JP2023523803A - バッテリー管理装置及び方法 - Google Patents

バッテリー管理装置及び方法 Download PDF

Info

Publication number
JP2023523803A
JP2023523803A JP2022566236A JP2022566236A JP2023523803A JP 2023523803 A JP2023523803 A JP 2023523803A JP 2022566236 A JP2022566236 A JP 2022566236A JP 2022566236 A JP2022566236 A JP 2022566236A JP 2023523803 A JP2023523803 A JP 2023523803A
Authority
JP
Japan
Prior art keywords
soc
profile
battery
correction
ocv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022566236A
Other languages
English (en)
Other versions
JP7351024B2 (ja
Inventor
ヨン-ジン・キム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Energy Solution Ltd
Original Assignee
LG Energy Solution Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Energy Solution Ltd filed Critical LG Energy Solution Ltd
Publication of JP2023523803A publication Critical patent/JP2023523803A/ja
Application granted granted Critical
Publication of JP7351024B2 publication Critical patent/JP7351024B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本発明の一実施形態によるバッテリー管理装置は、バッテリーセルの電圧及び電流のうちの少なくとも一つに基づいて前記バッテリーセルに対するOCV及びSOCを含むバッテリー情報を推定するように構成されたバッテリー情報推定部と、前記バッテリー情報推定部から前記OCV及び前記SOCを受信し、前記OCVと前記SOCとの対応関係を示すSOCプロファイルを生成するように構成されたプロファイル生成部と、前記プロファイル生成部から前記SOCプロファイルを受信し、受信したSOCプロファイルで変曲点を決定し、前記SOCプロファイルに一つ以上の変曲点が存在する場合、前記変曲点に対応するOCVまたはSOCを基準にして前記SOCプロファイルで補正区間を設定し、設定された補正区間を線形化することで前記SOCプロファイルを補正するように構成された制御部と、を含む。

