JP2023506023A - 金属セラミック基板を処理する方法、そうした方法のためのシステム、およびそうした方法によって生成された金属セラミック基板 - Google Patents

金属セラミック基板を処理する方法、そうした方法のためのシステム、およびそうした方法によって生成された金属セラミック基板 Download PDF

Info

Publication number
JP2023506023A
JP2023506023A JP2022535830A JP2022535830A JP2023506023A JP 2023506023 A JP2023506023 A JP 2023506023A JP 2022535830 A JP2022535830 A JP 2022535830A JP 2022535830 A JP2022535830 A JP 2022535830A JP 2023506023 A JP2023506023 A JP 2023506023A
Authority
JP
Japan
Prior art keywords
metal
ceramic substrate
laser light
ceramic
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022535830A
Other languages
English (en)
Inventor
コール、トーマス
レティンガー、ベルンハルト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rogers Germany GmbH
Original Assignee
Rogers Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rogers Germany GmbH filed Critical Rogers Germany GmbH
Publication of JP2023506023A publication Critical patent/JP2023506023A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/384Removing material by boring or cutting by boring of specially shaped holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/388Trepanning, i.e. boring by moving the beam spot about an axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

本発明は、金属セラミック基板(1)を機械加工するための方法であって、前記金属セラミック基板(1)を提供する工程であって、前記金属セラミック基板(1)は、主面(HSE)に沿って広がるとともに前記主面(HSE)に対し垂直に延びる積層方向(S)に沿って上下に配置されている、1つ以上の金属層とセラミック素子と、を備える、工程と、前記金属セラミック基板(1)に、レーザ光(10)、特に超短パルス(USP)レーザを用いた機械加工によって凹部(15)、特に貫通凹部(15)を形成する工程と、を備える方法に関する。

