JP2023163177A - 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス - Google Patents

蓄電デバイス用外装材、その製造方法、及び蓄電デバイス Download PDF

Info

Publication number
JP2023163177A
JP2023163177A JP2023073448A JP2023073448A JP2023163177A JP 2023163177 A JP2023163177 A JP 2023163177A JP 2023073448 A JP2023073448 A JP 2023073448A JP 2023073448 A JP2023073448 A JP 2023073448A JP 2023163177 A JP2023163177 A JP 2023163177A
Authority
JP
Japan
Prior art keywords
layer
storage device
power storage
exterior material
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023073448A
Other languages
English (en)
Inventor
貴瑛 村上
Takaaki Murakami
ゆう 木村
Yu Kimura
雅博 立沢
Masahiro Tatezawa
孝典 山下
Takanori Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Publication of JP2023163177A publication Critical patent/JP2023163177A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

【課題】外側から順に、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成された蓄電デバイス用外装材であって、耐光性に優れており、放熱性も高め得る、蓄電デバイス用外装材を提供する。【解決手段】外側から順に、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、紫外可視近赤外分光光度計を用い、前記積層体の前記外側から、波長330nmの光を照射して測定される反射率Aが、70%以下であり、かつ、紫外可視近赤外分光光度計を用い、前記積層体の前記外側から、波長1200nmの光を照射して測定される反射率Bが、30%以上である、蓄電デバイス用外装材。【選択図】なし