Description

本出願は、2020年8月13日付け出願の韓国特許出願第10-2020-0101933に基づく優先権を主張し、当該出願の明細書及び図面に開示された内容は、すべて本出願に組み込まれる。
本発明は、バッテリー管理装置及び方法に関し、より詳しくは、バッテリーセルに対するSOCプロファイルを生成することができるバッテリー管理装置及び方法に関する。
近年、ノートパソコン、ビデオカメラ、携帯電話などのような携帯用電子製品の需要が急激に伸び、電気自動車、エネルギー貯蔵用蓄電池、ロボット、衛星などの開発が本格化するにつれて、繰り返して充放電可能な高性能バッテリーに対する研究が活発に行われている。
現在、ニッケルカドミウム電池、ニッケル水素電池、ニッケル亜鉛電池、リチウムバッテリーなどのバッテリーが商用化しているが、中でもリチウムバッテリーはニッケル系のバッテリーに比べてメモリ効果が殆ど起きず充放電が自在であって、自己放電率が非常に低くてエネルギー密度が高いという長所から脚光を浴びている。
このようなバッテリーの性能に重要な影響を及ぼすバッテリーのSOC(State of Charge:充電状態)を正確に推定するための研究が行われている(非特許文献1)。バッテリーのSOCを推定する方法は、電流積算法(Coulomb counting)を用いる方法と拡張カルマンフィルタ(Extended Kalman Filter:EKF)を用いる方法とに大別され得る。
電流積算法は、バッテリーの初期充電量(SOC)に時間当り充電量を加算してバッテリーのSOCを推定する方法であって、計算が簡単であるものの、初期充電量(SOC)が正確に分からない場合は誤差が累積される短所がある。
拡張カルマンフィルタは、非線形モデルの状態を推定するために広く使われる方法である。拡張カルマンフィルタを用いる場合、バッテリーに対して設定された等価回路モデル(Equivalent Circuit Model:ECM)を用いてOCV(Open Circuit Voltage:開放電圧)を推定し、推定されたOCVに基づいてバッテリーのSOCを推定する。ただし、拡張カルマンフィルタを用いる場合、等価回路モデルの内部パラメータが負荷電流、SOC、及び温度などの多様な環境要素によって変換され、これはモデルに起因した誤差として現れるようになる。したがって、拡張カルマンフィルタを用いて推定されたSOCでこのような誤差を補正することで、バッテリーに対するより正確なSOCを推定する技術の開発が求められている。
Compensation Method of EKF Based on LSTM for Estimating State of Charge of Li-polymer Battery, Transactions of KSAE, Beomjin Yoon, Seougyeol Yoo, Sangman Seong, Vol. 27, No. 7, pp.501-507, July 2019.
本発明は、拡張カルマンフィルタを用いて生成されるSOCプロファイルの問題点を解決するために創案されたものであって、バッテリーセルのSOC推定の正確度が向上したSOCプロファイルを生成するバッテリー管理装置及び方法を提供することを目的とする。
本発明の他の目的及び長所は、下記の説明によって理解でき、本発明の実施形態によってより明らかに分かるであろう。また、本発明の目的及び長所は、特許請求の範囲に示される手段及びその組合せによって実現することができる。
本発明の一態様によるバッテリー管理装置は、バッテリーセルの電圧及び電流のうちの少なくとも一つに基づいて前記バッテリーセルに対するOCV及びSOCを含むバッテリー情報を推定するように構成されたバッテリー情報推定部と、前記バッテリー情報推定部から前記OCV及び前記SOCを受信し、前記OCVと前記SOCとの対応関係を示すSOCプロファイルを生成するように構成されたプロファイル生成部と、前記プロファイル生成部から前記SOCプロファイルを受信し、受信したSOCプロファイルで変曲点を決定し、前記SOCプロファイルに一つ以上の変曲点が存在する場合、前記変曲点に対応するOCVまたはSOCを基準にして前記SOCプロファイルで補正区間を設定し、設定された補正区間を線形化することで前記SOCプロファイルを補正するように構成された制御部と、を含む。
前記制御部は、前記補正区間に線形化アルゴリズムを適用して前記SOCプロファイルの前記補正区間に含まれた変曲点を除去するように構成され得る。
前記制御部は、前記SOCプロファイルに複数の変曲点が存在する場合、前記複数の変曲点のそれぞれに対して前記補正区間を設定し、設定された複数の補正区間のそれぞれを独立的に線形化するように構成され得る。
前記制御部は、前記設定された複数の補正区間のうちの少なくとも二つの補正区間が重なる場合、重なった複数の補正区間を一つの補正区間として設定するように構成され得る。
前記制御部は、前記補正区間の大きさを変更しながら前記SOCプロファイルを複数回補正し、予め設定された参照プロファイルに基づいて複数の補正されたSOCプロファイルのそれぞれに対するSOC誤差を算出し、前記複数の補正されたSOCプロファイルのうち、算出されたSOC誤差が最も小さいターゲットSOCプロファイルを選択し、選択されたターゲットSOCプロファイルを前記バッテリーセルに対する基準プロファイルとして設定するように構成され得る。
前記制御部は、前記参照プロファイルのOCV毎のSOCと前記複数の補正されたSOCプロファイルのそれぞれの前記OCV毎のSOCとを比較して前記複数の補正されたSOCプロファイルのそれぞれに対するOCV毎のSOC誤差率を算出し、前記複数の補正されたSOCプロファイルのうち、算出されたOCV毎のSOC誤差率の誤差区間の大きさが最も小さい補正されたSOCプロファイルを前記ターゲットSOCプロファイルとして選択するように構成され得る。
前記制御部は、前記複数の補正されたSOCプロファイルのそれぞれに対して算出された前記OCV毎のSOC誤差率の最小値と最大値との差を示す前記誤差区間の大きさが最も小さいSOCプロファイルを前記ターゲットSOCプロファイルとして選択するように構成され得る。
前記制御部は、補正されたSOCプロファイルで前記補正区間の開始点及び終了点をそれぞれ基準にして複数のフィルタリング区間を設定し、設定された複数のフィルタリング区間のそれぞれにフィルタリングアルゴリズムを適用するように構成され得る。
前記複数のフィルタリング区間は、前記開始点または前記終了点を基準にして線形区間及び非線形区間を含むように構成され得る。
前記制御部は、前記フィルタリングアルゴリズムを用いて、前記線形区間と前記非線形区間とが連続的な区間になるように前記複数のフィルタリング区間のそれぞれを補正するように構成され得る。
前記バッテリー情報推定部は、等価回路モデル及び拡張カルマンフィルタを用いて、前記バッテリーセルの前記電圧及び前記電流から互いに対応する前記OCV及び前記SOCを推定するように構成され得る。
本発明の他の一態様によるバッテリーパックは、本発明の一態様によるバッテリー管理装置を含む。
本発明のさらに他の一態様によるバッテリー管理方法は、バッテリーセルの電圧及び電流のうちの少なくとも一つに基づいて前記バッテリーセルに対するOCV及びSOCを含むバッテリー情報を推定するバッテリー情報推定段階と、前記バッテリー情報推定段階で推定された前記OCVと前記SOCとの対応関係を示すSOCプロファイルを生成するSOCプロファイル生成段階と、前記SOCプロファイルで変曲点を決定する変曲点決定段階と、前記SOCプロファイルに一つ以上の変曲点が存在する場合、前記変曲点に対応するOCVまたはSOCを基準にして前記SOCプロファイルで補正区間を設定する補正区間設定段階と、前記補正区間設定段階で設定された補正区間を線形化することで前記SOCプロファイルを補正するSOCプロファイル補正段階と、を含む。
本発明の一態様によれば、本発明の一実施形態によるバッテリー管理装置は、拡張カルマンフィルタに基づいて生成されたバッテリーセルのSOCプロファイルを線形化アルゴリズムを用いて補正することで、より安定的なSOCプロファイルを生成することができる。
また、本発明の一態様によれば、本発明の一実施形態によるバッテリー管理装置は、生成されたSOCプロファイルに変曲点が含まれた場合、変曲点を含むように設定された補正区間に線形化アルゴリズムを適用してSOCプロファイルを1次補正し、1次補正されたSOCプロファイルのうちの一部区間にフィルタリングアルゴリズムを適用してSOCプロファイルを2次補正することができる。
本発明の効果は上述した効果に制限されず、言及されていない本発明の他の効果は請求範囲の記載から当業者により明らかに理解されるだろう。
