WO2022001802A1 - 光发送机和光调制的方法 - Google Patents

光发送机和光调制的方法 Download PDF

Info

Publication number
WO2022001802A1
WO2022001802A1 PCT/CN2021/101964 CN2021101964W WO2022001802A1 WO 2022001802 A1 WO2022001802 A1 WO 2022001802A1 CN 2021101964 W CN2021101964 W CN 2021101964W WO 2022001802 A1 WO2022001802 A1 WO 2022001802A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
modulator
light beam
output
optical transmitter
Prior art date
Application number
PCT/CN2021/101964
Other languages
English (en)
French (fr)
Inventor
米光灿
常泽山
常天海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21833289.8A priority Critical patent/EP4164144A4/en
Publication of WO2022001802A1 publication Critical patent/WO2022001802A1/zh
Priority to US18/147,809 priority patent/US20230138252A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0009Construction using wavelength filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0016Construction using wavelength multiplexing or demultiplexing

Definitions

  • the embodiments of the present application relate to the field of optical communication, and more particularly, to an optical transmitter and an optical modulation method.
  • an optical modulation technique in which an optical transmitter modulates data with laser light to generate an optical signal, which propagates through an optical fiber.
  • an optical transmitter includes a light source and an optical modulator.
  • the light source outputs a continuous wave (CW) laser as a data carrier.
  • the optical modulator modulates the data onto the laser.
  • CW continuous wave
  • a fixed wavelength laser is used as the light source.
  • it is controlled by a wavelength-insensitive Optical Cross Connect (OXC), and the forwarding of the optical signal is realized by changing the connection relationship between the OXC ports.
  • OXC wavelength-insensitive Optical Cross Connect
  • the switching time of the OXC port is usually as high as several tens of milliseconds, which is difficult to meet the low delay requirement of optical signal forwarding.
  • a wavelength-sensitive OXC is proposed, that is, the wavelength of the light source can be adjusted, so that the wavelength of the output optical signal can be changed according to the requirements.
  • the physical connection relationship of the OXC ports is fixed, and each port can be connected to multiple ports.
  • the transmission path of the optical signal is determined by the wavelength of the optical signal.
  • the wavelength adjustment time of the wavelength-tunable laser is still long, up to the second level, which cannot meet the low-latency requirement of optical signal transmission.
  • the current wavelength-tunable lasers are usually based on external resonator technology, and the wavelength is adjusted by changing the resonant wavelength of the resonator, which makes the device composition of the tunable laser more complicated and the control circuit more complicated. , and the cost is also significantly higher than that of fixed-wavelength lasers.
  • the present application provides an optical transmitter and an optical modulation method, which can reduce the transmission delay and forwarding delay of an optical signal, and can reduce the cost of the optical transmitter.
  • an optical transmitter in a first aspect, includes: a wavelength selector and a plurality of modulator groups, each modulator group includes a plurality of modulators, and any two modulators in the same modulator group have different working wavelengths.
  • the wavelength selector is configured to obtain a first light beam from a multi-wavelength light source, and generate a second light beam according to the first light beam, wherein the first light beam includes a plurality of wavelengths, and the second light beam includes a plurality of wavelengths.
  • the first modulator in the first modulator group is used to modulate the first data to be transmitted at the first wavelength in the second light beam.
  • the working wavelength of the first modulator includes the first wavelength.
  • the optical transmitter of the present application can be applied to wavelength-sensitive OXC, that is, the transmission path of the optical signal is determined by the wavelength of the optical signal, or in other words, the wavelength of the optical signal is the wavelength corresponding to the port of the receiving end of the optical signal, that is, the optical signal
  • the wavelength of the signal satisfies: the OXC can send the signal to the receiving end to which the data carried by the optical signal needs to be sent based on the wavelength of the optical signal.
  • the first wavelength is the wavelength corresponding to the first data to be sent, or the first wavelength is the wavelength corresponding to the receiving end of the first data to be sent, or the OXC can be based on the first
  • the wavelength forwards the optical signal carrying the first data to be sent to the receiving end to which the first data to be sent needs to be sent.
  • the wavelength selector can be used to select from the first light beam including the plurality of wavelengths the corresponding (or in other words, the first light beam including the first data to be sent)
  • the second light beam with the first wavelength corresponding to the receiving end of the first data to be sent is sent to the first modulator group, so that the working wavelength in the first modulator group includes the first wavelength
  • the first modulator capable of modulating the first data to be sent on the first wavelength, that is, capable of generating an optical signal of the first wavelength carrying the first data to be sent, so that, for example, wavelength-sensitive OXC can be based on
  • the first wavelength forwards the optical signal to the target receiving end of the first device to be sent, which reduces the forwarding delay of the optical signal.
  • the wavelength selector and the plurality of modulator groups are integrated into the same chip.
  • the chip includes a waveguide-type chip, ie, the wavelength selector and the modulator are waveguide-type devices. In doing so, an integrated package of the optical transmitter can be realized, which further improves the practicability of the present application.
  • the first wavelength includes one wavelength, and in this case, it is suitable for unicast transmission.
  • the first wavelength includes multiple wavelengths, in this case, it is suitable for multicast or broadcast transmission.
  • the wavelength selector includes a Mach-Zehnder interferometer with multiple cascaded unequal arms.
  • the wavelength selector includes a plurality of output ports, the plurality of modulator groups are in one-to-one correspondence with the plurality of output ports, each modulator group receives a light beam from the corresponding output port, and the The wavelength selector is further configured to output the second light beam from the output port corresponding to the first modulator group.
  • the wavelength selector includes at least two working states, wherein the wavelengths of the light beams output by the same output port under different working states are different, and the optical transmitter further includes a first controller for The working state of the wavelength selector is controlled, so that the wavelength of the light beam output by the output port corresponding to the first modulator group includes the first wavelength.
  • the wavelength selector includes a Mach-Zehnder interferometer with multiple cascaded unequal arms.
  • the first controller may control the working state of the wavelength selector by controlling the voltage applied to the Mach-Zehnder interferometer.
  • the wavelength selector includes a plurality of filters and optical switches.
  • a first filter of the at least one filter is used to filter the first beam to generate the second beam. That is, the operating wavelength of the first filter includes the first wavelength.
  • the optical switch includes a plurality of input ports, the plurality of input ports are in one-to-one correspondence with the plurality of filters, and each input port is configured to receive a light beam from the corresponding filter.
  • the plurality of filters and optical switches are integrated in the same chip, for example, the chip may be a waveguide type chip. It should be understood that the foregoing implementations are merely exemplary.
  • the plurality of filters may also be independently configured with respect to the wavelength selector.
  • the optical switch includes a plurality of output ports, and the plurality of output ports correspond to the plurality of modulator groups one-to-one, and each modulator group in the plurality of modulator groups outputs from the corresponding output port.
  • the port receives the light beam.
  • the optical switch is configured to output the second light beam from the output port corresponding to the first modulator group.
  • the optical switch includes at least two working states.
  • the wavelengths of the light beams output by the same output port in different working states are different, in this case, the optical transmitter further includes the first controller, and the first controller is used to control the working state of the optical switch,
  • the wavelength of the light beam output from the output port corresponding to the first modulator group includes the first wavelength.
  • the optical switch includes a plurality of Mach-Zehnder interferometers.
  • the first controller can control the working state of the optical switch by controlling the voltage applied to the Mach-Zehnder interferometer.
  • the working state of the optical switch can be easily controlled, and the practicability of the optical transmitter of the present application can be further improved.
  • each filter includes multiple filtering states, and the light beams output by the same filter in different filtering states include different wavelengths.
  • the optical transmitter further includes a second controller for controlling a filtering state of the first filter such that the light beam output by the first filter includes the first wavelength.
  • the first controller and the second controller may be the same controller, or in other words, the first controller and the second controller are jointly configured. In another implementation, the first controller and the second controller are independently configured.
  • the first modulator includes a plurality of working wavelengths, and the plurality of working wavelengths are periodically distributed.
  • the first wavelength belongs to the plurality of working wavelengths.
  • the light output spectrum of the first modulator has a resonance peak, and the resonance peak has periodic characteristics in the spectrum, forming a Free Spectral Range (FSR), and the working wavelength of the first modulator Set on the sidewall of the resonance peak.
  • FSR Free Spectral Range
  • the optical transmitter further includes a third controller, configured to adjust the first parameter of the first modulator, so that the working wavelength of the first modulator includes the first wavelength, the The first parameter includes the effective refractive index.
  • a third controller configured to adjust the working wavelength of the modulator, so that the working wavelength of the first modulator includes the first wavelength, the The first parameter includes the effective refractive index.
  • the optical transmitter further includes the multi-wavelength light source.
  • the first beam is generated by a multi-wavelength light source.
  • multiple multi-wavelength light sources respectively generate multiple beams, and the multiple beams include different wavelengths, and the multiple beams are synthesized into the first beam by, for example, a wave combining device.
  • a method of light modulation includes: generating a second light beam according to a first light beam, wherein the first light beam includes a plurality of wavelengths, and the second light beam includes a part of the wavelengths of the plurality of wavelengths; and modulating the data to be sent on the second light beam The first wavelength in , where the first wavelength is the wavelength corresponding to the receiving device of the data to be sent.
  • the first wavelength corresponding to the first data to be sent (or, in other words, corresponding to the receiving end of the first data to be sent) is selected from the first light beam including a plurality of wavelengths. and modulate the first data to be sent on the first wavelength, that is, an optical signal of the first wavelength that carries the first data to be sent can be generated, so that, for example, wavelength-sensitive OXC can be based on
  • the first wavelength forwards the optical signal to the target receiving end of the first device to be sent, reduces the forwarding delay of the optical signal, and does not need to use a long-tunable laser in order to meet the requirements of wavelength-sensitive OXC,
  • the cost of the optical transmitter is reduced, the time for wavelength adjustment is saved, and the transmission delay of the optical signal is reduced.
  • the first wavelength includes one wavelength, and in this case, it is suitable for unicast transmission.
  • the first wavelength includes multiple wavelengths, in this case, it is suitable for multicast or broadcast transmission.
  • the generating the second light beam according to the first light beam includes: processing the first light beam by a wavelength selector to generate the second light beam.
  • the modulating the data to be sent at the first wavelength in the second light beam includes: passing the first modulator of the plurality of modulators included in the first modulator group of the plurality of modulator groups , modulate the data to be sent at the first wavelength in the second light beam, and the working wavelength of the first modulator includes the first wavelength.
  • each modulator group includes multiple modulators, and any two modulators in the same modulator group have different working wavelengths.
  • the wavelength selector includes a Mach-Zehnder interferometer with multiple cascaded unequal arms.
  • the wavelength selector includes a plurality of output ports, the plurality of modulator groups are in one-to-one correspondence with the plurality of output ports, each modulator group receives a light beam from the corresponding output port, and the The method further includes: controlling the wavelength selector to output the second light beam from an output port corresponding to the first modulator group.
  • the wavelength selector includes at least two working states.
  • the wavelengths of the light beams output by the same output port in different working states are different
