電性プラグ、51…多層配線層、53…支持基板

Claims (20)

  1. 対向配置された第1電極および第2電極と、
    前記第1電極と前記第2電極との間に設けられると共に、互いに異なる母骨格を有する第1有機半導体材料、第2有機半導体材料および第3有機半導体材料を含む光電変換層とを備え、
    前記第1有機半導体材料は、フラーレンまたはフラーレン誘導体であり、
    前記第2有機半導体材料は、単層膜として形成した状態において、前記第1有機半導体材料の単層膜および前記第3有機半導体材料の単層膜よりも可視光領域における極大吸収波長の線吸収係数が高く、
    前記第3有機半導体材料は、結晶性を有する
    光電変換素子。
  2. 前記第3有機半導体材料は、前記光電変換層内においてヘリングボーン型の結晶構造をとる、請求項1に記載の光電変換素子。
  3. 前記光電変換層は、CuKαをX線の発生源としたX線回折スペクトルにおいて、ブラッグ角(2θ±0.2°)18°以上の領域に少なくとも1本の回折ピークを有し、前記回折ピークは、前記第3有機半導体材料由来である、請求項1に記載の光電変換素子。
  4. 前記光電変換層は、CuKαをX線の発生源としたX線回折スペクトルにおいて、ブラッグ角(2θ±0.2°)18°以上21°以下、22°以上24°以下および26°以上30°以下の領域にそれぞれ少なくとも1本の回折ピークを有し、前記回折ピークは、前記第3有機半導体材料由来である、請求項1に記載の光電変換素子。
  5. 前記可視光領域は、450nm以上800nm以下である、請求項1に記載の光電変換素子。
  6. 前記光電変換層を構成する前記第1有機半導体材料の含有率は、10体積%以上35体積%以下である、請求項1に記載の光電変換素子。
  7. 前記光電変換層を構成する前記第2有機半導体材料の含有率は、10体積%以上80体積%以下である、請求項1に記載の光電変換素子。
  8. 前記光電変換層を構成する前記第3有機半導体材料の含有率は、10体積%以上60体積%以下である、請求項1に記載の光電変換素子。
  9. 前記光電変換層は、前記第1有機半導体材料、前記第2有機半導体材料および前記第3有機半導体材料が略同量ずつ含有されている、請求項1に記載の光電変換素子。
  10. 前記第1有機半導体材料はフラーレンである、請求項1に記載の光電変換素子。
  11. 前記第1有機半導体材料はC60フラーレンまたはC70フラーレンである、請求項10に記載の光電変換素子。
  12. 前記第1有機半導体材料はC60フラーレンである、請求項11に記載の光電変換素子。
  13. 前記フラーレンおよび前記フラーレン誘導体は、下記式(1)または式(2)で表わされる、請求項1に記載の光電変換素子。
    Figure 2024001087000030

    (R1,R2は、各々独立して水素原子、ハロゲン原子、直鎖,分岐または環状のアルキル基、フェニル基、直鎖または縮環した芳香族化合物を有する基、ハロゲン化物を有する基、パーシャルフルオロアルキル基、パーフルオロアルキル基、シリルアルキル基、シリルアルコキシ基、アリールシリル基、アリールスルファニル基、アルキルスルファニル基、アリールスルホニル基、アルキルスルホニル基、アリールスルフィド基、アルキルスルフィド基、アミノ基、アルキルアミノ基、アリールアミノ基、ヒドロキシ基、アルコキシ基、アシルアミノ基、アシルオキシ基、カルボニル基、カルボキシ基、カルボキシアミド基、カルボアルコキシ基、アシル基、スルホニル基、シアノ基、ニトロ基、カルコゲン化物を有する基、ホスフィン基、ホスホン基あるいはそれらの誘導体である。n,mは0または1以上の整数である。)
  14. 前記第2有機半導体材料は、下記式(3)で表わされるサブフタロシアニンまたはサブフタロシアニン誘導体である、請求項1に記載の光電変換素子。
    Figure 2024001087000031