Description

本開示は、蓄電デバイス用外装材、その製造方法、及び蓄電デバイスに関する。
従来、様々なタイプの蓄電デバイスが開発されているが、あらゆる蓄電デバイスにおいて、電極や電解質などの蓄電デバイス素子を封止するために外装材が不可欠な部材になっている。従来、蓄電デバイス用外装材として金属製の外装材が多用されていた。
一方、近年、電気自動車、ハイブリッド電気自動車、パソコン、カメラ、携帯電話などの高性能化に伴い、蓄電デバイスには、多様な形状が要求されると共に、薄型化や軽量化が求められている。しかしながら、従来多用されていた金属製の蓄電デバイス用外装材では、形状の多様化に追従することが困難であり、しかも軽量化にも限界があるという欠点がある。
そこで、従来、多様な形状に加工が容易で、薄型化や軽量化を実現し得る蓄電デバイス用外装材として、基材層/バリア層/接着層/熱融着性樹脂層が順次積層されたフィルム状の積層体が提案されている(例えば、特許文献1を参照)。
このような蓄電デバイス用外装材においては、一般的に、冷間成形により凹部が形成され、当該凹部によって形成された空間に電極や電解液などの蓄電デバイス素子を配し、熱融着性樹脂層を熱融着させることにより、蓄電デバイス用外装材の内部に蓄電デバイス素子が収容された蓄電デバイスが得られる。
特開2008-287971号公報
蓄電デバイスは、蓄電デバイスを利用した製品中に収容されることが一般的であり、この場合、蓄電デバイスには殆ど光が当たらないことが多い。
しかし、近年、急速な蓄電デバイスの普及により、蓄電デバイスは様々な形態で使用されるようになった。例えば、製品の筐体の一部として蓄電デバイスが利用される場合や、筐体などが透明である場合、さらには、蓄電デバイス自体が製品として流通する場合には、蓄電デバイスが長期間に亘って光に晒される場合もある。蓄電デバイスが光に晒されると、蓄電デバイスの外装材が劣化するおそれがあり、外装材にもより高い耐光性を求められることがある。
さらに、本開示の発明者らは、蓄電デバイスが光に晒されることによる蓄電デバイスの温度上昇を低減する観点から、蓄電デバイス用外装材の耐光性を高めるだけでなく、放熱性も高めるという新たな課題を設定した。
このような状況下、本開示は、外側から順に、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成された蓄電デバイス用外装材であって、耐光性に優れており、放熱性も高め得る、蓄電デバイス用外装材を提供することを主な目的とする。
本開示の発明者らは、上記のような課題を解決すべく鋭意検討を行った。その結果、外側から順に、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、紫外可視近赤外分光光度計を用い、前記積層体の前記外側から、波長330nmの光を照射して測定される反射率Aが、70%以下であり、かつ、紫外可視近赤外分光光度計を用い、前記積層体の前記外側から、波長1200nmの光を照射して測定される反射率Bが、30%以上である、蓄電デバイス用外装材は、耐光性に優れており、放熱性も高め得ることを見出した。
本開示は、これらの知見に基づいて、更に検討を重ねることにより完成したものである。即ち、本開示は、下記に掲げる態様の発明を提供する。
外側から順に、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、
紫外可視近赤外分光光度計を用い、前記積層体の前記外側から、波長330nmの光を照射して測定される反射率Aが、70%以下であり、かつ、
紫外可視近赤外分光光度計を用い、前記積層体の前記外側から、波長1200nmの光を照射して測定される反射率Bが、30%以上である、蓄電デバイス用外装材。
本開示によれば、外側から順に、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成された蓄電デバイス用外装材であって、耐光性に優れており、放熱性も高め得る、蓄電デバイス用外装材を提供することができる。また、本開示によれば、蓄電デバイス用外装材の製造方法、及び蓄電デバイスを提供することもできる。
本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。 本開示の蓄電デバイス用外装材の断面構造の一例4を示す模式図である。 本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。 本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。 本開示の蓄電デバイス用外装材により形成された包装体中に蓄電デバイス素子を収容する方法を説明するための模式図である。
本開示の蓄電デバイス用外装材は、外側から順に、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、紫外可視近赤外分光光度計を用い、前記積層体の前記外側から、波長330nmの光を照射して測定される反射率Aが、70%以下であり、かつ、紫外可視近赤外分光光度計を用い、前記積層体の前記外側から、波長1200nmの光を照射して測定される反射率Bが、30%以上であることを特徴とする。本開示の蓄電デバイス用外装材は、このような構成を備えることにより、耐光性に優れており、放熱性も高め得る。
以下、本開示の蓄電デバイス用外装材について詳述する。なお、本開示において、「~」で示される数値範囲は「以上」、「以下」を意味する。例えば、2~15mmとの表記は、2mm以上15mm以下を意味する。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、別個に記載された、上限値と上限値、上限値と下限値、又は下限値と下限値を組み合わせて、それぞれ、数値範囲としてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
なお、蓄電デバイス用外装材において、後述のバリア層3については、通常、その製造過程におけるMD(Machine Direction)とTD(Transverse Direction)を判別することができる。例えば、バリア層3がアルミニウム合金箔やステンレス鋼箔等の金属箔により構成されている場合、金属箔の圧延方向(RD:Rolling Direction)には、金属箔の表面に、いわゆる圧延痕と呼ばれる線状の筋が形成されている。圧延痕は、圧延方向に沿って伸びているため、金属箔の表面を観察することによって、金属箔の圧延方向を把握することができる。また、積層体の製造過程においては、通常、積層体のMDと、金属箔のRDとが一致するため、積層体の金属箔の表面を観察し、金属箔の圧延方向(RD)を特定することにより、積層体のMDを特定することができる。また、積層体のTDは、積層体のMDとは垂直方向であるため、積層体のTDについても特定することができる。
また、アルミニウム合金箔やステンレス鋼箔等の金属箔の圧延痕により蓄電デバイス用外装材のMDが特定できない場合は、次の方法により特定することができる。蓄電デバイス用外装材のMDの確認方法として、蓄電デバイス用外装材の熱融着性樹脂層の断面を電子顕微鏡で観察し海島構造を確認する方法がある。当該方法においては、熱融着性樹脂層の厚み方向に対して垂直な方向の島の形状の径の平均が最大であった断面と平行な方向を、MDと判断することができる。具体的には、熱融着性樹脂層の長さ方向の断面と、当該長さ方向の断面と平行な方向から10度ずつ角度を変更し、長さ方向の断面に対して垂直な方向までの各断面(合計10の断面)について、それぞれ、電子顕微鏡写真で観察して海島構造を確認する。次に、各断面において、それぞれ、個々の島の形状を観察する。個々の島の形状について、熱融着性樹脂層の厚み方向に対して垂直方向の最左端と、当該垂直方向の最右端とを結ぶ直線距離を径yとする。各断面において、島の形状の当該径yが大きい順に上位20個の径yの平均を算出する。島の形状の当該径yの平均が最も大きかった断面と平行な方向をMDと判断する。
1.蓄電デバイス用外装材の積層構造と物性
本開示の蓄電デバイス用外装材10は、例えば図1に示すように、基材層1、バリア層3、及び熱融着性樹脂層4をこの順に備える積層体から構成されている。蓄電デバイス用外装材10において、基材層1が最外層側になり、熱融着性樹脂層4は最内層になる。蓄電デバイス用外装材10と蓄電デバイス素子を用いて蓄電デバイスを組み立てる際に、蓄電デバイス用外装材10の熱融着性樹脂層4同士を対向させた状態で、周縁部を熱融着させることによって形成された空間に、蓄電デバイス素子が収容される。本開示の蓄電デバイス用外装材10を構成する積層体において、バリア層3を基準とし、バリア層3よりも熱融着性樹脂層4側が内側であり、バリア層3よりも基材層1側が外側である。
蓄電デバイス用外装材10は、例えば図2から図4に示すように、基材層1とバリア層3との間に、これらの層間の接着性を高めることなどを目的として、必要に応じて接着剤層2を有していてもよい。また、例えば図3及び図4に示すように、バリア層3と熱融着性樹脂層4との間に、これらの層間の接着性を高めることなどを目的として、必要に応じて接着層5を有していてもよい。また、図4に示すように、基材層1の外側(熱融着性樹脂層4側とは反対側)には、必要に応じて表面被覆層6などが設けられていてもよい。
蓄電デバイス用外装材10を構成する積層体の厚みとしては、特に制限されないが、コスト削減、エネルギー密度向上等の観点からは、例えば約210μm以下、好ましくは約190μm以下、約180μm以下、約155μm以下、約120μm以下が挙げられる。また、蓄電デバイス用外装材10を構成する積層体の厚みとしては、蓄電デバイス素子を保護するという蓄電デバイス用外装材の機能を維持する観点からは、好ましくは約35μm以上、約45μm以上、約60μm以上が挙げられる。また、蓄電デバイス用外装材10を構成する積層体の好ましい範囲については、例えば、35~210μm程度、35~190μm程度、35~180μm程度、35~155μm程度、35~120μm程度、45~210μm程度、45~190μm程度、45~180μm程度、45~155μm程度、45~120μm程度、60~210μm程度、60~190μm程度、60~180μm程度、60~155μm程度、60~120μm程度が挙げられ、特に蓄電デバイスを軽量薄膜化する場合には60~155μm程度が好ましく、成形性を向上させる場合には155~190μm程度が好ましい。
蓄電デバイス用外装材10において、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、基材層1、必要に応じて設けられる接着剤層2、バリア層3、必要に応じて設けられる接着層5、熱融着性樹脂層4、及び必要に応じて設けられる表面被覆層6の合計厚みの割合は、好ましくは90%以上であり、より好ましくは95%以上であり、さらに好ましくは98%以上である。具体例としては、本開示の蓄電デバイス用外装材10が、基材層1、接着剤層2、バリア層3、接着層5、及び熱融着性樹脂層4を含む場合、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、これら各層の合計厚みの割合は、好ましくは90%以上であり、より好ましくは95%以上であり、さらに好ましくは98%以上である。また、本開示の蓄電デバイス用外装材10が、基材層1、接着剤層2、バリア層3、及び熱融着性樹脂層4を含む積層体である場合にも、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、これら各層の合計厚みの割合は、例えば80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上とすることができる。
本開示の蓄電デバイス用外装材は、紫外可視近赤外分光光度計を用い、前記積層体の前記外側から、波長330nmの光を照射して測定される反射率Aが、70%以下であり、かつ、紫外可視近赤外分光光度計を用い、前記積層体の前記外側から、波長1200nmの光を照射して測定される反射率Bが、30%以上である。本開示の蓄電デバイス用外装材は、波長330nmの紫外光の反射率Aが、70%以下であることから、太陽光などの紫外光を含む光に晒される環境で使用された場合の劣化が抑制されており、さらに、波長1200nmの赤外光の反射率Bが30%以上であることから、赤外光の吸収による発熱が抑制され、優れた放熱性を発揮し得る。反射率A及び反射率Bの測定方法は、以下の通りである。
<紫外可視近赤外分光光度計を用いた反射率の測定>
蓄電デバイス用外装材の外側表面について、市販の紫外可視近赤外分光光度計を用い、波長330nmの光を照射して測定される反射率A、波長1200nmの光を照射して測定される反射率Bを、それぞれ測定する。具体的な測定条件は、以下の通りである。
(反射率の測定条件)
装置名:紫外可視近赤外分光光度計(例えば、V-670(日本分光株式会社製))
付属品名:φ150mm積分球(例えば、ILN-725(日本分光株式会社製))
光束モード:試料/対照
測光モード:%R(反射率(reflectance))
測定範囲:2700-190nm
データ取込間隔:1nm
UV/Visバンド幅:5.0nm
NIRバンド幅:20.0nm
レスポンス:Medium
走査速度:1000nm/min
光源切換:340nm
回折格子切換:850nm
光源:D2/WI(重水素ランプ/ハロゲンランプ)
フィルタ切換:ステップ
補正:ベースライン
検出器切り替え波長:850nm
サンプルサイズ:3cm×3cm(なお、3cm×3cmのサンプルサイズの入手が困難な場合は、測定可能なサンプルサイズであればよい。また、蓄電デバイスから蓄電デバイス用外装材を切り出して測定する場合は、天面や底面から切り出して測定することが望ましい。)
本開示の効果のうち、特に耐光性をより好適に発揮する観点から、本開示の蓄電デバイス用外装材の反射率Aは、好ましくは約60%以下、約50%以下、より好ましくは約25%以下、さらに好ましくは約10%以下であり、また、好ましくは約1%以上、より好ましくは約5%以上、さらに好ましくは約7%以上であり、好ましい範囲としては、1~60%程度、1~50%程度、1~25%程度、1~10%程度、5~60%程度、5~50%程度、5~25%程度、5~10%程度、7~60%程度、7~50%程度、7~25%程度、7~10%程度などが挙げられる。
また、本開示の効果のうち、特に放熱性をより好適に発揮する観点から、本開示の蓄電デバイス用外装材の反射率Bは、好ましくは約98%以下、より好ましくは約95%以下であり、また、好ましくは約30%以上、約50%以上、より好ましくは約80%以上であり、好ましい範囲としては、30~98%程度、30~95%程度、50~98%程度、50~95%程度、80~98%程度、80~95%程度などが挙げられる。
本開示の蓄電デバイス用外装材の反射率A及び反射率Bは、それぞれ、バリア層3を含めて、蓄電デバイス用外装材の外側に位置する層の組成や厚みによって調整することができる。例えば、基材層1の組成(樹脂の種類や含有率、着色剤の種類や含有率など)や厚み、接着剤層2の組成(樹脂の種類や含有率、着色剤の種類や含有率など)や厚み、表面被覆層6の組成(樹脂の種類や含有率、着色剤の種類や含有率、フィラーの種類や含有率や大きさなど)や厚み、バリア層3の材料(例えばアルミニウム合金箔やステンレス鋼箔の種類や光沢の程度)などによって、反射率A及び反射率Bを調整できる。
本開示の蓄電デバイス用外装材10は、外側から観察される外観が色味を有することが好ましく、例えば、白色、赤色、青色、黄色、銀色、金色、灰色、茶色などの色味を有することがより好ましく、着色剤によってこれらの色味に着色されていることがより好ましい。
本開示の効果をより好適に発揮する観点から、本開示の蓄電デバイス用外装材において、L***色空間(CIE1976)で定義されるb*値は、好ましくは約20.00以上、より好ましくは約40.00以上、さらに好ましくは約45.00以上、さらに好ましくは約46.00以上、さらに好ましくは約47.00以上、さらに好ましくは約50.00以上、さらに好ましくは約60.00以上であり、また、好ましくは約90.00以下、より好ましくは約85.00以下、さらに好ましくは約80.00以下であり、好ましい範囲としては、20.00~90.00程度、20.00~85.00程度、20.00~80.00程度、40.00~90.00程度、40.00~85.00程度、40.00~80.00程度、45.00~90.00程度、45.00~85.00程度、45.00~80.00程度、46.00~90.00程度、46.00~85.00程度、46.00~80.00程度、47.00~90.00程度、47.00~85.00程度、47.00~80.00程度、50.00~90.00程度、50.00~85.00程度、50.00~80.00程度、60.00~90.00程度、60.00~85.00程度、60.00~80.00程度が挙げられる。同様の観点から、L***色空間(CIE1976)で定義されるL*値は、好ましくは約30.00以上、約55.00以上、より好ましくは約60.00以上、さらに好ましくは約65.00以上であり、また、好ましくは約80.00以下、より好ましくは約75.00以下、さらに好ましくは約70.00以下であり、好ましい範囲としては、30.00~80.00程度、30.00~75.00程度、30.00~70.00程度、55.00~80.00程度、55.00~75.00程度、55.00~70.00程度、60.00~80.00程度、60.00~75.00程度、60.00~70.00程度、65.00~80.00程度、65.00~75.00程度、65.00~70.00程度が挙げられる。同様の観点から、L***色空間(CIE1976)で定義されるa*値は、好ましくは約-5.00以上、好ましくは約0.00以上、より好ましくは約5.00以上、さらに好ましくは約10.00以上であり、また、好ましくは約35.00以下、より好ましくは約25.00以下、さらに好ましくは約15.00以下であり、好ましい範囲としては、-5.00~35.00程度、-5.00~25.00程度、-5.00~15.00程度、0.00~35.00程度、0.00~25.00程度、0.00~15.00程度、5.00~35.00程度、5.00~25.00程度、5.00~15.00程度、10.00~35.00程度、10.00~25.00程度、10.00~15.00程度が挙げられる。なお、本明細書において、L***色空間(CIE1976)で定義されるL*値、a*値、及びb*値は、それぞれ、市販の分光測色計(例えばコニカミノルタ社製の分光測色計(CM2500CB2))を用い、観察条件2°、観察光源D65に設定して、外側(基材層側)表面のL*、a*、b*の測定を常温常湿下にて測定された値である。
2.蓄電デバイス用外装材を形成する各層
[基材層1]
本開示において、基材層1は、蓄電デバイス用外装材の基材としての機能を発揮させることなどを目的として設けられる層である。基材層1は、蓄電デバイス用外装材の外層側に位置する。
基材層1を形成する素材については、基材としての機能、すなわち少なくとも絶縁性を備えるものであることを限度として特に制限されない。基材層1は、例えば樹脂を用いて形成することができ、樹脂には後述の添加剤、着色剤等が含まれていてもよい。これらの種類、含有率、大きさ等により、本開示の蓄電デバイス用外装材の反射率A及び反射率Bを好適に調整できる。
基材層1が樹脂により形成されている場合、基材層1は、例えば、樹脂フィルムにより形成することができる。基材層1を樹脂フィルムにより形成する場合、基材層1をバリア層3などと積層して本開示の蓄電デバイス用外装材10を製造する際に、予め形成された樹脂フィルムを基材層1として用いてもよい。また、基材層1を形成する樹脂を、押出成形や塗布などによってバリア層3などの表面上でフィルム化して、樹脂フィルムにより形成された基材層1としてもよい。樹脂フィルムは、未延伸フィルムであってもよいし、延伸フィルムであってもよい。延伸フィルムとしては、一軸延伸フィルム、二軸延伸フィルムが挙げられ、二軸延伸フィルムが好ましい。二軸延伸フィルムを形成する延伸方法としては、例えば、逐次二軸延伸法、インフレーション法、同時二軸延伸法等が挙げられる。樹脂を塗布する方法としては、ロールコーティング法、グラビアコーティング法、押出コーティング法などが挙げられる。
基材層1を形成する樹脂としては、例えば、ポリエステル、ポリアミド、ポリオレフィン、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ポリウレタン、珪素樹脂、フェノール樹脂などの樹脂や、これらの樹脂の変性物が挙げられる。また、基材層1を形成する樹脂は、これらの樹脂の共重合物であってもよいし、共重合物の変性物であってもよい。さらに、これらの樹脂の混合物であってもよい。
基材層1は、これらの樹脂を主成分として含んでいることが好ましく、ポリエステル又はポリアミドを主成分として含んでいることがより好ましい。ここで、主成分とは、基材層1に含まれる樹脂成分のうち、含有率が、例えば50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、さらに好ましくは90質量%以上、さらに好ましくは95質量%以上、さらに好ましくは98質量%以上、さらに好ましくは99質量%以上の樹脂成分であることを意味する。例えば、基材層1がポリエステル又はポリアミドを主成分として含むとは、基材層1に含まれる樹脂成分のうち、ポリエステル又はポリアミドの含有率が、それぞれ、例えば50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、さらに好ましくは90質量%以上、さらに好ましくは95質量%以上、さらに好ましくは98質量%以上、さらに好ましくは99質量%以上であることを意味する。
基材層1を形成する樹脂としては、これらの中でも、好ましくはポリエステル、ポリアミドが挙げられる。