  • the controlling the wavelength selector to output the second light beam from the output port corresponding to the first modulator group includes: controlling all the The working state of the wavelength selector is controlled, so that the wavelength of the light beam output by the output port corresponding to the first modulator group includes the first wavelength.
  • the wavelength selector includes a plurality of filters and optical switches.
  • a first filter of the at least one filter is used to filter the first beam to generate the second beam.
  • the optical switch includes a plurality of input ports, the plurality of input ports are in one-to-one correspondence with the plurality of filters, and each input port is configured to receive a light beam from the corresponding filter.
  • the optical switch includes a plurality of output ports, the plurality of output ports are in one-to-one correspondence with the plurality of modulator groups, and each modulator group receives a light beam from the corresponding output port.
  • the processing of the first beam by a wavelength selector to generate the second beam includes: filtering the first beam by a filter to generate the second beam.
  • the filter includes multiple filtering states, and the light beams output by the same filter in different filtering states include different wavelengths, and the method further includes: controlling the filtering states of the filter so that all The light beam output by the filter includes the first wavelength.
  • the controlling the wavelength selector to output the second light beam from the output port corresponding to the first modulator group includes: controlling the optical switch to output the second light beam corresponding to the first modulator group The port outputs the second light beam.
  • the first modulator includes a plurality of working wavelengths, and the plurality of working wavelengths are periodically distributed, wherein the first wavelength belongs to the plurality of working wavelengths.
  • the method further includes: adjusting a first parameter of the first modulator so that the operating wavelength of the first modulator includes the first wavelength, and the first parameter includes an effective refractive index.
  • a method for controlling an optical transmitter includes a wavelength selector and a plurality of modulator groups, each modulator group includes a plurality of modulators, and any two of the same modulator group
  • the working wavelengths of the modulators are different
  • the method includes: controlling a wavelength selector to generate a second light beam according to a first light beam obtained from a multi-wavelength light source, wherein the first light beam includes a plurality of wavelengths, and the second light beam includes a plurality of wavelengths. Part of the wavelengths; and controlling the first modulator in the first modulator group to modulate the first data to be sent at the first wavelength in the second light beam.
  • the working wavelength of the first modulator includes the first wavelength.
  • the first wavelength is the wavelength corresponding to the first data to be sent, or the first wavelength is the wavelength corresponding to the receiving end of the first data to be sent, or the OXC can
  • the optical signal carrying the first data to be sent is forwarded to the receiving end to which the first data to be sent needs to be sent.
  • the wavelength selector can be used to select from the first light beam including the plurality of wavelengths the corresponding (or in other words, the first light beam including the first data to be sent) A second light beam of the first wavelength corresponding to the receiving end of the data to be sent, and the second light beam is sent to the first modulator group, so that the working wavelength in the first modulator group includes the first wavelength of the first light beam A modulator, capable of modulating the first data to be sent on the first wavelength, that is, capable of generating an optical signal of the first wavelength carrying the first data to be sent, so that, for example, wavelength-sensitive OXC can be based on the first wavelength
  • the optical signal is forwarded to the target receiving end of the first device to be sent, which reduces the forwarding delay of the optical signal.
  • the first beam is generated by a multi-wavelength light source.
  • multiple multi-wavelength light sources respectively generate multiple beams
  • the multiple beams include different wavelengths, and are generated by, for example, combining the wavelengths.
  • the wave device synthesizes the plurality of beams into the first beam.
  • FIG. 1 is a schematic diagram of an example of the configuration of the optical transmitter of the present application.
  • FIG. 2 is a schematic diagram of an example of the output spectrum of a plurality of modulators in the same modulator group.
  • FIG. 3 is a schematic diagram of an example of an output spectrum of a modulator.
  • FIG. 4 is a schematic diagram of a configuration manner of a plurality of modulators in a modulator group of the present application.
  • FIG. 5 is a schematic diagram of another configuration manner of a plurality of modulators in a modulator group of the present application.
  • FIG. 6 is a schematic diagram of an implementation of the wavelength selector of the present application.
  • FIG. 7 is a schematic diagram of another implementation of the wavelength selector of the present application.
  • FIG. 8 is a schematic flowchart of an example of the method of light modulation of the present application.
  • FIG. 9 is a schematic diagram of an example of a computing system to which the optical transmitter of the present application is applied.
  • FIG. 1 shows the structure of the optical transmitter 100 of the present application.
  • the optical transmitter 100 includes: a wavelength selector 110 and a plurality of modulator groups 120 .
  • the wavelength selector 110 includes a plurality of output ports 112 .
  • the plurality of output ports 112 are in one-to-one correspondence with the plurality of modulator groups 120, and each output port 130 is optically communicatively connected to the corresponding modulator group, that is, the light beam output from one output port 130 can be transmitted to the output Modulator group for port 1112.
  • Each modulator group 120 includes a plurality of modulators. Wherein, the working wavelengths of any two modulators in each modulator group are different.
  • the modulator is used for modulating data or information on the input light beam, specifically, modulating the wavelength in the light beam that matches the working wavelength of the modulator, thereby generating an optical signal.
  • the modulator can also be called an optical modulator, which is used to convert the input electrical signal into an optical signal, and use the coupling technology to inject the optical signal into the optical fiber line to the maximum extent.
  • the process of converting the electrical signal into an optical signal is light modulation.
  • the modulators of the present application may include, but are not limited to, acousto-optic modulators, magneto-optical modulators, electro-optic modulators, or electro-absorption modulators, and the like.
  • the electro-optic modulator uses the refractive index of the electro-optic crystal (such as lithium niobate) to change with the applied electric field, that is, the electro-optic effect to realize light modulation, that is, the refractive index, absorption rate, and amplitude of the output light are finally regulated by the change of voltage or electric field. or phase.
  • the electro-optic modulator may be, for example, a micro-ring modulator, a Mach-Zehnder Interferometer (MZI) modulator, or a bulk material modulator, and the like.
  • the magneto-optical modulator utilizes that when light passes through a magneto-optical crystal (such as yttrium iron garnet), its polarization plane can be rotated under the action of a magnetic field to realize light modulation.
  • a magneto-optical crystal such as yttrium iron garnet
  • Acousto-optic modulators use materials (such as lithium niobate) to generate strain under the action of acoustic waves to cause changes in the refractive index, that is, photoelastic effects to achieve light modulation.
  • the waveguide-type optical modulator is a thin-film optical waveguide fabricated on a substrate with integrated optical technology to achieve electro-optic, magneto-optic or acousto-optic modulation.
  • the modulator has an operating wavelength, ie the modulator is capable of modulating data on a light beam whose wavelength matches (eg, the same as) its operating wavelength.
  • FIG. 2 and 3 are schematic diagrams showing the frequency spectrum of the output optical signal (ie, the modulated optical signal) of the modulator.
  • the optical signal output by each modulator has a resonance peak.
  • the working wavelength of the modulator is set near the resonance peak, for example, the sidewall of Xie Zhenfeng. Therefore, if the wavelength of the light beam input to a modulator (eg, a microring modulator) does not satisfy the operating wavelength condition, the modulator will not modulate data on the light beam.
  • the working state of the modulator (or, in other words, the working wavelength of the modulator) can be adjusted so that the working wavelength of the modulator matches the wavelength of the input light beam, thereby realizing modulation of the input light.
  • the effective index of refraction of the waveguide of the modulator can be changed by thermo-optic effect, thereby changing the operating wavelength of the modulator.
  • the optical transmitter 100 may further include a controller 130 (ie, an example of a third controller), and the controller 130 may determine the wavelength corresponding to the data to be transmitted (or the data to be modulated).
  • the optical transmitter 100 of the present application can be applied to an optical switching network based on wavelength-sensitive OXC, and the wavelength corresponding to the data to be sent can be understood as the wavelength corresponding to the receiving end of the data to be sent, that is, the optical switching network can Based on the wavelength corresponding to the data to be sent, the data to be sent is transmitted to the receiving end of the data to be sent.
  • the controller 130 can determine whether the working wavelength of each modulator in each modulator group in the optical transmitter 100 includes the wavelength corresponding to the data to be sent.
  • the controller 130 may further adjust the working wavelength of one or more modulators in one or more modulator groups, so that the at least one modulator passes through The adjusted working wavelength includes the wavelength corresponding to the data to be sent.
  • the modulators R1, R2, R3, and R4 are respectively set to work wavelengths of ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4, and the interval between the four wavelengths is not equal to an integer multiple of FSR. Therefore, the four modulators only modulate the optical signals whose wavelengths match the respective working wavelengths respectively, and do not modulate the optical signals whose wavelengths match the working wavelengths of the remaining three modulators.
  • one modulator may include multiple operating wavelengths.
  • the output optical signal of the modulator has periodic characteristics in the frequency spectrum, specifically, the resonance peak of the output optical signal has periodic characteristics in the frequency spectrum, forming a Free Spectral Range (FSR). ).
  • FSR Free Spectral Range
  • the periodic characteristics shown in FIG. 3 are only exemplary, and the present application is not limited thereto.
  • the frequency of the output optical signal does not have a resonance peak, but the frequency of the output optical signal also has periodic characteristics.
  • the optical transmitter 100 includes 4 modulator groups, and the sets composed of the working wavelengths of the modulators included in each of the 4 modulator groups are ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4 ⁇ , ⁇ ⁇ 5, ⁇ 6, ⁇ 7, ⁇ 8 ⁇ , ⁇ 9, ⁇ 10, ⁇ 11, ⁇ 12 ⁇ , ⁇ 13, ⁇ 14, ⁇ 15, ⁇ 16 ⁇ , then in a possible implementation, the positions in any two sets correspond (for example, the same ), the wavelength interval is an integer multiple of FSR, for example, the interval between any two wavelengths in ⁇ 1, ⁇ 5, ⁇ 9, and ⁇ 13 is an integer multiple of FSR.
  • the modulators included in the four modulator groups are the same, which can reduce the difficulty of configuring the modulator groups and further improve the practicability of the present application.
  • FIG. 4 is a schematic diagram showing an example of the configuration of each modulator in the modulator group of the present application.
  • multiple modulators in the same modulator group can be connected in series, that is, the light beam input to the modulator group passes through each modulator in the state modulator group in turn, and each modulator transmits the data to be transmitted.
  • the wavelengths in the light beam that match the working wavelength of the modulator are respectively modulated, and the configuration of the modulator group shown in FIG. 4 can be applied to the scenario of using, for example, a micro-ring modulator as the modulator of the present application.
  • FIG. 5 is a schematic diagram showing another example of the configuration of each modulator in the modulator group of the present application.
  • multiple modulators in the same modulator group may be connected in parallel. That is, the light beams input to the modulator group can be respectively input to each modulator in the modulator group through a device such as a splitter.
  • each modulator modulates the data to be transmitted to a wavelength matching the working wavelength of the modulator in the light beam, and then the light beam output from the modulator is combined by a combiner or the like.
  • the number of modulators included in different modulator groups may be the same or different, which is not particularly limited in this application.
  • some or all of the modulator groups of the optical transmitter 100 may include one or more modulators with the same working wavelength.
  • some or all of the plurality of modulator groups of the optical transmitter 100 may not include modulators with the same operating wavelength.
  • each modulator may also include (or correspond to) one or more filters that may be used to obtain wavelengths from the input beam that match the operating wavelength of the modulator.