本明細書に添付される次の図面は、後述する発明の詳細な説明とともに本発明の技術的な思想をさらに理解させる役割をするものであり、本発明は図面に記載された事項だけに限定されて解釈されてはならない。
本発明の一実施形態によるバッテリー管理装置を概略的に示した図である。 本発明の一実施形態によるバッテリー管理装置によって生成されたSOCプロファイルを概略的に示した図である。 図2のSOCプロファイルに含まれた変曲点の例を示した図である。 本発明の一実施形態によるバッテリー管理装置によって補正区間が設定されたSOCプロファイルを概略的に示した図である。 本発明の一実施形態によるバッテリー管理装置によって図4のSOCプロファイルが補正された例を概略的に示した図である。 図2のSOCプロファイルと図5の補正されたSOCプロファイルとの間のSOC誤差率を比較して示した図である。 本発明の一実施形態によるバッテリー管理装置によって複数の補正区間が設定されたSOCプロファイルを概略的に示した図である。 本発明の一実施形態によるバッテリー管理装置によって図7のSOCプロファイルが補正された例を概略的に示した図である。 本発明の一実施形態によるバッテリー管理装置によって複数のフィルタリング区間が設定されたSOCプロファイルを概略的に示した図である。 図9のSOCプロファイルの一部分を拡大して示した図である。 本発明の一実施形態によるバッテリー管理装置を含むバッテリーパックの例示的な構成を概略的に示した図である。 本発明の他の一実施形態によるバッテリー管理方法を概略的に示した図である。
本明細書及び特許請求の範囲において使われた用語や単語は通常的及び辞書的な意味に限定して解釈されてはならず、発明者自らは発明を最善の方法で説明するために用語の概念を適切に定義できるという原則に則して本発明の技術的な思想に応ずる意味及び概念で解釈されねばならない。
したがって、本明細書に記載された実施形態及び図面に示された構成は、本発明のもっとも望ましい一実施形態に過ぎず、本発明の技術的な思想のすべてを代弁するものではないため、本出願の時点においてこれらに代替できる多様な均等物及び変形例があり得ることを理解せねばならない。
また、本発明の説明において、関連する公知の構成または機能についての具体的な説明が本発明の要旨を不明瞭にし得ると判断される場合、その詳細な説明を省略する。
第1、第2などのように序数を含む用語は、多様な構成要素のうちのある一つをその他の要素と区別するために使われたものであり、これら用語によって構成要素が限定されることはない。
明細書の全体において、ある部分がある構成要素を「含む」とするとき、これは特に言及されない限り、他の構成要素を除外するものではなく、他の構成要素をさらに含み得ることを意味する。
また、明細書に記載された制御部のような用語は、少なくとも一つの機能や動作を処理する単位を意味し、ハードウェア、ソフトウェア、またはハードウェアとソフトウェアとの組合せで具現され得る。
さらに、明細書の全体において、ある部分が他の部分と「連結(接続)」されるとするとき、これは「直接的な連結(接続)」だけでなく、他の素子を介在した「間接的な連結(接続)」も含む。
以下、添付された図面を参照して本発明の望ましい実施形態を詳しく説明する。
図1は、本発明の一実施形態によるバッテリー管理装置100を概略的に示した図である。
図1を参照すると、本発明の一実施形態によるバッテリー管理装置100は、バッテリー情報推定部110、プロファイル生成部120、及び制御部130を含む。
バッテリー情報推定部110は、バッテリーセルBの電圧及び電流のうちの少なくとも一つに基づいて前記バッテリーセルBに対するOCV及びSOCを含むバッテリー情報を推定するように構成され得る。
ここで、バッテリーセルBは、負極端子及び正極端子を備え、物理的に分離可能な一つの独立したセルを意味する。一例として、一つのパウチ型リチウムポリマーセルをバッテリーセルBとして見なし得る。
また、OCVとは開放電圧(Open Circuit Voltage)を意味し、SOCとは充電状態(State of Charge)を意味する。
具体的には、前記バッテリー情報推定部110は、等価回路モデル及び拡張カルマンフィルタを用いて、前記バッテリーセルBの前記電圧及び前記電流から互いに対応する前記OCVと前記SOCとを推定するように構成され得る。拡張カルマンフィルタを用いてバッテリーの電圧、電流、及び等価回路モデルからバッテリーのOCV及びSOCを推定する方法は公知の方法であるため、具体的な説明は省略する。
プロファイル生成部120は、前記バッテリー情報推定部110から前記OCV及び前記SOCを受信するように構成され得る。
望ましくは、プロファイル生成部120とバッテリー情報推定部110とは通信可能に互いに接続され得る。バッテリー情報推定部110が推定したOCV及びSOCを出力すれば、プロファイル生成部120は、バッテリー情報推定部110からOCV及びSOCを受信し得る。
また、プロファイル生成部120は、前記OCVと前記SOCとの対応関係を示すSOCプロファイルを生成するように構成され得る。
具体的には、SOCプロファイルは、バッテリー情報推定部110によって推定されたOCVとSOCとの対応関係を示すプロファイルであり得る。
図2は、本発明の一実施形態によるバッテリー管理装置100によって生成されたSOCプロファイルP1を概略的に示した図である。
例えば、図2の実施形態において、SOCプロファイルP1は、SOCをX軸に設定し、OCVをY軸に設定した場合のX-Yグラフである。また、SOCプロファイルP1のSOCの全体区間は0%~100%であり得る。すなわち、SOCプロファイルP1は、一対一関係にあるOCVとSOCとを平面グラフの形態で示した図である。
制御部130は、前記プロファイル生成部120から前記SOCプロファイルP1を受信するように構成され得る。
望ましくは、制御部130は、プロファイル生成部120と通信可能に接続され得る。そして、プロファイル生成部120が生成したSOCプロファイルP1を出力すれば、制御部130は、プロファイル生成部120からSOCプロファイルP1を受信し得る。
また、制御部130は、受信したSOCプロファイルP1から変曲点(inflection point)を決定するように構成され得る。
ここで、変曲点とは、二回微分可能な関数において、グラフが上方に向かって凸状の状態から下方に向かって凸状の状態に変わるか、または、下方に向かって凸状の状態から上方に向かって凸状の状態に変化する点を意味する。一般に、平面曲線では曲率の正と負とが変わる点を変曲点と称する。
例えば、制御部130は、OCVとSOCとの対応関係を示すSOCプロファイルP1をf(x)関数に設定し、f(x)関数を二回微分してSOCプロファイルP1の二階導関数f”(x)を求める。ここで、f(x)関数は連続的であって、二回微分可能な関数であることを前提にする。そして、制御部130は、二階導関数f”(x)からf”(SOC)=0であって、且つ、f”(SOC)を基準にしてf”(x)の符号が正から負または負から正に変わる地点を変曲点として決定し得る。
図3は、図2のSOCプロファイルP1に含まれた変曲点の例を示した図である。
以下では、説明の便宜上、図3に示されたように、SOCプロファイルP1には第1変曲点IP1、第2変曲点IP2、及び第3変曲点IP3のみが含まれたと仮定する。ここで、第1変曲点IP1のSOCは10%であり、第2変曲点IP2のSOCは55%であり、第3変曲点IP3のSOCは95%であり得る。
前記SOCプロファイルP1に一つ以上の変曲点が存在する場合、制御部130は、前記変曲点に対応するOCVまたはSOCを基準にして前記SOCプロファイルP1で補正区間を設定するように構成され得る。
例えば、制御部130は、SOCを基準にして補正区間を設定し得る。
具体的には、制御部130は、SOCプロファイルP1に変曲点が存在すると決定された場合のみに、SOCプロファイルP1で補正区間を設定し得る。SOCプロファイルP1に変曲点が存在しないと、制御部130は、SOCプロファイルP1で補正区間を設定せず、プロファイル生成部120から受信したSOCプロファイルP1を該当バッテリーセルBに対する基準プロファイルとして設定し得る。
より具体的には、制御部130は、変曲点が含まれるように補正区間を設定し得る。すなわち、制御部130によって設定された補正区間には常に変曲点が含まれ得る。
図4は、本発明の一実施形態によるバッテリー管理装置100によって補正区間Cが設定されたSOCプロファイルP1を概略的に示した図である。
