JP2023504798A - 光計算装置および光信号処理方法 - Google Patents

光計算装置および光信号処理方法 Download PDF

Info

Publication number
JP2023504798A
JP2023504798A JP2022531439A JP2022531439A JP2023504798A JP 2023504798 A JP2023504798 A JP 2023504798A JP 2022531439 A JP2022531439 A JP 2022531439A JP 2022531439 A JP2022531439 A JP 2022531439A JP 2023504798 A JP2023504798 A JP 2023504798A
Authority
JP
Japan
Prior art keywords
group
optical signals
optical
parametric oscillator
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022531439A
Other languages
English (en)
Other versions
JP7391215B2 (ja
Inventor
ジャン,シアン
ユン,ジチアン
ドォン,シアオウエン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of JP2023504798A publication Critical patent/JP2023504798A/ja
Application granted granted Critical
Publication of JP7391215B2 publication Critical patent/JP7391215B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06EOPTICAL COMPUTING DEVICES; COMPUTING DEVICES USING OTHER RADIATIONS WITH SIMILAR PROPERTIES
    • G06E3/00Devices not provided for in group G06E1/00, e.g. for processing analogue or hybrid data
    • G06E3/008Matrix or vector computation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06EOPTICAL COMPUTING DEVICES; COMPUTING DEVICES USING OTHER RADIATIONS WITH SIMILAR PROPERTIES
    • G06E3/00Devices not provided for in group G06E1/00, e.g. for processing analogue or hybrid data
    • G06E3/001Analogue devices in which mathematical operations are carried out with the aid of optical or electro-optical elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • G02F1/392Parametric amplification
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • G02F1/395Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves in optical waveguides
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/067Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using optical means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Operations Research (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

光計算装置および光信号処理方法が開示される。光計算装置は、パラメトリック発振器アレイと、パラメトリック発振器アレイに接続された相互作用計算マトリクスと、パラメトリック発振器アレイの両端に接続された第1のフィードバック・モジュールと、パラメトリック発振器アレイと相互作用計算アレイに接続された第2のフィードバック・モジュールとを含む。パラメトリック発振器アレイは、第1のグループの信号を受信し、受信した第1のグループの信号に基づいて、複数の第1の光信号を含む第1のグループの光信号を生成するように構成される。相互作用計算アレイは、光信号の第1のグループを受信し、事前設定された行列に基づいて第1のグループの光信号に対して行列演算を実行して、複数の第2の光信号を含む第2のグループの光信号を得るように構成されている。第1のフィードバック・モジュールは、第1のグループの光信号を受信し、第1のグループの光信号をパラメトリック発振器アレイに送信するように構成される。第2のフィードバック・モジュールは、第2のグループの光信号を受信し、第2のグループの光信号をパラメトリック発振器アレイに送信するように構成される。