  • the wavelength selector 110 includes two functions.
  • Function 1 Acquire one or more beams according to the beams received from the multi-wavelength light source (for ease of understanding and description, denoted as beam #1, that is, an example of the first beam), when the acquired beams are multiple, The processing procedure for each beam is similar.
  • the processing procedure of one beam for ease of understanding and description, denoted as beam #2, that is, an example of the second beam
  • beam #2 that is, an example of the second beam
  • Function 2 Transmit the light beam #2 to the modulator group #1 in the plurality of modulator groups, wherein the working wavelength of the modulator in the modulator group #1 includes the wavelength corresponding to the data to be sent, and the light beam # 2 includes the wavelength corresponding to the data to be sent.
  • the wavelength selector 110 having any of the following structures capable of realizing the above-mentioned functions can be mentioned.
  • FIG. 6 shows an example of the wavelength selector 110 of the present application.
  • the wavelength selector 110 is composed of a plurality of cascaded unequal arm Mach-Zehnder Interferometers (Mach-Zehnder Interferometer, MZI).
  • the tuning arm of the MZI is equipped with an electro-optical phase shifter with a nanosecond (NS) level response speed. That is, the two functions of the above-mentioned wavelength selector 110 can be simultaneously performed by the multiple cascaded unequal-arm Mach-Zehnder interferometers shown in FIG. 6 .
  • the wavelength selector 110 can divide the 16 wavelengths into 4 groups, that is, beam #2 includes 4 wavelengths.
  • the light beam #2 can be transmitted to different groups of optical modulators. That is, in the configuration state #1 of the cascaded MZI, ⁇ 1 to ⁇ 4 are transmitted to one optical modulator group #1; in the configuration state #2 of the cascaded MZI, ⁇ 1 to ⁇ 4 are transmitted to the optical modulator group #2 ; In the cascaded MZI configuration state #3, ⁇ 1 to ⁇ 4 are transmitted to the optical modulator group #3; in the cascaded MZI configuration state #4, ⁇ 1 to ⁇ 4 are transmitted to the optical modulator group #4.
  • the configuration state of the cascaded MZI can be changed by changing the voltage applied to the cascaded MZI.
  • the optical transmitter 100 may further include a controller 140 (ie, an example of the first controller), and the controller 140 may determine the wavelength corresponding to the data to be transmitted (or the data to be modulated).
  • the controller 140 determines that the working wavelength of the optical transmitter 100 includes a modulator group (denoted as, modulator group #A) of the wavelength corresponding to the data to be transmitted. Thereafter, the controller 140 changes the configuration state of the cascaded MZI (eg, changes the voltage applied to the cascaded MZI), so that the beam including the wavelength corresponding to the data to be transmitted selected from the beam #1 by the wavelength selector 110 is transmitted. to the Modulator Group #A.
  • FIG. 7 shows an example of the wavelength selector 110 of the present application.
  • the wavelength selector 110 is composed of a plurality of filters 115 and an optical switch 117 .
  • each filter 115 may filter beam #1 to obtain a beam comprising a wavelength corresponding to (eg, the same as) that filter's filtered wavelength.
  • the filter 115 may comprise a micro-loop filter.
  • the filtering state of the filter 115 (or, in other words, adjusting the filtering wavelength of the filter) can be adjusted so that the filtering wavelength of the filter matches the wavelength corresponding to the data to be sent.
  • the optical transmitter 100 may further include a controller 150 (ie, an example of a second controller), and the controller 150 may determine the wavelength corresponding to the data to be transmitted (or the data to be modulated).
  • the controller 150 can determine whether the filter wavelength of each filter in the optical transmitter 100 includes the wavelength corresponding to the data to be sent. For example, the controller 150 can determine the initial value of each filter through user input or factory settings. working wavelength, and after each adjustment of the filtering wavelength, update and record the updated working wavelength of each filter.
  • the controller 150 may also adjust the working wavelength of one or more filters, so that the adjusted filter wavelength of at least one filter includes the data to be sent the corresponding wavelength. Therefore, it can be ensured that the wavelength of at least one of the light beams output by the wavelength selector 110 includes obtaining the wavelength corresponding to the data to be transmitted.
  • the optical switch 117 is used to realize the above-mentioned function 2. Specifically, assuming that the wavelength selector 110 includes N filters and the optical transmitter includes M optical modulator groups, the optical switch 117 may be an N*M optical switch. That is, by controlling the operating state of the wavelength selector 110, the light beam output by any one of the N filters can be transmitted to any one of the M optical modulator groups.
  • the function of the optical switch 117 can be realized by the cooperative work of a plurality of Mach-Zehnder interferometers.
  • beam #2 can be transmitted to a different group of optical modulators. That is, in the configuration state #1 of the cascaded MZI, ⁇ 1 to ⁇ 4 are transmitted to one optical modulator group #1; in the configuration state #2 of the cascaded MZI, ⁇ 1 to ⁇ 4 are transmitted to the optical modulator group #2 ; In the cascaded MZI configuration state #3, ⁇ 1 to ⁇ 4 are transmitted to the optical modulator group #3; in the cascaded MZI configuration state #4, ⁇ 1 to ⁇ 4 are transmitted to the optical modulator group #4.
  • the configuration state of the cascaded MZI can be changed by changing the voltage applied to the cascaded MZI.
  • the optical transmitter 100 may further include a controller 160 (ie, an example of the first controller), and the controller 160 may determine the wavelength corresponding to the data to be transmitted (or the data to be modulated).
  • the controller 160 determines that the working wavelength of the optical transmitter 100 includes a modulator group (denoted, modulator group #A) of the wavelength corresponding to the data to be transmitted. Thereafter, the controller 160 changes the configuration state of the cascaded MZI (eg, changes the voltage applied to the cascaded MZI), so that the beam including the wavelength corresponding to the data to be transmitted selected from the beam #1 by the wavelength selector 110 is transmitted. to the Modulator Group #A.
  • optical transmitter 100 listed above are only exemplary, and the present application is not limited thereto.
  • the optical transmitter 100 may further include a light source for generating a multi-wavelength light beam, ie, light beam #1.
  • the optical transmitter 100 may further include a combiner (not shown in the figure). shown), the combiner is used to combine the light beams generated by each light source to generate light beam #1.
  • the optical transmitter 100 may include a plurality of wavelength selectors, and the structure and function of each wavelength selector in the plurality of wavelength selectors are similar to those of the above-mentioned wavelength selector 110, and detailed descriptions thereof are omitted here in order to avoid redundant descriptions. .
  • the plurality of wavelength selectors may share one light source 170 .
  • each wavelength selector corresponds to one or more light sources, and each wavelength selector receives light beams from the corresponding one or more light sources.
  • controllers 140 to 160 may be configured jointly. That is, the functions of the controllers 140 to 160 may be implemented by one controller, or the controllers 140 to 160 may be independently configured, which is not particularly limited in the present application.
  • the optical transmitter 100 may be implemented by, for example, a waveguide type integrated optical technology, that is, the wavelength selector 110 and the modulator group 120 are integrated in the same chip.
  • FIG. 8 shows a schematic flowchart of the method 200 of light modulation of the present application.
  • the optical transmitter 100 eg, the controller or the processor in the optical transmitter 100 acquires the data to be sent (denoted, data #A) from the computing node, and determines the data #A Corresponding wavelength #A, wherein, for example, based on wavelength-sensitive OXC, the optical signal of this wavelength #A can be transmitted to the receiving end.
  • the information of the wavelength #A may be determined and notified to the optical transmitter 100 by a computing node configured with the optical transmitter 100 .
  • a user or administrator can configure the corresponding relationship between multiple wavelengths and multiple computing nodes in the optical transmitter 100 . Therefore, the optical transmitter 100 can determine the wavelength corresponding to the computing node serving as the receiving end of the data #A in the corresponding relationship as the wavelength #A.
  • the wavelength selector 110 of the optical transmitter 100 receives the light beam #A from the multi-wavelength light source, and generates a light beam #B including the wavelength #A according to the beam #A, and the optical transmitter 100 (eg, , the controller or processor in the optical transmitter 100) controls the working state of the wavelength selector 110 to send the light beam #A to the modulator group #A, the working state of the modulator #A in the modulator group #A
  • the wavelength includes this wavelength #A.
  • the optical transmitter 100 determines whether the filtering wavelength of each filter 115 includes a wavelength #A, or in other words, the optical transmitter 100 (eg, a controller or processor in the optical transmitter 100) determines whether there is at least one filter 115 capable of outputting a light beam including wavelength #A. If the filtering wavelength of each filter 115 does not include wavelength #A, the optical transmitter 100 (eg, a controller or processor in the optical transmitter 100) may adjust the filtering wavelength of the at least one filter 115 so that the at least one filtering The generator 115 can output beam #A, which includes wavelength #A.
  • the optical transmitter 100 determines whether the operating wavelength of each modulator in each modulator group 120 includes wavelength #A, or in other words, the optical Transmitter 100 (eg, a controller or processor in optical transmitter 100) determines whether there is at least one modulator capable of modulating wavelength #A. If the operating wavelength of each modulator does not include wavelength #A, the optical transmitter 100 (eg, a controller or processor in the optical transmitter 100) may adjust the operating wavelength of the at least one modulator so that the at least one modulator ( That is, modulator #A) can modulate wavelength #A.
  • modulator #A modulates data #A to wavelength #A.
  • other modulators in the modulator group to which the modulator #A belongs may further modulate other data at wavelengths other than the wavelength #A in the beam #B, respectively.
  • a server cluster built with an AI training server equipped with a high computing power graphics processor (Graphic Processing Unit, GPU) is a common computing network scheme.
  • this kind of server cluster has the following characteristics:
  • the scale of the cluster is small. Taking a typical one with 8 GPUs as an example, 128 servers are usually used to build a cluster. Each GPU is called a computing node.
  • the executed algorithm is usually a multi-step iterative operation, which requires communication between each node.
  • each computing step requires a network connection relationship between different computing nodes, that is, each computing step requires a sub-network topology. And the switching time allowed between steps is short, usually less than 100 microseconds.
  • FIG. 9 shows an example of the computing system.
  • the computing system includes a plurality of computing nodes, each of which is connected through a wavelength-sensitive OXC network, and the optical transmitter 100 of the present application is configured on each node.
  • a single fiber port can transmit multiple wavelength signals, which improves the bandwidth efficiency of physical ports in the optical switching network, and the wavelength selector 110 not only satisfies the extremely low switching time of switching between AI algorithm steps
  • the demand also makes the multiplexer share the light source signal, can use the fixed wavelength light source, reduce the cost, and avoid the wavelength conflict between the multi-channel signals, and reduce the complexity of the global network control.
  • wavelength selector 110 By integrating the wavelength selector 110 and the modulator group 120 on a single chip, it is possible to reduce costs, save packaging space, reduce the complexity of network equipment, and reduce control difficulty.
  • the steps performed by the controller or the processor in the above-mentioned method 200, or the actions performed by the controller in the above-mentioned optical transmitter 100, can be automatically performed by the controller, that is, the controller can read the software program in the storage unit, explain the And execute the instructions of the software program, process the data of the software program, and then control each device of the optical transmitter 100 to perform their respective functions, so as to execute the above-mentioned method 200 .
  • the controller may be implemented by a processor, and the processor may include a central processing unit.
  • the central processing unit is mainly used to control the entire terminal device, execute software programs, and process data of the software programs.
  • the processor may be a central processing unit (CPU), other general-purpose processors, a digital signal processor (DSP), or an application specific integrated circuit (application specific integrated circuit). , ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Fetch memory
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • the actions or methods performed by the controller may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the actions or methods performed by the controller may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server or data center by wire (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that contains one or more sets of available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.