Description

本発明は、金属セラミック基板を処理する方法、そうした方法のための装置、およびそうした方法によって生成された金属セラミック基板に関する。
電子モジュールは、例えば、電力電子モジュールとして、先行技術において周知である。そうした電子モジュールは、典型的には、共通の金属セラミック基板に対し導体トラックを介して相互接続されている切換可能または制御可能な電子コンポーネントを用いる。金属セラミック基板の本質的なコンポーネントは、金属セラミック基板の場合にセラミックを含む材料からなる絶縁層と、好ましくは導体トラックを形成するように前記金属セラミック基板の1つのコンポーネント側に構造化され形成されたメタライゼーション層と、である。
典型的には、金属セラミック基板は、構造化前後に小型金属セラミック基板へと分離する大型カードとして実現される。そうした大型カードは、所定の破断線および/または分離店を生成するように、レーザ光によって処理される。それぞれの金属セラミック基板は、次いで、例えば、金属セラミック基板を破断することによって、大型カードから分離して提供されることが可能である。超短パルスレーザの使用は、特許文献1における実施例用に記載されている通り、ここでは有利であることが示されている。
特許文献2から、レーザ光を用いてワークピースを処理するための方法が知られており、ワークピースはステージに置かれる。特許文献3も、レーザ光によるドリルホールの生成に関する。
国際公開第2017/108950号 米国特許出願公開第2016/207143号明細書 欧州特許出願公開第0826457号明細書
先行技術に基づいて、本発明は、金属セラミック基板の処理を向上させることを目的としている。
この目的は、請求項1に係る金属セラミック基板を処理する方法によって、請求項9に係るその方法に適した装置によって、また請求項10に係るそうした方法によって生成された金属セラミック基板によって、達成される。さらなる実施形態は、従属請求項および記載からとられる。
本発明の第1の態様に従って、金属セラミック基板を処理する方法であって、
金属セラミック基板を提供する工程であって、前記金属セラミック基板は、主面に沿って広がるとともに前記主面に対し垂直に延びる積層方向に沿って上下に配置されている、1つ以上の金属層と1つのセラミック素子と、を備える、工程と、
前記金属セラミック基板に、レーザ光、特に超短パルスレーザによる処理によって凹部、特に貫通凹部を形成する工程と、を備える方法が提供される。
先行技術から知られている方法とは対照的に、レーザ光(特に、UKP)レーザが凹部を形成するように用いられる。この場合、当業者は、凹部が、金属セラミック基板によって、好ましくは、1つの平面において50%を超えて、好ましくは75%を超えて、特に好ましくは完全に取り囲まれているまたは包囲されている、また金属および/またはセラミックを含まないエリアとなることを理解する。例えば、凹部は、レーザ光によって生成された湾曲したまたは多角形の輪郭によって取り囲まれる。この場合、凹部が、例えば、適切な膜および/またははんだペーストおよび/または他の導体材料が導入された後に、スルーホールめっきとして、および/または、金属セラミック基板を筐体および/または別のコンポーネントに固定するようにねじおよび/またはボルトなどの固定素子が係合するエリアとして用いられることが想定される。レーザ光を用いた作製は、特に品質および凹部を形成する作製時間の点において有利であることが示されている。例えば、超短パルスレーザ光を用いることによって、金属セラミック基板についての後処理工程の数を減少させることが可能である。これに加えて、例えば、対応するミラー素子により、凹部の所望の形状および輪郭を実現するように、金属セラミック基板の上面にわたってレーザ光を走査するように案内することが有利には可能である。
凹部が、金属セラミック基板全体を通じて、すなわち、金属セラミック基板の上面から金属セラミック基板の裏側まで広がることが、特に好ましい。金属セラミック基板は、好ましくは、レーザ光による処理中、支持要素または保持要素によって保持または固定される。
さらに、金属セラミック基板は、セラミック層の上面に結合されている1つ以上の金属層を備える。金属層およびセラミック層は、主面に沿って広がり、主面に対し垂直に延びる積層方向に沿って上下に配置されている。1つ以上の金属層用の想定される材料は、銅、アルミニウム、モリブデン、および/またはそれらの合金、ならびに、CuW、CuMo、CuAl、AlCuおよび/またはCuCuなどの薄層、特に、第1の銅層と第2の銅層とによるサンドイッチ構造である。第1の銅層の粒子サイズは、第2の銅層とは異なる。1つ以上の金属層が改質された表面であることが、さらに好ましい。想定される表面の改質は、亀裂形成または膨張を抑制するための、例えば、貴金属、特に銀および/または金、またはENIG(無電解ニッケル/置換金メッキ)による封止、または第1のメタライゼーション層または第2のメタライゼーション層における縁部封止である。
例えば、セラミック素子は、1つ以上のセラミック層であるか、または1つ以上のセラミック層を備える複合物である。好ましくは、セラミック層のうちの1つ以上は、Al、Si、AlN、HPSXセラミック(すなわち、xパーセントのZrOを含むAlマトリクスよるセラミック、例えば、9%のZrOを有するAl=HPS9または25%のZrOを有するAl=HPS25)、SiC、BeO、MgO、高密度MgO(>90%の理論的密度)、TSZ(正方晶安定ジルコニア)、セラミック用の材料としてのZTA、を含む。絶縁層が複合物またはハイブリッドセラミックとして設計されることも想定される。ここで、各々が自身の材料組成の点で異なるいくつかのセラミック層は、上下に配置されており、様々な所望の属性を組み合わせるように絶縁層を形成するべくともに接合されている。好ましくは、可能な限り熱伝導性があるセラミックが、可能な限り低い熱抵抗のために用いられる。
セラミック素子またはセラミック層は、好ましくは、ガラスを含まない、または50%を超えるガラスからなる材料を意味すると理解される。したがって、セラミック素子は、好ましくは、ガラスを含まないセラミック素子である。好ましくは、凹部は、金属セラミック基板を同一の輪郭に沿って繰り返し横断することによって生成される。