ポリエステルとしては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等が挙げられる。また、共重合ポリエステルとしては、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル等が挙げられる。具体的には、エチレンテレフタレートを繰り返し単位の主体としてエチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリエチレン(テレフタレート/イソフタレート)にならって略す)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/ナトリウムスルホイソフタレート)、ポリエチレン(テレフタレート/ナトリウムイソフタレート)、ポリエチレン(テレフタレート/フェニル-ジカルボキシレート)、ポリエチレン(テレフタレート/デカンジカルボキシレート)等が挙げられる。これらのポリエステルは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
また、ポリアミドとしては、具体的には、ナイロン6、ナイロン66、ナイロン610、ナイロン12、ナイロン46、ナイロン6とナイロン66との共重合体等の脂肪族ポリアミド;テレフタル酸及び/又はイソフタル酸に由来する構成単位を含むナイロン6I、ナイロン6T、ナイロン6IT、ナイロン6I6T(Iはイソフタル酸、Tはテレフタル酸を表す)等のヘキサメチレンジアミン-イソフタル酸-テレフタル酸共重合ポリアミド、ポリアミドMXD6(ポリメタキシリレンアジパミド)等の芳香族を含むポリアミド;ポリアミドPACM6(ポリビス(4-アミノシクロヘキシル)メタンアジパミド)等の脂環式ポリアミド;さらにラクタム成分や、4,4’-ジフェニルメタン-ジイソシアネート等のイソシアネート成分を共重合させたポリアミド、共重合ポリアミドとポリエステルやポリアルキレンエーテルグリコールとの共重合体であるポリエステルアミド共重合体やポリエーテルエステルアミド共重合体;これらの共重合体等のポリアミドが挙げられる。これらのポリアミドは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
基材層1は、ポリエステルフィルム、ポリアミドフィルム、及びポリオレフィンフィルムのうち少なくとも1つを含むことが好ましく、延伸ポリエステルフィルム、及び延伸ポリアミドフィルム、及び延伸ポリオレフィンフィルムのうち少なくとも1つを含むことが好ましく、延伸ポリエチレンテレフタレートフィルム、延伸ポリブチレンテレフタレートフィルム、延伸ナイロンフィルム、延伸ポリプロピレンフィルムのうち少なくとも1つを含むことがさらに好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリブチレンテレフタレートフィルム、二軸延伸ナイロンフィルム、二軸延伸ポリプロピレンフィルムのうち少なくとも1つを含むことがさらに好ましい。
基材層1は、単層であってもよいし、2層以上により構成されていてもよい。基材層1が2層以上により構成されている場合、基材層1は、樹脂フィルムを接着剤などで積層させた積層体であってもよいし、樹脂を共押出しして2層以上とした樹脂フィルムの積層体であってもよい。また、樹脂を共押出しして2層以上とした樹脂フィルムの積層体を、未延伸のまま基材層1としてもよいし、一軸延伸または二軸延伸して基材層1としてもよい。
基材層1において、2層以上の樹脂フィルムの積層体の具体例としては、ポリエステルフィルムとナイロンフィルムとの積層体、2層以上のナイロンフィルムの積層体、2層以上のポリエステルフィルムの積層体などが挙げられ、好ましくは、延伸ナイロンフィルムと延伸ポリエステルフィルムとの積層体、2層以上の延伸ナイロンフィルムの積層体、2層以上の延伸ポリエステルフィルムの積層体が好ましい。例えば、基材層1が2層の樹脂フィルムの積層体である場合、ポリエステル樹脂フィルムとポリエステル樹脂フィルムの積層体、ポリアミド樹脂フィルムとポリアミド樹脂フィルムの積層体、またはポリエステル樹脂フィルムとポリアミド樹脂フィルムの積層体が好ましく、ポリエチレンテレフタレートフィルムとポリエチレンテレフタレートフィルムの積層体、ナイロンフィルムとナイロンフィルムの積層体、またはポリエチレンテレフタレートフィルムとナイロンフィルムの積層体がより好ましい。また、ポリエステル樹脂は、例えば電解液が表面に付着した際に変色し難いことなどから、基材層1が2層以上の樹脂フィルムの積層体である場合、ポリエステル樹脂フィルムが基材層1の最外層に位置することが好ましい。ポリエステル樹脂フィルムとポリアミド樹脂フィルムの積層体において、ポリエステル樹脂フィルムの厚みの好ましい範囲としては、2~33μm程度、2~28μm程度、2~23μm程度、2~18μm程度、2~11μm程度、2~8μm程度、10~33μm程度、10~28μm程度、10~23μm程度、10~18μm程度、18~33μm程度、18~28μm程度、18~23μm程度、また、ポリアミド樹脂フィルムの厚みの好ましい範囲としては、2~33μm程度、2~28μm程度、2~23μm程度、2~18μm程度、2~11μm程度、2~8μm程度、10~33μm程度、10~28μm程度、10~23μm程度、10~18μm程度、18~33μm程度、18~28μm程度、18~23μm程度が挙げられる。
基材層1が、2層以上の樹脂フィルムの積層体である場合、2層以上の樹脂フィルムは、接着剤を介して積層させてもよい。好ましい接着剤については、後述の接着剤層2で例示する接着剤と同様のものが挙げられる。なお、2層以上の樹脂フィルムを積層させる方法としては、特に制限されず、公知方法が採用でき、例えばドライラミネート法、サンドイッチラミネート法、押出ラミネート法、サーマルラミネート法などが挙げられ、好ましくはドライラミネート法が挙げられる。ドライラミネート法により積層させる場合には、接着剤としてポリウレタン接着剤を用いることが好ましい。このとき、接着剤の厚みとしては、例えば2~5μm程度が挙げられる。また、樹脂フィルムにアンカーコート層を形成し積層させても良い。アンカーコート層は、後述の接着剤層2で例示する接着剤と同様のものが挙げられる。このとき、アンカーコート層の厚みとしては、例えば0.01~1.0μm程度が挙げられる。
また、基材層1の表面及び内部の少なくとも一方には、滑剤、難燃剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤、耐電防止剤等の添加剤が存在していてもよい。添加剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
本開示において、蓄電デバイス用外装材の成形性を高める観点からは、基材層1の表面及び内部の少なくとも一方には、滑剤が存在していることが好ましい。滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。アミド系滑剤の具体例としては、例えば、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、脂肪酸エステルアミド、芳香族ビスアミドなどが挙げられる。飽和脂肪酸アミドの具体例としては、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミドなどが挙げられる。不飽和脂肪酸アミドの具体例としては、オレイン酸アミド、エルカ酸アミドなどが挙げられる。置換アミドの具体例としては、N-オレイルパルミチン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミドなどが挙げられる。また、メチロールアミドの具体例としては、メチロールステアリン酸アミドなどが挙げられる。飽和脂肪酸ビスアミドの具体例としては、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジステアリルセバシン酸アミドなどが挙げられる。不飽和脂肪酸ビスアミドの具体例としては、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’-ジオレイルアジピン酸アミド、N,N’-ジオレイルセバシン酸アミドなどが挙げられる。脂肪酸エステルアミドの具体例としては、ステアロアミドエチルステアレートなどが挙げられる。また、芳香族ビスアミドの具体例としては、m-キシリレンビスステアリン酸アミド、m-キシリレンビスヒドロキシステアリン酸アミド、N,N’-ジステアリルイソフタル酸アミドなどが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよく、2種類以上を組み合わせることが好ましい。
基材層1の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、例えば約3mg/m2以上、好ましくは約4mg/m2以上、約5mg/m2以上が挙げられる。また、基材層1の表面に存在する滑剤量としては、例えば約15mg/m2以下、好ましくは約14mg/m2以下、約10mg/m2以下が挙げられる。また、基材層1の表面に存在する滑剤量の好ましい範囲としては、3~15mg/m2程度、3~14mg/m2程度、3~10mg/m2程度、4~15mg/m2程度、4~14mg/m2程度、4~10mg/m2程度、5~15mg/m2程度、5~14mg/m2程度、5~10mg/m2程度が挙げられる。
基材層1の表面に存在する滑剤は、基材層1を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、基材層1の表面に滑剤を塗布したものであってもよい。
基材層1の厚みについては、基材としての機能を発揮すれば特に制限されないが、例えば約3μm以上、好ましくは約10μm以上が挙げられる。また、基材層1の厚みとしては、例えば約50μm以下、好ましくは約35μm以下、11μm以下、8μm以下が挙げられる。また、基材層1の厚みの好ましい範囲としては、3~50μm程度、3~35μm程度、3~11μm程度、3~8μm程度、10~50μm程度、10~35μm程度が挙げられ、特に蓄電デバイスを軽量薄膜化する場合には3~35μm程度、3~11μm程度、3~8μm程度が好ましく、成形性を向上させる場合には35~50μm程度が好ましい。基材層1が、2層以上の樹脂フィルムの積層体である場合、各層を構成している樹脂フィルムの厚みとしては、特に制限されないが、それぞれ、例えば約2μm以上、好ましくは約10μm以上、約18μm以上が挙げられる。また、各層を構成している樹脂フィルムの厚みとしては、例えば約33μm以下、好ましくは約28μm以下、約23μm以下、約18μm以下、11μm以下、8μm以下が挙げられる。また、各層を構成している樹脂フィルムの厚みの好ましい範囲としては、2~33μm程度、2~28μm程度、2~23μm程度、2~18μm程度、2~11μm程度、2~8μm程度、10~33μm程度、10~28μm程度、10~23μm程度、10~18μm程度、18~33μm程度、18~28μm程度、18~23μm程度が挙げられる。
[接着剤層2]
本開示の蓄電デバイス用外装材において、接着剤層2は、基材層1とバリア層3との接着性を高めることを目的として、必要に応じて、これらの間に設けられる層である。本開示において、接着剤層2は、前記の反射率A及び反射率Bの調整に特に好適に利用することができる。
接着剤層2は、基材層1とバリア層3とを接着可能である接着剤によって形成される。接着剤層2の形成に使用される接着剤は限定されないが、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれであってもよい。また、2液硬化型接着剤(2液性接着剤)であってもよく、1液硬化型接着剤(1液性接着剤)であってもよく、硬化反応を伴わない樹脂でもよい。また、接着剤層2は単層であってもよいし、多層であってもよい。
接着剤に含まれる接着成分としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等のポリエステル;ポリエーテル;ポリウレタン;エポキシ樹脂;フェノール樹脂;ナイロン6、ナイロン66、ナイロン12、共重合ポリアミド等のポリアミド;ポリオレフィン、環状ポリオレフィン、酸変性ポリオレフィン、酸変性環状ポリオレフィンなどのポリオレフィン系樹脂;ポリ酢酸ビニル;セルロース;(メタ)アクリル樹脂;ポリイミド;ポリカーボネート;尿素樹脂、メラミン樹脂等のアミノ樹脂;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴム等のゴム;シリコーン樹脂等が挙げられる。これらの接着成分は1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの接着成分の中でも、好ましくはポリウレタン接着剤が挙げられる。また、これらの接着成分となる樹脂は適切な硬化剤を併用して接着強度を高めることができる。前記硬化剤は、接着成分の持つ官能基に応じて、ポリイソシアネート、多官能エポキシ樹脂、オキサゾリン基含有ポリマー、ポリアミン樹脂、酸無水物などから適切なものを選択する。
ポリウレタン接着剤としては、例えば、ポリオール化合物を含有する第1剤と、イソシアネート化合物を含有する第2剤とを含むポリウレタン接着剤が挙げられる。好ましくはポリエステルポリオール、ポリエーテルポリオール、およびアクリルポリオール等のポリオールを第1剤として、芳香族系又は脂肪族系のポリイソシアネートを第2剤とした二液硬化型のポリウレタン接着剤が挙げられる。また、ポリウレタン接着剤としては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物と、イソシアネート化合物とを含むポリウレタン接着剤が挙げられる。また、ポリウレタン接着剤としては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物と、ポリオール化合物とを含むポリウレタン接着剤が挙げられる。また、ポリウレタン接着剤としては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物を、空気中などの水分と反応させることによって硬化させたポリウレタン接着剤が挙げられる。ポリオール化合物としては、繰り返し単位の末端の水酸基に加えて、側鎖にも水酸基を有するポリエステルポリオールを用いることが好ましい。第2剤としては、脂肪族、脂環式、芳香族、芳香脂肪族のイソシアネート系化合物が挙げられる。イソシアネート系化合物としては、例えばヘキサメチレンジイソシアネート(HDI)、キシリレンジイソシアネート(XDI)、イソホロンジイソシアネート(IPDI)、水素化XDI(H6XDI)、水素化MDI(H12MDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ナフタレンジイソシアネート(NDI)等が挙げられる。また、これらのジイソシアネートの1種類又は2種類以上からの多官能イソシアネート変性体等が挙げられる。また、ポリイソシアネート化合物として多量体(例えば三量体)を使用することもできる。このような多量体には、アダクト体、ビウレット体、ヌレート体等が挙げられる。接着剤層2がポリウレタン接着剤により形成されていることで蓄電デバイス用外装材に優れた電解液耐性が付与され、側面に電解液が付着しても基材層1が剥がれることが抑制される。
また、接着剤層2は、接着性を阻害しない限り他成分の添加が許容され、着色剤や熱可塑性エラストマー、粘着付与剤、フィラーなどを含有してもよい。これらの種類、含有率、大きさ等により、本開示の蓄電デバイス用外装材の反射率A及び反射率Bを好適に調整できる。接着剤層2が着色剤を含んでいることにより、蓄電デバイス用外装材を着色することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
顔料の種類は、接着剤層2の接着性を損なわない範囲であれば、特に限定されない。有機顔料としては、例えば、アゾ系、フタロシアニン系、キナクリドン系、アンスラキノン系、ジオキサジン系、インジゴチオインジゴ系、ペリノン-ペリレン系、イソインドレニン系、ベンズイミダゾロン系等の顔料が挙げられ、無機顔料としては、カーボンブラック系、酸化チタン系、カドミウム系、鉛系、酸化クロム系、鉄系等の顔料が挙げられ、その他に、マイカ(雲母)の微粉末、魚鱗箔等が挙げられる。
着色剤の中でも、例えば蓄電デバイス用外装材の外観を白色、赤色、青色、黄色、銀色、金色、灰色、茶色などの色味とするためには、これらの色味を有する着色剤を用いることが好ましい。本開示の蓄電デバイス用外装材10、接着剤層2がこれらの色味の着色剤を含み、外側から観察される外観がこれらの色味であることが特に好ましい。
顔料の平均粒子径としては、特に制限されないが、本開示の効果をより好適に発揮する観点から、例えば、0.05~5μm程度、好ましくは0.08~2μm程度が挙げられる。なお、顔料の平均粒子径は、レーザー回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。
接着剤層2における顔料の含有量としては、蓄電デバイス用外装材が着色されれば特に制限されない。例えば当該含有量の上限は限定されないが、顔料の含有量を適量以下にすることにより適度な色濃度となり、優れた耐光性を有することができる。接着剤層2における顔料の含有量は、本開示の効果をより好適に発揮する観点から、例えば、約5質量%以上、約10質量%以上、約20質量%以上、また、約80質量%以下、約60質量%以下、約50質量%以下、約40質量%以下であり、好ましい範囲としては、5~80質量%程度、5~60質量%程度、5~50質量%程度、5~40質量%程度、5~30質量%程度、10~80質量%程度、10~60質量%程度、10~50質量%程度、10~40質量%程度、10~30質量%程度、20~80質量%程度、20~60質量%程度、20~50質量%程度、20~40質量%程度、20~30質量%程度が挙げられる。
接着剤層2の厚みは、基材層1とバリア層3とを接着できれば、特に制限されない。例えば、適度な接着剤層2の厚みにすることにより顔料の総量が適度に調整され、優れた耐光性を有することができる。接着剤層2の厚みは、本開示の効果をより好適に発揮する観点から、例えば、約1μm以上、約2μm以上である。また、接着剤層2の厚みは、例えば、約30μm以下、約15μm以下、約10μm以下、約5μm以下である。また、接着剤層2の厚みの好ましい範囲については、1~30μm程度、1~15μm程度、1~10μm程度、1~5μm程度、2~30μm程度、2~15μm程度、2~10μm程度、2~5μm程度が挙げられる。
[着色層]
着色層は、基材層1とバリア層3との間に必要に応じて設けられる層である(図示を省略する)。接着剤層2を有する場合には、基材層1と接着剤層2との間、接着剤層2とバリア層3との間に着色層を設けてもよい。また、基材層1の外側に着色層を設けてもよい。着色層を設けることにより、蓄電デバイス用外装材を着色することができる。本開示において、着色層は、前記の反射率A及び反射率Bの調整に特に好適に利用することができる。
着色層は、例えば、樹脂と着色剤を含むインキを基材層1の表面、またはバリア層3の表面に塗布することにより形成することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。これらの種類、含有率、大きさ等により、本開示の蓄電デバイス用外装材の反射率A及び反射率Bを好適に調整できる。
着色層に含まれる着色剤の具体例としては、[接着剤層2]の欄で例示したものと同じものが例示される。
[バリア層3]
蓄電デバイス用外装材において、バリア層3は、少なくとも水分の浸入を抑止する層である。本開示において、バリア層3は、前記の反射率A及び反射率Bの調整に特に好適に利用することができる。
バリア層3としては、例えば、バリア性を有する金属箔、蒸着膜、樹脂層などが挙げられる。蒸着膜としては金属蒸着膜、無機酸化物蒸着膜、炭素含有無機酸化物蒸着膜などが挙げられ、樹脂層としてはポリ塩化ビニリデン、クロロトリフルオロエチレン(CTFE)を主成分としたポリマー類やテトラフルオロエチレン(TFE)を主成分としたポリマー類やフルオロアルキル基を有するポリマー、およびフルオロアルキル単位を主成分としたポリマー類などのフッ素含有樹脂、エチレンビニルアルコール共重合体などが挙げられる。また、バリア層3としては、これらの蒸着膜及び樹脂層の少なくとも1層を設けた樹脂フィルムなども挙げられる。バリア層3は、複数層設けてもよい。バリア層3は、金属材料により構成された層を含むことが好ましい。バリア層3を構成する金属材料としては、具体的には、アルミニウム合金、ステンレス鋼、チタン鋼、鋼板などが挙げられ、金属箔として用いる場合は、アルミニウム合金箔及びステンレス鋼箔の少なくとも一方を含むことが好ましい。
アルミニウム合金箔は、蓄電デバイス用外装材の成形性を向上させる観点から、例えば、焼きなまし処理済みのアルミニウム合金などにより構成された軟質アルミニウム合金箔であることがより好ましく、より成形性を向上させる観点から、鉄を含むアルミニウム合金箔であることが好ましい。鉄を含むアルミニウム合金箔(100質量%)において、鉄の含有量は、0.1~9.0質量%であることが好ましく、0.5~2.0質量%であることがより好ましい。鉄の含有量が0.1質量%以上であることにより、より優れた成形性を有する蓄電デバイス用外装材を得ることができる。鉄の含有量が9.0質量%以下であることにより、より柔軟性に優れた蓄電デバイス用外装材を得ることができる。軟質アルミニウム合金箔としては、例えば、JIS H4160:1994 A8021H-O、JIS H4160:1994 A8079H-O、JIS H4000:2014 A8021P-O、又はJIS H4000:2014 A8079P-Oで規定される組成を備えるアルミニウム合金箔が挙げられる。また必要に応じて、ケイ素、マグネシウム、銅、マンガンなどが添加されていてもよい。また軟質化は焼鈍処理などで行うことができる。
また、ステンレス鋼箔としては、オーステナイト系、フェライト系、オーステナイト・フェライト系、マルテンサイト系、析出硬化系のステンレス鋼箔などが挙げられる。さらに成形性に優れた蓄電デバイス用外装材を提供する観点から、ステンレス鋼箔は、オーステナイト系のステンレス鋼により構成されていることが好ましい。
ステンレス鋼箔を構成するオーステナイト系のステンレス鋼の具体例としては、SUS304、SUS301、SUS316Lなどが挙げられ、これら中でも、SUS304が特に好ましい。