Abstract

本申请提供了一种光发送机,包括:波长选择器和多个调制器组。其中,每个调制器组包括多个调制器,同一调制器组中的任意两个调制器的工作波长不同,波长选择器用于从多波长光源获取第一光束,并根据第一光束生成第二光束,第二光束包括多个波长中的部分波长。第一调制器组中的第一调制器用于将第一待发送数据调制于所述第二光束中的第一波长。本申请的光发送机可以应用于波长敏感的光交换系统,所述第一波长是所述第一待发送数据的接收端对应的波长,从而,能够降低光信号的转发时延。并且,能够在不使用波长可调的激光器的情况下满足波长敏感的光交换系统的要求,从而,降低光发送机的成本,节省了波长调节的时间,进而降低了光信号的发送时延。

Description

光发送机和光调制的方法
本申请要求于2020年6月30日提交中国国家知识产权局、申请号为202010607552.4、申请名称为“光发送机和光调制的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及光通信领域,并且更具体地,涉及光发送机和光调制的方法。
背景技术
目前,已知一种光调制技术,通过光发送机将数据调制于激光而生成光信号,从而光纤中传播。通常,光发送机包括光源和光调制器。光源输出连续波(Continuous Wave,CW)激光,作为数据的载体。光调制器将数据调制到激光上。
在一种现有技术中,使用固定波长的激光器作为光源。此情况下,在光信号的转发过程中,由波长不敏感的光交换(Optical Cross Connect,OXC)控制,通过改变OXC端口之间的连接关系,实现光信号的转发。但是,OXC端口切换的时间通常高达几十毫秒,难以满足光信号的转发的低时延要求。
对此,提出了波长敏感的OXC,即光源的波长可调,从而,输出的光信号的波长可以根据需求变换,OXC的端口物理连接关系固定,每个端口可以和多个端口有连接关系,光信号的传输路径由光信号的波长决定。但是,波长可调的激光器的波长调节时间仍然较长,长达秒级,无法满足光信号的发送的低时延要求。另外为了获得足够的波长调整范围,目前波长可调的激光器通常基于外谐振腔技术,通过改变谐振腔的谐振波长来调整波长,使得可调激光器的器件组成更复杂,控制电路也更复杂,因而,另外成本也显著高于波长固定的激光器。
发明内容
本申请提供一种光发送机和光调制的方法,能够降低光信号的发送时延和转发时延,并且,能够降低光发送机的成本。
第一方面,提供一种光发送机。该光发送机包括:波长选择器和多个调制器组,每个调制器组包括多个调制器,同一调制器组中的任意两个调制器的工作波长不同。其中,波长选择器用于从多波长光源获取第一光束,并根据所述第一光束生成第二光束,其中,所述第一光束包括多个波长,所述第二光束包括多个波长中的部分波长;第一调制器组中的第一调制器用于将第一待发送数据调制于所述第二光束中的第一波长。其中,所述第一调制器的工作波长包括所述第一波长。
本申请的光发送机可以应用于波长敏感的OXC,即,光信号的传输路径由光信号的波长决定,或者说,光信号的波长为光信号的接收端的端口对应的波长,即,该光信号的波长满足:OXC能够基于该光信号的波长将该信号发送至该光信号承载的数据所需要发送至的接收端。即,所述第一波长是所述第一待发送数据对应的波长,或者说,所述第一波长是所述第一待发送数据的接收端对应的波长,或者说,OXC能够基于第一波长将承载所述第一待发送数据的光信号转发至所述第一待发送数据需要发送至的接收端。
根据本申请提供的光发送机,通过设置波长选择器和多个调制器组,能够通过波长选择器从包括多个波长的第一光束中,选择包括第一待发送数据对应的(或者说,该第一待发送数据的接收端对应的)第一波长的第二光束,并将该第二光束发送至第一调制器组,从而,第一调制器组中工作波长包括该第一波长的第一调制器,能够将该第一待发送数据调制在该第一波长上,即,能够生成第一波长的承载有该第一待发送数据的光信号,从而,例如波长敏感的OXC能够基于该第一波长,将该光信号转发至该第一待发送设备的目标接收端,降低了光信号的转发时延。并且,无需为了满足波长敏感的OXC的要求而使用长可调的激光器,降低了光发送机的成本,并且,节省了波长调节的时间,降低了光信号的发送时延。
在一种实现方式中,所述波长选择器和多个调制器组集成于同一芯片。作为示例而非限定,所述芯片包括波导型芯片,即,所述波长选择器和所述调制器为波导型器件。这么做能够实现光发送机的一体封装,进一步提高本申请的实用性。
可选地,所述第一波长包括一个波长,此情况下,适用于单播传输的情况。或者,所述第一波长包括多个波长,此情况下,适用于组播或广播传输的情况。
在一种实现方式中,所述波长选择器包括多个级联不等臂的马赫增德尔干涉仪。此情况下,所述波长选择器包括多个输出端口,所述多个调制器组与所述多个输出端口一一对应,每个调制器组从所对应的输出端口接收光束,以及所述波长选择器还用于从所述第一调制器组对应的输出端口输出所述第二光束。
可选地,所述波长选择器包括至少两种工作状态,其中,同一输出端口在不同工作状态下的输出的光束的波长不同,以及,所述光发送机还包括第一控制器,用于控制所述波长选择器的工作状态,以使所述第一调制器组对应的输出端口输出的光束的波长包括所述第一波长。
例如,所述波长选择器包括多个级联不等臂的马赫增德尔干涉仪。此情况下,第一控制器可以通过控制施加至所述马赫增德尔干涉仪的电压,控制所述波长选择器的工作状态。这么做能够容易地实现对所述波长选择器的工作状态的控制,能够进一步提高本申请的光发送机的实用性。
在另一种实现方式中,所述波长选择器包括多个滤波器和光交换器。其中,所述至少一个滤波器中的第一滤波器用于对所述第一波束进行滤波,以生成所述第二光束。即,所述第一滤波器的工作波长包括所述第一波长。所述光交换器包括多个输入端口,所述多个输入端口与所述多个滤波器一一对应,每个输入端口用于从所述对应的滤波器接收光束。
在一种实现方式中,该多个滤波器和光交换器集成于同一芯片,例如,该芯片可以为波导型芯片。应理解,前述实现方式仅为示例性。该多个滤波器也可以相对于波长选择器独立配置。
其中,所述光交换器包括多个输出端口,所述多个输出端口与所述多个调制器组一一对应,所述多个调制器组中的每一个调制器组从所对应的输出端口接收光束。此情况下,所述光交换器用于从所述第一调制器组对应的输出端口输出所述第二光束。
可选地,所述光交换器包括至少两种工作状态。同一输出端口在不同工作状态下的输出的光束的波长不同,此情况下,所述光发送机还包括所述第一控制器,所述第一控制器用于控制所述光开关的工作状态,以使所述第一调制器组对应的输出端口输出的光束的波长包括所述第一波长。
可选地,所述光交换器包括多个马赫增德尔干涉仪。此情况下,第一控制器可以通过控 制施加至所述马赫增德尔干涉仪的电压,控制所述光交换器的工作状态。这么做能够容易地控制所述光交换器的工作状态,能够进一步提高本申请的光发送机的实用性。
可选地,每个滤波器包括多种滤波状态,同一滤波器在不同的滤波状态下输出的光束包括的波长不同,此情况下,所述光发送机还包括第二控制器,用于控制所述第一滤波器的滤波状态,以使所述第一滤波器输出的光束包括所述第一波长。
在一种实现方式中,所述第一控制器和所述第二控制器可以是同一控制器,或者说,所述第一控制器和所述第二控制器联合配置。在另一种实现方式中,所述第一控制器和所述第二控制器独立配置。
可选地,所述第一调制器包括多个工作波长,所述多个工作波长呈周期性分布。其中,所述第一波长属于所述多个工作波长。
具体地说,所述第一调制器的光输出频谱存在谐振峰,并且,谐振峰在频谱上具有周期特性,形成自由光谱区(Free Spectral Range,FSR),所述第一调制器的工作波长设置在谐振峰的侧壁。
可选地,所述光发送机还包括第三控制器,用于调节所述第一调制器的第一参数,以使所述第一调制器的工作波长包括所述第一波长,所述第一参数包括有效折射率。通过调节调制器的工作波长,减少调制器的数量要求,降低成本。
可选地,所述光发送机还包括所述多波长光源。
在一种实现方式中,由一个多波长光源产生所述第一波束。在另一种实现方式中,多个多波长光源分别产生多个波束,该多个波束包括的波长不同,并通过例如合波器件将该多个波束合成为所述第一波束。
第二方面,提供一种光调制的方法。该方法包括:根据第一光束生成第二光束,其中,所述第一光束包括多个波长,所述第二光束包括多个波长中的部分波长;将待发送数据调制于所述第二光束中的第一波长,所述第一波长是所述待发送数据的接收设备对应的波长。
根据本申请提供的光调制的方法,通过从包括多个波长的第一光束中,选择包括第一待发送数据对应的(或者说,该第一待发送数据的接收端对应的)第一波长的第二光束,并将该第一待发送数据调制在该第一波长上,即,能够生成第一波长的承载有该第一待发送数据的光信号,从而,例如波长敏感的OXC能够基于该第一波长,将该光信号转发至该第一待发送设备的目标接收端,降低了光信号的转发时延,并且,无需为了满足波长敏感的OXC的要求而使用长可调的激光器,降低了光发送机的成本,并且,节省了波长调节的时间,降低了光信号的发送时延。
可选地,所述第一波长包括一个波长,此情况下,适用于单播传输的情况。或者,所述第一波长包括多个波长,此情况下,适用于组播或广播传输的情况。
可选地,所述根据第一光束生成第二光束,包括:通过波长选择器对所述第一光束进行处理,以生成第二光束。
可选地,所述将待发送数据调制于所述第二光束中的第一波长,包括:通过多个调制器组中的第一调制器组包括的多个调制器中的第一调制器,将待发送数据调制于所述第二光束中的第一波长,所述第一调制器的工作波长包括所述第一波长。
其中,每个调制器组包括多个调制器,同一调制器组中的任意两个调制器的工作波长不同。
在一种实现方式中,所述波长选择器包括多个级联不等臂的马赫增德尔干涉仪。此情况 下,所述波长选择器包括多个输出端口,所述多个调制器组与所述多个输出端口一一对应,每个调制器组从所对应的输出端口接收光束,以及所述方法还包括:控制所述波长选择器从所述第一调制器组对应的输出端口输出所述第二光束。