好ましくは、金属層は、AMB処理および/またはDCB処理によって絶縁層に対し結合される。
当業者は、「DCB処理」(直接銅結合技術)または「DAB処理」(直接アルミニウム結合技術)が、金属層またはシート(例えば、銅シートもしくは箔またはアルミニウムシートもしくは箔)を、層またはコーティング(融合層)を自身の表面上に有する金属もしくは銅シートまたは金属もしくは銅箔を用いて、互いにおよび/またはセラミックもしくはセラミック層に対し結合させるように機能する処理であることを理解する。米国特許第3744120号明細書または独国特許発明第2319854号明細書に記載されているこの処理では、例えば、この層またはコーティング(融合層)は、金属(例えば、銅)の溶融温度以下の溶融温度により共晶を形成する。その結果、箔をセラミック上に置くことによって、またすべての層を加熱することによって、セラミックおよび層が、融合層または酸化層の領域においてのみ金属または銅を溶融することによって、互いに結合されることが可能である。
特に、DCB処理は、次いで、例えば、以下の工程を有する。
・ 一様な酸化銅層が形成されるように銅箔を酸化させる工程
・ 銅箔をセラミック層上に置く工程
・ 複合物を約1025~1083℃の間の処理温度まで(例えば、1071℃まで)加熱する工程
・ 室温まで冷却する工程
活性はんだ付け処理(例えば、金属層または金属箔を、特に銅層または銅箔もセラミック材料と結合するための)によって、特に金属セラミック基板を生成するためにも用いられる処理が意図される。結合は、約650~1000℃の間の温度にて、金属箔(例えば、銅箔)とセラミック基板(例えば、窒化アルミニウムセラミック)との間に、銅、銀および/または金などの主成分に加えて活性金属も含む、ろう付け合金を用いて生成される。例えば、群Hf、Ti、Zr、Nb、Ceの1つ以上の元素である、この活性金属は、ろう付け合金とセラミックとの間の接続を化学反応によって確立する。一方、ろう付け合金と金属との間の接続は、金属ろう付け接続である。これに代えて、厚膜処理も結合について想定される。
好ましい実施形態では、レーザ光は、1つ以上の枢動可能ミラー素子または反射素子により、金属セラミック基板へと向けられ、特に、金属セラミック基板上にて、1つ以上の枢動可能ミラー素子または反射素子によって動かされる。対応する走査デバイスによって、例えば、レーザビームまたはレーザ光を、将来の凹部の予定された進路上の位置(すなわち、処理エリア)において可能な限り精密に動かすことが可能である。この場合、1つ以上のミラー素子は、1つ以上のミラー素子における反射中の損失を減少させるように用いられるレーザ光のパルス持続時間および/または波長に適合することが、特に予想される。さらに、1つ以上のミラー素子は、レーザビームを少なくとも部分的にはすでに、好ましくは追加のレンズを通過する前後に焦点を合わせるように、凹面鏡および/または誘電体ミラーであることが想定される。特にレンズによって、焦点を合わせることによって、入射レーザパルスの強度は有利に増加することが可能である。さらに、1つ以上のミラー素子が2つ以上の軸の周りに枢動することが可能であることが特に好ましい。これは、ミラー素子のそれぞれの配向によって、金属セラミック基板の上面のすべての点がレーザビームによって検出されることが可能であることを保証することができる。好ましくは、正確に1つのミラー素子を伴う。
好ましくは、UKPレーザは、光パルスに0.1~800ps、好ましくは1~500ps、より好ましくは10~50psのパルス持続時間を提供するレーザ源である。特に、凹部および/または、所定の破断線内の融解したセラミックと亀裂形成との間の特に好ましい比を有する所定の破断線もしくは所定の破断点を生成するように、上述の処理速度を有するそうしたパルスを用いることが特に有利であることが見つかっている。これによって、例えば、所定の破断線の場合、特に、所定の破断線に沿った確実なまたは成功した破断は、破断中に単一の金属セラミック基板に損傷を生じさせることなく、保証される。好ましくは、凹部に対する所定の破断線が、例えば同一のレーザシステムにより実現される。
好ましくは、主面に平行に広がる凹部の断面は、同じ面に沿って測定されるレーザ光の断面よりも大きい。好ましくは、凹部の断面は第1の直径を有し、レーザ光の断面は第2の直径を有する。ここで、第1の直径に対する第2の直径の比は、0.2未満、好ましくは0.1未満、より好ましくは0.05未満の値を取る。このように、例えば、レーザ光を金属セラミック基板の上面に沿って動かすことによって、凹部の後続の断面の形状を形成する切断輪郭を形成することが可能である。特に、そうした処理は、後の製造された金属セラミック基板において、固定デバイスまたはフィクスチャが固定のために通過する凹部を形成するように機能する。対応して大きい断面を有するそうした凹部は、一般に、スルーめっきを形成するように機能するが、好ましくは、金属セラミック基板を別のコンポーネントに対し単に固定するために提供される。
レーザ光が、レンズにより金属セラミック基板の処理領域に向けられることが、特に好ましい。レンズと金属セラミック基板の上面との間の距離は、処理中に変化する。特に、レンズと金属セラミック基板の上面との間の距離は、凹部が形成されるエリアの外側のエリア、すなわち、処理エリアの外側を指す。レンズと金属セラミック基板の上面との間の距離を再描画することによって、処理の過程において、アブレーションが金属セラミック基板に対し行われ、その結果として、レンズと金属セラミック基板の上面との間の距離が対応して減少することなく、金属セラミック基板材料のアブレーションがすでに行われたエリアにレンズの焦点が入るという事実を、有利に考慮に入れることが可能である。レンズと金属セラミック基板の上面との間の距離の対応する座標変化によって、レーザ光の焦点が、アブレーションされる金属セラミック基板材料のエリアまたはアブレーションされる境界層の真上および/または真下に位置することが有利に保証され得る。この目的のため、レンズと金属セラミック基板との間の距離は、好ましくは、積層方向に沿って変化する。特に、レンズと金属セラミック基板との間の距離の(全)変化は、積層方向に寸法決定された金属セラミック基板の厚さに本質的に対応する。