Description

本願は、情報技術の分野に関し、特に、光計算装置および光信号処理方法に関する。
複雑な系の解析および最適化のような非決定論的多項式困難(non-deterministic polynomial hard、NP困難)な問題は、イジング・モデルにマッピングされることができ、イジング・モデルをシミュレートして解いてNP困難な問題の解を得るために光イジング・マシンが使用される。
光イジング・マシンは、イジング・モデルをシミュレートし、解くために複数の光信号で構成される格子ネットワークを使用する。現在、ある実装では、光イジング・マシンは、ファイバー・システムを使用して実装されている。具体的には、光イジング・マシンによる計算のために必要なすべての入力光信号が直列に入力される。そして、すべての入力光信号がファイバー空洞内で循環させられ、入力光信号の小さな部分がフィールドプログラマブルゲートアレイ(field-programmable gate array、FPGA)における行列演算のために結合される。このようにして、イジング・モデルにおけるノード間の結合関数がシミュレートされ、演算結果が光イジング・マシンの入力端にフィードバックされて、すべての入力光信号との相互作用を実現する。結果として得られた光信号が、次の入力光信号のはたらきをする。前述のプロセスは、光学イジング・マシンの最適解を得るために繰り返し実行される。
計算に必要なすべての入力光信号が光イジング・マシンに入力されるので、光イジング・マシンを使用することによって得られる最適解は、局所最適解ではなく、グローバル最適解であり、それにより光イジング・マシンの計算精度を保証する。しかしながら、光イジング・マシンでは、入力光信号は直列に実行される。イジング・モデルにおけるノードの量が多い場合、比較的大量の入力光信号を導入する必要がある。結果として、光イジング・マシンにおける入力光信号の伝送時間が増加する。これは、動作時間を大幅に増加させ、光イジング・マシンの動作効率を制限する。
よって、計算精度を確保しつつ、光イジング・マシンの動作効率をいかに改善するかは、解決されるべき緊急の課題である。
本願は、高い計算精度および高い動作効率を有する光イジング・マシンを提供するよう、光計算装置および光信号処理方法を提供する。
第1の側面によれば、光計算装置が提供される。光計算装置は、パラメトリック発振器アレイと、パラメトリック発振器アレイに接続された相互作用計算マトリクスと、パラメトリック発振器アレイの両端に接続された第1のフィードバック・モジュールと、パラメトリック発振器アレイと相互作用計算アレイに接続された第2のフィードバック・モジュールとを含む。この光計算装置の動作原理は以下の通りである。
パラメトリック発振器アレイは、第1のグループの信号を受信し、受信した第1のグループの信号に基づいて、複数の第1の光信号を含む第1のグループの光信号を生成するように構成される。相互作用計算アレイは、光信号の第1のグループを受信し、事前設定された行列に基づいて第1のグループの光信号に対して行列演算を実行して、複数の第2の光信号を含む第2のグループの光信号を得るように構成されている。第1のフィードバック・モジュールは、第1のグループの光信号を受信し、第1のグループの光信号をパラメトリック発振器アレイに送信するように構成される。第2のフィードバック・モジュールは、第2のグループの光信号を受信し、第2のグループの光信号をパラメトリック発振器アレイに送信するように構成される。
前述の光計算装置では、パラメトリック発振器アレイおよび相互作用計算マトリクスは、光信号の1つのグループに含まれる複数の光信号に対して並列な処理プロセスを実行する。したがって、イジング・モデルにおけるノードの量が比較的多く、比較的大量の入力光信号が導入される必要がある場合でも、光計算装置の動作時間は増加しない。
さらに、パラメトリック発振器アレイによって生成された光信号は、次の計算を実行するためにパラメトリック発振器アレイにフィードバックされる。パラメトリック発振器アレイによって生成された光信号の状態を増加させることができ、その結果、光計算装置は、計算に必要とされるすべての可能な状態において入力光信号を得ることができる。これは、光計算装置が局所的に最適でない解を得ることを防止できる。つまり、光計算装置の計算精度はハードウェア・アニーリング方式において改善される。
ある可能な設計では、パラメトリック発振器アレイは、さらに、第1のグループの光信号および第2のグループの光信号を受信し、第1のグループの信号、第1のグループの光信号、および第2のグループの光信号に基づいて第3のグループの光を出力するように構成される。相互作用計算アレイは、さらに、第3のグループの光信号を受信し、事前設定された行列に基づいて第3のグループの光信号に対して行列演算を実行して、第4のグループの光信号を得るように構成される。第1のフィードバック・モジュールは、さらに、第3のグループの光信号を受信し、第3のグループの光信号をパラメトリック発振器アレイに送信するように構成される。第2のフィードバック・モジュールは、さらに、第4のグループの光信号を受信し、第4のグループの光信号をパラメトリック発振器アレイに送信するように構成される。
前述の光計算装置において、第1のフィードバック・モジュールおよび第2のフィードバック・モジュールによって送信される光信号を受信した後、パラメトリック発振器アレイは、第1のグループの信号および第1のフィードバック・モジュールおよび第2のフィードバック・モジュールによって送信される光信号を参照して、計算に使用される入力信号を生成してもよい。
ある可能な設計では、パラメトリック発振器アレイは、複数のパラメトリック発振器を含み、パラメトリック発振器は、第1の導波路および第2の導波路を含み、第1の導波路の材料は、第2の導波路の材料とは異なり、第1の導波路の材料は、非線形効果を有する材料を含む。
前述の光計算装置において、パラメトリック発振器アレイ内の諸パラメトリック発振器は、光計算装置がよりコンパクトな構造を有することができるように、導波路を使用することによって統合されてもよい。さらに、第1の導波路は、非線形効果を有する導波路であり、たとえば、二次非線形性を有するニオブ酸リチウム導波路やタンタル酸リチウム導波路であってもよい。第2の導波路は、低伝送損の特徴を有する導波路であってもよく、たとえば、窒化シリコン導波路であってもよく、または、シリコンまたは二酸化シリコンであってもよい。圧縮された状態の光信号は、第1の導波路の非線形効果を用いて発生されてもよい。圧縮された状態の光信号は、計算のために必要とされるすべての可能な状態における入力光信号として理解されてもよく、生成された、圧縮された状態における光信号は、伝送損失が小さい特徴を有する第2の導波路を用いて伝送される。これは、光計算装置が局所的に最適でない解を得ることを防止できる。異なる導波路材料の特徴利点が不均一な統合方式で組み合わされ、光計算装置の計算精度が保証できる。
ある可能な設計では、第2の導波路の材料は、伝送損失が閾値未満である材料を含む。
このようにして、第2の導波路における伝送中の光信号の損失を低減することができ、光信号の精度を確保することができる。
ある可能な設計では、相互作用計算アレイは、複数のカスケード接続されたマッハ・ツェンダー(Mach-Zehnder)MZ干渉計ユニットを含み、各MZ干渉計ユニットは、複数のマッハ・ツェンダー干渉計MZIおよび複数のビームスプリッターを含み、各MZIは、その誘電率調整速度が閾値未満である導波路を含み、該導波路は、対応するMZIの位相パラメータを調整するように構成される。
マッハ・ツェンダー干渉計ユニットのサイズは比較的小さいので、コンパクトな構造を有する光計算装置を形成することができる。さらに、光計算装置は、チップ上に実装でき、それにより、システムの安定性を確保する。さらに、MZIは、閾値未満の誘電率調整速度を有する材料を用いて形成される。MZIの位相パラメータが比較的迅速にロードされ、リフレッシュされることができ、それにより、光計算装置の動作効率を確保する。
ある可能な設計では、同じMZ干渉計ユニットに含まれる前記複数のMZIにおける導波路は、異なる材料を有する。
不均質な統合を通じて形成されたMZIは、その位相パラメータを迅速にロードし、リフレッシュすることができる。これは、相互作用計算マトリクスの迅速なロードおよびリフレッシュを実現でき、それにより、光計算装置の動作効率をさらに改善する。
ある可能な設計では、パラメトリック発振器は、パラメトリック発振器と、前記第1のフィードバック・モジュールと、前記相互作用計算アレイとに接続された光スプリッターをさらに含む。光スプリッターは、光信号の第1のグループにおける1つの光信号を受領し;該光信号を事前設定された分割比に基づいて光信号の第1の部分と光信号の第2の部分に分割し;光信号の第1の部分を第1のフィードバック・モジュールに送信し、光信号の第2の部分を相互作用計算マトリクスに送信するように構成される。
光スプリッターは、第1のフィードバック・モジュールおよび相互作用計算マトリクスに伝送される光信号のエネルギーを柔軟に制御することができ、それによりシステムの柔軟性を高めることができる。
ある可能な設計では、パラメトリック発振器は、さらに:パラメトリック発振器、第1のフィードバック・モジュール、および第2のフィードバック・モジュールに接続されたビーム結合器を含む。ビーム結合器は、光信号の第1のグループにおける1つの光信号と、光信号の第2のグループにおける1つの光信号とを、1つの光信号に結合し、ビーム結合を通じて得られた光信号をパラメトリック発振器に送信するように構成される。
ビーム結合器は、複数の信号を処理のために1つの信号に組み合わせるために使用される。これはパラメトリック発振器の計算量を減らすことができる。
第2の側面によれば、本願は、光信号処理方法を提供する。有益な効果については、第1の側面の関連する記述を参照されたい。詳細は、ここでは再度説明しない。この方法は、光計算装置によって実行される。光計算装置は、パラメトリック発振器アレイ、相互作用計算アレイ、第1のフィードバック・モジュール、および第2のフィードバック・モジュールを含む。この方法は:パラメトリック発振器アレイが、第1のグループの信号を受信し、第1のグループの信号に基づいて第1のグループの光信号を生成し、第1のグループの光信号は複数の第1の光信号を含み;相互作用計算アレイは、第1のグループの光信号を受信し、事前設定された行列に基づいて第1のグループの光信号に対して行列演算を実行して、第2のグループの光信号を得て、第2のグループの光信号は複数の第2の光信号を含み;第1のフィードバック・モジュールが、第1のグループの光信号を受信し、第1のグループの光信号をパラメトリック発振器アレイに送信し;第2のフィードバック・モジュールは、第2のグループの光信号を受信し、第2のグループの光信号をパラメトリック発振器アレイに送信することを含む。
