JP2023159224A - 撮像素子および撮像装置 - Google Patents

撮像素子および撮像装置 Download PDF

Info

Publication number
JP2023159224A
JP2023159224A JP2023130838A JP2023130838A JP2023159224A JP 2023159224 A JP2023159224 A JP 2023159224A JP 2023130838 A JP2023130838 A JP 2023130838A JP 2023130838 A JP2023130838 A JP 2023130838A JP 2023159224 A JP2023159224 A JP 2023159224A
Authority
JP
Japan
Prior art keywords
pixel
imaging
light
pixels
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023130838A
Other languages
English (en)
Inventor
康平 岡本
Kohei Okamoto
勇希 吉村
Yuki Yoshimura
浩一 福田
Koichi Fukuda
駿一 若嶋
Shunichi Wakashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2023130838A priority Critical patent/JP2023159224A/ja
Publication of JP2023159224A publication Critical patent/JP2023159224A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

【課題】光検出感度の高い撮像素子、およびそれを用いた撮像装置を提供する。【解決手段】複数の撮像画素が2次元状に配列された撮像素子であって、前記複数の撮像画素はそれぞれ、電気的に分割された複数の光電変換部と、マイクロレンズと、前記光電変換部と前記マイクロレンズとの間に前記撮像画素を囲む遮光壁とを有し、前記遮光壁の前記マイクロレンズ側の面の幅が前記遮光壁の前記光電変換部側の面の幅よりも大きいことを特徴とする。【選択図】図2