さらに、レーザ光の傾斜が処理中に変化することが想定される。これは、例えば、凹部の内側の輪郭が所望に応じた形状となることを可能にする。凹部が、段差のある輪郭が凹部の内側に実現されるように形成されることも想定される。これは、例えば、固定具の頭部が皿孔である金属セラミック基板の上面に空きエリアを提供することを可能にする。ここで、例えば、第1の区画に凹部の内側の異なる傾斜角を、この第1の区画を固定具の頭部の形状に適合するように提供することが有利であり得る。
好ましくは、レーザ光は、少なくとも時々、好ましくは処理全体中に、金属セラミック基板に垂直に入射する。これは、積層方向に見てほぼ一定の断面を有する円柱状凹部を生成することを可能にする。例えば、主面に対し垂直な方向に対する凹部の内側の傾斜は、10%未満、好ましくは5%未満、より好ましくは2.5%未満である。
好ましくは、金属セラミック基板は、金属セラミック基板の金属がないエリアにおいて排他的に処理される。例えば、凹部は、金属セラミック基板を同一の輪郭に沿って繰り返し横断することによって生成されることが意図される。
例えば、さらなるレーザ光が提供され、そのレーザ光とさらなるレーザ光とによって凹部が形成されることも想定される。これは、凹部の生成を大幅に加速させることが可能である。レーザ光とさらなるレーザ光とが、同時に共通の輪郭の異なる地点にて金属セラミック基板を処理することが想定される。レーザ光とさらなるレーザ光とは、両方とも、凹部を形成するように共通の輪郭を追う。
さらに、300mmを超えるレンズの焦点距離が用いられることが好ましい。比較的大きい、特に300mmを超える、好ましくは350mmを超える、より好ましくは430mmを超える焦点距離では、凹部に加えて、主面に対し垂直に延びる方向に対する傾斜が比較的小さい所定の破断線を生成するようにレーザ光を用いることが有利には可能である。これは、有利には、金属セラミック基板の、特に大型カード全体にわたる一様な破壊挙動を保証する。好ましくは、同一のレーザシステムが、一方では所定の破壊線を生成するように、他方では金属セラミック基板に凹部を生成するように用いられるレーザ光を提供するように用いられる。レーザパラメータを変更するおよび/またはフィルタを用いることによって、一方では所定の破断線および他方では凹部を生成するための特性が、好ましくは変化し得る。
特に、レンズと金属セラミック基板との間の距離は、特にレンズおよび/または金属セラミック基板が互いに向かって移動するとき、金属セラミック基板の厚さよりも大きい値分、レンズの焦点距離を下回ることは決してない。これは、特に材料が層ごとにアブレーションされレーザ光の焦点が追跡されるとき、レーザ光が常に焦点を合わせられたままであることを保証し得る。
好ましくは、距離は、連続的にまたは段階的に変化する。特に、凹部深さ、特に現在の凹部深さは、凹部を生成するように金属セラミック基板の処理と同時に測定され、その結果、レンズと金属セラミック基板との間の距離は、凹部深さの現在の値に応じて設定されることが可能であることが想定される。例えば、凹部深さは、随意では、カメラおよび/または別のレーザシステムによって測定される。これに代えて、またはこれに加えて、レーザ光は、閉じられた輪郭の各横断またはある定数の横断後に行われるレンズと金属セラミック基板との間の距離の段階的な変化とともに、閉じられた輪郭に沿って動かされることが想定される。
好ましくは、金属セラミック基板は、1つ以上の裏側メタライゼーションを備える。特に、1つ以上の裏側メタライゼーションと1つ以上のメタライゼーションとが、セラミック素子の両側に配置されている。裏側メタライゼーションまで延びるとともに加えて裏側メタライゼーションをアブレーションする凹部を形成することによって、裏側メタライゼーションが、特にセラミック層と反対に面する裏側メタライゼーションの面においてバリのない凹部を生成することが、有利には可能である。このように、方法は、凹部のバリ取りが行われる最終後処理工程が省略される点において、特に、例えばCOレーザを用いる従来の方法とは異なる。これは、凹部が提供される金属セラミック基板を生成する製造処理を加速させる。
好ましくは、レーザ光は、凹部を形成するように、少なくとも部分的に、湾曲した輪郭に沿って案内される。特に、湾曲した輪郭は、レーザ光が案内される動きの方向に対応し、その結果、凹部の縁部について少なくとも部分的に環状または円形の進路となる。これに代えて、レーザ光の動く方向の対応する調節によって(特に、ミラーの位置整合によって)実現される、凹部についての多角形または角度のあるもしくは直線の縁部の輪郭が想定される。
さらに、好ましくは、金属セラミック基板の分離したコンポーネントが、好ましくは真空機構によって除去される。例えば、好ましくはキャリアへと一体化され、処理エリアまたは凹部用に予定されたエリアの下に配置されている、吸引デバイスが、この目的のために提供される。レーザ光が、後の凹部の境界となる対応する輪郭を追うと、境界または後の境界によって囲まれる金属セラミック基板のエリアは、切断される。金属セラミック基板の切断領域の、製造された凹部を有する残りの金属セラミック基板からの分離を可能にするまたは容易にするように、金属セラミック基板がキャリアから解放されたまま、金属セラミック基板の残りの部分または分離された部分を、真空機構によってキャリアに対し固定することが有利には可能である。
本発明のさらなる態様は、本発明に係る処理を行うための装置である。方法について記載されるすべての特徴および利点は、装置に適用され、装置について記載されるすべての特徴及び利点は、方法について適用される。
本発明のさらなる態様は、本発明に係る処理によって製造された金属セラミック基板である。方法について記載されるすべての特性および利点は、金属セラミック基板に同様に転用されることが可能であり、また金属セラミック基板について記載されるすべての特性および利点は、方法に同様に転用されることが可能である。
さらなる利点および特徴が、添付の図面を参照して、本発明に係る主題の以下の好ましい実施形態の記載から得られる。個々の実施形態の個々の特徴は、それによって、本発明の範囲内において互いに組み合わせられることが可能である。
本発明の第1の例示的な実施形態に係る金属セラミック基板を処理するための方法の概略図。 本発明の第2の例示的な実施形態に係る金属セラミック基板を処理するための方法の概略図。 本発明の第3の例示的な実施形態に係る金属セラミック基板を処理するための方法の概略図。 本発明の第4の例示的な実施形態に係る金属セラミック基板を処理するための方法の概略図。