バリア層3の厚みは、金属箔の場合、少なくとも水分の浸入を抑止するバリア層としての機能を発揮すればよく、例えば9~200μm程度が挙げられる。バリア層3の厚みは、好ましくは約85μm以下、より好ましくは約50μm以下、さらに好ましくは約40μm以下、特に好ましくは約35μm以下である。また、バリア層3の厚みは、好ましくは約10μm以上、さらに好ましくは約20μm以上、より好ましくは約25μm以上である。また、バリア層3の厚みの好ましい範囲としては、10~85μm程度、10~50μm程度、10~40μm程度、10~35μm程度、20~85μm程度、20~50μm程度、20~40μm程度、20~35μm程度、25~85μm程度、25~50μm程度、25~40μm程度、25~35μm程度が挙げられる。バリア層3がアルミニウム合金箔により構成されている場合、上述した範囲が特に好ましい。また、蓄電デバイス用外装材10に高成形性及び高剛性を付与する観点からは、バリア層3の厚みは、好ましくは約35μm以上、より好ましくは約45μm以上、さらに好ましくは約50μm以上、さらに好ましくは約55μm以上であり、また、好ましくは約200μm以下、より好ましくは約85μm以下、さらに好ましくは約75μm以下、さらに好ましくは約70μm以下であり、好ましい範囲としては、35~200μm程度、35~85μm程度、35~75μm程度、35~70μm程度、45~200μm程度、45~85μm程度、45~75μm程度、45~70μm程度、50~200μm程度、50~85μm程度、50~75μm程度、50~70μm程度、55~200μm程度、55~85μm程度、55~75μm程度、55~70μm程度である。蓄電デバイス用外装材10が高成形性を備えることにより、深絞り成形が容易となり、蓄電デバイスの高容量化に寄与し得る。また、蓄電デバイスが高容量化されると、蓄電デバイスの重量が増加するが、蓄電デバイス用外装材10の剛性が高められることにより、蓄電デバイスの高い密封性に寄与できる。また、特に、バリア層3がステンレス鋼箔により構成されている場合、ステンレス鋼箔の厚みは、好ましくは約60μm以下、より好ましくは約50μm以下、さらに好ましくは約40μm以下、さらに好ましくは約30μm以下、特に好ましくは約25μm以下である。また、ステンレス鋼箔の厚みは、好ましくは約10μm以上、より好ましくは約15μm以上である。また、ステンレス鋼箔の厚みの好ましい範囲としては、10~60μm程度、10~50μm程度、10~40μm程度、10~30μm程度、10~25μm程度、15~60μm程度、15~50μm程度、15~40μm程度、15~30μm程度、15~25μm程度が挙げられる。
また、バリア層3が金属箔の場合は、溶解や腐食の防止などのために、少なくとも基材層と反対側の面に耐腐食性皮膜を備えていることが好ましい。バリア層3は、耐腐食性皮膜を両面に備えていてもよい。ここで、耐腐食性皮膜とは、例えば、ベーマイト処理などの熱水変成処理、化成処理、陽極酸化処理、ニッケルやクロムなどのメッキ処理、コーティング剤を塗工する腐食防止処理をバリア層の表面に行い、バリア層に耐腐食性(例えば耐酸性、耐アルカリ性など)を備えさせる薄膜をいう。耐腐食性皮膜は、具体的には、バリア層の耐酸性を向上させる皮膜(耐酸性皮膜)、バリア層の耐アルカリ性を向上させる皮膜(耐アルカリ性皮膜)などを意味している。耐腐食性皮膜を形成する処理としては、1種類を行ってもよいし、2種類以上を組み合わせて行ってもよい。また、1層だけではなく多層化することもできる。さらに、これらの処理のうち、熱水変成処理及び陽極酸化処理は、処理剤によって金属箔表面を溶解させ、耐腐食性に優れる金属化合物を形成させる処理である。なお、これらの処理は、化成処理の定義に包含される場合もある。また、バリア層3が耐腐食性皮膜を備えている場合、耐腐食性皮膜を含めてバリア層3とする。
耐腐食性皮膜は、蓄電デバイス用外装材の成形時において、バリア層(例えば、アルミニウム合金箔)と基材層との間のデラミネーション防止、電解質と水分とによる反応で生成するフッ化水素により、バリア層表面の溶解、腐食、特にバリア層がアルミニウム合金箔である場合にバリア層表面に存在する酸化アルミニウムが溶解、腐食することを防止し、かつ、バリア層表面の接着性(濡れ性)を向上させ、ヒートシール時の基材層とバリア層とのデラミネーション防止、成形時の基材層とバリア層とのデラミネーション防止の効果を示す。
化成処理によって形成される耐腐食性皮膜としては、種々のものが知られており、主には、リン酸塩、クロム酸塩、フッ化物、トリアジンチオール化合物、及び希土類酸化物のうち少なくとも1種を含む耐腐食性皮膜などが挙げられる。リン酸塩、クロム酸塩を用いた化成処理としては、例えば、クロム酸クロメート処理、リン酸クロメート処理、リン酸-クロム酸塩処理、クロム酸塩処理などが挙げられ、これらの処理に用いるクロム化合物としては、例えば、硝酸クロム、フッ化クロム、硫酸クロム、酢酸クロム、蓚酸クロム、重リン酸クロム、クロム酸アセチルアセテート、塩化クロム、硫酸カリウムクロムなどが挙げられる。また、これらの処理に用いるリン化合物としては、リン酸ナトリウム、リン酸カリウム、リン酸アンモニウム、ポリリン酸などが挙げられる。また、クロメート処理としてはエッチングクロメート処理、電解クロメート処理、塗布型クロメート処理などが挙げられ、塗布型クロメート処理が好ましい。この塗布型クロメート処理は、バリア層(例えばアルミニウム合金箔)の少なくとも内層側の面を、まず、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法、酸活性化法等の周知の処理方法で脱脂処理を行い、その後、脱脂処理面にリン酸Cr(クロム)塩、リン酸Ti(チタン)塩、リン酸Zr(ジルコニウム)塩、リン酸Zn(亜鉛)塩などのリン酸金属塩及びこれらの金属塩の混合体を主成分とする処理液、または、リン酸非金属塩及びこれらの非金属塩の混合体を主成分とする処理液、あるいは、これらと合成樹脂などとの混合物からなる処理液をロールコート法、グラビア印刷法、浸漬法等の周知の塗工法で塗工し、乾燥する処理である。処理液は例えば、水、アルコール系溶剤、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤など各種溶媒を用いることができ、水が好ましい。また、このとき用いる樹脂成分としては、フェノール系樹脂やアクリル系樹脂などの高分子などが挙げられ、下記一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体を用いたクロメート処理などが挙げられる。なお、当該アミノ化フェノール重合体において、下記一般式(1)~(4)で表される繰り返し単位は、1種類単独で含まれていてもよいし、2種類以上の任意の組み合わせであってもよい。アクリル系樹脂は、ポリアクリル酸、アクリル酸メタクリル酸エステル共重合体、アクリル酸マレイン酸共重合体、アクリル酸スチレン共重合体、またはこれらのナトリウム塩、アンモニウム塩、アミン塩等の誘導体であることが好ましい。特にポリアクリル酸のアンモニウム塩、ナトリウム塩、又はアミン塩等のポリアクリル酸の誘導体が好ましい。本開示において、ポリアクリル酸とは、アクリル酸の重合体を意味している。また、アクリル系樹脂は、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体であることも好ましく、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体のアンモニウム塩、ナトリウム塩、又はアミン塩であることも好ましい。アクリル系樹脂は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
Figure 2023163177000001
Figure 2023163177000002
Figure 2023163177000003
Figure 2023163177000004
一般式(1)~(4)中、Xは、水素原子、ヒドロキシ基、アルキル基、ヒドロキシアルキル基、アリル基またはベンジル基を示す。また、R1及びR2は、それぞれ同一または異なって、ヒドロキシ基、アルキル基、またはヒドロキシアルキル基を示す。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基などの炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。また、X、R1及びR2で示されるヒドロキシアルキル基としては、例えば、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、1-ヒドロキシプロピル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基、1-ヒドロキシブチル基、2-ヒドロキシブチル基、3-ヒドロキシブチル基、4-ヒドロキシブチル基などのヒドロキシ基が1個置換された炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基及びヒドロキシアルキル基は、それぞれ同一であってもよいし、異なっていてもよい。一般式(1)~(4)において、Xは、水素原子、ヒドロキシ基またはヒドロキシアルキル基であることが好ましい。一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体の数平均分子量は、例えば、500~100万程度であることが好ましく、1000~2万程度であることがより好ましい。アミノ化フェノール重合体は、例えば、フェノール化合物又はナフトール化合物とホルムアルデヒドとを重縮合して上記一般式(1)又は一般式(3)で表される繰返し単位からなる重合体を製造し、次いでホルムアルデヒド及びアミン(R12NH)を用いて官能基(-CH2NR12)を上記で得られた重合体に導入することにより、製造される。アミノ化フェノール重合体は、1種単独で又は2種以上混合して使用される。
耐腐食性皮膜の他の例としては、希土類元素酸化物ゾル、アニオン性ポリマー、カチオン性ポリマーからなる群から選ばれる少なくとも1種を含有するコーティング剤を塗工するコーティングタイプの腐食防止処理によって形成される薄膜が挙げられる。コーティング剤には、さらにリン酸またはリン酸塩、ポリマーを架橋させる架橋剤を含んでもよい。希土類元素酸化物ゾルには、液体分散媒中に希土類元素酸化物の微粒子(例えば、平均粒径100nm以下の粒子)が分散されている。希土類元素酸化物としては、酸化セリウム、酸化イットリウム、酸化ネオジウム、酸化ランタン等が挙げられ、密着性をより向上させる観点から酸化セリウムが好ましい。耐腐食性皮膜に含まれる希土類元素酸化物は1種を単独で又は2種以上を組み合わせて用いることができる。希土類元素酸化物ゾルの液体分散媒としては、例えば、水、アルコール系溶剤、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤など各種溶媒を用いることができ、水が好ましい。カチオン性ポリマーとしては、例えば、ポリエチレンイミン、ポリエチレンイミンとカルボン酸を有するポリマーからなるイオン高分子錯体、アクリル主骨格に1級アミンをグラフト重合させた1級アミングラフトアクリル樹脂、ポリアリルアミンまたはその誘導体、アミノ化フェノールなどが好ましい。また、アニオン性ポリマーとしては、ポリ(メタ)アクリル酸またはその塩、あるいは(メタ)アクリル酸またはその塩を主成分とする共重合体であることが好ましい。また、架橋剤が、イソシアネート基、グリシジル基、カルボキシル基、オキサゾリン基のいずれかの官能基を有する化合物とシランカップリング剤よりなる群から選ばれる少なくとも1種であることが好ましい。また、前記リン酸またはリン酸塩が、縮合リン酸または縮合リン酸塩であることが好ましい。
耐腐食性皮膜の一例としては、リン酸中に、酸化アルミニウム、酸化チタン、酸化セリウム、酸化スズなどの金属酸化物や硫酸バリウムの微粒子を分散させたものをバリア層の表面に塗布し、150℃以上で焼付け処理を行うことにより形成したものが挙げられる。
耐腐食性皮膜は、必要に応じて、さらにカチオン性ポリマー及びアニオン性ポリマーの少なくとも一方を積層した積層構造としてもよい。カチオン性ポリマー、アニオン性ポリマーとしては、上述したものが挙げられる。
なお、耐腐食性皮膜の組成の分析は、例えば、飛行時間型2次イオン質量分析法を用いて行うことができる。
化成処理においてバリア層3の表面に形成させる耐腐食性皮膜の量については、特に制限されないが、例えば、塗布型クロメート処理を行う場合であれば、バリア層3の表面1m2当たり、クロム酸化合物がクロム換算で例えば0.5~50mg程度、好ましくは1.0~40mg程度、リン化合物がリン換算で例えば0.5~50mg程度、好ましくは1.0~40mg程度、及びアミノ化フェノール重合体が例えば1.0~200mg程度、好ましくは5.0~150mg程度の割合で含有されていることが望ましい。
耐腐食性皮膜の厚みとしては、特に制限されないが、皮膜の凝集力や、バリア層や熱融着性樹脂層との密着力の観点から、好ましくは1nm~20μm程度、より好ましくは1nm~100nm程度、さらに好ましくは1nm~50nm程度が挙げられる。なお、耐腐食性皮膜の厚みは、透過電子顕微鏡による観察、または、透過電子顕微鏡による観察と、エネルギー分散型X線分光法もしくは電子線エネルギー損失分光法との組み合わせによって測定することができる。飛行時間型2次イオン質量分析法を用いた耐腐食性皮膜の組成の分析により、例えば、CeとPとOからなる2次イオン(例えば、Ce2PO4 +、CePO4 -などの少なくとも1種)や、例えば、CrとPとOからなる2次イオン(例えば、CrPO2 +、CrPO4 -などの少なくとも1種)に由来するピークが検出される。
化成処理は、耐腐食性皮膜の形成に使用される化合物を含む溶液を、バーコート法、ロールコート法、グラビアコート法、浸漬法などによって、バリア層の表面に塗布した後に、バリア層の温度が70~200℃程度になるように加熱することにより行われる。また、バリア層に化成処理を施す前に、予めバリア層を、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法などによる脱脂処理に供してもよい。このように脱脂処理を行うことにより、バリア層の表面の化成処理をより効率的に行うことが可能となる。また、脱脂処理にフッ素含有化合物を無機酸で溶解させた酸脱脂剤を用いることで、金属箔の脱脂効果だけでなく不動態である金属のフッ化物を形成させることが可能であり、このような場合には脱脂処理だけを行ってもよい。
[熱融着性樹脂層4]
本開示の蓄電デバイス用外装材において、熱融着性樹脂層4は、最内層に該当し、蓄電デバイスの組み立て時に熱融着性樹脂層同士が熱融着して蓄電デバイス素子を密封する機能を発揮する層(シーラント層)である。
熱融着性樹脂層4を構成している樹脂については、熱融着可能であることを限度として特に制限されないが、ポリオレフィン、酸変性ポリオレフィンなどのポリオレフィン骨格を含む樹脂が好ましい。熱融着性樹脂層4を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能である。また、熱融着性樹脂層4を構成している樹脂を赤外分光法で分析すると、無水マレイン酸に由来するピークが検出されることが好ましい。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。熱融着性樹脂層4が無水マレイン酸変性ポリオレフィンより構成された層である場合、赤外分光法にて測定すると、無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。
熱融着性樹脂層4は、ポリオレフィン骨格を含む樹脂を主成分として含んでいることが好ましく、ポリオレフィンを主成分として含んでいることがより好ましく、ポリプロピレンを主成分として含んでいることがさらに好ましい。ここで、主成分とは、熱融着性樹脂層4に含まれる樹脂成分のうち、含有率が、例えば50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、さらに好ましくは90質量%以上、さらに好ましくは95質量%以上、さらに好ましくは98質量%以上、さらに好ましくは99質量%以上の樹脂成分であることを意味する。例えば、熱融着性樹脂層4がポリプロピレンを主成分として含むとは、熱融着性樹脂層4に含まれる樹脂成分のうち、ポリプロピレンの含有率が、例えば50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、さらに好ましくは90質量%以上、さらに好ましくは95質量%以上、さらに好ましくは98質量%以上、さらに好ましくは99質量%以上であることを意味する。
ポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;エチレン-αオレフィン共重合体;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等のポリプロピレン;プロピレン-αオレフィン共重合体;エチレン-ブテン-プロピレンのターポリマー等が挙げられる。これらの中でも、ポリプロピレンが好ましい。共重合体である場合のポリオレフィン樹脂は、ブロック共重合体であってもよく、ランダム共重合体であってもよい。これらポリオレフィン系樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。
また、ポリオレフィンは、環状ポリオレフィンであってもよい。環状ポリオレフィンは、オレフィンと環状モノマーとの共重合体であり、前記環状ポリオレフィンの構成モノマーであるオレフィンとしては、例えば、エチレン、プロピレン、4-メチル-1-ペンテン、スチレン、ブタジエン、イソプレン等が挙げられる。また、環状ポリオレフィンの構成モノマーである環状モノマーとしては、例えば、ノルボルネン等の環状アルケン;シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン等が挙げられる。これらの中でも、好ましくは環状アルケン、さらに好ましくはノルボルネンが挙げられる。
また、ポリオレフィンは、酸変性ポリオレフィンであってもよい。酸変性ポリオレフィンとは、ポリオレフィンを酸成分でブロック重合又はグラフト重合することにより変性したポリマーである。酸変性されるポリオレフィンとしては、前記のポリオレフィンや、前記のポリオレフィンにアクリル酸若しくはメタクリル酸等の極性分子を共重合させた共重合体、又は、架橋ポリオレフィン等の重合体等も使用できる。また、酸変性に使用される酸成分としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸等のカルボン酸またはその無水物が挙げられる。
酸変性ポリオレフィンは、酸変性環状ポリオレフィンであってもよい。酸変性環状ポリオレフィンとは、環状ポリオレフィンを構成するモノマーの一部を、酸成分に代えて共重合することにより、または環状ポリオレフィンに対して酸成分をブロック重合又はグラフト重合することにより得られるポリマーである。酸変性される環状ポリオレフィンについては、前記と同様である。また、酸変性に使用される酸成分としては、前記のポリオレフィンの変性に使用される酸成分と同様である。
好ましい酸変性ポリオレフィンとしては、カルボン酸またはその無水物で変性されたポリオレフィン、カルボン酸またはその無水物で変性されたポリプロピレン、無水マレイン酸変性ポリオレフィン、無水マレイン酸変性ポリプロピレンが挙げられる。
熱融着性樹脂層4は、1種の樹脂単独で形成してもよく、また2種以上の樹脂を組み合わせたブレンドポリマーにより形成してもよい。さらに、熱融着性樹脂層4は、1層のみで形成されていてもよいが、同一又は異なる樹脂によって2層以上で形成されていてもよい。
熱融着性樹脂層4をバリア層3や接着層5などと積層して本開示の蓄電デバイス用外装材10を製造する際に、予め形成された樹脂フィルムを熱融着性樹脂層4として用いてもよい。また、熱融着性樹脂層4を形成する熱融着性樹脂を、押出成形や塗布などによってバリア層3や接着層5などの表面上でフィルム化して、樹脂フィルムにより形成された熱融着性樹脂層4としてもよい。
また、熱融着性樹脂層4は、必要に応じて滑剤などを含んでいてもよい。熱融着性樹脂層4が滑剤を含む場合、蓄電デバイス用外装材の成形性を高め得る。滑剤としては、特に制限されず、公知の滑剤を用いることができる。
滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。滑剤の具体例としては、基材層1で例示したものが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよく、2種類以上を組み合わせることが好ましい。
本開示において、蓄電デバイス用外装材の成形性を高める観点からは、熱融着性樹脂層4の表面及び内部の少なくとも一方には、滑剤が存在していることが好ましい。滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。アミド系滑剤の具体例としては、例えば、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、脂肪酸エステルアミド、芳香族ビスアミドなどが挙げられる。飽和脂肪酸アミドの具体例としては、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミドなどが挙げられる。不飽和脂肪酸アミドの具体例としては、オレイン酸アミド、エルカ酸アミドなどが挙げられる。置換アミドの具体例としては、N-オレイルパルミチン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミドなどが挙げられる。また、メチロールアミドの具体例としては、メチロールステアリン酸アミドなどが挙げられる。飽和脂肪酸ビスアミドの具体例としては、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジステアリルセバシン酸アミドなどが挙げられる。不飽和脂肪酸ビスアミドの具体例としては、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’-ジオレイルアジピン酸アミド、N,N’-ジオレイルセバシン酸アミドなどが挙げられる。脂肪酸エステルアミドの具体例としては、ステアロアミドエチルステアレートなどが挙げられる。また、芳香族ビスアミドの具体例としては、m-キシリレンビスステアリン酸アミド、m-キシリレンビスヒドロキシステアリン酸アミド、N,N’-ジステアリルイソフタル酸アミドなどが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよく、2種類以上を組み合わせることが好ましい。