可选地,所述波长选择器包括至少两种工作状态。其中,同一输出端口在不同工作状态下的输出的光束的波长不同,以及所述控制所述波长选择器从所述第一调制器组对应的输出端口输出所述第二光束,包括:控制所述波长选择器的工作状态,以使所述第一调制器组对应的输出端口输出的光束的波长包括所述第一波长。
在另一种实现方式中,所述波长选择器包括多个滤波器和光交换器。
其中,所述至少一个滤波器中的第一滤波器用于对所述第一波束进行滤波,以生成所述第二光束。
所述光交换器包括多个输入端口,所述多个输入端口与所述多个滤波器一一对应,每个输入端口用于从所述对应的滤波器接收光束。并且,所述光交换器包括多个输出端口,所述多个输出端口与所述多个调制器组一一对应,每个调制器组从所对应的输出端口接收光束。此情况下,所述通过波长选择器对所述第一光束进行处理,以生成第二光束,包括:通过滤波器对所述第一光束进行滤波处理,以生成所述第二波束。
可选地,所述滤波器包括多种滤波状态,同一滤波器在不同的滤波状态下输出的光束包括的波长不同,以及所述方法还包括:控制所述滤波器的滤波状态,以使所述滤波器输出的光束包括所述第一波长。此情况下,所述控制所述波长选择器从所述第一调制器组对应的输出端口输出所述第二光束,包括:控制所述光交换器从所述第一调制器组对应的输出端口输出所述第二光束。
可选地,所述第一调制器包括多个工作波长,所述多个工作波长呈周期性分布,其中,所述第一波长属于所述多个工作波长。
可选地,所述方法还包括:调节所述第一调制器的第一参数,以使所述第一调制器的工作波长包括所述第一波长,所述第一参数包括有效折射率。
第三方面,提供一种光发送机的控制方法,所述光发送机包括波长选择器和多个调制器组,每个调制器组包括多个调制器,同一调制器组中的任意两个调制器的工作波长不同,所述方法包括:控制波长选择器根据从多波长光源获取的第一光束生成第二光束,其中,所述第一光束包括多个波长,所述第二光束包括多个波长中的部分波长;控制第一调制器组中的第一调制器用于将第一待发送数据调制于所述第二光束中的第一波长。
其中,所述第一调制器的工作波长包括所述第一波长。
所述第一波长是所述第一待发送数据对应的波长,或者说,所述第一波长是所述第一待发送数据的接收端对应的波长,或者说,OXC能够基于第一波长将承载所述第一待发送数据的光信号转发至所述第一待发送数据需要发送至的接收端。
根据本申请提供的方法,通过设置波长选择器和多个调制器组,能够通过波长选择器从包括多个波长的第一光束中,选择包括第一待发送数据对应的(或者说,该第一待发送数据的接收端对应的)第一波长的第二光束,并将该第二光束发送至第一调制器组,从而,第一调制器组中工作波长包括该第一波长的第一调制器,能够将该第一待发送数据调制在该第一波长上,即,能够生成第一波长的承载有该第一待发送数据的光信号,从而,例如波长敏感的OXC能够基于该第一波长,将该光信号转发至该第一待发送设备的目标接收端,降低了光信号的转发时延。并且,无需为了满足波长敏感的OXC的要求而使用长可调的激光器,降低 了光发送机的成本,并且,节省了波长调节的时间,降低了光信号的发送时延。
一些具体的可实现方式和有益效果说明,参见第一方面和第二方面的具体实现方式说明,在此不再赘述。
结合上述第一方面至第三方面及其各种可能的实现方式,在一种可能实现方式中,由一个多波长光源产生所述第一波束。
结合上述第一方面至第三方面及其各种可能的实现方式,在另一种实现方式中,多个多波长光源分别产生多个波束,该多个波束包括的波长不同,并通过例如合波器件将该多个波束合成为所述第一波束。
附图说明
图1是本申请的光发送机的结构的一例的示意图。
图2是同一调制器组中的多个调制器的输出频谱的一例的示意图。
图3是一个调制器的输出频谱的一例的示意图。
图4是本申请的一个调制器组中的多个调制器的一种配置方式的示意图。
图5是本申请的一个调制器组中的多个调制器的另一种配置方式的示意图。
图6是本申请的波长选择器的一种实现方式的示意图。
图7是本申请的波长选择器的另一种实现方式的示意图。
图8是本申请的光调制的方法的一例的示意性流程图。
图9是适用本申请的光发送机的计算系统的一例的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1示出了本申请的光发送机100的结构,如图1所示,该光发送机100包括:波长选择器110和多个调制器组120。该波长选择器110包括多个输出端口112。该多个输出端口112与多个调制器组120一一对应,并且,每个输出端口130与所对应的调制器组光通信连接,即,从一个输出端口130输出的光束能够传输至该输出端口1112的调制器组。
每个调制器组120包括多个调制器。其中,每个调制器组内的任意两个调制器的工作波长不同。调制器用于将数据或信息调制于所输入的光束,具体地说,是调制于光束中与该调制器的工作波长匹配的波长上,进而生成光信号。
需要说明的是,调制器也可以称为光调制器,用于将输入电信号转换成光信号,并用耦合技术把光信号最大限度地注入光纤线路,其中把电信号转换为光信号的过程就是光调制。本申请的调制器可以包括但不限于:声光调制器、磁光调制器、电光调制器或电吸收调制器等。
其中,电光调制器是利用电光晶体(如铌酸锂)的折射率随外加电场而变即电光效应实现光调制,即,通过电压或电场的变化最终调控输出光的折射率、吸收率、振幅或相位。作为示例而非限定,在本申请中,电光调制器可以列举例如微环调制器、马赫增德尔干涉仪(Mach-Zehnder Interferometer,MZI)调制器或体材料调制器等。
磁光调制器是利用光通过磁光晶体(如钇铁石榴石)时,在磁场作用下其偏振面可发生旋转实现光调制。声光调制器是利用材料(如铌酸锂)在声波作用下产生应变而引起折射率变化即光弹效应实现光调制。波导型光调制器是用集成光学技术在基片上制成薄膜光波导实 现电光、磁光或声光调制。
在本申请中,调制器具有工作波长,即,调制器能够将数据调制于波长与其工作波长匹配(例如,相同)的光束上。
图2和图3出了调制器的输出光信号(即,经过调制后的光信号)的频谱的示意图。如图2所示,例如,当使用微环调制器作为本申请的调制器时,每个调制器输出的光信号存在谐振峰。调制器的工作波长设置在谐振峰的附近,例如,谢振峰的侧壁。因此,如果输入至调制器(例如,微环调制器)的光束的波长不满足工作波长条件,则调制器不会将数据调制于该光束。
应理解,图2所示工作波长的设置方式仅为示例性说明,本申请并未限定于此,调制器的工作波长可以根据调制器的类型不同而相应变化。
在一种实施方式中,可以调节调制器的工作状态(或者说,调节调制器的工作波长),使得调制器的工作波长与输入光束的波长匹配,从而实现对输入光的调制。
作为示例而非限定,可以通过热光效应,改变调制器(例如,微环调制器或MZI调制器)的波导的有效折射率,进而改变调制器的工作波长。即,可选地,光发送机100还可以包括控制器130(即,第三控制器的一例),该控制器130可以确定待发送数据(或者说,待调制数据)对应的波长。具体地说,本申请的光发送机100可以应用于基于波长敏感的OXC的光交换网络,该待发送数据对应的波长可以理解为该待发送数据的接收端对应的波长,即光交换网络能够基于待发送数据对应的波长将,该待发送数据传输至该待发送数据的接收端。
控制器130可以确定该光发送机100中的各调制器组中的各调制器的工作波长是否包括待发送数据对应的波长,例如,控制器130可以通过使用者输入或出厂设置等方式确定各调制器组中的各调制器的初始工作波长,并在每次调节工作波长后,更新并记录各调制器的更新后的工作波长。
如果各调制器的工作波长不包括待发送数据对应的波长,则控制器130还可以调节一个或多个调制器组中的一个或多个调制器的工作波长,以使至少一个调制器的经过调节后的工作波长包括待发送数据对应的波长。
如图2所示的调制器R1,R2,R3,R4分别被设置工作波长为λ1,λ2,λ3,λ4,四个波长间间隔不等于FSR的整数倍。因此,4个调制器仅分别调制波长与各自的工作波长匹配的光信号,而不会对波长与其余3个调制器的工作波长匹配的光信号进行调制。
在本申请中,一个调制器可以包括多个工作波长。具体地说,如图3所示,调制器的输出光信号在频谱上具有周期特性,具体地说是输出光信号的谐振峰在频谱上具有周期特性,形成自由光谱区(Free Spectral Range,FSR)。设波长λi满足调制器的工作波长条件,则当调制器的输入光束的波长λj满足λj=λi+k*FSR,k为整数时,该输入光束的波长符合微环调制器的工作波长条件,可以被调制器调制。
应理解,图3所示的周期性特性仅为示例性,本申请并未限定于此。在使用其他类型调制器(例如,MZI调制器)的情况下,输出光信号的频率不具有谐振峰,但是输出光信号的频率也具有周期特性。
此情况下,假设光发送机100包括4个调制器组,4个调制器组中的各调制器组包括的调制器的工作波长组成的集合分别为{λ1,λ2,λ3,λ4},{λ5,λ6,λ7,λ8},{λ9,λ10,λ11,λ12},{λ13,λ14,λ15,λ16},则在一种可能的实现方式中,任意两个集合中位置对应(例如,相同)的波长间隔为FSR的整数倍,例如λ1,λ5,λ9,λ13中的 任意两个波长的间隔为FSR整数倍。此情况下,4个调制器组包括的调制器相同,能够降低调制器组的配置难度,进一步提高本申请的实用性。
图4示出了本申请的调制器组中的各调制器的配置的一例的示意图。如图4所示,同一调制器组中的多个调制器可以串联连接,即,输入该调制器组的光束依次经过态调制器组中的各调制器,并且,各调制器将待发送数据分别调制到该光束中与该调制器的工作波长匹配的波长上,图4所示的调制器组的配置方式可以应用于使用例如微环调制器作为本申请的调制器的场景。