ある可能な設計では、パラメトリック発振器アレイは、第1のグループの光信号と第2のグループの光信号を受信し、第1のグループの信号と第1のグループの光信号と第2のグループの光信号とに基づいて第3のグループの光信号を出力し;相互作用計算アレイは、第3のグループの光信号を受信し、事前設定された行列に基づいて第3のグループの光信号に対して行列演算を実行して、第4のグループの光信号を得て;第1のフィードバック・モジュールは、第3のグループの光信号を受信し、第3のグループの光信号をパラメトリック発振器アレイに送信し;第2のフィードバック・モジュールは、第4のグループの光信号を受信し、第4のグループの光信号をパラメトリック発振器アレイに送信する。
ある可能な設計では、パラメトリック発振器アレイは、複数のパラメトリック発振器を含む。各パラメトリック発振器は、光信号の第1のグループ内の1つの第1の光信号を受信し、第1の光信号を、事前設定された分割比に基づいて、光信号の第1の部分および光信号の第2の部分に分割し;パラメトリック発振器は、光信号の第1の部分を第1のフィードバック・モジュールに送信し、光信号の第2の部分を相互作用計算マトリクスに送信する。
ある可能な設計では、パラメトリック発振器アレイは、複数のパラメトリック発振器を含む。各パラメトリック発振器は、光信号の第1のグループにおける1つの第1の光信号と、光信号の第2のグループにおける1つの第2の光信号とを1つの光信号に結合し、ビーム結合を通じて得られた光信号をパラメトリック発振器に送信する。
第3の側面によれば、本願は、光計算チップを提供する。光計算チップは、第1の側面または第1の側面の可能な実装のうちの任意の1つによる光計算装置を含んでいてもよい。
本願のある実施形態による光計算装置10の一例の構造の概略図である。
本願のある実施形態によるパラメトリック発振器アレイ100の一例の構造の概略図である。
本願のある実施形態による光パラメトリック発振器の一例の構造の概略図である。
本願のある実施形態による光パラメトリック発振領域の一例の構造の概略図である。
本願のある実施形態による、相互作用計算マトリクス200の一例の構造の概略図である。
本願のある実施形態によるMZIUの一例の構造の概略図である。
本願のある実施形態によるMZIUの別の例の構造の概略図である。
本願のある実施形態による、パラメトリック発振器110と相互作用計算マトリクス200との間に光スプリッターが配置された例の構造の概略図である。
本願のある実施形態による、パラメトリック発振器110と第2のフィードバック・モジュール400との間にビーム結合器が配置された例の構造の概略図である。
本願のある実施形態による光信号処理方法のフローチャートである。
本願の実施形態の目的、技術的解決策、および利点をより明確にするために、下記は、添付の図面を参照して、本願の実施形態をさらに詳細に記載する。
本願の実施形態において、「複数の」とは、2以上を意味する。これに鑑み、本願の実施形態において、「複数の」は、「少なくとも2つ」として理解されてもよく、「少なくとも1つ」は、一つまたは複数、たとえば、1つ、2つ、またはそれ以上として理解されてもよい。「少なくとも1つ」は、一つまたは複数、たとえば、1つ、2つ、またはそれ以上として理解されてもよい。たとえば、少なくとも1つを含むとは、含まれる内容を制限することなく、1つ、2つ、またはそれ以上を含むことを意味する。たとえば、A、BおよびCの少なくとも1つを含むことは、A、B、C、AとB、AとC、BとC、またはAとBとCを含むことを意味しうる。用語「および/または」は、関連するオブジェクト間のアソシエーション関係を記述し、3つの関係が存在しうることを表す。たとえば、Aおよび/またはBは、Aのみが存在、AとBの両方が存在し、Bのみが存在という3つの場合を表す。さらに、記号「/」は、特に指定しない限り、一般に、関連するオブジェクト間の「または」関係を示す。
さらに、特に断りのない限り、本願の実施形態において、「第1の」および「第2の」のような序数は、複数のオブジェクトの間を区別することを意図したものであり、複数のオブジェクトの順序、時系列、優先度、または重要度を制限することを意図したものではない。
本願は、高い計算精度および高い動作効率を有する光イジング・マシンを提供するよう、光計算装置および光信号処理方法を提供する。
図1は、本願のある実施形態による光計算装置10の一例の構造の図である。図1に示されるように、光計算装置10は、パラメトリック発振器アレイ100、相互作用計算アレイ200、第1のフィードバック・モジュール300、および第2のフィードバック・モジュール400を含む。パラメトリック発振器アレイ100は、第1の入力端と第1の出力端とを含む。相互作用計算マトリクス200は、第2の入力端と第2の出力端とを含む。パラメトリック発振器アレイ100の第1の出力端は、相互作用計算アレイ200の第2の入力端に接続される。相互作用計算アレイ200の第2の出力端は、第2のフィードバック・モジュール400を通じてパラメトリック発振器アレイ100の第1の入力端に接続される。第1のフィードバック・モジュール300は、パラメトリック発振器アレイ100の2つの端部に接続される。
パラメトリック発振器アレイ100は、第1のグループの信号を受信し、第1のグループの信号に基づいて第1のグループの光信号を生成することができる。第1のグループの光信号は、少なくとも1つの第1の光信号を含む。
本願のある実施形態では、信号の第1のグループは、光パルスのような光信号を含んでいてもよい。あるいはまた、信号の第1のグループは、電気パルスのような電気信号であってもよい。第1のグループの信号は、1つの光信号または1つの電気信号を含んでいてもよく、または複数の光信号または複数の電気信号を含んでいてもよい。第1のグループの信号の信号タイプおよび量は、本明細書では限定されない。パラメトリック発振器アレイ100によって受信された第1のグループの信号が電気信号である場合、パラメトリック発振器アレイ100は、受信された電気信号を光信号に変換し、その後、変換を通じて得られた光信号に基づいて第1のグループの光信号を生成することができることに留意されたい。
一例では、第1のグループの信号は、ポンプ源によって送信されてもよい。たとえば、ポンプ源は、周期的に1グループの信号を生成することができる。信号のグループに含まれる複数の光信号または電気信号は、同じであっても、異なるものであってもよい。信号のグループにおける複数の光信号または電気信号は、パラメトリック発振器アレイ100に同時に到達する。第1のグループの信号は、ポンプ源によって周期的に生成される任意のグループの信号であってもよい。むろん、第1のグループの信号は、別の仕方で生成されてもよく、第1のグループの信号のソースは、本明細書において限定されない。
相互作用計算マトリクス200は、計算のために使用される事前設定された行列を事前にロードし、パラメトリック発振器アレイ100によって生成される光信号の第1のグループを受信した後、事前設定された行列に基づいて第1のグループの光信号に対して行列演算を実行してもよい。事前設定された行列は、第2のグループの光信号を得るために、第1のグループの光信号の位相または振幅などのパラメータを調整するために使用されてもよい。
なお、光信号の第1のグループに含まれる光信号の量は、光信号の第2のグループに含まれる光信号の量と同じであってもよい。たとえば、光信号の第1のグループはN個の光信号を含み、光信号の第2のグループもN個の光信号を含む。この場合、光信号の第1のグループにおける光信号は、光信号の第2のグループにおける光信号と1対1で対応する。あるいはまた、光信号の第1のグループに含まれる光信号の量は、光信号の第2のグループに含まれる光信号の量と異なる場合がある。たとえば、光信号の第1のグループはN個の光信号を含み、光信号の第2のグループはM個の光信号を含む。MとNはともに正の整数であり、MはNと等しくない。
第1のフィードバック・モジュール300は:パラメトリック発振器アレイ100によって生成された第1のグループの光信号を受信した後、第1のグループの光信号をパラメトリック発振器アレイ100の第1の入力端に送信するように構成される。第2のフィードバック・モジュール400は:相互作用計算マトリクス200によって生成された光信号の第2のグループを受信した後、第2のグループの光信号をパラメトリック発振器アレイ100の第1の入力端に送信するように構成される。
パラメトリック発振器アレイ100は、さらに、第1のグループの光信号および第2のグループの光信号を受信するように構成されることが理解できる。このようにして、後続の処理プロセスにおいて、パラメトリック発振器アレイ100は、第1のグループの信号、第1のフィードバック・モジュール300によってフィードバックされた第1のグループの光信号、および第2のフィードバック・モジュール400によってフィードバックされた第2のグループの光信号に基づいて、第3のグループの光信号を出力する。相互作用計算アレイ200は、さらに、第3のグループの光信号を受信し、事前設定された行列に基づいて第3のグループの光信号に対して行列演算を実行して、第4のグループの光信号を得るように構成される。第1のフィードバック・モジュール300は、さらに、第3のグループの光信号を受信し、第3のグループの光信号をパラメトリック発振器アレイ100の第1の入力端に送信するように構成される。第2のフィードバック・モジュール400は、さらに、第4のグループの光信号を受信し、第4のグループの光信号をパラメトリック発振器アレイ100に送信するように構成される。以上の処理プロセスが複数回繰り返された後、光計算装置10の最適解が得られる。
上記の内容は、光計算装置10のモジュールの機能をまとめたものであり、以下、それらのモジュールについて詳細に説明する。
1. パラメトリック発振器アレイ100
パラメトリック発振器アレイ100は、複数の並列なパラメトリック発振器110を含む。複数のパラメトリック発振器110の量は、パラメトリック発振器アレイ100によって受信される信号の第1のグループに含まれる光信号または電気信号の量と同じであってもよい。あるいはまた、パラメトリック発振器アレイ100は、さらに、第1のグループの光信号および第2のグループの光信号を受信するように構成されるので、複数のパラメトリック発振器110の量は、光信号の第1のグループまたは光信号の第2のグループに含まれる光信号の量と同じであってもよい。信号の第1のグループに含まれる光信号または電気信号の量、光信号の第1のグループに含まれる光信号の量、および光信号の第2のグループに含まれる光信号の量が互いに異なる場合、複数のパラメトリック発振器110の量は、信号の3つのグループに含まれる光信号または電気信号の量のうちの最大の値であってもよい。説明の簡単のため、以下では、信号の3つのグループに含まれる光信号または電気信号の量が同じである例を使用する。