例えば、図4の実施形態において、制御部130は、SOCを基準にして第1変曲点IP1、第2変曲点IP2、及び第3変曲点IP3がすべて含まれるように補正区間Cを設定し得る。ここで、補正区間Cは、3%~100%のSOC区間であり得る。
また、制御部130は、設定された補正区間Cを線形化することで前記SOCプロファイルP1を補正するように構成され得る。
上述した変曲点の定義を参照すると、変曲点はSOCプロファイルP1の非線形区間で現れ得る。したがって、制御部130は、変曲点が含まれた非線形区間を線形化することで、SOCプロファイルP1を補正し得る。
すなわち、前記制御部130は、前記補正区間Cに線形化アルゴリズムを適用して前記SOCプロファイルP1の前記補正区間Cに含まれた変曲点を除去するように構成され得る。
ここで、線形化アルゴリズムとしては、曲線の非線形区間を線形区間に変換可能なアルゴリズムが適用され得る。例えば、線形化アルゴリズムとしては、最小二乗法(Least Square Method:LSM)、最小二乗近似法(Least Square Approximation:LSA)、及び最小平均自乗法(Least Mean Square Method:LMSM)などの回帰分析法(regression analysis method)が適用され得る。
図5は、本発明の一実施形態によるバッテリー管理装置100によって図4のSOCプロファイルP1が補正された例を概略的に示した図である。
具体的には、図5のSOCプロファイルP2は、制御部130が最小自乗法を用いて補正区間Cを線形化したSOCプロファイルである。変曲点が含まれた補正区間Cが線形化されたため、補正SOCプロファイルP2には変曲点が含まれていない。図5において、Qは線形化された補正区間Cを意味する。
以下、制御部130によって変曲点が除去された補正SOCプロファイルP2のSOC誤差率、及び変曲点が含まれたSOCプロファイルP1のSOC誤差率を図6を参照して説明する。
図6は、図2のSOCプロファイルP1と図5の補正SOCプロファイルP2との間のSOC誤差率を比較して示した図である。
SOC誤差率は、バッテリーセルBに対して予め設定された参照プロファイルとSOCプロファイルとの間のOCV毎のSOCの差を意味する。ここで、参照プロファイルとは、バッテリーセルBのOCVとSOCとの対応関係を示すように予め設定されたプロファイルであり得る。例えば、参照プロファイルは、拡張カルマンフィルタと異なる方法(例えば、電流積算法)によって推定されたバッテリーセルBに対するOCVとSOCとの対応関係を示すプロファイルであり得る。
例えば、SOC誤差率は、それぞれのOCVに対して、「(SOCプロファイルのSOC-参照プロファイルのSOC)÷参照プロファイルのSOC×100」の数式で算出され得る。該数式によれば、SOC誤差率の単位は[%]で表され得る。
図6の実施形態において、制御部130は、参照プロファイルのOCV毎のSOCとSOCプロファイル(P1、P2)のOCV毎のSOCとの差をSOC誤差率として算出し得る。
図6を参照すると、変曲点が含まれたSOCプロファイルP1のSOC誤差率に比べ、制御部130によって変曲点が除去された補正SOCプロファイルP2のSOC誤差率の変化幅が小さい。具体的には、SOCプロファイルP1の誤差区間Perrの大きさが補正SOCプロファイルP2の誤差区間Qerrの大きさよりも大きい。
誤差区間の大きさが小さいほど、OCV全区間に対してSOC誤差率が均一に現れるため、制御部130によって補正されたSOCプロファイルP2はプロファイル生成部120によって生成されたSOCプロファイルP1よりもバッテリーセルBに適したプロファイルである。すなわち、制御部130によって補正されたSOCプロファイルP2は、プロファイル生成部120によって生成されたSOCプロファイルP1よりも安定的なプロファイルであると言える。
例えば、バッテリー情報推定部110が拡張カルマンフィルタを用いてバッテリーセルBのSOCを推定するとき、SOCプロファイルP1に含まれた変曲点付近でノイズがカルマンゲイン(Kalman gain)に影響を及ぼすことがある。したがって、プロファイル生成部120によって生成されたSOCプロファイルP1の誤差区間Perrの大きさは、制御部130によって補正されたSOCプロファイルP2の誤差区間Qerrの大きさよりも大きくなり得る。すなわち、プロファイル生成部120によって生成されたSOCプロファイルP1は、ノイズの影響によって、制御部130によって補正されたSOCプロファイルP2よりも不安定であり得る。
したがって、本発明の一実施形態によるバッテリー管理装置100は、拡張カルマンフィルタに基づいて生成されたバッテリーセルBのSOCプロファイルP1を線形化アルゴリズムを用いて補正することで、より安定的なSOCプロファイルP1を生成することができる。
一方、バッテリー管理装置100に備えられた制御部130は、本発明で行われる多様な制御ロジックを実行するため、当業界に知られたプロセッサ、ASIC(Application‐Specific Integrated Circuit,特定用途向け集積回路)、他のチップセット、論理回路、レジスタ、通信モデム、データ処理装置などを選択的に含み得る。また、前記制御ロジックがソフトウェアとして具現されるとき、前記制御部130は、プログラムモジュールの集合として具現され得る。このとき、プログラムモジュールはメモリに保存され、制御部130によって実行され得る。前記メモリは、制御部130の内部または外部に備えられ得、周知の多様な手段で制御部130に接続され得る。
また、バッテリー管理装置100は、保存部140をさらに含み得る。保存部140は、バッテリー管理装置100の各構成要素が動作及び機能を遂行するのに必要なデータ、若しくは、プログラムまたは動作及び機能が行われる過程で生成されるデータなどを保存し得る。保存部140は、データを記録、消去、更新及び読出できると知られた公知の情報記録手段であれば、その種類に特に制限がない。一例として、情報記録手段にはRAM、フラッシュメモリ、ROM、EEPROM、レジスタなどが含まれ得る。また、保存部140は、制御部130によって実行可能なプロセスが定義されたプログラムコードを保存し得る。
例えば、保存部140は、バッテリーセルBの電圧情報及び電流情報を保存し得る。また、保存部140は、バッテリーセルBに対応するように予め設定された等価回路モデル及び拡張カルマンフィルタに連関したパラメータ及び関数などを保存し得る。
前記制御部130は、前記SOCプロファイルP1に複数の変曲点が存在する場合、複数の変曲点(IP1~IP3)のそれぞれに対して前記補正区間を設定するように構成され得る。
例えば、図4の実施形態において、制御部130は、第1変曲点IP1、第2変曲点IP2、及び第3変曲点IP3をすべて含む補正区間Cを設定した。これと異なり、制御部130は、第1変曲点IP1、第2変曲点IP2、及び第3変曲点IP3のそれぞれに対する補正区間を設定し得る。
図7は、本発明の一実施形態によるバッテリー管理装置100によって複数の補正区間(C1~C3)が設定されたSOCプロファイルP1を概略的に示した図である。
例えば、図7の実施形態において、制御部130は、第1変曲点IP1に対する第1補正区間C1、第2変曲点IP2に対する第2補正区間C2、及び第3変曲点IP3に対する第3補正区間C3を設定し得る。ここで、第1補正区間C1は5%~15%のSOC区間であり、第2補正区間C2は50%~60%のSOC区間であり、第3補正区間C3は90%~100%のSOC区間であり得る。
そして、制御部130は、設定された複数の補正区間(C1~C3)をそれぞれ独立的に線形化するように構成され得る。
具体的には、制御部130は、複数の補正区間(C1~C3)のそれぞれを線形化してSOCプロファイルP1を補正したとき、補正されたSOCプロファイルP3に変曲点が存在しないように補正区間(C1~C3)を設定し得る。
特に、複数の補正区間(C1~C3)ではSOCプロファイルP1に含まれたすべての変曲点が除去されない場合、制御部130は、図3の実施形態のように複数の変曲点(IP1~IP3)をすべて含む一つの補正区間を設定してもよい。
図8は、本発明の一実施形態によるバッテリー管理装置100によって図7のSOCプロファイルP1が補正された例を概略的に示した図である。
制御部130は、第1補正区間C1、第2補正区間C2、及び第3補正区間C3をそれぞれ線形化し得る。図8の実施形態において、Q1は線形化された第1補正区間C1を意味し、Q2は線形化された第2補正区間C2を意味し、Q3は線形化された第3補正区間C3を意味する。したがって、図8の補正されたSOCプロファイルP3から第1変曲点IP1、第2変曲点IP2、及び第3変曲点IP3が除去される。すなわち、補正されたSOCプロファイルP3には変曲点が存在しない。