图5示出了本申请的调制器组中的各调制器的配置的另一例的示意图,如图5所示,同一调制器组中的多个调制器可以并联连接。即,可以通过如分路器等器件将输入该调制器组的光束分别输入至调制器组中的各调制器。并且,各调制器将待发送数据分别调制到该光束中与该调制器的工作波长匹配的波长上,其后,通过合路器等将从调制器输出的光束进行合路。
在本申请中,不同调制器组包括的调制器的数量可以相同也可以不同,本申请并未特别限定。
并且,光发送机100的多个调制器组中的部分或全部调制器组之间可以包括一个或多个工作波长相同的调制器。或者,光发送机100的多个调制器组中的部分或全部调制器组之间可以不包括工作波长相同的调制器。
另外,图4和图5所示的调制器的配置仅为示例性说明,本申请并未限定于此。例如,每个调制器还可以包括(或者说,对应)一个或多个滤波器,滤波器可以用于从所输入的光束中获取与该调制器的工作波长匹配的波长。
下面,对波长选择器110的结构和功能进行说明。在本申请中,波长选择器110包括两个功能。
功能1.根据从多波长光源接收的光束(为了便于理解和说明,记做,光束#1,即,第一光束的一例),获取一个或多个光束,当获取的光束为多个时,针对每个光束的处理过程相似,这里,为了避免赘述,以一个光束(为了便于理解和说明,记做,光束#2,即,第二光束的一例)的处理过程为例进行说明。
功能2.将该光束#2传输至多个调制器组中的调制器组#1,其中,该调制器组#1中的调制器的工作波长包括待发送数据对应的波长,并且,该光束#2包括该待发送数据对应的波长。
作为示例而然非限定,可以列举以下任意结构的能够实现上述功能的波长选择器110。
结构1
图6示出了本申请的波长选择器110的一例。如图6所示,波长选择器110由多个级联不等臂马赫增德尔干涉仪(Mach-Zehnder Interferometer,MZI)构成。并且,MZI的调谐臂上配有具有纳秒(nano second,NS)级响应速度的电光相移器。即,通过图6所示的多个级联不等臂马赫增德尔干涉仪能够同时完成上述波长选择器110的两个功能。
设光束#1包括16波长,即,λ1~λ16,则在一种实现方式中波长选择器110可以将该16个波长分为4组,即,光束#2包括4个波长。
并且,在本申请中,通过改变级联MZI的配置状态,能够将光束#2传输不同的光调制器组。即,在级联MZI的配置状态#1下,λ1~λ4被传输至一个光调制器组#1;在级联MZI的配置状态#2下,λ1~λ4被传输至光调制器组#2;在级联MZI的配置状态#3下,λ1~λ4被传输至光调制器组#3;在级联MZI的配置状态#4下,λ1~λ4被传输至光调制器组#4。
作为示例而非限定,可以通过变更施加至级联MZI的电压的方式,改变级联MZI的配置状态。即,可选地,光发送机100还可以包括控制器140(即,第一控制器的一例),该控制器140可以确定待发送数据(或者说,待调制数据)对应的波长。
并且,控制器140确定该光发送机100中工作波长包括待发送数据对应的波长的调制器组(记做,调制器组#A)。其后,控制器140改变级联MZI的配置状态(例如,改变施加至级联MZI的电压),以使通过波长选择器110从光束#1中选择的包括待发送数据对应的波长的光束传输至该调制器组#A。
结构2
图7示出了本申请的波长选择器110的一例。如图7所示,波长选择器110由多个滤波器115和光交换器117构成。
其中,该多个滤波器用于实现上述功能1。即,每个滤波器115可以对光束#1进行滤波,进而获得包括波长与该滤波器的滤波波长对应(例如,相同)光束。
作为示例而非限定,该滤波器115可以包括微环滤波器。
在一种实施方式中,可以调节滤波器115的滤波状态(或者说,调节滤波器的滤波波长),使得滤波器的滤波波长与待发送数据对应的波长的匹配。即,可选地,光发送机100还可以包括控制器150(即,第二控制器的一例),该控制器150可以确定待发送数据(或者说,待调制数据)对应的波长。
并且,控制器150可以确定该光发送机100中的各滤波器的滤波波长是否包括待发送数据对应的波长,例如,控制器150可以通过使用者输入或出厂设置等方式确定各滤波器的初始工作波长,并在每次调节滤波波长后,更新并记录各滤波器的更新后的工作波长。
如果各滤波器的滤波长不包括待发送数据对应的波长,则控制器150还可以调节一个或多个滤波器的工作波长,以使至少一个滤波器的经过调节后的滤波波长包括待发送数据对应的波长。从而,能够确保波长选择器110输出的光束中的至少一个光束的波长包括获得包括待发送数据对应的波长。
另外,该光交换器117用于实现上述功能2。具体地说,假设波长选择器110包括N个滤波器,光发送机包括M个光调制器组,则该光交换器117可以是N*M的光交换器。即,通过控制波长选择器110的工作状态,能够将N个滤波器中的任意一个滤波器输出的光束传输至M个光调制器组中的任意一个光调制器。
作为示例而非限定,可通过多个马赫增德尔干涉仪配合工作实现光交换器117的功能。
在本申请中,通过改变光交换器117(例如,级联MZI)的配置状态,能够将光束#2传输至不同的光调制器组。即,在级联MZI的配置状态#1下,λ1~λ4被传输至一个光调制器组#1;在级联MZI的配置状态#2下,λ1~λ4被传输至光调制器组#2;在级联MZI的配置状态#3下,λ1~λ4被传输至光调制器组#3;在级联MZI的配置状态#4下,λ1~λ4被传输至光调制器组#4。
作为示例而非限定,可以通过变更施加至级联MZI的电压的方式,改变级联MZI的配置状态。即,可选地,光发送机100还可以包括控制器160(即,第一控制器的一例),该控制器160可以确定待发送数据(或者说,待调制数据)对应的波长。
并且,控制器160确定该光发送机100中工作波长包括待发送数据对应的波长的调制器组(记做,调制器组#A)。其后,控制器160改变级联MZI的配置状态(例如,改变施加至级联MZI的电压),以使通过波长选择器110从光束#1中选择的包括待发送数据对应的波长 的光束传输至该调制器组#A。
应理解,以上列举的光发送机100的结构仅为示例性说明,本申请并未限定于此。
例如,该光发送机100还可以包括光源,该光源用于生成多波长光束,即光束#1。
在一种实现方式中,该光源可以为1个。在另一种实现方式中,该光源可以为多个,并且,每个光源用于生成光束#1中的部分波长,并且,此情况下,光发送机100还可以包括合路器(未图示),该合路器用于将各光源产生的光束进行合路,生成光束#1。
再例如,该光发送机100可以包括多个波长选择器,该多个波长选择器中的每个波长选择器的结构和功能与上述波长选择器110相似,这里为了避免赘述,省略其详细说明。
在一种实现方式中,该多个波长选择器可以共用一个光源170。再另一种实现方式中,每个波长选择器对应一个或多个光源,每个波长选择器从所对应的一个或多个光源接收光束。
需要说明的是,上述控制器140~160可以联合配置。即,可以通过一个控制器实现控制器140~160的功能,或者控制器140~160也可以独立配置,本申请并未特别限定。并且,在本申请中,光发送机100可以通过例如波导型集成光学技术实现,即,波长选择器110和调制器组120集成在同一芯片集成。
图8示出了本申请的光调制的方法200的示意性流程图。如图8所示,在S210,光发送机100(例如,光发送机100中的控制器或处理器)从计算节点获取待发送数据(记做,数据#A),并确定该数据#A对应的波长#A,其中,例如基于波长敏感的OXC能够将该波长#A的光信号传输至接收端。
在一种实现方式中,该波长#A的信息可以由配置有该光发送机100的计算节点确定并通知光发送机100。在另一种实现方式中,使用者或管理员可以将多个波长与多个计算节点的对应关系配置在光发送机100中。从而,光发送机100可以将该对应关系中与作为该数据#A的接收端的计算节点对应的波长,确定为波长#A。
在S240,光发送机100的波长选择器110从多波长光源接收光束#A,并根据该波束#A生成光束#B,该光束#B包括该波长#A,并且,光发送机100(例如,光发送机100中的控制器或处理器)控制波长选择器110的工作状态,以将该光束#A发送至调制器组#A,该调制器组#A中的调制器#A的工作波长包括该波长#A。
可选地,当波长选择器110的结构为上述结构2时,在S220,光发送机100(例如,光发送机100中的控制器或处理器)确定各滤波器115的滤波波长是否包括波长#A,或者说,光发送机100(例如,光发送机100中的控制器或处理器)确定是否存在至少一个能够输出包括波长#A的光束的滤波器115。如果各滤波器115的滤波波长不包括波长#A,则光发送机100(例如,光发送机100中的控制器或处理器)可以调节至少一个滤波器115的滤波波长,以使至少一个滤波器115能够输出波束#A,该波束#A包括波长#A。
可选地,在S230,光发送机100(例如,光发送机100中的控制器或处理器)确定各调制器组120中的各调制器的工作波长是否包括波长#A,或者说,光发送机100(例如,光发送机100中的控制器或处理器)确定是否存在至少一个能够对波长#A调制的调制器。如果各调制器的工作波长不包括波长#A,则光发送机100(例如,光发送机100中的控制器或处理器)可以调节至少一个调制器的工作波长,以使至少一个调制器(即,调制器#A)能够对波长#A进行调制。
在S250,调制器#A将数据#A调制于波长#A。
可选地,该调制器#A所属于的调制器组中的其他调制器还可以将其他数据分别调制在该 光束#B中除该波长#A以外的波长。
在例如人工智能(Artificial Intelligence,AI)训练等算力密集型计算过程中,使用搭载有高算力图形处理器(Graphic Processing Unit,GPU)的AI训练服务器搭建的服务器集群是一种常见的计算网络方案。与任务种类繁杂,单项任务运算时间短的普通数据中心相比,这种服务器集群具有以下特点:
1)同时执行一种计算任务,执行时间较长,通常需要几小时甚至几天。