熱融着性樹脂層4の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、蓄電デバイス用外装材の成形性を高める観点からは、好ましくは約1mg/m2以上、より好ましくは約3mg/m2以上、さらに好ましくは約5mg/m2以上、さらに好ましくは約10mg/m2以上、さらに好ましくは約15mg/m2以上であり、また、好ましくは約50mg/m2以下、さらに好ましくは約40mg/m2以下であり、好ましい範囲としては、1~50mg/m2程度、1~40mg/m2程度、3~50mg/m2程度、3~40mg/m2程度、5~50mg/m2程度、5~40mg/m2程度、10~50mg/m2程度、10~40mg/m2程度、15~50mg/m2程度、15~40mg/m2程度が挙げられる。
熱融着性樹脂層4の内部に滑剤が存在する場合、その存在量としては、特に制限されないが、蓄電デバイス用外装材の成形性を高める観点からは、好ましくは約100ppm以上、より好ましくは約300ppm以上、さらに好ましくは約500ppm以上であり、また、好ましくは約3000ppm以下、より好ましくは約2000ppm以下であり、好ましい範囲としては、100~3000ppm程度、100~2000ppm程度、300~3000ppm程度、300~2000ppm程度、500~3000ppm程度、500~2000ppm程度が挙げられる。熱融着性樹脂層4の内部に滑剤が2種類以上存在する場合、上記の滑剤量は合計滑剤量である。また、熱融着性樹脂層4の内部に滑剤が2種類以上存在する場合、1種類目の滑剤の存在量は、特に制限されないが、蓄電デバイス用外装材の成形性を高める観点からは、好ましくは約100ppm以上、より好ましくは約300ppm以上、さらに好ましくは約500ppm以上であり、また、好ましくは約3000ppm以下、より好ましくは約2000ppm以下であり、好ましい範囲としては、100~3000ppm程度、100~2000ppm程度、300~3000ppm程度、300~2000ppm程度、500~3000ppm程度、500~2000ppm程度が挙げられる。2種類目の滑剤の存在量は、特に制限されないが、蓄電デバイス用外装材の成形性を高める観点からは、好ましくは約50ppm以上、より好ましくは約100ppm以上、さらに好ましくは約200ppm以上であり、また、好ましくは約1500ppm以下、より好ましくは約1000ppm以下であり、好ましい範囲としては、50~1500ppm程度、50~1000ppm程度、100~1500ppm程度、100~1000ppm程度、200~1500ppm程度、200~1000ppm程度が挙げられる。
熱融着性樹脂層4の表面に存在する滑剤は、熱融着性樹脂層4を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、熱融着性樹脂層4の表面に滑剤を塗布したものであってもよい。
また、熱融着性樹脂層4の厚みとしては、熱融着性樹脂層同士が熱融着して蓄電デバイス素子を密封する機能を発揮すれば特に制限されないが、例えば約100μm以下、好ましくは約85μm以下、より好ましくは15~85μm程度が挙げられる。なお、例えば、後述の接着層5の厚みが10μm以上である場合には、熱融着性樹脂層4の厚みとしては、好ましくは約85μm以下、より好ましくは15~45μm程度が挙げられ、例えば後述の接着層5の厚みが10μm未満である場合や接着層5が設けられていない場合には、熱融着性樹脂層4の厚みとしては、好ましくは約20μm以上、より好ましくは35~85μm程度が挙げられる。
[接着層5]
本開示の蓄電デバイス用外装材において、接着層5は、バリア層3(又は耐腐食性皮膜)と熱融着性樹脂層4を強固に接着させるために、これらの間に必要に応じて設けられる層である。
接着層5は、バリア層3と熱融着性樹脂層4とを接着可能である樹脂によって形成される。接着層5の形成に使用される樹脂としては、例えば接着剤層2で例示した接着剤と同様のものが使用できる。
また、接着層5と熱融着性樹脂層4とを強固に接着する観点から、接着層5の形成に使用される樹脂としてはポリオレフィン骨格を含んでいることが好ましく、前述の熱融着性樹脂層4で例示したポリオレフィン、酸変性ポリオレフィン、環状ポリオレフィン、酸変性環状ポリオレフィンが挙げられる。一方、バリア層3と接着層5とを強固に接着する観点から、接着層5は酸変性ポリオレフィンを含むことが好ましい。酸変性成分としては、マレイン酸、イタコン酸、コハク酸、アジピン酸などのジカルボン酸やこれらの無水物、アクリル酸、メタクリル酸などが挙げられるが、変性のし易さや汎用性などの点から無水マレイン酸が最も好ましい。また、蓄電デバイス用外装材の耐熱性の観点からは、オレフィン成分はポリプロピレン系樹脂であることが好ましく、接着層5は無水マレイン酸変性ポリプロピレンを含むことが最も好ましい。
接着層5の形成に使用される樹脂としてはポリオレフィン骨格を含んでいる場合、接着層5は、ポリオレフィン骨格を含む樹脂を主成分として含んでいることが好ましく、酸変性ポリオレフィンを主成分として含んでいることがより好ましく、酸変性ポリプロピレンを主成分として含んでいることがさらに好ましい。ここで、主成分とは、接着層5に含まれる樹脂成分のうち、含有率が、例えば50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、さらに好ましくは90質量%以上、さらに好ましくは95質量%以上、さらに好ましくは98質量%以上、さらに好ましくは99質量%以上の樹脂成分であることを意味する。例えば、接着層5が酸変性ポリプロピレンを主成分として含むとは、接着層5に含まれる樹脂成分のうち、酸変性ポリプロピレンの含有率が、例えば50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上、さらに好ましくは90質量%以上、さらに好ましくは95質量%以上、さらに好ましくは98質量%以上、さらに好ましくは99質量%以上であることを意味する。
接着層5を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能であり、分析方法は特に問わない。また、接着層5を構成している樹脂が酸変性ポリオレフィンを含むことは、例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。
さらに、蓄電デバイス用外装材の耐熱性や耐内容物性などの耐久性や、厚みを薄くしつつ成形性を担保する観点からは、接着層5は酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物であることがより好ましい。酸変性ポリオレフィンとしては、好ましくは、前記のものが例示できる。
また、接着層5は、酸変性ポリオレフィンと、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ基を有する化合物からなる群より選択される少なくとも1種とを含む樹脂組成物の硬化物であることが好ましく、酸変性ポリオレフィンと、イソシアネート基を有する化合物及びエポキシ基を有する化合物からなる群より選択される少なくとも1種とを含む樹脂組成物の硬化物であることが特に好ましい。また、接着層5は、ポリウレタン、ポリエステル、及びエポキシ樹脂からなる群より選択される少なくとも1種を含むことが好ましく、ポリウレタン及びエポキシ樹脂を含むことがより好ましい。ポリエステルとしては、例えばエポキシ基と無水マレイン酸基の反応により生成するエステル樹脂、オキサゾリン基と無水マレイン酸基の反応で生成するアミドエステル樹脂が好ましい。なお、接着層5に、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、エポキシ樹脂などの硬化剤の未反応物が残存している場合、未反応物の存在は、例えば、赤外分光法、ラマン分光法、飛行時間型二次イオン質量分析法(TOF-SIMS)などから選択される方法で確認することが可能である。
また、バリア層3と接着層5との密着性をより高める観点から、接着層5は、酸素原子、複素環、C=N結合、及びC-O-C結合からなる群より選択される少なくとも1種を有する硬化剤を含む樹脂組成物の硬化物であることが好ましい。複素環を有する硬化剤としては、例えば、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤などが挙げられる。また、C=N結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、イソシアネート基を有する硬化剤などが挙げられる。また、C-O-C結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤などが挙げられる。接着層5がこれらの硬化剤を含む樹脂組成物の硬化物であることは、例えば、ガスクロマトグラフ質量分析(GCMS)、赤外分光法(IR)、飛行時間型二次イオン質量分析法(TOF-SIMS)、X線光電子分光法(XPS)などの方法で確認することができる。
イソシアネート基を有する化合物としては、特に制限されないが、バリア層3と接着層5との密着性を効果的に高める観点からは、好ましくは多官能イソシアネート化合物が挙げられる。多官能イソシアネート化合物は、2つ以上のイソシアネート基を有する化合物であれば、特に限定されない。多官能イソシアネート系硬化剤の具体例としては、ペンタンジイソシアネート(PDI)、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、これらをポリマー化やヌレート化したもの、これらの混合物や他ポリマーとの共重合物などが挙げられる。また、アダクト体、ビウレット体、イソシアヌレート体などが挙げられる。
接着層5における、イソシアネート基を有する化合物の含有量としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。
オキサゾリン基を有する化合物は、オキサゾリン骨格を備える化合物であれば、特に限定されない。オキサゾリン基を有する化合物の具体例としては、ポリスチレン主鎖を有するもの、アクリル主鎖を有するものなどが挙げられる。また、市販品としては、例えば、日本触媒社製のエポクロスシリーズなどが挙げられる。
接着層5における、オキサゾリン基を有する化合物の割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。
エポキシ基を有する化合物としては、例えば、エポキシ樹脂が挙げられる。エポキシ樹脂としては、分子内に存在するエポキシ基によって架橋構造を形成することが可能な樹脂であれば、特に制限されず、公知のエポキシ樹脂を用いることができる。エポキシ樹脂の重量平均分子量としては、好ましくは50~2000程度、より好ましくは100~1000程度、さらに好ましくは200~800程度が挙げられる。なお、第1の開示において、エポキシ樹脂の重量平均分子量は、標準サンプルとしてポリスチレンを用いた条件で測定された、ゲル浸透クロマトグラフィ(GPC)により測定された値である。
エポキシ樹脂の具体例としては、トリメチロールプロパンのグリシジルエーテル誘導体、ビスフェノールAジグリシジルエーテル、変性ビスフェノールAジグリシジルエーテル、ビスフェノールF型グリシジルエーテル、ノボラックグリシジルエーテル、グリセリンポリグリシジルエーテル、ポリグリセリンポリグリシジルエーテルなどが挙げられる。エポキシ樹脂は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。
接着層5における、エポキシ樹脂の割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。
ポリウレタンとしては、特に制限されず、公知のポリウレタンを使用することができる。接着層5は、例えば、2液硬化型ポリウレタンの硬化物であってもよい。
接着層5における、ポリウレタンの割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、電解液などのバリア層の腐食を誘発する成分が存在する雰囲気における、バリア層3と接着層5との密着性を効果的に高めることができる。
なお、接着層5が、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ樹脂からなる群より選択される少なくとも1種と、前記酸変性ポリオレフィンとを含む樹脂組成物の硬化物である場合、酸変性ポリオレフィンが主剤として機能し、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ基を有する化合物は、それぞれ、硬化剤として機能する。
接着層5には、カルボジイミド基を有する改質剤が含まれていてもよい。
接着層5をバリア層3や熱融着性樹脂層4などと積層して本開示の蓄電デバイス用外装材10を製造する際に、予め形成された樹脂フィルムを接着層5として用いてもよい。また、接着層5を形成する熱融着性樹脂を、押出成形や塗布などによってバリア層3や熱融着性樹脂層4などの表面上でフィルム化して、樹脂フィルムにより形成された接着層5としてもよい。
接着層5の厚さは、好ましくは、約50μm以下、約40μm以下、約30μm以下、約20μm以下、約5μm以下である。また、接着層5の厚さは、好ましくは、約0.1μm以上、約0.5μm以上である。また、接着層5の厚さの範囲としては、好ましくは、0.1~50μm程度、0.1~40μm程度、0.1~30μm程度、0.1~20μm程度、0.1~5μm程度、0.5~50μm程度、0.5~40μm程度、0.5~30μm程度、0.5~20μm程度、0.5~5μm程度が挙げられる。より具体的には、接着剤層2で例示した接着剤や、酸変性ポリオレフィンと硬化剤との硬化物である場合は、好ましくは1~10μm程度、より好ましくは1~5μm程度が挙げられる。また、熱融着性樹脂層4で例示した樹脂を用いる場合であれば、好ましくは2~50μm程度、より好ましくは10~40μm程度が挙げられる。なお、接着層5が接着剤層2で例示した接着剤や、酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物である場合、例えば、当該樹脂組成物を塗布し、加熱等により硬化させることにより、接着層5を形成することができる。また、熱融着性樹脂層4で例示した樹脂を用いる場合、例えば、熱融着性樹脂層4と接着層5との押出成形により形成することができる。
[表面被覆層6]
本開示の蓄電デバイス用外装材は、意匠性、耐電解液性、耐傷性、成形性などの向上の少なくとも1つを目的として、必要に応じて、基材層1の上(基材層1のバリア層3とは反対側)に、表面被覆層6を備えていてもよい。表面被覆層6は、蓄電デバイス用外装材を用いて蓄電デバイスを組み立てた時に、蓄電デバイス用外装材の最外層側に位置する層である。本開示において、表面被覆層6は、前記の反射率A及び反射率Bの調整に特に好適に利用することができる。
表面被覆層6は、例えば、ポリ塩化ビニリデン、ポリエステル、ポリアミド、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ポリウレタン、珪素樹脂、フェノール樹脂などの樹脂や、これらの樹脂の変性物が挙げられる。また、これらの樹脂の共重合物であってもよいし、共重合物の変性物であってもよい。さらに、これらの樹脂の混合物であってもよい。樹脂は、好ましくは硬化性樹脂である。すなわち、表面被覆層6は、硬化性樹脂を含む樹脂組成物の硬化物から構成されていることが好ましい。
表面被覆層6を形成する樹脂が硬化型の樹脂である場合、当該樹脂は、1液硬化型及び2液硬化型のいずれであってもよいが、好ましくは2液硬化型である。2液硬化型樹脂としては、例えば、2液硬化型ポリウレタン、2液硬化型ポリエステル、2液硬化型エポキシ樹脂などが挙げられる。これらの中でも2液硬化型ポリウレタンが好ましい。
2液硬化型ポリウレタンとしては、例えば、ポリオール化合物を含有する第1剤と、イソシアネート化合物を含有する第2剤とを含むポリウレタンが挙げられる。好ましくはポリエステルポリオール、ポリエーテルポリオール、およびアクリルポリオール等のポリオールを第1剤として、芳香族系又は脂肪族系のポリイソシアネートを第2剤とした二液硬化型のポリウレタンが挙げられる。また、ポリウレタンとしては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物と、イソシアネート化合物とを含むポリウレタンが挙げられる。ポリウレタンとしては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物と、ポリオール化合物とを含むポリウレタンが挙げられる。ポリウレタンとしては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物を、空気中などの水分と反応させることによって硬化させたポリウレタンが挙げられる。ポリオール化合物としては、繰り返し単位の末端の水酸基に加えて、側鎖にも水酸基を有するポリエステルポリオールを用いることが好ましい。第2剤としては、脂肪族、脂環式、芳香族、芳香脂肪族のイソシアネート系化合物が挙げられる。イソシアネート系化合物としては、例えばヘキサメチレンジイソシアネート(HDI)、キシリレンジイソシアネート(XDI)、イソホロンジイソシアネート(IPDI)、水素化XDI(H6XDI)、水素化MDI(H12MDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ナフタレンジイソシアネート(NDI)等が挙げられる。また、これらのジイソシアネートの1種類又は2種類以上からの多官能イソシアネート変性体等が挙げられる。また、ポリイソシアネート化合物として多量体(例えば三量体)を使用することもできる。このような多量体には、アダクト体、ビウレット体、ヌレート体等が挙げられる。なお、脂肪族イソシアネート系化合物とは脂肪族基を有し芳香環を有さないイソシアネートを指し、脂環式イソシアネート系化合物とは脂環式炭化水素基を有するイソシアネートを指し、芳香族イソシアネート系化合物とは芳香環を有するイソシアネートを指す。表面被覆層6がポリウレタンにより形成されていることで蓄電デバイス用外装材に優れた電解液耐性が付与される。
また、表面被覆層6は、接着性を阻害しない限り他成分の添加が許容され、着色剤や熱可塑性エラストマー、粘着付与剤、フィラーなどを含有してもよい。これらの種類、含有率、大きさ等により、本開示の蓄電デバイス用外装材の反射率A及び反射率Bを好適に調整できる。表面被覆層6が着色剤を含んでいることにより、蓄電デバイス用外装材を着色することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。
顔料の種類は、表面被覆層6の接着性を損なわない範囲であれば、特に限定されない。有機顔料としては、例えば、アゾ系、フタロシアニン系、キナクリドン系、アンスラキノン系、ジオキサジン系、インジゴチオインジゴ系、ペリノン-ペリレン系、イソインドレニン系、ベンズイミダゾロン系等の顔料が挙げられ、無機顔料としては、カーボンブラック系、酸化チタン系、カドミウム系、鉛系、酸化クロム系、鉄系等の顔料が挙げられ、その他に、マイカ(雲母)の微粉末、魚鱗箔等が挙げられる。
着色剤の中でも、例えば蓄電デバイス用外装材の外観を白色、赤色、青色、黄色、銀色、金色、灰色、茶色などの色味とするためには、これらの色味を有する着色剤を用いることが好ましい。本開示の蓄電デバイス用外装材10、表面被覆層6がこれらの色味の着色剤を含み、外側から観察される外観がこれらの色味であることが特に好ましい。
顔料の平均粒子径としては、特に制限されないが、本開示の効果をより好適に発揮する観点から、例えば、0.05~5μm程度、好ましくは0.08~2μm程度が挙げられる。なお、顔料の平均粒子径は、レーザー回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。
表面被覆層6における顔料の含有量としては、蓄電デバイス用外装材が着色されれば特に制限されないが、本開示の効果をより好適に発揮する観点から、例えば5~60質量%程度、好ましくは10~40質量%が挙げられる。
表面被覆層6は、表面被覆層6の表面及び内部の少なくとも一方には、該表面被覆層6やその表面に備えさせるべき機能性等に応じて、必要に応じて、滑剤、難燃剤、アンチブロッキング剤、難燃剤、酸化防止剤、光安定化剤、粘着付与剤、耐電防止剤等の添加剤を含んでいてもよい。添加剤としては、例えば、平均粒子径が0.5nm~5μm程度の微粒子が挙げられる。添加剤の平均粒子径は、レーザー回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。
添加剤は、無機物及び有機物のいずれであってもよい。また、添加剤の形状についても、特に制限されず、例えば、球状、繊維状、板状、不定形、鱗片状などが挙げられる。
添加剤の具体例としては、タルク、シリカ、グラファイト、カオリン、モンモリロナイト、マイカ、ハイドロタルサイト、シリカゲル、ゼオライト、水酸化アルミニウム、水酸化マグネシウム、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、酸化ネオジウム、酸化アンチモン、酸化チタン、酸化セリウム、硫酸カルシウム、硫酸バリウム、炭酸カルシウム、ケイ酸カルシウム、炭酸リチウム、安息香酸カルシウム、シュウ酸カルシウム、ステアリン酸マグネシウム、アルミナ、カーボンブラック、カーボンナノチューブ、高融点ナイロン、アクリレート樹脂、架橋アクリル、架橋スチレン、架橋ポリエチレン、ベンゾグアナミン、金、アルミニウム、銅、ニッケルなどが挙げられる。添加剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの添加剤の中でも、分散安定性やコストなどの観点から、好ましくはシリカ、硫酸バリウム、酸化チタンが挙げられる。また、添加剤には、表面に絶縁処理、高分散性処理などの各種表面処理を施してもよい。