    (R3~R14は、各々独立して、水素原子、ハロゲン原子、直鎖,分岐,または環状アルキル基、チオアルキル基、チオアリール基、アリールスルホニル基、アルキルスルホニル基、アミノ基、アルキルアミノ基、アリールアミノ基、ヒドロキシ基、アルコキシ基、
    アシルアミノ基、アシルオキシ基、フェニル基、カルボキシ基、カルボキシアミド基、カルボアルコキシ基、アシル基、スルホニル基、シアノ基およびニトロ基からなる群から選択され、且つ、隣接する任意のR3~R14は縮合脂肪族環または縮合芳香環の一部であってもよい。前記縮合脂肪族環または縮合芳香環は、炭素以外の1または複数の原子を含んでいてもよい。Mはホウ素または2価あるいは3価の金属である。Xはアニオン性基である。)
  15. 前記第3有機半導体材料は、下記式(4)または下記式(5)で表される化合物である、請求項1に記載の光電変換素子。
    Figure 2024001087000032

    (A1,A2は、それぞれ、共役芳香環、縮合芳香環、ヘテロ元素を含む縮合芳香環、オリゴチオフェン、チオフェンである。これらは更に、ハロゲン原子、直鎖,分岐または環状のアルキル基、チオアルキル基、チオアリール基、アリールスルホニル基、アルキルスルホニル基、アルキルスルホニル基、アミノ基、アルキルアミノ基、アリールアミノ基、ヒドロキシ基、アルコキシ基、アシルアミノ基、アシルオキシ基、カルボキシ基、カルボキシアミド基、カルボアルコキシ基、アシル基、スルホニル基、シアノ基、およびニトロ基によって置換されていてもよい。R15~R58は、各々独立して、水素原子、ハロゲン原子、直鎖,分岐または環状のアルキル基、チオアルキル基、アリール基、チオアリール基、アリールスルホニル基、アルキルスルホニル基、アルキルスルホニル基、アミノ基、アルキルアミノ基、アリールアミノ基、ヒドロキシ基、アルコキシ基、アシルアミノ基、アシルオキシ基、フェニル基、カルボキシ基、カルボキシアミド基、カルボアルコキシ基、アシル基、スルホニル基、シアノ基、およびニトロ基からなる群から選択され、且つ、隣接する任意のR15~R23、R24~R32、R33~R45およびR46~R58は、それぞれ、互いに結合して縮合芳香環を形成してもいてもよい。)
  16. 前記第3有機半導体材料の結晶成分の粒径は、6nm以上12nm以下である、請求項1に記載の光電変換素子。
  17. 前記第3有機半導体材料は、500nm以上の波長領域に吸収を持たない、請求項1に記載の光電変換素子。
  18. 前記第2有機半導体材料は、500nm以上600nm以下の波長領域に極大吸収波長を有する、請求項1に記載の光電変換素子。
  19. 前記光電変換層は、CuKαをX線の発生源としたX線回折スペクトルにおいて、ブラッグ角(2θ±0.2°)18°以上30°以下の領域に少なくとも3本の回折ピークを有する、請求項1に記載の光電変換素子。
  20. 各画素が1または複数の有機光電変換部を含み、
    前記有機光電変換部は、
    対向配置された第1電極および第2電極と、
    前記第1電極と前記第2電極との間に設けられると共に、互いに異なる母骨格を有する第1有機半導体材料、第2有機半導体材料および第3有機半導体材料を含む光電変換層とを備え、
    前記第1有機半導体材料は、フラーレンまたはフラーレン誘導体であり、
    前記第2有機半導体材料は、単層膜として形成した状態において、前記第1有機半導体材料の単層膜および前記第3有機半導体材料の単層膜よりも可視光領域における極大吸収波長の線吸収係数が高く、
    前記第3有機半導体材料は、結晶性を有する
    固体撮像装置。
JP2023169028A 2016-11-30 2023-09-29 光電変換素子および固体撮像装置 Pending JP2024001087A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016232961 2016-11-30
JP2016232961 2016-11-30
JP2017219374A JP7013805B2 (ja) 2016-11-30 2017-11-14 光電変換素子および固体撮像装置
JP2022006366A JP7363935B2 (ja) 2016-11-30 2022-01-19 光電変換素子および固体撮像装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2022006366A Division JP7363935B2 (ja) 2016-11-30 2022-01-19 光電変換素子および固体撮像装置