図1は、本発明の第1の好ましい実施形態に係る金属セラミック基板1を処理するための方法を概略的に示す。そうした金属セラミック基板1は、好ましくは、それぞれの場合において、金属セラミック基板1に対し接続されることが可能である電子コンポーネントまたは電気コンポーネントのキャリア素子として機能する。そうした金属セラミック基板1の本質的なコンポーネントは、主面HSEに沿って延びるセラミック素子11と、そのセラミック素子11に対し結合された1つ以上の金属層21とである。セラミック素子11は、セラミックを含む1つ以上の材料から作製される。この場合、1つ以上の金属層21およびセラミック素子11は、主面HSEに対し垂直に延びる積層方向に沿って上下に配置され、製造された状態では、少なくとも領域において結合面を介して互いに実質的に結合されている。セラミック素子11は、1つ以上のセラミック層を備え、例えば、間に中間メタライゼーションが形成されるまたはハイブリッドセラミックを形成する、複数のセラミック層から形成されることも可能である。好ましくは、1つ以上の金属層21は、次いで、電気コンポーネント用の導体経路または接続点を形成するようにパターニングされる。例えば、この構造化は、1つ以上の金属層21へのエッチングである。しかしながら、予め、永久結合(特に、材料結合)が、1つ以上の金属層21とセラミック素子11との間に形成される必要がある。
1つ以上の金属層21をセラミック素子11に対し永久的に結合させるように、金属セラミック基板1を製造するためのシステム(特に、DCBまたはDAB結合処理)は、ファーネス(炉)を備え、そのファーネスでは、セラミック素子11と1つ以上の金属層21との積層アセンブリが結合を達成するように加熱される。例えば、1つ以上の金属層21は銅製の金属層であり、1つ以上の金属層21およびセラミック素子11は、DCB(直接銅結合)結合方法を用いてともに結合される。これに代えて、1つ以上の金属層21は、活性はんだ付け方法または厚膜方法によってセラミック素子11に対し結合されることが可能である。
結合(特に、DCB処理、活性はんだ付け処理および/または厚膜処理によって)後、金属セラミック基板は、大型カードとして提供される。そうした大型カードは、それぞれの場合において、シンギュレーションされた金属セラミック基板1を提供するように、後続の処理においてシンギュレーションされる。好ましくは、そうした分離用に、レーザ光10によって(特に、超短パルスレーザ光によって)大型カードを処理することが意図される。それによって、レーザ光10による分離を直ちに実現すること、および/または所定の破断線を形成することが可能である。その破断線に沿って、大型カードが後続の処理において破断され、分離した金属セラミック基板1を形成する。超短パルスレーザによって、当業者は、特に、パルス長が1ナノ秒未満であるレーザパルスを発するそうしたレーザ源を理解する。好ましくは、パルス持続時間は0.1~100psの間である。さらに、パルス持続時間がフェムト秒範囲(すなわち、0.1~100fs)にあることが想定される。図1に示される例示的な実施形態では、金属セラミック基板1はキャリア40に配置される。
特に、レーザ光10(特に、UKPレーザのレーザ光10)が、金属セラミック基板1に凹部15(特に、貫通凹部15)を生成するように用いられる。凹部15は、例えば、例えばスルーめっきのために用いられる一種のスルーホール、および/または、金属セラミック基板1が電力モジュールとしてハウジングまたは別のコンポーネントに対し結合される接続または固定エリアを提供するためのスルーホールとして提供される凹部15である。この場合、凹部15は、所定の破断線の前後に一時的に生成される。好ましく亜h、同一のレーザ光10(すなわち、同一のレーザ源からの光)が、凹部15および所定の破断線を生成するように用いられる。所定の破断線を生成するためのパルスの強度、パルス持続時間および/または電力は、凹部15を生成するためのものとは異なる。
さらに、便利には、金属セラミック基板1は、キャリア40によって静止して配置される。金属セラミック基板1(特に、金属セラミック基板にわたって見られるように特定の進路を有する)に所定の破断線および/または凹部15を生成するように、レーザ光10またはレーザビームが金属セラミック基板1上にて動かされる。換言すると、金属セラミック基板1をレーザ光10またはレーザ光10の整合位置に対して動かす代わりに、金属セラミック基板1上を横切るレーザ光10が所定の破断線および/または凹部15をそれぞれの衝突点に生成するように、レーザ光10またはレーザビームの整合位置がそうした方法により行われることが予想される。所定の破断線および/または凹部15は連続的であるおよび/または遮断されている、すなわち、所定の破断線がミシン目として現れていることが想定される。
レーザ光10を位置整合させるように、特に、レーザ光10は、ミラー素子30へと向けられる。レーザビーム10は、ミラー素子30にて反射され、続いて金属セラミック基板1に当たる。この場合、特に、ミラー素子30は、レーザ光10を金属セラミック基板上の特定の処理エリアまたは特定のエリアに位置整合させるように、枢動可能に取り付けられ、特に2つ以上の軸に関して枢動可能に取り付けられる。さらに、好ましくは、レンズ20がミラー素子30と金属セラミック基板1との間に配置されている。特に、レンズ20は、レーザ光10の入射方向に対しほぼ垂直な平面に沿って、ほぼ金属セラミック基板1の長さおよび/または幅に対応する長さにわたって、特に大型カードとして広がる。換言すると、金属セラミック基板1上を進行するレーザ光10は、処理エリアにかかわらず同一のレンズ20を常に通過する。