表面被覆層6を形成する方法としては、特に制限されず、例えば、表面被覆層6を形成する樹脂を塗布する方法が挙げられる。表面被覆層6に添加剤を配合する場合には、添加剤を混合した樹脂を塗布すればよい。
本開示において、蓄電デバイス用外装材の成形性を高める観点からは、表面被覆層6の表面及び内部の少なくとも一方には、滑剤が存在していることが好ましい。滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。アミド系滑剤の具体例としては、例えば、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、脂肪酸エステルアミド、芳香族ビスアミドなどが挙げられる。飽和脂肪酸アミドの具体例としては、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミドなどが挙げられる。不飽和脂肪酸アミドの具体例としては、オレイン酸アミド、エルカ酸アミドなどが挙げられる。置換アミドの具体例としては、N-オレイルパルミチン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミドなどが挙げられる。また、メチロールアミドの具体例としては、メチロールステアリン酸アミドなどが挙げられる。飽和脂肪酸ビスアミドの具体例としては、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジステアリルセバシン酸アミドなどが挙げられる。不飽和脂肪酸ビスアミドの具体例としては、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’-ジオレイルアジピン酸アミド、N,N’-ジオレイルセバシン酸アミドなどが挙げられる。脂肪酸エステルアミドの具体例としては、ステアロアミドエチルステアレートなどが挙げられる。また、芳香族ビスアミドの具体例としては、m-キシリレンビスステアリン酸アミド、m-キシリレンビスヒドロキシステアリン酸アミド、N,N’-ジステアリルイソフタル酸アミドなどが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよく、2種類以上を組み合わせることが好ましい。
表面被覆層6の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、例えば約3mg/m2以上、好ましくは約4mg/m2以上、約5mg/m2以上が挙げられる。また、表面被覆層6の表面に存在する滑剤量としては、例えば約15mg/m2以下、好ましくは約14mg/m2以下、約10mg/m2以下が挙げられる。また、表面被覆層6の表面に存在する滑剤量の好ましい範囲としては、3~15mg/m2程度、3~14mg/m2程度、3~10mg/m2程度、4~15mg/m2程度、4~14mg/m2程度、4~10mg/m2程度、5~15mg/m2程度、5~14mg/m2程度、5~10mg/m2程度が挙げられる。
表面被覆層6の表面に存在する滑剤は、表面被覆層6を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、表面被覆層6の表面に滑剤を塗布したものであってもよい。
表面被覆層6の厚みとしては、表面被覆層6としての上記の機能を発揮すれば特に制限されず、例えば0.5~10μm程度、好ましくは1~5μm程度が挙げられる。
3.蓄電デバイス用外装材の製造方法
蓄電デバイス用外装材の製造方法については、本開示の蓄電デバイス用外装材が備える各層を積層させた積層体が得られる限り、特に制限されず、少なくとも、基材層1、バリア層3、及び熱融着性樹脂層4がこの順となるように積層する工程を備える方法が挙げられる。本開示の蓄電デバイス用外装材の製造方法においても、紫外可視近赤外分光光度計を用い、前記積層体の前記外側から、波長330nmの光を照射して測定される反射率Aが、70%以下であり、かつ、紫外可視近赤外分光光度計を用い、前記積層体の前記外側から、波長1200nmの光を照射して測定される反射率Bが、30%以上である。
本開示の蓄電デバイス用外装材の製造方法の一例としては、以下の通りである。まず、基材層1、接着剤層2、バリア層3が順に積層された積層体(以下、「積層体A」と表記することもある)を形成する。積層体Aの形成は、具体的には、基材層1上又は必要に応じて表面が化成処理されたバリア層3に接着剤層2の形成に使用される接着剤を、グラビアコート法、ロールコート法などの塗布方法で塗布、乾燥した後に、当該バリア層3又は基材層1を積層させて接着剤層2を硬化させるドライラミネート法によって行うことができる。
次いで、積層体Aのバリア層3上に、熱融着性樹脂層4を積層させる。バリア層3上に熱融着性樹脂層4を直接積層させる場合には、積層体Aのバリア層3上に、熱融着性樹脂層4をサーマルラミネート法、押出ラミネート法などの方法により積層すればよい。また、バリア層3と熱融着性樹脂層4の間に接着層5を設ける場合には、接着層5と熱融着性樹脂層4は、例えば、(1)押出法、(2)サーマルラミネート法、(3)サンドイッチラミネート法、(4)ドライラミネート法などにより積層することができる。(1)押出法としては、例えば、積層体Aのバリア層3上に、接着層5及び熱融着性樹脂層4を押出しすることにより積層する方法(共押出しラミネート法、タンデムラミネート法)などが挙げられる。また、(2)サーマルラミネート法としては、例えば、別途、接着層5と熱融着性樹脂層4が積層した積層体を形成し、これを積層体Aのバリア層3上に積層する方法や、積層体Aのバリア層3上に接着層5が積層した積層体を形成し、これを熱融着性樹脂層4と積層する方法などが挙げられる。また、(3)サンドイッチラミネート法としては、例えば、積層体Aのバリア層3と、予めシート状に製膜した熱融着性樹脂層4との間に、溶融させた接着層5を流し込みながら、接着層5を介して積層体Aと熱融着性樹脂層4を貼り合せる方法などが挙げられる。また、(4)ドライラミネート法としては、例えば、積層体Aのバリア層3上に、接着層5を形成させるための接着剤を溶液コーティングし、乾燥させる方法や、さらには焼き付ける方法などにより積層させ、この接着層5上に予めシート状に製膜した熱融着性樹脂層4を積層する方法などが挙げられる。
表面被覆層6を設ける場合には、基材層1のバリア層3とは反対側の表面に、表面被覆層6を積層する。表面被覆層6は、例えば表面被覆層6を形成する上記の樹脂を基材層1の表面に塗布することにより形成することができる。なお、基材層1の表面にバリア層3を積層する工程と、基材層1の表面に表面被覆層6を積層する工程の順番は、特に制限されない。例えば、基材層1の表面に表面被覆層6を形成した後、基材層1の表面被覆層6とは反対側の表面にバリア層3を形成してもよい。
上記のようにして、必要に応じて設けられる表面被覆層6/基材層1/必要に応じて設けられる接着剤層2/バリア層3/必要に応じて設けられる接着層5/熱融着性樹脂層4をこの順に備える積層体が形成されるが、必要に応じて設けられる接着剤層2及び接着層5の接着性を強固にするために、さらに、加熱処理に供してもよい。
蓄電デバイス用外装材において、積層体を構成する各層には、必要に応じて、コロナ処理、ブラスト処理、酸化処理、オゾン処理などの表面活性化処理を施すことにより加工適性を向上させてもよい。例えば、基材層1のバリア層3とは反対側の表面にコロナ処理を施すことにより、基材層1表面へのインクの印刷適性を向上させることができる。
4.蓄電デバイス用外装材の用途
本開示の蓄電デバイス用外装材は、正極、負極、電解質等の蓄電デバイス素子を密封して収容するための包装体に使用される。すなわち、本開示の蓄電デバイス用外装材によって形成された包装体中に、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子を収容して、蓄電デバイスとすることができる。
具体的には、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子を、本開示の蓄電デバイス用外装材で、前記正極及び負極の各々に接続された金属端子を外側に突出させた状態で、蓄電デバイス素子の周縁にフランジ部(熱融着性樹脂層同士が接触する領域)が形成できるようにして被覆し、前記フランジ部の熱融着性樹脂層同士をヒートシールして密封させることによって、蓄電デバイス用外装材を使用した蓄電デバイスが提供される。なお、本開示の蓄電デバイス用外装材により形成された包装体中に蓄電デバイス素子を収容する場合、本開示の蓄電デバイス用外装材の熱融着性樹脂部分が内側(蓄電デバイス素子と接する面)になるようにして、包装体を形成する。2つの蓄電デバイス用外装材の熱融着性樹脂層同士を対向させて重ね合わせ、重ねられた蓄電デバイス用外装材の周縁部を熱融着して包装体を形成してもよく、また、図5に示す例のように、1つの蓄電デバイス用外装材を折り返して重ね合わせ、周縁部を熱融着して包装体を形成してもよい。折り返して重ね合わせる場合は、図5に示す例のように、折り返した辺以外の辺を熱融着して三方シールにより包装体を形成してもよいし、フランジ部が形成できるように折り返して四方シールしてもよいし、蓄電デバイス素子の周囲に蓄電デバイス用外装材を巻きつけ、熱融着性樹脂層同士をシールすることで熱融着部を形成し、両端の開口部をそれぞれ閉じるように蓋体などを配置して、蓄電デバイス素子の周囲に巻き付けた蓄電デバイス用外装材と熱融着して封止してもよい。蓋体は、例えば、樹脂成形品、金属成形品、蓄電デバイス用外装材などで形成できる。また、蓄電デバイス用外装材には、蓄電デバイス素子を収容するための凹部が、深絞り成形または張出成形によって形成されてもよい。図5に示す例のように、一方の蓄電デバイス用外装材には凹部を設けて他方の蓄電デバイス用外装材には凹部を設けなくてもよいし、他方の蓄電デバイス用外装材にも凹部を設けてもよい。
本開示の蓄電デバイス用外装材は、電池(コンデンサー、キャパシター等を含む)などの蓄電デバイスに好適に使用することができる。また、本開示の蓄電デバイス用外装材は、一次電池、二次電池のいずれに使用してもよいが、好ましくは二次電池に使用される。本開示の蓄電デバイス用外装材が適用される二次電池の種類については、特に制限されず、例えば、リチウムイオン電池、リチウムイオンポリマー電池、全固体電池、半固体電池、擬固体電池、ポリマー電池、全樹脂電池、鉛蓄電池、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池、ニッケル・鉄蓄電池、ニッケル・亜鉛蓄電池、酸化銀・亜鉛蓄電池、金属空気電池、多価カチオン電池、コンデンサー、キャパシター等が挙げられる。これらの二次電池の中でも、本開示の蓄電デバイス用外装材の好適な適用対象として、リチウムイオン電池及びリチウムイオンポリマー電池が挙げられる。
以下に実施例及び比較例を示して本開示を詳細に説明する。但し本開示は実施例に限定されるものではない。
<蓄電デバイス用外装材の製造>
実施例1,2
基材層として、延伸ナイロン(ONy)フィルム(厚さ15μm)を準備した。また、バリア層として、アルミニウム箔(JIS H4160:1994 A8021H-O(厚さ35μm))を用意した。次に、アルミニウム箔の一方面に、それぞれ、後述の接着剤1,2(それぞれ、オレンジ着色剤を含有する2液性ウレタン接着剤)を塗布し、バリア層上に着色された接着剤層(厚さ3μm)を形成した。次いで、バリア層上の接着剤層と基材層をドライラミネート法で積層した後、エージング処理を実施することにより、基材層/接着剤層/バリア層の積層体を作製した。アルミニウム箔の両面には、化成処理が施してある。アルミニウム箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥質量)となるように、ロールコート法によりアルミニウム箔の両面に塗布し、焼付けすることにより行った。
次に、上記で得られた各積層体のバリア層の上に、接着層(厚さ20μm)としての無水マレイン酸変性ポリプロピレンと、熱融着性樹脂層(厚さ15μm)としてのランダムポリプロピレンとを共押出しすることにより、バリア層の上に接着層/熱融着性樹脂層とを積層させて、外側から順に、基材層(厚さ15μm)/接着剤層(3μm)/バリア層(35μm)/接着層(20μm)/熱融着性樹脂層(15μm)が積層された積層体からなる蓄電デバイス用外装材を得た。実施例1の蓄電デバイス用外装材は、接着剤層の薄い橙色が、無色透明な基材層を通して視認され、蓄電デバイス用外装材の外観は薄い橙色であった。また、実施例2の蓄電デバイス用外装材は、接着剤層の橙色が、無色透明な基材層を通して視認され、蓄電デバイス用外装材の外観は橙色であった。また、実施例1,2の蓄電デバイス用外装材は、それぞれ、外側からバリア層(アルミニウム合金箔)が視認できる程度の着色であった。
比較例1
接着剤層を形成する接着剤として、後述の接着剤3(2液性ウレタン接着剤)を用いたこと以外は、実施例1,2と同様にして、蓄電デバイス用外装材を得た。比較例1の蓄電デバイス用外装材は、バリア層の金属光沢が、無色透明の基材層及び接着剤層基材層を通して視認され、蓄電デバイス用外装材の外観は銀色(アルミニウム合金箔の色)であった。
実施例3及び比較例2
基材層として、延伸ナイロン(ONy)フィルム(厚さ15μm)を準備した。また、バリア層として、アルミニウム箔(JIS H4160:1994 A8021H-O(厚さ35μm))を用意した。次に、アルミニウム箔の一方面に、それぞれ、後述の接着剤3,4(それぞれ、着色剤を含まない2液性ウレタン接着剤3、黒色着色剤を含む2液性ウレタン接着剤4)を塗布し、バリア層上に着色された接着剤層(厚さ3μm)を形成した。次いで、バリア層上の接着剤層と基材層をドライラミネート法で積層した後、エージング処理を実施することにより、基材層/接着剤層/バリア層の積層体を作製した。アルミニウム箔の両面には、化成処理が施してある。アルミニウム箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥質量)となるように、ロールコート法によりアルミニウム箔の両面に塗布し、焼付けすることにより行った。
次に、上記で得られた各積層体のバリア層の上に、接着層(厚さ20μm)としての無水マレイン酸変性ポリプロピレンと、熱融着性樹脂層(厚さ15μm)としてのランダムポリプロピレンとを共押出しすることにより、バリア層の上に接着層/熱融着性樹脂層とを積層させた。さらに、得られた積層体の基材層の表面に、それぞれ、後述する樹脂組成物1,2(それぞれ、顔料(黄色着色剤及び赤色着色剤)とフィラーとを含む樹脂組成物1、着色剤を含まずフィラーを含む樹脂組成物2)を塗工、硬化させることにより、艶消し調の表面被覆層を形成して、外側から順に、表面被覆層(厚さ3μm)/基材層(厚さ15μm)/接着剤層(3μm)/バリア層(35μm)/接着層(20μm)/熱融着性樹脂層(15μm)が積層された積層体からなる蓄電デバイス用外装材を得た。実施例3の蓄電デバイス用外装材は、表面被覆層の色が視認され、蓄電デバイス用外装材の外観は青味がかった橙色であった。比較例2の蓄電デバイス用外装材の外観は艶消し調の黒色であった。また、実施例3、比較例2の蓄電デバイス用外装材は、外側からバリア層((アルミニウム合金箔)が視認できない程度の着色であった。
<接着剤層を形成する接着剤の組成>
接着剤1(実施例1で使用):オレンジ着色剤(オレンジ顔料)を含有する2液性ウレタン接着剤
接着剤2(実施例2で使用):オレンジ着色剤(オレンジ顔料)を接着剤1の2倍含有する以外は接着剤1と同じ2液性ウレタン接着剤
接着剤3(比較例1、実施例3で使用):オレンジ着色剤(オレンジ顔料)を含有しない以外は接着剤1と同じ2液性ウレタン接着剤
接着剤4(比較例2で使用):オレンジ着色剤(オレンジ顔料)の代わりに黒色着色剤(黒色顔料)を含有する以外は接着剤1と同じ2液性ウレタン接着剤
<表面被覆層を形成する樹脂組成物の組成>
樹脂組成物1(実施例3で使用):黄色着色剤と赤色着色剤を含有し、フィラーを含有する2液性ウレタン樹脂組成物
樹脂組成物2(比較例2で使用):黄色着色剤と赤色着色剤を含有しないこと以外は、樹脂組成物1と同じ樹脂組成物
<紫外可視近赤外分光光度計を用いた反射率の測定>
実施例及び比較例の各蓄電デバイス用外装材の外側表面について、それぞれ、紫外可視近赤外分光光度計を用い、波長330nmの光を照射して測定される反射率A、波長1200nmの光を照射して測定される反射率Bを、それぞれ測定した。具体的な測定条件は、以下の通りである。結果を表1に示す。
(反射率の測定条件)
装置名:紫外可視近赤外分光光度計 V-670(日本分光株式会社製)
付属品名:φ150mm積分球 ILN-725(日本分光株式会社製)
光束モード:試料/対照
測光モード:%R(反射率(reflectance))
測定範囲:2700-190nm
データ取込間隔:1nm
UV/Visバンド幅:5.0nm
NIRバンド幅:20.0nm
レスポンス:Medium
走査速度:1000nm/min
光源切換:340nm
回折格子切換:850nm
光源:D2/WI(重水素ランプ/ハロゲンランプ)
フィルタ切換:ステップ
補正:ベースライン
検出器切り替え波長:850nm
サンプルサイズ:3cm×3cm
<耐光性試験前後の引張破断応力の測定>
実施例及び比較例の各蓄電デバイス用外装材について、それぞれ、耐光性試験前後の引張破断応力を測定し、耐光性試験後の引張破断応力の低下率を算出した。それぞれ、結果を表1に示す。
蓄電デバイス用外装材の耐光性試験は、次の条件で行った。
装置名:アイスーパーUVテスター SUV-W151 (岩崎電気株式会社製)
照射時間:1日
サンプルサイズ:6cm×6cm
紫外線照度:100mW/cm2(300-400nm)
照射時温度、湿度:63℃、50%RH
引張破断応力は、耐光性試験前後の蓄電デバイス用外装材について、それぞれ、JIS K7127の規定に準拠した方法で引張試験機(島津製作所製、AG-X plus(商品名))を用いて測定した。なお、測定条件は、サンプル幅を15mmの矩形状、標線間距離を30mm、引張速度を50mm/分、試験環境は23℃、40%とし、引張方向はMDの方向で1回測定した。
<耐光性試験前後のL***色空間(CIE1976)で定義されるL*及びb*
実施例及び比較例の各蓄電デバイス用外装材の外側表面について、それぞれ、耐光性試験前後のL*、b*の測定を行った。測定は、コニカミノルタ社製分光測色計(CM2500CB2)の観察条件を2°、観察光源をD65に設定して外側(基材層側)表面のL*、a*、b*の測定を常温常湿下にておこなった。評価結果として表1に記載した。
<耐光性試験前後の外観の観察>
実施例及び比較例の各蓄電デバイス用外装材について、それぞれ、耐光性試験前後の外観を目視で確認した。結果を表1に示す。
Figure 2023163177000005
実施例1~3の蓄電デバイス用外装材は、紫外可視近赤外分光光度計を用い、前記積層体の前記外側から、波長330nmの光を照射して測定される反射率Aが、70%以下であり、かつ、波長1200nmの光を照射して測定される反射率Bが、30%以上である。実施例1~3の蓄電デバイス用外装材は、耐候性試験前後のb*の変化(差)が小さく、外観の耐光性に優れていることが分かる。また、実施例1~3の蓄電デバイス用外装材は、耐候性試験前後の引張破断応力の低下率(%)も小さいことから、機械的強度の点でも耐光性に優れていることが分かる。さらに、実施例1~3の蓄電デバイス用外装材は、波長1200nmの光の反射率も高いことから、光が照射された場合の放熱性にも優れていることが分かる。
以上の通り、本開示は、以下に示す態様の発明を提供する。
項1. 外側から順に、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、
紫外可視近赤外分光光度計を用い、前記積層体の前記外側から、波長330nmの光を照射して測定される反射率Aが、70%以下であり、かつ、
紫外可視近赤外分光光度計を用い、前記積層体の前記外側から、波長1200nmの光を照射して測定される反射率Bが、30%以上である、蓄電デバイス用外装材。
項2. 前記基材層の外側に、表面被覆層をさらに備える、項1に記載の蓄電デバイス用外装材。
項3. 前記表面被覆層が、有機粒子及び無機粒子からなる群より選択される少なくとも1種を含む、項2に記載の蓄電デバイス用外装材。
項4. 前記基材層と前記バリア層との間に、接着剤層をさらに備える、項1~3のいずれか1項に記載の蓄電デバイス用外装材。
項5. 前記接着剤層が、有機粒子及び無機粒子からなる群より選択される少なくとも1種を含む、項4に記載の蓄電デバイス用外装材。
項6. 前記基材層と前記接着剤層との間に、着色層をさらに備える、項4に記載の蓄電デバイス用外装材。
項7. 前記バリア層と前記熱融着性樹脂層の間に接着層をさらに備える、項1~6のいずれか1項に記載の蓄電デバイス用外装材。
項8. 前記バリア層は、アルミニウム合金箔又はステンレス鋼箔により構成されている、項1~7のいずれか1項に記載の蓄電デバイス用外装材。
項9. 前記熱融着性樹脂層の表面及び内部の少なくとも一方には、2種類以上の滑剤が存する、項1~8のいずれか1項に記載の蓄電デバイス用外装材。
項10. 外側から順に、少なくとも、基材層、バリア層、及び熱融着性樹脂層が積層された積層体を得る工程を備えており、
紫外可視近赤外分光光度計を用い、前記積層体の前記外側から、波長330nmの光を照射して測定される反射率Aが、70%以下であり、かつ、
紫外可視近赤外分光光度計を用い、前記積層体の前記外側から、波長1200nmの光を照射して測定される反射率Bが、30%以上である、蓄電デバイス用外装材の製造方法。
項11. 前記バリア層と前記熱融着性樹脂層との間に接着層を備えており、
前記接着層と前記熱融着性樹脂層は、押出法、サーマルラミネート法、サンドイッチラミネート法、又はドライラミネート法により積層する、項10に記載の蓄電デバイス用外装材の製造方法。
項12. 少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子が、項1~9のいずれか1項に記載の蓄電デバイス用外装材により形成された包装体中に収容されている、蓄電デバイス。
1 基材層
2 接着剤層
3 バリア層
4 熱融着性樹脂層
5 接着層
6 表面被覆層
10 蓄電デバイス用外装材