Publications (1)

Publication Number Publication Date
JP2024001087A true JP2024001087A (ja) 2024-01-09

Family

ID=60888558

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2022006366A Active JP7363935B2 (ja) 2016-11-30 2022-01-19 光電変換素子および固体撮像装置
JP2023169028A Pending JP2024001087A (ja) 2016-11-30 2023-09-29 光電変換素子および固体撮像装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2022006366A Active JP7363935B2 (ja) 2016-11-30 2022-01-19 光電変換素子および固体撮像装置

Country Status (6)

Country Link
US (1) US20230262998A1 (ja)
JP (2) JP7363935B2 (ja)
KR (2) KR20240097973A (ja)
CN (3) CN117062502A (ja)
TW (2) TWI807805B (ja)
WO (1) WO2018101354A1 (ja)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3173395B2 (ja) * 1996-11-26 2001-06-04 富士ゼロックス株式会社 電荷輸送性材料及びそれに用いる電荷輸送性微粒子の製造方法
JP2003234460A (ja) 2002-02-12 2003-08-22 Nippon Hoso Kyokai <Nhk> 積層型光導電膜および固体撮像装置
JP2005303266A (ja) 2004-03-19 2005-10-27 Fuji Photo Film Co Ltd 撮像素子、その電場印加方法および印加した素子
JP5258037B2 (ja) * 2008-09-08 2013-08-07 国立大学法人京都大学 光電変換素子、その製造方法、及び太陽電池
CN103380506A (zh) * 2011-01-28 2013-10-30 三菱化学株式会社 光电转换元件、太阳能电池和太阳能电池模块
ITMI20110881A1 (it) 2011-05-18 2012-11-19 E T C Srl Materiale semiconduttore organico
CN103311438A (zh) 2012-03-08 2013-09-18 中国科学院合肥物质科学研究院 碳基太阳能电池光敏薄膜及其制备方法
CN104737319B (zh) 2012-10-18 2017-12-19 富士通株式会社 光电转换元件及其制造方法
TWI613833B (zh) * 2012-11-09 2018-02-01 Sony Corp 光電變換元件、固體攝像裝置及電子機器
CN105122492A (zh) 2013-03-08 2015-12-02 国立大学法人神户大学 有机半导体薄膜制造方法
JP6567276B2 (ja) 2014-05-13 2019-08-28 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、および電子機器
KR102314128B1 (ko) * 2014-08-07 2021-10-18 삼성전자주식회사 유기 광전 소자, 이미지 센서 및 전자 장치
KR20230109778A (ko) 2015-05-29 2023-07-20 소니 세미컨덕터 솔루션즈 가부시키가이샤 광전변환 소자 및 고체 촬상 장치

Also Published As

Publication number Publication date
TW202232793A (zh) 2022-08-16
TW202341537A (zh) 2023-10-16
KR20240097973A (ko) 2024-06-27
CN117062502A (zh) 2023-11-14
US20230262998A1 (en) 2023-08-17
KR102677626B1 (ko) 2024-06-25
CN117062501A (zh) 2023-11-14
WO2018101354A1 (en) 2018-06-07
JP2022044685A (ja) 2022-03-17
CN117062500A (zh) 2023-11-14
TWI807805B (zh) 2023-07-01
KR20230109770A (ko) 2023-07-20
JP7363935B2 (ja) 2023-10-18

Similar Documents

Publication Publication Date Title
JP7107217B2 (ja) 光電変換素子および固体撮像装置
JP7013805B2 (ja) 光電変換素子および固体撮像装置
US20220246683A1 (en) Solid-state imaging element and solid-state imaging apparatus
CN109478576B (zh) 光电转换元件和固体摄像装置
JP2018046039A (ja) 固体撮像素子および固体撮像装置
JP2018032754A (ja) 固体撮像素子および固体撮像装置
JP7363935B2 (ja) 光電変換素子および固体撮像装置
US20220407019A1 (en) Photoelectric conversion element and imaging device
CN118575604A (zh) 光电转换元件、光检测器和电子设备

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230929