焦点距離が300mmを超える、好ましくは350mmを超える、より好ましくは420mmを超えるレンズ20を用いることが特に有利であることが示されている。レンズ20を、レンズ20の焦点距離に本質的に対応する、金属セラミック基板1から距離Aに配置することは、金属セラミック基板1の主面HSEに対する垂直に対し比較的わずかに傾斜している所定の破壊点もしくは所定の破断線または凹部15を生成することを可能にする。そうでない場合、本質的にV字形状または切欠き形状の所定の破断線または凹部15の傾斜の角度が予期される必要がある。これは、特に、金属セラミック基板1の縁部を形成する所定の破断線または凹部15に対し適用される。そうした傾斜部分は、それによって、特に、レーザ光10またはレーザビームが、金属セラミック基板1の全体にわたって均一に金属セラミック基板1に垂直に当たることができない事実によって生じる。しかしながら、300mmを超える焦点距離を用いることによって、この傾斜(特に、金属セラミック基板1の縁部領域における)は、金属セラミック基板1の垂直方向に対し測定されたまたは参照された傾斜の角度が10°未満である、より好ましくは10°未満ように、減少する。特に、金属セラミック基板1の中心における所定の破断線の配向と比較した傾斜角の偏差が12°未満にならないことが確立される。したがって、それらの破損挙動が金属セラミック基板1全体にわたって実質的に均質に分散しているのを生成することを有利には可能である。
さらに、好ましくは、レンズ20と金属セラミック基板1の上面OSとの間の距離Aが、凹部15を製造するための処理中に、変化する、特に減少する。したがって、金属セラミック基板1の処理中にすでに作製された凹部15の深さに従って、レンズ20によって生じたレーザ光10の焦点を追跡することが有利には可能である。換言すると、1つ以上の金属層21および/またはセラミック素子11のアブレーションが増加するにつれて、レーザ光10の焦点が金属セラミック基板1へと、および/または金属セラミック基板の裏側までシフトするように、距離Aを変化させることによって、凹部15を形成するための連続的なアブレーションを考慮することが可能である。このように、レーザパワーは、現在アブレーションされている材料のエリアでは、可能な限り大きく保たれる。その結果、材料のアブレーションに対するレーザ効率の減少は、アブレーション深さの増加とともに予期されるものではない。これは、有利には、凹部15の形成を加速させる、加速したアブレーション処理となる。特に、距離Aを変化させることによって、積層方向Sに沿った焦点のシフトが行われる。そこでは、レンズ20と金属セラミック基板1の上面OSとの間の距離Aは、好ましくは、連続的に、および/または連続してまたは段階的に変化する。距離Aを変化させるために、レンズ20は、好ましくは、主面HSEに対する垂直方向に沿って変位させられる。これに代えておよび/またはこれに加えて、キャリア40およびしたがって金属セラミック基板1が、レンズ20と金属セラミック基板1の上面OSとの間の距離Aを減少させるように、積層方向Sに対し並行に延びる方向に沿って変位させられることが想定される。特に、レンズ20の焦点距離は一定である。
図2は、本発明の第2の例示的な実施形態に係る金属セラミック基板1を生成するための方法を概略的に示す。図2に示される方法は、吸引デバイス25が追加して提供されている点において、図1に示される例示的な実施形態とは異なる。吸引デバイス25は、例えば、キャリア40に一体化されており、計画された凹部15が実現される処理エリアの下に配置されている。吸引デバイス25によって、金属セラミック基板1のアブレーションされた粒子を吸い込む、および/または、金属セラミック基板1の処理中および/または凹部15の形成中に分離した金属セラミック基板1の部分的なエリアが、凹部15により金属セラミック基板1から分離することが可能であることを保証する、負の圧力を生じることが有利には可能である。特に、これは、主面HSEに平行な方向における断面がレーザ光10の断面よりもはるかに大きい凹部15を形成するための処理に関する。レーザ光10の直径および/または断面が凹部15の断面よりも小さいそうしたシナリオでは、レーザ光10は、例えば、主面HSEに平行な平面において凹部15の輪郭を形成する、処理中の処理方向Bに沿った動きを追う。その輪郭によって囲まれる金属セラミック基板1の部分的なエリアは、次いで、残りの部品として、真空(バキューム)機構によってキャリア40に固定される。一方、金属セラミック基板1の残りの終了した部分は、キャリア40から解放される。
図3は、本発明の第3の例示的な実施形態に係る金属セラミック基板1に凹部15を生成するための方法を概略的に示す。特に、図3は、金属セラミック基板1の頂面図と、移動方向Bに沿ったレーザ光10の動きを示し、環状または弓状の輪郭を形成する。レーザ光10が螺旋状の、特に、減少したおよび/または増加した半径を有する輪郭を追うことも想定される。特に、凹部15用の環状の輪郭を、対応して選択される処理方向Bによって実現することが意図される。そこでは、主面HSEに平行に延びる平面において、凹部15が第1の直径D1を有し、レーザ光10が第2の直径D2を有する。この場合、第1の直径D1に対する第2の直径D2の比は、0.2未満、好ましくは0.1未満、より好ましくは0.05未満である。環状の移動方向Bの代替として、多角形の移動方向B、多角形の移動方向Bおよび/または少なくとも部分的には直線状の移動方向Bも想定される。
図4は、本発明の第4の好ましい実施形態に係る金属セラミック基板1を処理するための方法を概略的に示す。特に、図4は、主面HSEに対し垂直な断面に沿った、金属セラミック基板1を通る断面図を示す。この場合、特に、レーザ光10の処理中(特に、スルーホールまたは貫通凹部15を生成するための)、裏側メタライゼーション30も、レーザ光10(特に、超短パルスレーザからのレーザ光10)によって取り除かれる。超短パルスレーザを用いることによって、凹部15を生成する時、例えば、COレーザを用いた製造時に典型的には形成されるバリの形成を避けることが有利には可能である。対応して、形成されたバリのバリ取りのための後処理工程が、したがって、避けられ得る。これは、凹部15を有する金属セラミック基板10を作製するための時間についての利点を示す。特に、凹部15は、金属セラミック基板1を固定するために凹部15を通じて、例えば、筐体または別のコンポーネントまで延びるボルトおよび/またはねじを受け入れるためなど、固定素子を受け入れるように提供される。
1 金属セラミック基板
10 レーザ光
11 セラミック素子
15 凹部
20 レンズ
21 金属層
25 吸引デバイス
30 裏面メタライゼーション
OS 上面
HSE 主面
S 積層方向
S 処理方向
D1 第1の直径
D2 第2の直径