複数の並列なパラメトリック発振器110のそれぞれは、第1のグループの信号のうちの1つの信号を受信するように構成され、および/または第1のフィードバック・モジュール300によってフィードバックされた第1のグループの光信号のうちの1つの光信号を受信するように構成され、および/または第2のフィードバック・モジュール400によってフィードバックされた第2のグループの光信号のうちの1つの光信号を受信するように構成される。
図2を参照すると、たとえば、パラメトリック発振器アレイ100は、N個の並列なパラメトリック発振器110を含み、信号の第1のグループは、光信号A1、A2、A3、...、およびANを含む光信号グループAであり、光信号の第1のグループは、光信号B1、B2、B3、...、およびBNを含む光信号グループBであり、光信号の第2のグループは、光信号C1、C2、C3、...、およびCNを含む光信号グループCである。この場合、第1のパラメトリック発振器110は、光信号A1、B1、C1を受信し、光信号A1、B1、C1に基づいて第3のグループの光信号のうちの1つの光信号(光信号D1と記す)を生成するように構成され、第2のパラメトリック発振器110は、光信号A2、B2、C2を受信し、光信号A2、B2、C2に基づいて第3のグループの光信号のうちの別の光信号(光信号D2と記す)を生成するように構成される、などとなる。各パラメトリック発振器110は、パラメトリック発振器110によって受信された光信号を独立して処理することができるので、パラメトリック発振器110は、1つの受信された光信号のグループ内の複数の光信号を並列に処理することができ、それにより、光計算装置10の動作効率を改善することができる。
本願のこの実施形態では、パラメトリック発振器110は、光パラメトリック発振器であってもよく、たとえば、光ポンプの光パラメトリック発振器または電気ポンプの光パラメトリック発振器110であってもよく、またはレーザー発振器、カー発振器、またはポーラロンであってもよい。あるいはまた、パラメトリック発振器110は、光信号の周波数に基づいて発振を実行することができる任意のパラメトリック発振器でありうる。これは、本明細書において限定されない。
一例では、パラメトリック発振器110が光パラメトリック発振器である場合、光パラメトリック発振器は、非線形光学相互作用を通じて新しい光信号を生成することができる。図3は、本願のある実施形態による光パラメトリック発振器の例の構造の概略図である。図3に示されるように、光パラメトリック発振器は、2つのブラッグ反射領域および1つの光パラメトリック発振領域を含む。ブラッグ反射領域は光パラメトリック発振領域の両端に位置する。2つのブラッグ反射領域は共振空洞を形成し、光パラメトリック発振器によって受信された光信号は、発振のために2つのブラッグ反射領域の間で前後に伝送される。光信号は、光パラメトリック発振領域に結合され、入力されて、第1のフィードバック・モジュール300および第2のフィードバック・モジュール400のそれぞれによって送信される光信号とともに非線形作用を生成する。非線形作用後に得られた光信号が、光パラメトリック発振領域から結合され、フィルタリングされる。光パラメトリック発振器に残る光信号は、パラメトリック発振器アレイ100によって出力される光信号のグループ、たとえば、光信号の第1のグループまたは上述した光信号の第3のグループである。
以下は、光パラメトリック発振器110における光パラメトリック発振領域について説明する。
図4は、本願のある実施形態による光パラメトリック発振領域の一例の構造の概略図である。図4は、世界座標系のXZ平面上の光パラメトリック発振領域の断面図である。図4に示されるように、光パラメトリック発振領域は、第1の導波路と第2の導波路の2つの導波路を含む。第1の導波路は、第2の導波路上に統合され、第1の導波路は、非線形効果を有する導波路である。以下は、光パラメトリック発振器によって受信される種々の信号に関して、第1の導波路と第2の導波路の動作原理について説明する。
第1の場合には、光パラメトリック発振器は、受信された第1のグループの信号に基づいて第1のグループの光信号を生成する。
たとえば、第1のグループの信号は、ポンプ光である。ポンプ光は、端面結合方式で第1の導波路に入射してもよい。第1の導波路の非線形作用の後、第1のグループの光信号が得られ、次いで、第2の導波路に垂直に結合される。
第2の場合には、光パラメトリック発振器は、受信される第1のグループの信号、第1のグループの光信号、および第2のグループの光信号に基づいて第3のグループの光信号を生成する。
引き続き第1のグループの信号がポンプ光である例を用いると、ポンプ光は、端面結合方式で第1の導波路に入射する。第1のグループの光信号および第2のグループの光信号は、モード・フィールド変換方式で第1の導波路に垂直に結合されてもよい。次いで、ポンプ光、第1のグループの光信号、および第2のグループの光信号は、合同して、第1の導波路の非線形作用を受けて、第3のグループの光信号が得られ、それが次いで、第2の導波路に垂直に結合される。
なお、第2の場合では、ポンプ光、第1のグループの光信号、第2のグループの光信号は、第1の導波路の非線形作用を合同して受ける必要がある。よって、第1の導波路に結合されるとき、ポンプ光、第1のグループの光信号、および第2のグループの光信号は、時間領域において重複する必要があり、ポンプ光、第1のグループの光信号、および第2のグループの光信号が、第1の導波路に光学的に結合される時間を制御する必要がある。一例では、第1のフィードバック・モジュール300および第2のフィードバック・モジュール400における光信号伝送経路の長さと、ポンプ源の光信号発生周期とを調整することによって、ポンプ光、第1のグループの光信号、および第2のグループの光信号が、指定された時間期間内に第1の導波路に同時に入射できるようにすることができる。
本願のこの実施形態では、第1の導波路および第2の導波路は、異なる材料の導波路であってもよい。たとえば、第1の導波路は、非線形効果を有する導波路であり、たとえば、二次非線形性を有するニオブ酸リチウム導波路またはタンタル酸リチウム導波路であってもよく、または三次非線形性を有する導波路材料であってもよい。第2の導波路は、低伝送損失の特徴を有する導波路であってもよく、低伝送損失の特徴を有する導波路は、伝送損失が閾値未満である導波路であると理解されてもよく、たとえば、窒化シリコン導波路であってもよく、または、広い透明透過スペクトルおよび低伝送損失を有する別の半導体材料、たとえば、シリコンまたは二酸化シリコンであってもよい。第1の導波路と第2の導波路との統合の仕方は、異種集積技術を用いることによって第2の導波路の材料上に第1の導波路を統合すること、または第1の導波路の材料上に第2の導波路を統合することであってもよい。第1の導波路と第2の導波路の特定の材料およびその統合の仕方は、ここでは限定されない。
前述の光パラメトリック発振領域では、第1の導波路の非線形効果を用いて、圧縮された状態の光信号が生成されてもよい。圧縮された状態の光信号は、計算のために必要なすべての可能な状態の入力光信号として理解されてもよく、生成された、圧縮された状態の光信号は、低伝送損失の特徴を有する第2の導波路を使用して伝送される。これは、光計算装置10が局所的に最適でない解を得ることを防止することができる。種々の導波路材料の特徴利点が、異種集積の仕方で組み合わされ、光計算装置10の計算精度が保証できる。
さらに、上述の説明から、光パラメトリック発振器によって出力される光信号は、ポンプ光をさらに含み、ポンプ光は、相互作用計算マトリクス200の計算結果に影響を及ぼすことがわかる。よって、光計算装置10の計算結果の精度を確保するために、各パラメトリック発振器の後にフィルタがさらに配置されてもよい。フィルタは、狭帯域マイクロリング・フィルタなどであってもよく、フィルタは、パラメトリック発振器によって出力された光信号におけるポンプ光をフィルタリングして除去する。
2. 相互作用計算マトリクス200
パラメトリック発振器アレイ100が第1のグループの光信号または第3のグループの光信号を出力した後、相互作用計算マトリクス200は、第1のグループの光信号または第3のグループの光信号に対して行列演算を実行し、対応する演算結果、すなわち、第1のグループの光信号に対応する第2のグループの光信号または第3のグループの光信号に対応する第4のグループの光信号を得る。相互作用計算マトリクス200によって第1のグループの光信号を処理するプロセスは、相互作用計算マトリクス200によって第3のグループの光信号を処理するプロセスと同じである。以下では、相互作用計算マトリクス200による第1のグループの光信号を処理するプロセスが説明のための例として使用される。
一例では、光信号の第1のグループは、N個の光信号を含む光信号のグループであってもよく、f(t)として示される。その表現は次のとおりである:
Figure 2023504798000002
f1,f2,…fnは、それぞれN個の光信号に対応する列ベクトルである。相互作用計算マトリクス200は、解決されるべきNP困難な問題に関連するn×n対称行列を形成する。たとえば、n×n対称行列は、NP困難な問題に対して数学的抽象化を行うことによって得られてもよい。n×n対称行列はJと記され、その表現は次のとおりである:
Figure 2023504798000003
相互作用計算マトリクス200が第1のグループの光信号に対して演算を実行した後、光信号の第1のグループに対応する出力信号が得られ、y(t)として記される。y(t)は次の式を満たす:
Figure 2023504798000004
図5は、本願のある実施形態による、相互作用計算マトリクス200の一例の構造の概略図である。相互作用計算マトリクス200は、複数のカスケード接続されたマッハ・ツェンダー干渉計ユニット(Mach-Zehnder interferometer unit、MZIU)を含む。本願のこの実施形態では、各MZIUは、2つの光信号を受信することができる。各MZIUは、2つの入力光信号間の相互作用を実装するように構成される。この相互作用は、2つの入力光信号の位相間の相互作用であってもよく、または2つの入力光信号の信号振幅間の相互作用であってもよく、または光信号の他のパラメータに関する相互作用であってもよい。これは、本明細書において限定されない。説明の簡単のため、以下では、相互作用が2つの入力光信号の位相に対する相互作用である例を使用する。