2)集群规模较小,以典型的搭载有8片GPU为例,通常使用128台服务器搭建集群。每片GPU称为一个计算节点。
3)执行的算法通常为多步骤迭代运算,需要各个节点之间的通信。
4)计算需求低时延。
上述服务器集群的网络连接则具有以下特点:
a)不同计算任务需要服务器间的互联关系不同,即集群搭建不同的网络拓扑。该网络拓扑搭建完成后,在任务执行期间均不会变化。
b)一个计算任务之内,存在多个计算步骤,每个计算步骤需求不同计算节点之间的网络连接关系,即每个计算步骤需要一种子网络拓扑。并且步骤之间允许的切换时间较短,通常在百微秒以下。
c)节点间每次通信的数据流量较大,使用更宽的网络带宽可以有效减小通信时间。
d)数理模型分析和人工智能训练均需要大量次数的反复迭代,即需要数据反复在节点间通信,使得这类计算应用中网络通信时间在任务执行时间中的占比上升,因此对网络时延敏感。
根据本申请提供的光发送机和光调制的方法可以有效应用于上述算力密集型计算系统,图9示出了该计算系统的一例。如图9所示,该计算系统包括多个计算节点,每个计算节点之间通过波长敏感的OXC网络连接,在每个节点上配置有本申请的光发送机100。
通过配置多个调制器组120,能够实现单光纤端口传输多路波长信号,提高光交换网络中物理端口的带宽效率,并且,波长选择器110既满足了AI算法步骤间切换的极低切换时间需求,也使得多路调制器共享光源信号,可以利用固定波长的光源,降低成本,且避免了多路信号间发生波长冲突,降低全局网络控制复杂度。
通过在单芯片集成波长选择器110和调制器组120,能够降低成本、节省封装空间、降低网络设备复杂度、降低控制难度。
上述方法200中由控制器或处理器执行的步骤,或者上述光发送机100中由控制器执行的动作,可以由控制器自动执行,即,控制器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据,进而控制光发送机100的各器件执行各自的功能,从而执行上述方法200。
例如,控制器可以通过处理器实现,并且,处理器可以包括中央处理器,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU)、其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
控制器执行的动作或方法,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,控制器执行的动作或方法可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种光发送机,其特征在于,包括:波长选择器和多个调制器组,每个调制器组包括多个调制器,同一调制器组中的任意两个调制器的工作波长不同,其中:
    波长选择器用于从多波长光源获取第一光束,并根据所述第一光束生成第二光束,其中,所述第一光束包括多个波长,所述第二光束包括多个波长中的部分波长;
    第一调制器组中的第一调制器用于将第一待发送数据调制于所述第二光束中的第一波长。
  2. 根据权利要求1所述的光发送机,其特征在于,所述波长选择器包括多个输出端口,所述多个调制器组与所述多个输出端口一一对应,每个调制器组从所对应的输出端口接收光束;所述波长选择器还用于从所述第一调制器组对应的输出端口输出所述第二光束。
  3. 根据权利要求2所述的光发送机,其特征在于,所述波长选择器包括至少两种工作状态,其中,同一输出端口在不同工作状态下的输出的光束的波长不同;
    所述光发送机还包括:第一控制器,用于控制所述波长选择器的工作状态,以使所述第一调制器组对应的输出端口输出的光束的波长包括所述第一波长。
  4. 根据权利要求1至3中任一项所述的光发送机,其特征在于,所述波长选择器包括多个滤波器和光交换器,所述光交换器包括多个输入端口和多个输出端口,所述多个输入端口与所述多个滤波器一一对应,所述多个输入端口的每一个输入端口用于从所述对应的滤波器接收光束,所述多个调制器组与所述多个输出端口一一对应,所述多个调制器组的每一个调制器组从所对应的输出端口接收光束所述波长选择器包括至少两种工作状态,其中,同一输出端口在不同工作状态下的输出的光束的波长不通,其中:
    所述至少一个滤波器中的第一滤波器用于对所述第一波束进行滤波,以生成所述第二光束;
    所述光发送机还包括:第一控制器,用于根据所述第一滤波器对应的输入端口,控制所述第一滤波器的工作状态,以使所述第一调制器组对应的输出端口输出的光束的波长包括所述第一波长。
  5. 根据权利要求4所述的光发送机,其特征在于,所述多个滤波器的每一个滤波器包括多种滤波状态,同一滤波器在不同的滤波状态下输出的光束包括的波长不同,以及
    所述光发送机还包括:第二控制器,用于控制所述第一滤波器的滤波状态,以使所述第一滤波器输出的光束包括所述第一波长。
  6. 根据权利要求4或5所述的光发送机,其特征在于,所述光交换器包括多个马赫增德尔干涉仪。
  7. 根据权利要求1至6中任一项所述的光发送机,其特征在于,所述波长选择器包括多个马赫增德尔干涉仪。
  8. 根据权利要求1至7中任一项所述的光发送机,其特征在于,所述第一调制器包括呈周期性分布的多个工作波长,其中,所述第一波长属于所述多个工作波长。
  9. 根据权利要求1至8中任一项所述的光发送机,其特征在于,所述光发送机还包括:第三控制器,用于调节所述第一调制器的第一参数,以使所述第一调制器的工作波长包括所述第一波长,所述第一参数包括有效折射率。
  10. 根据权利要求1至9中任一项所述的光发送机,其特征在于,所述光发送机还包括所述多波长光源。
  11. 一种光调制的方法,其特征在于,包括:
    根据第一光束生成第二光束,其中,所述第一光束包括多个波长,所述第二光束包括多个波长中的部分波长;
    将待发送数据调制于所述第二光束中的第一波长,所述第一波长是所述待发送数据的接收设备对应的波长。
  12. 根据权利要求11所述的方法,其特征在于,所述根据第一光束生成第二光束,包括:
    通过波长选择器对所述第一光束进行处理,以生成第二光束;
    所述将待发送数据调制于所述第二光束中的第一波长,包括:
    通过多个调制器组中的第一调制器组包括的多个调制器中的第一调制器,将待发送数据调制于所述第二光束中的第一波长,所述第一调制器的工作波长包括所述第一波长。
  13. 根据权利要求12所述的方法,其特征在于,所述波长选择器包括多个输出端口,所述多个调制器组与所述多个输出端口一一对应,所述多个调制器组的每一个调制器组从所对应的输出端口接收光束;所述方法还包括:
    控制所述波长选择器从所述第一调制器组对应的输出端口输出所述第二光束。
  14. 根据权利要求13所述的方法,其特征在于,所述波长选择器包括至少两种工作状态,其中,同一输出端口在不同工作状态下的输出的光束的波长不同;
    所述控制所述波长选择器从所述第一调制器组对应的输出端口输出所述第二光束,包括:控制所述波长选择器的工作状态,以使所述第一调制器组对应的输出端口输出的光束的波长包括所述第一波长。
  15. 根据权利要求12至14中任一项所述的方法,其特征在于,所述波长选择器包括光交换器,所述光交换器的多个输出端口,所述多个调制器组与所述多个输出端口一一对应,所述多个调制器组的每一个调制器组从所对应的输出端口接收光束;
    所述方法还包括:控制所述光交换器从所述第一调制器组对应的输出端口输出所述第二光束。
  16. 根据权利要求12至15中任一项所述的方法,其特征在于,所述波长选择器包括滤波器;
    所述通过波长选择器对所述第一光束进行处理,以生成第二光束,包括:
    通过滤波器对所述第一光束进行滤波处理,以生成所述第二波束。
  17. 根据权利要求16所述的方法,其特征在于,所述滤波器包括多种滤波状态,同一滤波器在不同的滤波状态下输出的光束包括的波长不同;
    所述方法还包括:控制所述滤波器的滤波状态,以使所述滤波器输出的光束包括所述第一波长。
  18. 根据权利要求12至17中任一项所述的方法,其特征在于,所述第一调制器包括呈周期性分布的多个工作波长,其中,所述第一波长属于所述多个工作波长。
  19. 根据权利要求12至18中任一项所述的方法,其特征在于,所述方法还包括:
    调节所述第一调制器的第一参数,以使所述第一调制器的工作波长包括所述第一波长,所述第一参数包括有效折射率。
PCT/CN2021/101964 2020-06-30 2021-06-24 光发送机和光调制的方法 WO2022001802A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21833289.8A EP4164144A4 (en) 2020-06-30 2021-06-24 OPTICAL TRANSMITTER AND OPTICAL MODULATION METHOD
US18/147,809 US20230138252A1 (en) 2020-06-30 2022-12-29 Optical transmitter and optical modulation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010607552.4A CN113872697B (zh) 2020-06-30 2020-06-30 光发送机和光调制的方法
CN202010607552.4 2020-06-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/147,809 Continuation US20230138252A1 (en) 2020-06-30 2022-12-29 Optical transmitter and optical modulation method