Claims (15)

  1. 金属セラミック基板(1)を処理する方法であって、
    金属セラミック基板(1)を提供する工程であって、前記金属セラミック基板(1)は、主面(HSE)に沿って広がるとともに前記主面(HSE)に対し垂直に延びる積層方向(S)に沿って上下に配置されている、1つ以上の金属層(21)と1つのセラミック素子(11)と、を備える、工程と、
    前記金属セラミック基板(1)に、レーザ光(10)、特に超短パルス(UKP)レーザによる処理によって凹部(15)、特に貫通凹部(15)を形成する工程と、を備える方法。
  2. 前記主面(HSE)に平行に広がる前記凹部(15)の断面は、同じ面に沿って測定された前記レーザ光(10)の断面よりも大きい、請求項1に記載の方法。
  3. 前記凹部(15)の前記断面は第1の直径を有し、前記レーザ光の前記断面は第2の直径を有し、前記第1の直径に対する前記第2の直径の比は、0.2未満の値を取る、請求項2に記載の方法。
  4. 前記レーザ光(10)は、レンズ(20)を介して前記金属セラミック基板(1)の処理領域に向けられ、前記レンズ(20)と前記金属セラミック基板(1)の上面(OS)との間の距離(A)は、処理中に変化する、請求項1~3のいずれか一項に記載の方法。
  5. 前記レンズの焦点距離(L)は、300mmを超え、好ましくは350mmを超え、より好ましくは430mmを超える、請求項1~4のいずれか一項に記載の方法。
  6. 前記距離(A)は、連続してまたは段階的に変化する、請求項5に記載の方法。
  7. 前記金属セラミック基板(1)は、1つ以上の裏側メタライゼーション(30)を備え、特に、前記1つ以上の裏側メタライゼーション(30)および前記1つ以上のメタライゼーション(21)は、前記セラミック素子(11)の反対側に配置される、請求項1~6のいずれか一項に記載の方法。
  8. 前記レーザ光(10)は、前記凹部(15)を形成するように、少なくとも部分的に、湾曲した輪郭に沿って案内される、請求項1~7のいずれか一項に記載の方法。
  9. 前記金属セラミック基板(1)の分離したコンポーネントは、好ましくは真空機構によって、除去される、請求項1~8のいずれか一項に記載の方法。
  10. 前記凹部(15)は、前記金属セラミック基板(1)を前記レーザ光(10)により同一の輪郭に沿って繰り返し横断することによって生成される、請求項1~9のいずれか一項に記載の方法。
  11. 前記レーザ光(10)は、処理中に前記金属セラミック基板(1)の前記上面に垂直に入射する、請求項1~10のいずれか一項に記載の方法。
  12. さらなるレーザ光が提供され、前記レーザ光(10)および前記さらなるレーザ光によって、前記凹部(15)が形成される、請求項1~11のいずれか一項に記載の方法。
  13. 前記金属セラミック基板(1)のセラミック素子は、ガラスを含まない、請求項1~12のいずれか一項に記載の方法。
  14. 請求項1~13のいずれか一項に記載の処理を行うための装置。
  15. 請求項1~13のいずれか一項に記載の方法によって製造された凹部を有する、金属セラミック基板(1)。
JP2022535830A 2019-12-11 2020-12-03 金属セラミック基板を処理する方法、そうした方法のためのシステム、およびそうした方法によって生成された金属セラミック基板 Pending JP2023506023A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102019134004.7 2019-12-11
DE102019134004.7A DE102019134004A1 (de) 2019-12-11 2019-12-11 Verfahren zum Bearbeiten eines Metall-Keramik-Substrats, Anlage für ein solches Verfahren und Metall-Keramik-Substrate hergestellt mit einem solchen Verfahren
PCT/EP2020/084469 WO2021115921A1 (de) 2019-12-11 2020-12-03 Verfahren zum bearbeiten eines metall-keramik-substrates, anlage für ein solches verfahren und metall-keramik-substrate hergestellt mit einem solchen verfahren