各MZIUは、MZIの位相パラメータを使用することにより、2つの入力光信号の位相を制御することができる。前述のn×n対称行列における各要素は、複数のカスケード接続されたMZIUのそれぞれの位相パラメータに対応する。その際、各MZIUの位相パラメータはその二次元行列に基づいて設定される。
図5に示される相互作用計算マトリクス200では、相互作用計算マトリクス200の左端から光信号が入力され、相互作用計算マトリクス200によって計算された演算結果が右端から出力される。図5に示されるように、複数のカスケード接続されたMZIUは、図中の破線で示された位置に基づいて3つの部分に分割されてもよい。MZIUマトリクスの第1の部分は、三角形を形成する複数のMZIUを含む。MZIUマトリクスの第2の部分は、複数のMZIUが斜めにカスケード接続されたものを含む。MZIUマトリクスの第3の部分は、逆三角形を形成する複数のMZIUを含む。各MZIUの位相パラメータが前述のn×n対称行列に基づいて設定される場合、n×n対称行列は3つの部分行列に分割され、次いで3つの部分行列はそれぞれMZIUマトリクスの3つの部分にマッピングされる。むろん、n×n対称行列は、代替的に、別の仕方で複数のカスケード接続されたMZIUにマッピングされてもよい。これは本明細書では限定されない。
図6は、本願のある実施形態によるMZIUの例の構造の概略図である。各MZIUは、複数のマッハ・ツェンダー干渉計(Mach-Zehnder interferometer、MZI)と、複数のビームスプリッターとを含む。図6において、たとえば、MZIUは、2つのMZI(それぞれ、MZI-1およびMZI-2)および2つのビームスプリッター(それぞれ、ビームスプリッター1およびビームスプリッター2)を含む。2つのビームスプリッターの下側ポートは、直接接続され、各ビームスプリッターの上側ポートは別々に、1つのビームスプリッターに接続される。たとえば、ビームスプリッター1の上側ポートはMZI-1に接続され、ビームスプリッター2の上側ポートはMZI-2に接続される。ビームスプリッターの分割比は、実際の使用要件に基づいて設定されてもよい。一例では、ビームスプリッターの分割比は、50/50であってもよい。このようにして、MZIUに伝送される光信号は均等に分割され、MZI-1および下側ビームスプリッター2に伝送される。加えて、各MZIの位相パラメータは、MZIの位相コントローラを使用することによって調整されてもよい。1つのMZIUに含まれる複数のMZIの位相パラメータは、同一であっても、異なっていてもよい。具体的な値は、前述のn×n対称行列に基づいて決定される。
図7は、本願のある実施形態によるMZIUの別の例の構造の概略図である。各MZIUは、2つのMZI(それぞれMZI-3およびMZI-4)および2つのビームスプリッター(それぞれビームスプリッター3およびビームスプリッター4)を含む。しかしながら、図7に示されるMZIUにおけるMZIとビームスプリッターの接続の仕方は、図6とは逆である。2つのビームスプリッターの上側ポートは、直接接続され、各ビームスプリッターの下側ポートは別々に、1つのビームスプリッターに接続される。たとえば、ビームスプリッター3の下側ポートはMZI-3に接続され、ビームスプリッター4の下側ポートはMZI-4に接続される。MZIおよびビームスプリッターの設定は、図6のものと同様であり、詳細は、ここでは再度説明しない。
一例では、図5に示される複数のカスケード接続されたMZIUにおいて、MZIUマトリクスの第1の部分における諸MZIUの構造は、MZIUマトリクスの第2の部分における諸MZIUの構造と同じであり、MZIUマトリクスの第3の部分における諸MZIUの構造とは異なる。たとえば、MZIUマトリクスの第1の部分とMZIUマトリクスの第2の部分におけるMZIUは図6に示されるMZIU構造を使用し、MZIUマトリクスの第3の部分におけるMZIUは図7に示されるMZIU構造を使用する。あるいはまた、MZIUマトリクスの第1の部分とMZIUマトリクスの第2の部分におけるMZIUは、図7に示されるMZIU構造を使用し、MZIUマトリクスの第3の部分におけるMZIUは、図6に示されるMZIU構造を使用する。これは、本明細書において限定されない。
さらに、本願のこの実施形態では、図6に記載されるMZIUに含まれる2つのMZIは、動的に同調可能な位相の特徴を有する材料を使用することによって形成されてもよい。材料は、電気光学効果を有する材料、たとえば、ニオブ酸リチウム材料、有機ポリマー材料などであってもよい。あるいはまた、材料は、磁気光学効果を有する材料であってもよい。本明細書では列挙はされない。一つのMZIU中の二つのMZIは、動的に同調可能な位相の特徴を有する異なる材料を使用することによって形成される。たとえば、一方のMZIはニオブ酸リチウム材料を用いて形成され、他方のMZIは有機ポリマー材料を用いて形成される。あるいはまた、一方のMZIは磁気光学効果を有する材料を用いて形成され、他方のMZIは電気光学効果を有する材料を用いて形成される。
電気光学効果および磁気光学効果は、それぞれ誘電率を急速に変化させることができるので、電気光学効果または磁気光学効果の特徴を有する材料を使用して形成されたMZIは、自分自身の位相パラメータを迅速にロードし、リフレッシュすることができる。これは、相互作用計算マトリクスの迅速なロードおよびリフレッシュを実現することができ、それにより、光計算装置10の動作効率をさらに改善することができる。
また、MZIのサイズが比較的小さいため、光計算装置10は、よりコンパクトな構造を有し、チップ上に実装されることができ、それにより光計算装置10の安定性を確保することができる。
3. 第1のフィードバック・モジュール300および第2のフィードバック・モジュール400
第1のフィードバック・モジュール300および第2のフィードバック・モジュール400は、それぞれ、複数のファイバー導波路を含んでいてもよく、各ファイバー導波路は、1つの光信号を送信してもよい。
第1のフィードバック・モジュール300は、パラメトリック発振器アレイ100の両端に接続される。パラメトリック発振器アレイ100が第1のグループの光信号を出力した後、第1のフィードバック・モジュール300は、第1のグループの光信号の各光信号をパラメトリック発振器アレイ100にフィードバックする。パラメトリック発振器アレイ100が図2に示されている場合、第1のフィードバック・モジュール300に含まれるファイバー導波路の量は、パラメトリック発振器アレイ100に含まれるパラメトリック発振器110の量と同じである。さらに、各ファイバー導波路は、一方のパラメトリック発振器110の両端に接続され、パラメトリック発振器110によって出力された光信号をパラメトリック発振器110にフィードバックするように構成される。
第2のフィードバック・モジュール400は、パラメトリック発振器アレイ100および相互作用計算マトリクス200に接続される。相互作用計算マトリクス200が第2のグループの光信号を出力した後、第2のフィードバック・モジュール400は、第2のグループの光信号の各光信号をパラメトリック発振器アレイ100にフィードバックする。パラメトリック発振器アレイ100が図2に示されており、相互作用計算マトリクス200によって出力される光信号の第2のグループに含まれる光信号の量が、パラメトリック発振器アレイ100に含まれるパラメトリック発振器110の量と同じである場合、第2のフィードバック・モジュール400に含まれるファイバー導波路の量は、パラメトリック発振器アレイ100に含まれるパラメトリック発振器110の量と同じである。
あるいはまた、第2フィードバック・モジュール400は、ファイバー結合器またはファイバー・スプリッターをさらに含んでいてもよい。たとえば、パラメトリック発振器アレイ100が、N個の光信号を含む第1のグループの光信号を出力するためにN個のパラメトリック発振器110を含む場合、第2のグループの光信号は、相互作用計算マトリクス200によって実行される行列演算後に2N個の光信号を含む。この場合、1つのファイバー結合器が任意の2つのファイバー導波路の間に配置されてもよく、該2つのファイバー導波路上を伝送される光信号は、ファイバー結合器を使用することによって、時間領域において1つの信号に結合されてもよく、結合後に得られるN個の光信号が得られてもよい。次いで、組み合わせ後に得られたN個の光信号が、N個のパラメトリック発振器110にフィードバックされる。
あるいはまた、第1のフィードバック・モジュール300および第2のフィードバック・モジュール400は、それぞれ、1つだけのファイバーおよび1つだけのファイバー結合器を含んでいてもよい。パラメトリック発振器アレイ100によって出力される光信号の第1のグループは、ファイバー結合器を使用することによって、時間領域において1つの信号に組み合わされてもよい。次いで、ビームの組み合わせを通じて得られた信号は、第1のフィードバック・モジュール300に含まれるファイバーを使用することによって、パラメトリック発振器アレイ100にフィードバックされてもよい。この場合、第1のフィードバック・モジュール300によってフィードバックされる、ビーム結合を通じて得られた信号を受信した後、パラメトリック発振器アレイ100は、ビーム結合を通じて得られた信号をN個の信号に分割し、その後、N個の信号に基づいて処理を実行することができる。
本願のこの実施形態では、第1のフィードバック・モジュール300および第2のフィードバック・モジュール400に含まれるファイバー導波路は、それぞれ、低伝送損失の特徴を有する導波路であってもよく、たとえば、窒化シリコン導波路であってもよく、または、低伝送損失を有する別の半導体材料、たとえば、シリコンまたは二酸化シリコンであってもよい。このようにして、第1のフィードバック・モジュール300および第2のフィードバック・モジュール400によってパラメトリック発振器アレイ100にフィードバックされる光信号の損失を低減でき、伝送プロセスにおける光信号の歪みを低減でき、光計算装置10の動作結果の精度を改善することができる。
前述の実施形態は、光計算装置10がパラメトリック発振器アレイ100、相互作用計算マトリクス200、第1のフィードバック・モジュール300、および第2のフィードバック・モジュール400を含む例を用いて、光計算装置10の説明を提供する。しかしながら、別の実施形態では、光計算装置10は、別のモジュールをさらに含んでいてもよい。たとえば、上記の内容から、パラメトリック発振器アレイ100によって出力される第1のグループの光信号の(または第3のグループの光信号)が、第1のフィードバック・モジュール300によってパラメトリック発振器アレイ100にフィードバックされることがわかる。第1のグループの光信号(または第3のグループの光信号)は、さらに、相互作用計算マトリクス200における行列演算に参加する。よって、パラメトリック発振器アレイ100、第1のフィードバック・モジュール300、相互作用計算マトリクス200の間に光スプリッターがさらに配置されてもよい。