Publications (1)

Publication Number Publication Date
WO2022001802A1 true WO2022001802A1 (zh) 2022-01-06

Family

ID=78980984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101964 WO2022001802A1 (zh) 2020-06-30 2021-06-24 光发送机和光调制的方法

Country Status (4)

Country Link
US (1) US20230138252A1 (zh)
EP (1) EP4164144A4 (zh)
CN (1) CN113872697B (zh)
WO (1) WO2022001802A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021016966A1 (zh) * 2019-07-31 2021-02-04 华为技术有限公司 一种多波长光源以及光芯片
CN115515029A (zh) * 2021-06-21 2022-12-23 华为技术有限公司 一种业务光信号的传输方法、网络设备以及光网络
CN115580344A (zh) * 2021-06-21 2023-01-06 华为技术有限公司 通信系统、发射机及通信方法
CN117135495A (zh) * 2022-05-18 2023-11-28 华为技术有限公司 一种建立光通路的方法及相关设备
WO2024065174A1 (zh) * 2022-09-27 2024-04-04 华为技术有限公司 光发射机、光发射方法、光模块、设备及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6388782B1 (en) * 1998-06-01 2002-05-14 Sarnoff Corporation Multi-wavelength dense wavelength division multiplexed optical switching systems
CN102866876A (zh) * 2012-08-22 2013-01-09 清华大学 一种单片集成的光学矩阵-向量乘法器
CN107210818A (zh) * 2015-01-13 2017-09-26 华为技术有限公司 用于加和不同波长的并行调制信号的光功率源和系统

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3618627B2 (ja) * 2000-03-07 2005-02-09 日本電信電話株式会社 光ネットワーク装置、光ネットワーク及び送信方法
US6614953B2 (en) * 2001-03-16 2003-09-02 Photuris, Inc. Modular all-optical cross-connect
US7127168B2 (en) * 2001-06-13 2006-10-24 Nippon Telegraph And Telephone Corporation Multi-wavelength optical modulation circuit and wavelength-division multiplexed optical signal transmitter
JP3732804B2 (ja) * 2001-06-13 2006-01-11 日本電信電話株式会社 多波長光変調回路及び波長多重光信号送信装置
JP4011509B2 (ja) * 2003-03-31 2007-11-21 日本電信電話株式会社 光通信方法、光通信システム、光信号送信装置及び光信号受信装置
JP4230934B2 (ja) * 2004-02-10 2009-02-25 日本電信電話株式会社 多チャンネル光変調装置および多チャンネル光送信装置
JP4234065B2 (ja) * 2004-06-16 2009-03-04 日本電信電話株式会社 多チャンネル光送信装置
JP4246724B2 (ja) * 2005-08-31 2009-04-02 日本電信電話株式会社 ビームフォーミング型rofシステム
JP4361099B2 (ja) * 2007-03-30 2009-11-11 日本電信電話株式会社 波長安定化光源を用いた光送受信機
WO2009001861A1 (ja) * 2007-06-25 2008-12-31 Nippon Telegraph And Telephone Corporation 光変調信号生成装置および光変調信号生成方法
CN101359962B (zh) * 2008-09-19 2010-12-22 清华大学 滤波器反馈复用的毫米波副载波光控微波波束形成网络
GB0819616D0 (en) * 2008-10-25 2008-12-03 Ct For Integrated Photonics Th Wavelenghth division multiplexing transmission eqipment
CN103609083B (zh) * 2013-05-13 2016-08-17 华为技术有限公司 接收设备及光交换网装置
US9425919B2 (en) * 2013-10-15 2016-08-23 Coriant Advanced Technology, LLC Operation and stabilization of mod-MUX WDM transmitters based on silicon microrings
JP2015220590A (ja) * 2014-05-16 2015-12-07 富士通株式会社 光送信装置、光受信装置、及び、光伝送方法
JP6560020B2 (ja) * 2015-05-08 2019-08-14 三菱電機株式会社 光送信機及び光伝送システム
JP6570418B2 (ja) * 2015-10-23 2019-09-04 国立大学法人東京工業大学 多波長変調器
US10630413B2 (en) * 2016-05-25 2020-04-21 Huawei Technologies Co., Ltd. Optical communications system with centralized wavelength source
CN107870455A (zh) * 2016-09-28 2018-04-03 华为技术有限公司 一种微环调制器、超宽带调制器以及调制系统
US10551640B2 (en) * 2016-11-21 2020-02-04 Futurewei Technologies, Inc. Wavelength division multiplexed polarization independent reflective modulators
CN108303689B (zh) * 2018-01-19 2020-03-31 浙江大学 一种光控雷达阵列动态可重构和差波束的装置
CN110798265A (zh) * 2018-08-01 2020-02-14 中兴通讯股份有限公司 光模块、得到光信号的方法、装置、系统及存储介质
WO2021012084A1 (zh) * 2019-07-19 2021-01-28 深圳市速腾聚创科技有限公司 相控阵发射装置、激光雷达和自动驾驶设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6388782B1 (en) * 1998-06-01 2002-05-14 Sarnoff Corporation Multi-wavelength dense wavelength division multiplexed optical switching systems
CN102866876A (zh) * 2012-08-22 2013-01-09 清华大学 一种单片集成的光学矩阵-向量乘法器
CN107210818A (zh) * 2015-01-13 2017-09-26 华为技术有限公司 用于加和不同波长的并行调制信号的光功率源和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4164144A4

Also Published As

Publication number Publication date
EP4164144A4 (en) 2023-12-06
EP4164144A1 (en) 2023-04-12
CN113872697B (zh) 2023-09-12
CN113872697A (zh) 2021-12-31
US20230138252A1 (en) 2023-05-04

Similar Documents

Publication Publication Date Title
WO2022001802A1 (zh) 光发送机和光调制的方法
WO2022016894A1 (zh) 一种光子神经网络
US20190027899A1 (en) Rapidly Tunable Silicon Modulated Laser
CN112068336B (zh) 一种基于周期极化铌酸锂波导的电控式偏振纠缠态产生芯片
US9780528B1 (en) Fast wavelength-tunable hybrid laser with a single-channel gain medium
US8824900B2 (en) Optical single-sideband transmitter
CN112750681B (zh) 一种离子阱系统及离子操控方法
JP7391215B2 (ja) 光計算装置および光信号処理方法
CN109257102A (zh) 一种基于光子技术的多阶微波跳频信号发生器
JPH02281825A (ja) 超短光パルス変調回路
CN112147740A (zh) 一种基于集成硅波导的多工作频段、可编程微波光子滤波器
CN117240368B (zh) 光域频谱合成系统及光域频谱合成方法
CN113325917A (zh) 一种光计算装置、系统以及计算方法
CN117031630A (zh) 一种幺正光学路径模式转换器及转换方法
CN114609727A (zh) 基于级联滤波器的芯片集成可编程滤波方法
CN116739063A (zh) 一种基于多模干涉仪以及相干检测的神经网络加速器
CN113267911B (zh) 大容量光电混合可编程逻辑运算芯片
JP2017003670A (ja) ハイブリッド集積型光送信器
Sharma et al. Cross-phase modulation based ultra-flat 90-line optical frequency comb generation
JP2007201540A (ja) 光信号送信装置
Zhang et al. Optical frequency comb generation based on dual-parallel Mach–Zehnder modulator and intensity modulator with RF frequency multiplication circuit
CN116324813A (zh) 用于形成人工神经网络的光电子系统的光学矩阵乘法单元
Castro et al. Wavelength-multiplexed Delayed Inputs for Memory Enhancement of Microring-based Reservoir Computing
CN113126387B (zh) 一种基于周期性极化型铌酸锂晶体的全光可调谐多通道滤波器
CN110429468B (zh) 一种基于双环锁定的光子双频梳产生的系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833289

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021833289

Country of ref document: EP

Effective date: 20230105

NENP Non-entry into the national phase

Ref country code: DE