Publications (1)

Publication Number Publication Date
JP2023506023A true JP2023506023A (ja) 2023-02-14

Family

ID=73698857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022535830A Pending JP2023506023A (ja) 2019-12-11 2020-12-03 金属セラミック基板を処理する方法、そうした方法のためのシステム、およびそうした方法によって生成された金属セラミック基板

Country Status (7)

Country Link
US (1) US20240157482A1 (ja)
EP (1) EP4037865B1 (ja)
JP (1) JP2023506023A (ja)
KR (1) KR20220093219A (ja)
CN (1) CN114786863A (ja)
DE (1) DE102019134004A1 (ja)
WO (1) WO2021115921A1 (ja)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766634A (en) 1972-04-20 1973-10-23 Gen Electric Method of direct bonding metals to non-metallic substrates
US3744120A (en) 1972-04-20 1973-07-10 Gen Electric Direct bonding of metals with a metal-gas eutectic
JPH0575253A (ja) * 1991-08-27 1993-03-26 Hitachi Constr Mach Co Ltd レーザ光による回路パターンの形成方法及びスルーホール内の導体形成方法
GB9617093D0 (en) * 1996-08-14 1996-09-25 Rolls Royce Plc A method of drilling a hole in a workpiece
JP4582938B2 (ja) * 2001-02-28 2010-11-17 京セラ株式会社 絶縁シートの製造方法および配線基板の製造方法
DE102013102540B4 (de) * 2013-02-22 2019-07-04 Rogers Germany Gmbh Metall-Keramik-Substrat, Modulanordnung sowie Verfahren zum Herstellen eines Metall-Keramik-Substrates
US10357848B2 (en) * 2015-01-19 2019-07-23 General Electric Company Laser machining systems and methods
US20190009362A1 (en) * 2015-12-22 2019-01-10 Heraeus Deutschland GmbH & Co. KG Method for producing a metal-ceramic substrate with picolaser
EP3417982A1 (de) * 2017-06-21 2018-12-26 Heraeus Deutschland GmbH & Co. KG Laserschneiden von metall-keramik-substraten
CN109382592B (zh) * 2018-04-13 2024-05-14 广西大学 一种基于静态溶液辅助陶瓷激光重复打孔方法及装置
CN109128533B (zh) * 2018-09-27 2020-05-19 广东工业大学 一种流体辅助超快激光加工锥度可调微孔的方法

Also Published As

Publication number Publication date
US20240157482A1 (en) 2024-05-16
KR20220093219A (ko) 2022-07-05
EP4037865B1 (de) 2023-11-15
CN114786863A (zh) 2022-07-22
DE102019134004A1 (de) 2021-06-17
WO2021115921A1 (de) 2021-06-17
EP4037865A1 (de) 2022-08-10

Similar Documents

Publication Publication Date Title
KR102473803B1 (ko) 청색 레이저를 사용한 구리 용접 방법 및 시스템
KR101243543B1 (ko) 다이싱 방법
TWI422451B (zh) Laser processing method and semiconductor chip
JP4358502B2 (ja) 半導体基板の切断方法
JP3670267B2 (ja) レーザ加工方法
JP3935186B2 (ja) 半導体基板の切断方法
WO2011149097A1 (ja) 多数個取り配線基板およびその製造方法、ならびに配線基板およびその製造方法
KR101376398B1 (ko) 레이저 다이싱 방법
WO2001054855A1 (fr) Dispositif d'usinage au laser et masque d'usinage au laser et procede de production correspondant
JP5047615B2 (ja) セラミック金属基板の製造方法
JP4509720B2 (ja) レーザ加工方法
JP2013157545A (ja) 加工対象物切断方法
JP2006135355A (ja) 半導体基板の切断方法
JP2009146979A (ja) 光電変換装置
JP2005109322A (ja) レーザーダイシング装置
JP2023506023A (ja) 金属セラミック基板を処理する方法、そうした方法のためのシステム、およびそうした方法によって生成された金属セラミック基板
WO2004080642A1 (ja) レーザ加工方法
JP7283886B2 (ja) スライス方法およびスライス装置
JP3867100B2 (ja) 半導体基板の切断方法
JP3867104B2 (ja) 半導体基板の切断方法
JP3867105B2 (ja) 半導体基板の切断方法
JP2005197760A (ja) 半導体基板の切断方法
JP2006121113A (ja) 半導体基板の切断方法
KR100843411B1 (ko) 레이저가공 장치 및 기판 절단 방법
JP7047493B2 (ja) セラミックス基板の製造方法及び回路基板の製造方法

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A529

Effective date: 20220708

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240116

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240416