図8を参照すると、パラメトリック発振器アレイ100に含まれる複数のパラメトリック発振器110のうちの1つが一例として使用され、パラメトリック発振器110と相互作用計算マトリクス200との間に光スプリッターが配置される。このようにして、パラメトリック発振器110によって出力された光信号の一方の部分が、第1のフィードバック・モジュール300に送信され、光信号の他方の部分が、相互作用計算マトリクス200に送信される。別のパラメトリック発振器110についても同じ仕方で光スプリッターが配置されてもよく、詳細は、ここでは再度説明しない。一例では、光スプリッターは、同調可能なMZIスプリッターであってもよい。同調可能なMZIスプリッターは、MZIの位相パラメータを熱同調方式で制御し、それにより、MZIスプリッターの分割比が動的に調整できる。たとえば、分割比は90/10であってもよい。各パラメトリック発振器110によって出力された光信号がMZIスプリッターを通過した後、光信号の90%が第1のフィードバック・モジュール300に伝送され、光信号の10%が相互作用計算マトリクス200に伝送される。
加えて、パラメトリック発振器アレイ100は、第1のフィードバック・モジュール300および第2のフィードバック・モジュール400によってフィードバックされた光信号に基づいて、光計算装置10によって計算するために必要とされる入力信号(たとえば、第3のグループの光信号)を生成する必要があるため、さらに、パラメトリック発振器アレイ100の入力端に、ビーム結合器がさらに配置されてもよい。
図9を参照すると、パラメトリック発振器アレイ100に含まれる複数のパラメトリック発振器110のうちの1つが一例として使用され、パラメトリック発振器110と第2のフィードバック・モジュール400との間にビーム結合器が配置される。このようにして、第1のフィードバック・モジュール300によってフィードバックされた1つの光信号と、第2のフィードバック・モジュール400によってフィードバックされた1つの光信号とが、時間領域において1つの光信号に結合され、それがその後、処理のためにパラメトリック発振器110に入力される。別のパラメトリック発振器110についても同じ仕方でビーム結合器が配置されてもよく、詳細は、ここでは再度説明されない。
あるいはまた、光計算装置10は、位相検出器をさらに含むことができる。位相検出器は、平衡ホモダイン検出器(balanced homodyne detector、BHD)などであってもよい。位相検出器はパラメトリック発振器アレイ100に接続されて、各光信号の位相に基づいて光計算装置100の演算結果を決定するために、パラメトリック発振器アレイ100によって出力される光信号のグループ内の各光信号の位相を検出してもよい。たとえば、検出器が、パラメトリック発振器アレイ100によって出力される各光信号の位相が0またはπであることを検出する場合、最終的な計算結果は、光信号のグループに基づいて決定される。
むろん、光計算装置10は、本明細書に列挙されていない他のモジュールをさらに含んでいてもよい。
本願のこの実施形態で提供される光計算装置では、パラメトリック発振器アレイおよび相互作用計算マトリクスは、光信号の1つのグループに含まれる複数の光信号に対して並列な処理プロセスを実行する。したがって、イジング・モデルにおけるノードの量が比較的多く、比較的大量の入力光信号が導入される必要がある場合でも、光計算装置の動作時間は増加しない。
加えて、パラメトリック発振器アレイは、圧縮された状態の光信号を得るために、光計算装置によって計算のために使用される光信号を生成する。これにより、光計算装置を使用して得られる最適解が、グローバルな最適解であることを最大限に保証し、それにより計算精度を確保することができる。
また、本願の本実施形態において提供される光計算装置は単純な構造をもつため、光計算装置はチップ上に実装されることができる。これは、光イジング・マシンのその後のクラスタリングのための実現可能な解決策を提供する。さらに、全体の計算プロセスは、光信号方式で実装される。信号伝送速度が高く、計算速度が大幅に向上する。よって、本願のこの実施形態において提供される光計算装置は、ニューラルネットワークシステムに適用されてもよく、たとえば、ニューラルネットワークシステムにおいてフィードバック制御を実装するように構成されてもよい。
以下は、図1に示す光計算装置を一例として用いて、前述の諸実施形態を参照して、本願のある実施形態において提供される光信号処理方法について説明する。
図10は、本願のある実施形態による光信号処理方法のフローチャートである。フローチャートは、以下の通りである。
S1001. パラメトリック発振器アレイ100が、第1のグループの信号を受信する。
第1のグループの信号の説明については、パラメトリック発振器アレイ100の前述の説明を参照されたい。詳細は、ここでは再度説明しない。
S1002. パラメトリック発振器アレイ100が、第1のグループの信号に基づいて第1のグループの光信号を生成する。
第1のグループの光信号は、複数の第1の光信号を含む。パラメトリック発振器アレイ100が第1のグループの信号に基づいて第1のグループの光信号を生成するプロセスについては、パラメトリック発振器アレイ100の前述の説明を参照されたい。詳細は、ここでは再度説明しない。
S1003. パラメトリック発振器アレイ100は、第1のグループの光信号を出力し、相互作用計算アレイ200および第1のフィードバック・モジュール300は、別々に、第1のグループの光信号を受信する。
パラメトリック発振器アレイ100は、複数のパラメトリック発振器を含んでいてもよい。複数のパラメトリック発振器の量は、光信号の第1のグループに含まれる光信号の量と同じである。各パラメトリック発振器は、光信号の第1のグループ内の1つの光信号を出力するように構成される。
一例では、各パラメトリック発振器は、光信号の第1のグループのうちの1つの光信号を受信し、該光信号を、事前設定された分割比に基づいて、光信号の第1の部分と光信号の第2の部分に分割し、次いで、光信号の第1の部分を第1のフィードバック・モジュール300に、光信号の第2の部分を相互作用計算マトリクス200に送信する。具体的なプロセスについては、図8について述べた内容を参照されたい。
S1004. 相互作用計算アレイ200は、事前設定された行列に基づいて、第1のグループの光信号に対して行列演算を実行して、第2のグループの光信号を得る。
第2のグループの光信号は、複数の第2の光信号を含む。ステップS1003の具体的なプロセスについては、相互作用計算マトリクス200の前述の説明を参照されたい。詳細は、ここでは再度説明しない。
S1005. 相互作用計算アレイ200は、第2のグループの光信号を出力し、第2のフィードバック・モジュール400は、第2のグループの光信号を受信する。
S1006. 第1のフィードバック・モジュール300は、第1のグループの光信号をパラメトリック発振器アレイ100に送信する。
S1007. 第2のフィードバック・モジュール400が、第2のグループの光信号をパラメトリック発振器アレイ100に送信する。
S1008. パラメトリック発振器アレイ100が、第1のグループの信号、第1のグループの光信号、および第2のグループの光信号に基づいて、第3のグループの光信号を生成する。
ステップS1008は、ステップS1002と同様であり、ここでは繰り返し説明しない。
各パラメトリック発振器は、光信号の第1のグループにおける1つの光信号と光信号の第2のグループにおける1つの光信号とを1つの光信号に結合し、ビーム結合によって得られた光信号を前記処理のためにパラメトリック発振器に送信しうることに留意されたい。具体的なプロセスについては、図9についての内容を参照されたい。
S1009. パラメトリック発振器アレイ100が、第3のグループの光信号を出力し、相互作用計算アレイ200が、第3のグループの光信号を受信し、第1のフィードバック・モジュール300が、第3のグループの光信号を受信する。
ステップS1009は、ステップS1003と同様であり、ここでは繰り返し説明しない。
S1010. 相互作用計算アレイ200は、事前設定された行列に基づいて、第3のグループの光信号に対して行列演算を実行して、第4のグループの光信号を得る。
S1011. 相互作用計算アレイ200が、第4のグループの光信号を出力し、第2のフィードバック・モジュール400が、第4のグループの光信号を受信する。
S1012. 第1のフィードバック・モジュール300が、第3のグループの光信号をパラメトリック発振器アレイ100に送信する。
S1013. 第2のフィードバック・モジュール400が、第4のグループの光信号をパラメトリック発振器アレイ100に送信する。
実際の適用では、ステップS1008ないしステップS1013は、複数回実行されてもよく、各ステップの実施回数は、本明細書では制限されないことが理解できる。パラメトリック発振器アレイ100によって出力された光信号のグループにおける各光信号の位相が、事前設定された条件を満たす、たとえば各光信号の位相が0またはπである場合、最終的な計算結果は、光信号の前記グループに基づいて決定される。
本願において提供される実施形態は、単に例であることに留意されたい。当業者は、説明の簡便のために、実施形態が前述の実施形態において異なる側面を強調することを明白に知ることができる。ある実施形態で詳細に説明されていない部分については、別の実施形態の関連する説明を参照されたい。この出願の実施形態、請求項および添付の図面に開示された特徴は、独立して存在してもよく、または組み合わせて存在してもよい。本発明の実施形態においてハードウェアの形で説明される特徴は、ソフトウェアによって実行されてもよく、その逆も可能であり、それは本明細書では限定されない。
あるいはまた、光計算装置10は、位相検出器をさらに含むことができる。位相検出器は、平衡ホモダイン検出器(balanced homodyne detector、BHD)などであってもよい。位相検出器はパラメトリック発振器アレイ100に接続されて、各光信号の位相に基づいて光計算装置10の演算結果を決定するために、パラメトリック発振器アレイ100によって出力される光信号のグループ内の各光信号の位相を検出してもよい。たとえば、検出器が、パラメトリック発振器アレイ100によって出力される各光信号の位相が0またはπであることを検出する場合、最終的な計算結果は、光信号のグループに基づいて決定される。
第2のグループの光信号は、複数の第2の光信号を含む。ステップS1004の具体的なプロセスについては、相互作用計算マトリクス200の前述の説明を参照されたい。詳細は、ここでは再度説明しない。