Claims (12)

  1. 外側から順に、少なくとも、基材層、バリア層、及び熱融着性樹脂層を備える積層体から構成されており、
    紫外可視近赤外分光光度計を用い、前記積層体の前記外側から、波長330nmの光を照射して測定される反射率Aが、70%以下であり、かつ、
    紫外可視近赤外分光光度計を用い、前記積層体の前記外側から、波長1200nmの光を照射して測定される反射率Bが、30%以上である、蓄電デバイス用外装材。
  2. 前記基材層の外側に、表面被覆層をさらに備える、請求項1に記載の蓄電デバイス用外装材。
  3. 前記表面被覆層が、有機粒子及び無機粒子からなる群より選択される少なくとも1種を含む、請求項2に記載の蓄電デバイス用外装材。
  4. 前記基材層と前記バリア層との間に、接着剤層をさらに備える、請求項1~3のいずれか1項に記載の蓄電デバイス用外装材。
  5. 前記接着剤層が、有機粒子及び無機粒子からなる群より選択される少なくとも1種を含む、請求項4に記載の蓄電デバイス用外装材。
  6. 前記基材層と前記接着剤層との間に、着色層をさらに備える、請求項4に記載の蓄電デバイス用外装材。
  7. 前記バリア層と前記熱融着性樹脂層の間に接着層をさらに備える、請求項1~3のいずれか1項に記載の蓄電デバイス用外装材。
  8. 前記バリア層は、アルミニウム合金箔又はステンレス鋼箔により構成されている、請求項1~3のいずれか1項に記載の蓄電デバイス用外装材。
  9. 前記熱融着性樹脂層の表面及び内部の少なくとも一方には、2種類以上の滑剤が存する、請求項1~3のいずれか1項に記載の蓄電デバイス用外装材。
  10. 外側から順に、少なくとも、基材層、バリア層、及び熱融着性樹脂層が積層された積層体を得る工程を備えており、
    紫外可視近赤外分光光度計を用い、前記積層体の前記外側から、波長330nmの光を照射して測定される反射率Aが、70%以下であり、かつ、
    紫外可視近赤外分光光度計を用い、前記積層体の前記外側から、波長1200nmの光を照射して測定される反射率Bが、30%以上である、蓄電デバイス用外装材の製造方法。
  11. 前記バリア層と前記熱融着性樹脂層との間に接着層を備えており、
    前記接着層と前記熱融着性樹脂層は、押出法、サーマルラミネート法、サンドイッチラミネート法、又はドライラミネート法により積層する、請求項10に記載の蓄電デバイス用外装材の製造方法。
  12. 少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子が、請求項1~3のいずれか1項に記載の蓄電デバイス用外装材により形成された包装体中に収容されている、蓄電デバイス。
JP2023073448A 2022-04-27 2023-04-27 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス Pending JP2023163177A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022073529 2022-04-27
JP2022073529 2022-04-27