また、図7及び図8の実施形態では、第1変曲点IP1、第2変曲点IP2、及び第3変曲点IP3が第1補正区間C1、第2補正区間C2及び第3補正区間C3のそれぞれの中間点に設定されたが、場合によっては第1補正区間C1、第2補正区間C2及び第3補正区間C3のそれぞれの中間点が第1変曲点IP1、第2変曲点IP2及び第3変曲点IP3に設定されないこともある。
また、第1補正区間C1、第2補正区間C2及び第3補正区間C3の大きさがSOC10%とすべて同一に設定されたが、SOCプロファイルP1に含まれた複数の変曲点(IP1~IP3)を除去するためであれば、第1補正区間C1、第2補正区間C2及び第3補正区間C3の大きさを相異ならせて設定してもよい。
本発明の一実施形態によるバッテリー管理装置100は、複数の変曲点(IP1~IP3)のそれぞれに対する補正区間(C1~C3)を設定し、設定された複数の補正区間(C1~C3)をそれぞれ独立的に線形化することで、補正されたSOCプロファイルP3によるバッテリーセルBのSOC推定の正確度を向上させることができる。
前記制御部130は、前記設定された複数の補正区間(C1~C3)のうちの少なくとも二つの補正区間が重なる場合、重なった複数の補正区間(C1~C3)を一つの補正区間として設定するように構成され得る。
図7の実施形態と異なり、第1補正区間C1と第2補正区間C2とが互いに重なると仮定する。例えば、第1補正区間C1が5%~35%のSOC区間に設定され、第2補正区間C2が30%~60%のSOC区間に設定されたと仮定する。この場合、30%~35%のSOC区間で第1補正区間C1と第2補正区間C2とが互いに重なる。このような場合、制御部130が第1補正区間C1及び第2補正区間C2をそれぞれ線形化すると、30%~35%のSOC区間で線形化された第1補正区間C1及び線形化された第2補正区間C2がそれぞれ存在することになる。したがって、制御部130は、第1補正区間C1と第2補正区間C2とを統合して、5%~60%のSOC区間を一つの補正区間として設定し得る。
前記制御部130は、前記補正区間の大きさを変更しながら前記SOCプロファイルP1を複数回補正するように構成され得る。
例えば、制御部130は、複数の補正区間(C1~C3)の大きさをSOC1%ずつ減らしながら、複数の補正されたSOCプロファイルを生成し得る。この場合、図8の補正されたSOCプロファイルP3は、前記複数の補正されたSOCプロファイルのうちのいずれか一つであり得る。
望ましくは、制御部130によって生成された複数の補正されたSOCプロファイルは、保存部140に保存され得る。
また、制御部130は、予め設定された参照プロファイルに基づいて生成された複数の補正されたSOCプロファイルのそれぞれに対するSOC誤差を算出するように構成され得る。
例えば、制御部130によって補正されたSOCプロファイルが10個生成されたと仮定する。制御部130は、10個の補正されたSOCプロファイルのそれぞれに対してSOC誤差率を算出し得る。
具体的には、前記制御部130は、前記参照プロファイルのOCV毎のSOCと前記複数の補正されたSOCプロファイルのそれぞれの前記OCV毎のSOCとを比較して、前記複数の補正されたSOCプロファイルのそれぞれに対するOCV毎のSOC誤差率を算出するように構成され得る。
また、制御部130は、前記複数の補正されたSOCプロファイルのうち、算出されたSOC誤差率が最も小さいターゲットSOCプロファイルを選択するように構成され得る。
ここで、SOC誤差率が最も小さいとは、複数の補正されたSOCプロファイルのうち、算出されたOCV毎のSOC誤差率の誤差区間の大きさが最も小さいことを意味する。
例えば、図8の補正されたSOCプロファイルP3が、前記複数の補正されたSOCプロファイルのうち、算出されたOCV毎のSOC誤差率の誤差区間の大きさが最も小さいSOCプロファイルである場合、制御部130は、補正されたSOCプロファイルP3を前記ターゲットSOCプロファイルとして選択するように構成され得る。
具体的には、前記制御部130は、前記複数の補正されたSOCプロファイルのそれぞれに対して算出された前記OCV毎のSOC誤差率の最小値と最大値との差を示す前記誤差区間の大きさが最も小さい補正SOCプロファイルP3を前記ターゲットSOCプロファイルとして選択するように構成され得る。
そして、制御部130は、選択されたターゲットSOCプロファイルを前記バッテリーセルBに対する基準プロファイルとして設定するように構成され得る。
すなわち、バッテリー管理装置100は、複数の補正されたSOCプロファイルのうち、誤差区間の大きさが最も小さいターゲットSOCプロファイルをバッテリーセルBに対する基準プロファイルとして設定することで、設定された基準プロファイルに基づいてバッテリーセルBまたは前記バッテリーセルBと同種の二次電池に対するSOC推定の正確度、推定の安定性、及び推定の信頼性を向上させることができる。
前記制御部130は、補正されたSOCプロファイル(P2、P3)で前記補正区間の開始点及び終了点をそれぞれ基準にして複数のフィルタリング区間を設定するように構成され得る。
ここで、補正区間の開始点とは補正区間の下端SOCを意味し、補正区間の終了点とは補正区間の上端SOCを意味する。例えば、図8の実施形態において、第1補正区間C1の開始点は5%のSOCであり、終了点は15%のSOCである。第2補正区間C2の開始点は50%のSOCであり、終了点は60%のSOCである。第3補正区間C3の開始点は90%のSOCであり、終了点は100%のSOCである。
図9は、本発明の一実施形態によるバッテリー管理装置100によって複数のフィルタリング区間が設定されたSOCプロファイルP3を概略的に示した図である。
図9の実施形態において、制御部130は、第1フィルタリング区間F1、第2フィルタリング区間F2、第3フィルタリング区間F3、第4フィルタリング区間F4、及び第5フィルタリング区間F5を設定し得る。図9において、第3補正区間C3の終了点はSOC100%であるため、制御部130は、第3補正区間C3の終了点に対応する第6フィルタリング区間F6を別途に設定しなくてもよい。
そして、制御部130は、設定された複数のフィルタリング区間のそれぞれにフィルタリングアルゴリズムを適用するように構成され得る。
ここで、フィルタリングアルゴリズムとは、補正区間に含まれたノイズを除去可能な平滑化アルゴリズム(smoothing algorithm)であり得る。フィルタリングアルゴリズムとしては多様なアルゴリズムが適用され得、例えば、ガウス平滑化(Gaussian smoothing)またはローパスフィルタ(low pass filter)などが適用され得る。
具体的には、前記複数のフィルタリング区間(F1~F5)は、前記開始点または前記終了点を基準にして線形区間及び非線形区間を含むように構成され得る。ここで、非線形区間は、プロファイル生成部120によって生成されたSOCプロファイルP1から存在する区間であり、線形区間は、制御部130によって線形化された区間(Q、Q1、Q2、Q3)であり得る。非線形区間及び線形区間については図10を参照して具体的に説明する。
図10は、図9のSOCプロファイルP3の一部分を拡大して示した図である。具体的には、図10は、図9のSOCプロファイルP3のうちの第2補正区間C2付近を例示的に拡大して示した図である。
図10を参照すると、第3フィルタリング区間F3及び第4フィルタリング区間F4には、非線形区間R_nl及び線形区間R_lが含まれ得る。例えば、図10の実施形態において、線形区間R_lは、線形化された第2補正区間C2を意味し得る。すなわち、フィルタリング区間には補正区間の開始点または終了点が含まれるため、フィルタリング区間には非線形区間R_nl及び線形区間R_lがすべて含まれる。
そして、制御部130は、前記フィルタリングアルゴリズムを用いて、前記線形区間R_lと前記非線形区間R_nlとが連続的な区間になるように、前記複数のフィルタリング区間(F1~F5)をそれぞれ補正するように構成され得る。
例えば、線形化アルゴリズムとして最小自乗法が用いられると仮定する。制御部130が最小自乗法を用いて第2補正区間C2を線形化した場合、第2補正区間C2に含まれた線形区間R_lと非線形区間R_nlとが連続しないこともあり得る。すなわち、最小自乗法は複数のデータの残差の二乗の和が最小になる方程式を近似的に導出する回帰分析法であるため、線形区間R_lが非線形区間R_nlと連続しないこともある。