Claims (12)

  1. 第1のグループの信号を受信し、前記第1のグループの信号に基づいて第1のグループの光信号を生成するように構成されたパラメトリック発振器アレイであって、前記第1のグループの光信号は複数の第1の光信号を含む、パラメトリック発振器アレイと;
    前記パラメトリック発振器アレイに接続されており、前記第1のグループの光信号を受信し、事前設定された行列に基づいて前記第1のグループの光信号に対して行列演算を実行して、第2のグループの光信号を得るように構成されている相互作用計算アレイであって、前記第2のグループの光信号は、複数の第2の光信号を含む、相互作用計算アレイと;
    前記パラメトリック発振器アレイの両端に接続されており、前記第1のグループの光信号を受信し、前記第1のグループの光信号を前記パラメトリック発振器アレイに送信するように構成されている第1のフィードバック・モジュールと;
    前記パラメトリック発振器アレイおよび前記相互作用計算アレイに接続されており、前記第2のグループの光信号を受信し、前記第2のグループの光信号を前記パラメトリック発振器アレイに送信するように構成されている第2のフィードバック・モジュールとを有する、
    光計算装置。
  2. 前記パラメトリック発振器アレイは、さらに:
    前記第1のグループの光信号および前記第2のグループの光信号を受信し;
    前記第1のグループの信号、前記第1のグループの光信号、および前記第2のグループの光信号に基づいて第3のグループの光信号を出力するように構成され;
    前記相互作用計算アレイは、さらに:
    前記第3のグループの光信号を受信し、前記事前設定された行列に基づいて前記第3のグループの光信号に対して行列演算を実行して、第4のグループの光信号を得るように構成され;
    前記第1のフィードバック・モジュールは、さらに:
    前記第3のグループの光信号を受信し、前記第3のグループの光信号を前記パラメトリック発振器アレイに送信するように構成され;
    前記第2のフィードバック・モジュールは、さらに:
    前記第4のグループの光信号を受信し、前記第4のグループの光信号を前記パラメトリック発振器アレイに送信するように構成される、
    請求項1に記載の光計算装置。
  3. 前記パラメトリック発振器アレイは、複数のパラメトリック発振器を含み、前記パラメトリック発振器は、第1の導波路および第2の導波路を含み、前記第1の導波路の材料は、前記第2の導波路の材料とは異なり、前記第1の導波路の材料は、非線形効果を有する材料を含む、請求項1または2に記載の光計算装置。
  4. 前記第2の導波路の材料は、伝送損失が閾値未満である材料を含む、請求項3に記載の光計算装置。
  5. 前記相互作用計算アレイは、複数のカスケード接続されたマッハ・ツェンダー(MZ)干渉計ユニットを含み、各MZ干渉計ユニットは、複数のマッハ・ツェンダー干渉計(MZI)および複数のビームスプリッターを含み、各MZIは、その誘電率調整速度が閾値未満である導波路を含み、該導波路は、対応するMZIの位相パラメータを調整するように構成される、請求項1ないし4のうちいずれか一項に記載の光計算装置。
  6. 同じMZ干渉計ユニットに含まれる前記複数のMZIにおける導波路は、異なる材料を有する、請求項5に記載の光計算装置。
  7. 前記パラメトリック発振器は、さらに:
    前記パラメトリック発振器と、前記第1のフィードバック・モジュールと、前記相互作用計算アレイとに接続された光スプリッターを有しており、該光スプリッターは:
    光信号の前記第1のグループにおける1つの第1の光信号を受領し;
    該光信号を事前設定された分割比に基づいて光信号の第1の部分と光信号の第2の部分に分割し;
    光信号の前記第1の部分を前記第1のフィードバック・モジュールに送信し、光信号の前記第2の部分を前記相互作用計算マトリクスに送信するように構成される、
    請求項1ないし5のうちいずれか一項に記載の光計算装置。
  8. 前記パラメトリック発振器は、さらに:
    前記パラメトリック発振器、前記第1のフィードバック・モジュール、および前記第2のフィードバック・モジュールに接続されたビーム結合器を有しており、前記ビーム結合器は、光信号の前記第1のグループにおける1つの第1の光信号と、光信号の前記第2のグループにおける1つの第2の光信号とを、1つの光信号に結合し、ビーム結合を通じて得られた該光信号を前記パラメトリック発振器に送信するように構成される、
    請求項1ないし6のうちいずれか一項に記載の方法。
  9. 光信号処理方法であって、当該方法は光計算装置によって実行され、前記光計算装置は、パラメトリック発振器アレイ、相互作用計算アレイ、第1のフィードバック・モジュール、および第2のフィードバック・モジュールを有しており、当該方法は:
    前記パラメトリック発振器アレイによって、第1のグループの信号を受信し、前記第1のグループの信号に基づいて第1のグループの光信号を生成する段階であって、前記第1のグループの光信号は複数の第1の光信号を含む、段階と;
    前記相互作用計算アレイによって、前記第1のグループの光信号を受信し、事前設定された行列に基づいて前記第1のグループの光信号に対して行列演算を実行して、第2のグループの光信号を得る段階であって、前記第2のグループの光信号は複数の第2の光信号を含む、段階と;
    前記第1のフィードバック・モジュールによって、前記第1のグループの光信号を受信し、前記第1のグループの光信号を前記パラメトリック発振器アレイに送信する段階と;
    前記第2のフィードバック・モジュールによって、前記第2のグループの光信号を受信し、前記第2のグループの光信号を前記パラメトリック発振器アレイに送信する段階とを含む、
    方法。
  10. 当該方法はさらに:
    前記パラメトリック発振器アレイによって、前記第1のグループの光信号と前記第2のグループの光信号を受信し、前記第1のグループの信号と前記第1のグループの光信号と前記第2のグループの光信号とに基づいて第3のグループの光信号を出力する段階と;
    前記相互作用計算アレイによって、前記第3のグループの光信号を受信し、前記事前設定された行列に基づいて前記第3のグループの光信号に対して行列演算を実行して、第4のグループの光信号を得る段階と;
    前記第1のフィードバック・モジュールによって、前記第3のグループの光信号を受信し、前記第3のグループの光信号を前記パラメトリック発振器アレイに送信する段階と;
    前記第2のフィードバック・モジュールによって、前記第4のグループの光信号を受信し、前記第4のグループの光信号を前記パラメトリック発振器アレイに送信する段階とを含む、
    請求項9に記載の方法。
  11. 前記パラメトリック発振器アレイは、複数のパラメトリック発振器を含み、当該方法はさらに:
    各パラメトリック発振器によって、光信号の前記第1のグループにおける1つの第1の光信号を受信し、前記第1の光信号を、事前設定された分割比に基づいて、光信号の第1の部分および光信号の第2の部分に分割する段階と;
    各パラメトリック発振器によって、光信号の前記第1の部分を前記第1のフィードバック・モジュールに送信し、光信号の前記第2の部分を前記相互作用計算マトリクスに送信する段階とを含む、
    請求項9または10に記載の方法。
  12. 前記パラメトリック発振器アレイは、前記複数のパラメトリック発振器を含み、当該方法はさらに:
    各パラメトリック発振器によって、光信号の前記第1のグループにおける1つの第1の光信号と、光信号の前記第2のグループにおける1つの第2の光信号とを1つの光信号に結合し、ビーム結合を通じて得られた該光信号を前記パラメトリック発振器に送信する段階を含む、
    請求項9ないし11のうちいずれか一項に記載の方法。
JP2022531439A 2019-11-30 2021-01-07 光計算装置および光信号処理方法 Active JP7391215B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911209007.3A CN112883534A (zh) 2019-11-30 2019-11-30 一种光计算设备以及光信号处理方法
PCT/CN2021/070719 WO2021104535A1 (zh) 2019-11-30 2021-01-07 一种光计算设备以及光信号处理方法