Publications (1)

Publication Number Publication Date
JP2023163177A true JP2023163177A (ja) 2023-11-09

Family

ID=88651127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023073448A Pending JP2023163177A (ja) 2022-04-27 2023-04-27 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス

Country Status (1)

Country Link
JP (1) JP2023163177A (ja)

Similar Documents

Publication Publication Date Title
WO2016158797A1 (ja) 電池用包装材料及び電池
JP6724483B2 (ja) 電池用包装材料を成形するための金型
JP7306429B2 (ja) 電池用包装材料、その製造方法、及び電池
JP2016186872A (ja) 電池用包装材料
JP7367645B2 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP7225832B2 (ja) 蓄電デバイス用外装材、蓄電デバイス用外装材の製造方法、及び蓄電デバイス
JP7367646B2 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
US11990629B2 (en) Casing material for power storage device, production method therefor, and power storage device
JP2024038124A (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP7380544B2 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP6686279B2 (ja) 電池用包装材料及び電池
JP2023012724A (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP7225833B2 (ja) 蓄電デバイス用外装材、蓄電デバイス用外装材の製造方法、及び蓄電デバイス
JP2023163177A (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP2022175137A (ja) 金属端子用接着性フィルム、金属端子用接着性フィルムの製造方法、金属端子用接着性フィルム付き金属端子、蓄電デバイス、及び蓄電デバイスの製造方法
WO2020075731A1 (ja) 電池用弁体、その製造方法及び電池
JPWO2016159233A1 (ja) 電池用包装材料、その製造方法、及び電池
JP7435471B2 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
WO2023171807A1 (ja) 蓄電デバイス用外装材、その製造方法、外観の検査方法、及び蓄電デバイス
JP7447797B2 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP7347455B2 (ja) 蓄電デバイス用外装材、蓄電デバイス、及びこれらの製造方法
WO2023243696A1 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP7332072B1 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
JP7435598B2 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス
WO2023058701A1 (ja) 蓄電デバイス用外装材、その製造方法、及び蓄電デバイス