したがって、制御部130は、補正区間C2の開始点及び終了点のそれぞれに対してフィルタリング区間(F3、F4)を設定し、設定されたフィルタリング区間(F3、F4)のそれぞれにフィルタリングアルゴリズムを適用することで、非線形区間R_nlと線形区間R_lとが連続的な区間になるようにSOCプロファイルP3を補正し得る。
すなわち、本発明の一実施形態によるバッテリー管理装置100は、生成されたSOCプロファイルP1に変曲点が含まれた場合、変曲点を含むように設定された補正区間に線形化アルゴリズムを適用してSOCプロファイルP1を1次補正し、1次補正されたSOCプロファイルP3のうちの一部区間(フィルタリング区間)にフィルタリングアルゴリズムを適用してSOCプロファイルP3を2次補正することができる。すなわち、バッテリー管理装置100によって補正されたSOCプロファイルP3は、拡張カルマンフィルタを用いて生成されたSOCプロファイルP1よりも、バッテリーセルBに対するOCVとSOCとの対応関係をより正確に示すことができる。したがって、バッテリー管理装置100によって補正されたSOCプロファイルP3によれば、バッテリーセルBのSOC推定の正確度及び信頼度が向上することができる。
本発明によるバッテリー管理装置100は、BMS(Battery Management System、バッテリー管理システム)に適用可能である。すなわち、本発明によるBMSは、上述したバッテリー管理装置100を含み得る。このような構成において、バッテリー管理装置100の各構成要素の少なくとも一部は、従来のBMSに含まれた構成の機能を補完または追加することで具現され得る。例えば、バッテリー管理装置100のバッテリー情報推定部110、プロファイル生成部120、制御部130、及び保存部140は、BMSの構成要素として具現され得る。そして、BMSは、制御部130によって補正されたSOCプロファイルをバッテリーセルBのSOC推定に用い得る。
また、本発明によるバッテリー管理装置100は、バッテリーパック1に備えられ得る。すなわち、本発明によるバッテリーパック1は、上述したバッテリー管理装置100及び一つ以上のバッテリーセルBを含み得る。また、バッテリーパック1は、電装品(リレー、ヒューズなど)及びケースなどをさらに含み得る。
図11は、本発明の一実施形態によるバッテリー管理装置100を含むバッテリーパック1の例示的な構成を概略的に示した図である。
図11を参照すると、バッテリーパック1は、バッテリーセルB、測定部200、及びバッテリー管理装置100を含む。
測定部200は、バッテリーセルBの電圧及び電流を測定するように構成され得る。例えば、図11の実施形態において、測定部200は、第1センシングラインSL1及び第2センシングラインSL2を通じてバッテリーの電圧を測定し得る。そして、測定部200は、電流測定ユニットAに接続された第3センシングラインSL3を通じてバッテリーの電流を測定し得る。
そして、測定部200は、バッテリー管理装置100のバッテリー情報推定部110と通信可能に接続され得る。したがって、測定部200が測定したバッテリーセルBの電圧情報及び電流情報を出力すれば、バッテリー情報推定部110は、測定部200からバッテリーセルBの電圧情報及び電流情報を受信し得る。
また、バッテリーパック1の正極端子P+及び負極端子P-にはバッテリーセルBを充電または放電可能な負荷がさらに接続され得る。
また、本発明によるバッテリー管理装置100は、バッテリー製造システムに含まれ得る。ここで、バッテリー製造システムとは、バッテリーセルBの生産、組立て、及び検査が行われる過程に適用されるシステムを意味し得る。
バッテリー管理装置100は、バッテリーセルBの検査過程で、生産されたバッテリーセルBに対する補正SOCプロファイル(P2、P3)の取得に用いられ得る。すなわち、バッテリー管理装置100によって補正されたSOCプロファイル(P2、P3)が該当バッテリーセルBに対する基準プロファイルとして設定され得る。その後、該当バッテリーセルBのSOCはバッテリー管理装置100によって設定された基準プロファイルに基づいて推定され得る。
図12は、本発明の他の一実施形態によるバッテリー管理方法を概略的に示した図である。
バッテリー管理方法の各段階は、バッテリー管理装置100によって実行できる。以下では、説明の便宜上、上述した説明と重なる内容は簡単に説明するか省略する。
図12を参照すると、バッテリー管理方法は、バッテリー情報推定段階S100、SOCプロファイル生成段階S200、変曲点決定段階S300、補正区間設定段階S400、及びSOCプロファイル補正段階S500を含む。
バッテリー情報推定段階S100は、バッテリーセルBの電圧及び電流のうちの少なくとも一つに基づいて前記バッテリーセルBに対するOCV及びSOCを含むバッテリー情報を推定する段階であって、バッテリー情報推定部110によって実行できる。
例えば、バッテリー情報推定部110は、バッテリーセルBの電圧、電流、予め設定された等価回路モデル、及び拡張カルマンフィルタを用いてバッテリーセルBに対するOCV及びSOCを推定し得る。
SOCプロファイル生成段階S200は、前記バッテリー情報推定段階S100で推定された前記OCVと前記SOCとの対応関係を示すSOCプロファイルP1を生成する段階であって、プロファイル生成部120によって実行できる。
例えば、図2の実施形態において、プロファイル生成部120は、SOCプロファイルP1を生成し得る。
変曲点決定段階S300は、前記SOCプロファイルP1で変曲点を決定する段階であって、制御部130によって実行できる。
例えば、図3の実施形態において、制御部130は、SOCプロファイルP1で第1変曲点IP1、第2変曲点IP2、及び第3変曲点IP3を決定し得る。
補正区間設定段階S400及びSOCプロファイル補正段階S500は、前記SOCプロファイルP1に一つ以上の変曲点が存在する場合に行われ得る。SOCプロファイル生成段階S200で生成されたSOCプロファイルP1に変曲点が存在しない場合は、補正区間設定段階S400及びSOCプロファイル補正段階S500は行われなくてもよい。
具体的には、補正区間設定段階S400は、前記変曲点に対応するOCVまたはSOCを基準にして前記SOCプロファイルP1で補正区間Cを設定する段階であって、制御部130によって実行できる。
例えば、図4の実施形態において、制御部130は、SOCプロファイルP1の変曲点(IP1~IP3)を含むように補正区間Cを設定し得る。具体的には、制御部130は、SOCプロファイル補正段階S500によって補正区間が補正されたとき、補正されたSOCプロファイルに変曲点が存在しないように補正区間を設定し得る。
SOCプロファイル補正段階S500は、前記補正区間設定段階S400で設定された補正区間を線形化することで前記SOCプロファイルP1を補正する段階であって、制御部130によって実行できる。
例えば、図5の実施形態において、制御部130は、補正区間Cを線形化することで、補正区間Cに含まれた変曲点(IP1~IP3)を除去し得る。したがって、補正されたSOCプロファイルP2には変曲点が存在しないため、補正されたSOCプロファイルP2のSOC誤差率はSOCプロファイル生成段階S200で生成されたSOCプロファイルP1のSOC誤差率よりも小さい。
また、制御部130は、補正されたSOCプロファイルP2をバッテリーセルBに対する基準プロファイルとして設定し得る。
したがって、本発明の他の一実施形態によるバッテリー管理方法は、拡張カルマンフィルタを用いて生成されたSOCプロファイルP1を補正することで、バッテリーセルBに対してより適した基準プロファイルを設定することができる。
上述した本発明の実施形態は、装置及び方法のみによって具現されるものではなく、本発明の実施形態の構成に対応する機能を実現するプログラムまたはそのプログラムが記録された記録媒体を通じても具現され得、このような具現は上述した実施形態の記載から当業者であれば容易に具現できるであろう。
以上のように、本発明を限定された実施形態と図面によって説明したが、本発明はこれに限定されるものではなく、本発明の属する技術分野で通常の知識を持つ者によって本発明の技術思想と特許請求の範囲の均等範囲内で多様な修正及び変形が可能であることは言うまでもない。
また、上述した本発明は、本発明が属する技術分野で通常の知識を持つ者により、本発明の技術的思想を逸脱しない範囲内で様々な置換、変形及び変更が可能であって、上述した実施形態及び添付の図面によって限定されるものではなく、多様な変形のため各実施形態の全部または一部が選択的に組み合わせられて構成され得る。
1:バッテリーパック
100:バッテリー管理装置
110:バッテリー情報推定部
120:プロファイル生成部
130:制御部
140:保存部
200:測定部
B:バッテリーセル