Publications (2)

Publication Number Publication Date
JP2023504798A true JP2023504798A (ja) 2023-02-07
JP7391215B2 JP7391215B2 (ja) 2023-12-04

Family

ID=76039449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022531439A Active JP7391215B2 (ja) 2019-11-30 2021-01-07 光計算装置および光信号処理方法

Country Status (5)

Country Link
US (1) US20220350361A1 (ja)
EP (1) EP4057177A4 (ja)
JP (1) JP7391215B2 (ja)
CN (1) CN112883534A (ja)
WO (1) WO2021104535A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113641210B (zh) * 2021-10-12 2022-03-18 清华大学 用于消息散列算法中消息压缩的光电集成电路
CN116502689A (zh) * 2022-01-18 2023-07-28 华为技术有限公司 光计算装置及光计算方法
CN115081610B (zh) * 2022-05-10 2023-03-28 清华大学 光信号处理方法及装置、电子设备及存储介质
WO2024191954A1 (en) * 2023-03-10 2024-09-19 Northeastern University Ising tag with microacoustic resonator for temperature threshold sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163922A (ja) * 2014-02-28 2015-09-10 日本電信電話株式会社 光パラメトリック発振器とそれを用いたランダム信号発生装置及びイジングモデル計算装置
JP2016528611A (ja) * 2013-07-09 2016-09-15 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 光パラメトリック発振器のネットワークを使用する計算
US20180157775A1 (en) * 2016-12-05 2018-06-07 1Qb Information Technologies Inc. Method for estimating the thermodynamic properties of a quantum ising model with transverse field
JP2019028132A (ja) * 2017-07-26 2019-02-21 日本電信電話株式会社 イジングモデルの計算装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118064A1 (ja) * 2011-03-01 2012-09-07 大学共同利用機関法人情報・システム研究機構 イジングモデルの量子計算装置及びイジングモデルの量子計算方法
JP6143325B2 (ja) * 2013-01-11 2017-06-07 大学共同利用機関法人情報・システム研究機構 イジングモデルの量子計算装置及びイジングモデルの量子計算方法
CA2997013C (en) * 2015-09-15 2020-04-07 Nippon Telegraph And Telephone Corporation Ising model quantum computation device
CN105186273B (zh) * 2015-09-16 2018-03-09 山东大学 一种双端面泵浦光参量振荡器
US11385522B2 (en) * 2017-10-19 2022-07-12 Nippon Telegraph And Telephone Corporation Ising model calculation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016528611A (ja) * 2013-07-09 2016-09-15 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 光パラメトリック発振器のネットワークを使用する計算
JP2015163922A (ja) * 2014-02-28 2015-09-10 日本電信電話株式会社 光パラメトリック発振器とそれを用いたランダム信号発生装置及びイジングモデル計算装置
US20180157775A1 (en) * 2016-12-05 2018-06-07 1Qb Information Technologies Inc. Method for estimating the thermodynamic properties of a quantum ising model with transverse field
JP2019028132A (ja) * 2017-07-26 2019-02-21 日本電信電話株式会社 イジングモデルの計算装置

Also Published As

Publication number Publication date
CN112883534A (zh) 2021-06-01
EP4057177A1 (en) 2022-09-14
JP7391215B2 (ja) 2023-12-04
US20220350361A1 (en) 2022-11-03
EP4057177A4 (en) 2023-09-13
WO2021104535A1 (zh) 2021-06-03

Similar Documents

Publication Publication Date Title
JP7391215B2 (ja) 光計算装置および光信号処理方法
Rafayelyan et al. Large-scale optical reservoir computing for spatiotemporal chaotic systems prediction
Tait et al. Neuromorphic photonic networks using silicon photonic weight banks
Al-Qadasi et al. Scaling up silicon photonic-based accelerators: Challenges and opportunities
CA3139835C (en) Apparatus and methods for gaussian boson sampling
Ying et al. Integrated multi-operand electro-optic logic gates for optical computing
WO2022001802A1 (zh) 光发送机和光调制的方法
JP5718722B2 (ja) 高速カオス光信号生成光回路および高速カオス光信号生成方法
Glick et al. PINE: photonic integrated networked energy efficient datacenters (ENLITENED program)
WO2019104426A1 (en) Method and system for the generation and control of high-dimensional multi-partite quantum states
Ma et al. High-density integrated photonic tensor processing unit with a matrix multiply compiler
Tan et al. Photonic signal processor based on a Kerr microcomb for real-time video image processing
Han et al. All-optical reconfigurable non-inverted logic gates with a single semiconductor optical amplifier
Tripathi Evaluating RSOA performance with optical logic gates at 100 Gbps data rate
Yildirim et al. Nonlinear optical feature generator for machine learning
Das et al. Binary to hexadecimal decoder using pockels’ effect guided Mach-Zehnder interferometer (MZI) and optical tree architecture
Garai Method of developing all-optical trinary JK, D-type, and T-type flip-flops using semiconductor optical amplifiers
Singh et al. Design and performance analysis of all-optical 1: 4 and 1: 8 high speed demultiplexer using InGaAsP–InP optical microring resonator in Z-domain
CN116739063A (zh) 一种基于多模干涉仪以及相干检测的神经网络加速器
WO2022136146A1 (en) Optical computing and reconfiguring with spatiotemporal nonlinearities in waveguides
Nazarathy et al. All-optical linear reconfigurable logic with nonlinear phase erasure
WO2023071648A1 (zh) 用于量子计算的光学装置、系统、方法及存储介质
CN112783260A (zh) 一种光计算设备、光运算方法以及计算系统
Beisenkhanov et al. Silicon photonics based digital half-adder using micro-ring resonator structures
Moss Photonic multiplexing techniques for optical neuromorphic computing

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231121

R150 Certificate of patent or registration of utility model

Ref document number: 7391215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150