Claims (12)

  1. バッテリーセルの電圧及び電流のうちの少なくとも一つに基づいて前記バッテリーセルに対するOCV及びSOCを含むバッテリー情報を推定するように構成されたバッテリー情報推定部と、
    前記バッテリー情報推定部から前記OCV及び前記SOCを受信し、前記OCVと前記SOCとの対応関係を示すSOCプロファイルを生成するように構成されたプロファイル生成部と、
    前記プロファイル生成部から前記SOCプロファイルを受信し、受信したSOCプロファイルで変曲点を決定し、前記SOCプロファイルに一つ以上の変曲点が存在する場合、前記変曲点に対応するOCVまたはSOCを基準にして前記SOCプロファイルで補正区間を設定し、設定された補正区間を線形化することで前記SOCプロファイルを補正するように構成された制御部と、を含むバッテリー管理装置。
  2. 前記制御部は、前記補正区間に線形化アルゴリズムを適用して前記SOCプロファイルの前記補正区間に含まれた変曲点を除去するように構成されている、請求項1に記載のバッテリー管理装置。
  3. 前記制御部は、前記SOCプロファイルに複数の変曲点が存在する場合、前記複数の変曲点のそれぞれに対して前記補正区間を設定し、設定された複数の補正区間のそれぞれを独立的に線形化するように構成されている、請求項1または2に記載のバッテリー管理装置。
  4. 前記制御部は、前記設定された複数の補正区間のうちの少なくとも二つの補正区間が重なる場合、重なった複数の補正区間を一つの補正区間として設定するように構成されている、請求項3に記載のバッテリー管理装置。
  5. 前記制御部は、前記補正区間の大きさを変更しながら前記SOCプロファイルを複数回補正し、予め設定された参照プロファイルに基づいて複数の補正されたSOCプロファイルのそれぞれに対するSOC誤差を算出し、前記複数の補正されたSOCプロファイルのうち、算出されたSOC誤差が最も小さいターゲットSOCプロファイルを選択し、選択されたターゲットSOCプロファイルを前記バッテリーセルに対する基準プロファイルとして設定するように構成されている、請求項1から4のいずれか一項に記載のバッテリー管理装置。
  6. 前記制御部は、前記参照プロファイルのOCV毎のSOCと前記複数の補正されたSOCプロファイルのそれぞれの前記OCV毎のSOCとを比較して前記複数の補正されたSOCプロファイルのそれぞれに対するOCV毎のSOC誤差率を算出し、前記複数の補正されたSOCプロファイルのうち、算出されたOCV毎のSOC誤差率の誤差区間の大きさが最も小さい補正されたSOCプロファイルを前記ターゲットSOCプロファイルとして選択するように構成されている、請求項5に記載のバッテリー管理装置。
  7. 前記制御部は、前記複数の補正されたSOCプロファイルのそれぞれに対して算出された前記OCV毎のSOC誤差率の最小値と最大値との差を示す前記誤差区間の大きさが最も小さいSOCプロファイルを前記ターゲットSOCプロファイルとして選択するように構成されている、請求項6に記載のバッテリー管理装置。
  8. 前記制御部は、補正されたSOCプロファイルで前記補正区間の開始点及び終了点をそれぞれ基準にして複数のフィルタリング区間を設定し、設定された複数のフィルタリング区間のそれぞれにフィルタリングアルゴリズムを適用するように構成されている、請求項1から7のいずれか一項に記載のバッテリー管理装置。
  9. 前記複数のフィルタリング区間は、前記開始点または前記終了点を基準にして線形区間及び非線形区間を含むように構成され、
    前記制御部は、前記フィルタリングアルゴリズムを用いて、前記線形区間と前記非線形区間とが連続的な区間になるように前記複数のフィルタリング区間のそれぞれを補正するように構成されている、請求項8に記載のバッテリー管理装置。
  10. 前記バッテリー情報推定部は、等価回路モデル及び拡張カルマンフィルタを用いて、前記バッテリーセルの前記電圧及び前記電流から互いに対応する前記OCV及び前記SOCを推定するように構成されている、請求項1から9のいずれか一項に記載のバッテリー管理装置。
  11. 請求項1から10のいずれか一項に記載のバッテリー管理装置を含むバッテリーパック。
  12. バッテリーセルの電圧及び電流のうちの少なくとも一つに基づいて前記バッテリーセルに対するOCV及びSOCを含むバッテリー情報を推定するバッテリー情報推定段階と、
    前記バッテリー情報推定段階で推定された前記OCVと前記SOCとの対応関係を示すSOCプロファイルを生成するSOCプロファイル生成段階と、
    前記SOCプロファイルで変曲点を決定する変曲点決定段階と、
    前記SOCプロファイルに一つ以上の変曲点が存在する場合、前記変曲点に対応するOCVまたはSOCを基準にして前記SOCプロファイルで補正区間を設定する補正区間設定段階と、
    前記補正区間設定段階で設定された補正区間を線形化することで前記SOCプロファイルを補正するSOCプロファイル補正段階と、を含むバッテリー管理方法。
JP2022566236A 2020-08-13 2021-08-05 バッテリー管理装置及び方法 Active JP7351024B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2020-0101933 2020-08-13
KR1020200101933A KR20220021276A (ko) 2020-08-13 2020-08-13 배터리 관리 장치 및 방법
PCT/KR2021/010342 WO2022035130A1 (ko) 2020-08-13 2021-08-05 배터리 관리 장치 및 방법

Publications (2)

Publication Number Publication Date
JP2023523803A true JP2023523803A (ja) 2023-06-07
JP7351024B2 JP7351024B2 (ja) 2023-09-26

Family

ID=80246769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022566236A Active JP7351024B2 (ja) 2020-08-13 2021-08-05 バッテリー管理装置及び方法

Country Status (6)

Country Link
US (1) US20230176130A1 (ja)
EP (1) EP4148441A4 (ja)
JP (1) JP7351024B2 (ja)
KR (1) KR20220021276A (ja)
CN (1) CN115461636A (ja)
WO (1) WO2022035130A1 (ja)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3740323B2 (ja) * 1998-07-31 2006-02-01 キヤノン株式会社 二次電池の充電方法及びその装置
KR100766982B1 (ko) * 2006-09-05 2007-10-15 삼성에스디아이 주식회사 배터리 관리 시스템 및 그의 구동 방법
KR100805116B1 (ko) * 2006-09-08 2008-02-21 삼성에스디아이 주식회사 배터리 관리 시스템 및 그 구동방법
JP5794933B2 (ja) * 2012-02-29 2015-10-14 三菱重工業株式会社 充電率演算システムおよび充電率演算方法
JP6988386B2 (ja) * 2017-11-08 2022-01-05 株式会社Gsユアサ 蓄電素子の管理装置、及び、管理方法
JP7236806B2 (ja) 2018-01-09 2023-03-10 スリーエム イノベイティブ プロパティズ カンパニー フィルター、金属イオンの除去方法及び金属イオン除去装置
CN108398647B (zh) * 2018-03-01 2020-07-24 杭州高特新能源技术有限公司 锂电池不同充放电曲线获取方法
KR20200025495A (ko) * 2018-08-30 2020-03-10 주식회사 엘지화학 이차 전지의 충전 시간 추정 장치 및 방법
KR102439598B1 (ko) * 2018-10-25 2022-09-05 주식회사 엘지에너지솔루션 이차 전지의 내부 가스 발생 가속 구간 판단 방법
CN111308371A (zh) * 2019-11-29 2020-06-19 湖南海博瑞德电智控制技术有限公司 一种锂离子的电池荷电状态估算方法
CN110931901B (zh) * 2019-12-13 2021-04-06 重庆理工大学 模拟铅酸电池电气特性的锂电池柔性集成方法与系统
CN111208439B (zh) * 2020-01-19 2021-10-22 中国科学技术大学 一种串联锂离子电池组微短路故障定量检测方法

Also Published As

Publication number Publication date
EP4148441A4 (en) 2023-11-22
CN115461636A (zh) 2022-12-09
EP4148441A1 (en) 2023-03-15
JP7351024B2 (ja) 2023-09-26
WO2022035130A1 (ko) 2022-02-17
KR20220021276A (ko) 2022-02-22
US20230176130A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
US10663524B2 (en) Battery state estimating apparatus
CN108369258B (zh) 状态估计装置、状态估计方法
JP7036605B2 (ja) 組電池の状態推定装置及び組電池の状態推定方法
CN107690585B (zh) 用于确定锂硫电池组的健康状况和充电状态的方法和装置
US10107865B2 (en) Battery state estimation method and system using dual extended kalman filter, and recording medium for performing the method
JP6507375B2 (ja) 電池の状態推定装置、および、電池の状態推定方法
JP5393837B2 (ja) バッテリの充電率推定装置
JP5997081B2 (ja) 二次電池の状態推定装置及び二次電池の状態推定方法
WO2015033504A1 (ja) バッテリの健全度推定装置および健全度推定方法
US10436850B2 (en) Power storage apparatus and controlling method for the same
JP2012247339A (ja) 半導体集積回路およびその動作方法
JP2015224975A (ja) バッテリ充放電電流検出装置
KR101661578B1 (ko) 듀얼확장칼만필터를 이용한 배터리 상태 추정 방법, 시스템 및 이를 수행하기 위한 기록매체
JP6455914B2 (ja) 蓄電残量推定装置、蓄電池の蓄電残量を推定する方法、及びコンピュータプログラム
US20150369876A1 (en) Deterioration determination method, manufacturing method of electric storage device, deterioration determination device, and storage medium
JP2017223536A (ja) 電池状態推定装置および電池状態推定方法
JP7452924B2 (ja) バッテリーsoh推定装置及び方法
Nejad et al. Sensitivity of lumped parameter battery models to constituent parallel-RC element parameterisation error
KR101160541B1 (ko) 전지 잔여용량 예측방법
CN110726937A (zh) 用于确定状态噪声协方差矩阵的方法和相应设备
US11505088B2 (en) Vehicle and control method thereof
JP6649814B2 (ja) 二次電池の充電率推定方法、充電率推定装置及び充電率推定プログラム
CN113661399B (zh) 蓄电池的特性推测装置以及特性推测方法
JP7351024B2 (ja) バッテリー管理装置及び方法
JP2018146343A (ja) バッテリ管理装置及びバッテリ管理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230913

R150 Certificate of patent or registration of utility model

Ref document number: 7351024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150