Description

本発明は、特に、瞳分割により位相差検出を行うための撮像素子および撮像装置に関す
る。
デジタルカメラやデジタルビデオカメラなど、撮像画素が2次元配列された撮像素子に被写体からの光を結像してシーンを撮影する撮像装置において、近年では、高画素化により画素サイズが縮小され、画素における光検出感度の向上が重要となっている。特に、結像光学系の瞳分割により位相差検出を行う撮像面位相差方式によって焦点検出を行う撮像装置も多く、画素に入射された光を光電変換部へ高感度に導くことが重要である。そこで、光検出感度の高い撮像素子を得るために様々な提案がなされている。
特許文献1には、画素間での光の漏れによる感度低下や画素間の混色を防止したり、位相差情報が失われないようにしたりするために、各画素を囲うように光導波路に遮光壁を導入する画素構成が提案されている。特許文献2には、光電変換部表面付近から絶縁膜上端へ光導波路が形成された構成が開示されており、画素に入射された光が、画素内部の配線による散乱、吸収を受けて損失となることを回避しているとしている。
さらに、高画素化により画素サイズが縮小されることに伴い、波長の長い光ほど狭い受光領域に効率よく光を導入することが難しくなってきている。このような現状に対応する手段として、特許文献3には、各色に対応する画素の光導波路の底面における無反射膜の屈折率を調整し、色間の受光感度のばらつきを抑制する構成が提案されている。
特開2015-167219号公報 特開2015-162562号公報 特開2015-69992号公報
しかしながら、画素の周辺部もしくは隣接画素から光が漏れることもあり、その影響により画素内の電磁場分布が乱れたり、画素サイズの縮小化に伴って受光効率が色によって変化したりする場合がある。このような場合には撮像面位相差方式における焦点検出精度が低下してしまう。
本発明は前述の問題点に鑑み、光検出感度の高い撮像素子、およびそれを用いた撮像装置を提供することを目的としている。
本発明に係る撮像素子は、複数の撮像画素が2次元状に配列された撮像素子であって、前記複数の撮像画素はそれぞれ、電気的に分割された複数の光電変換部と、マイクロレンズと、前記光電変換部と前記マイクロレンズとの間に前記マイクロレンズから入射された光を導入する光導波路とを有し、前記光導波路の前記マイクロレンズ側に淵部の領域が形成されており、前記淵部の領域に入射する光を遮るための遮光部が、前記淵部の領域よりも前記マイクロレンズ側に備えられていることを特徴とする。
本発明によれば、撮像面位相差方式による焦点検出精度を高くする、光検出感度の高い撮像素子、およびそれを用いた撮像装置を提供することができる。
撮像素子およびその一部である2行2列の基本画素群を表す模式図である。 第1の実施形態における撮像画素の断面を表す模式図である。 画素間遮光壁の詳細な形状を説明するための図である。 画素間遮光壁の他の例を説明するための図である。 トップマイクロレンズのギャップを説明するための図である。 撮像素子と瞳分割との対応関係を示した概略図である。 視差画像間の像ずれ量とデフォーカス量との関係の概略を説明するための図である。 撮像装置の内部構成例を示すブロック図である。 光導波路に淵部の領域を有する撮像画素の断面を表す模式図である。 中央位置から離れた像面位置における、光導波路に淵部の領域を有する撮像画素の断面を表す模式図である。 第2の実施形態における撮像画素の断面を表す模式図である。 遮光部の有無での画素に入射する光の伝搬経路を説明するための図である。 第3の実施形態における撮像画素の断面を表す模式図である。 撮像装置の内部構成例を示すブロック図である。 RGB画素の基本画素群を表す模式図である。 撮像画素の断面および光の伝搬経路を説明するための図である。 画素構造と瞳分割との対応関係の概略を説明するための図である。 光のビームウェスト半径とを説明するための図である。 R画素,G画素,B画素の間でのクロストークが発生する方向を説明するための図である。
(第1の実施形態)
以下、本発明の第1の実施形態について、図面を参照しながら説明する。本実施形態では、有効画素領域の水平方向サイズが22.32mm、垂直方向サイズが14.88mm、水平方向の有効画素数が6000、垂直方向の有効画素数が4000とした例について説明する。
図1(a)は、撮像素子の撮像面上に配列された複数の撮像画素の一部として2行2列の基本画素群101を表す模式図である。基本画素群101は、赤色相当の波長帯域に分光感度を有する撮像画素102、青色相当の波長帯域に分光感度を有する撮像画素103、および緑色相当の波長帯域に分光感度を有する二つの撮像画素104、105により構成されているものとする。なお、以下の説明では、複数の撮像画素が配列された撮像面をx-y面に平行とし、これに垂直な方向をz方向とする。
図1(b)は、撮像素子106を撮像面上方から見た模式図であり、図1(b)に示すように、基本画素群101が撮像面上に2次元状に配列されている。ここで、基本画素群101を構成する撮像画素102~105の基本的な構成は特定の波長領域を有する色の光を透過するカラーフィルターを除いて同一とする。したがって、以下、撮像画素の構成を説明する際に、代表して撮像画素102に着目して説明する。
図2は、本実施形態において、図1(a)中の撮像画素102におけるzx面に平行な断面を表す模式図である。n型のシリコン基板201には、その表面側からイオン注入により形成された光電変換部202が設けられている。光電変換部202は中央分離領域211により副光電変換部202a、202bに電気的に分離され、それぞれに対応する画素領域が副画素となっている。イオン注入は図2中の-z方向から行われ、シリコン基板201の裏面(図2中、+z側)を薄膜化した後、裏面側にマイクロレンズなどの光学構造が配置される。
また、シリコン基板201には、その裏面側に酸化シリコン(SiOx)からなる絶縁部204が形成され、その上方に層内マイクロレンズ(インナーレンズ)205、カラーフィルター207、トップマイクロレンズ209が形成されている。画素間遮光壁203、210は画素間の遮光を行うための遮光壁であり、各画素を囲むように配置されている。画素間遮光壁203はz方向において壁の幅が一定となっているのに対し、画素間遮光壁210は上方ほど壁の幅が大きくなるように形成されている。つまり、画素間遮光壁のトップマイクロレンズ側の面(最上面)の幅が光電変換部側の面(最下面)の幅よりも大きい構成となっている。この構成により、弊害をもたらす漏れ光や迷光を上方で排除できるため、入射角度の厳しい場合であっても入射光をインナーレンズ205で光電変換部202まで効率よく導くことができる。
次に、図3を参照しながら画素間遮光壁210の詳細な形状について説明する。図3(a)は図2のA-A'におけるx-y面に平行な断面を表す模式図であり、図3(b)は図2のB-B'におけるx-y面に平行な断面を表す模式図である。図3(a)および図3(b)において、点線301が隣接画素との境界を示しており、画素間遮光壁210の断面形状を示している。
図3(c)は、図3(a)の円形の点線で囲まれた領域302を拡大した模式図であり、画素間遮光壁210の角部303を表している。図3(c)に示す画素間遮光壁210の角部において、辺をなす部分の幅304、および画素対角方向(本実施形態では図中-x=yの直線に平行な方向)における角部の幅305を示す。この時、画素間遮光壁210の最上面における角部の面積は、画素間遮光壁210の最下面における角部の面積よりも大きい。このような構成とすることにより、画素の対角方向の画素間隣接部における迷光を遮光することができる。つまり、本実施形態においては、画素間遮光壁210の最上面における角部の画素対角方向の幅が、画素間遮光壁210の最下面における角部の画素対角方向の幅よりも大きくなるように構成されている。
また、画素間遮光壁210の形状は、その角部に特徴を有するものであればよく、図3に示した例に限定されるものではない。例えば、図4(a)に示すような断面形状であってもよい。この場合、角部における画素対角方向の幅401の大きさが辺をなす部分の幅402の2倍以上となっている。また、図4(b)に示すような断面形状であってもよい。この例も同様の特徴をもつ画素間遮光壁210の形状例であるが、辺をなす部分が幅一定の辺ではなく、徐々に変化している。この場合は幅404を、辺をなす部分の幅として考えることが可能である。
さらに本実施形態においては、画素間遮光壁の角部での画素対角方向における断面形状についても、図2に示す形状に限定されるものではない。例えば、図4(c)に示す例は、画素間遮光壁210の上部から下部へ向かって面積または幅が単調減少する形状であり、図2と同様であるが、このような形状に限定されない。例えば、図4(d)に示すように、画素間遮光壁210の上部においてのみ幅または面積が大きくなっている形状であってもよく、図4(e)に示すように、上部から下部へ向かって幅または面積が非線形に減少する形状であってもよい。特に、図4(c)または図4(e)に示す形状の場合、上下方向において断面形状に段差がないため、作製プロセスが簡素化され、作製精度を向上させたりコストを低減したりすることができる。
また、本実施形態においては、画素間遮光壁210の最上面における角部の画素対角方向の幅または面積が、トップマイクロレンズ209のギャップの幅または面積よりも大きくなるように構成してもよい。このような構成であっても、画素へ入射する迷光を抑制することが可能である。さらに、画素間遮光壁210の最下面における角部の画素対角方向の幅または面積が、トップマイクロレンズ209のギャップの幅または面積よりも小さくなるように構成してもよい。このようにすることにより、画素へ入射する迷光の抑制効果をより向上させることが可能である。
図5(a)は、トップマイクロレンズ209および画素間遮光壁210のみを模式的に示す斜視図である。多くの撮像画素においてトップマイクロレンズの画素対角方向の角部では、平坦またはこれに近い領域が存在し、この領域をトップマイクロレンズ501のギャップ502と称する。
図5(b)は、隣接画素の一部を含めて+z方向から見た模式図である。図5(b)において、トップマイクロレンズ501の画素対角方向における角部にギャップ502が存在し、画素対角方向におけるギャップの幅503を示している。図5(c)は、画素対角方向におけるトップマイクロレンズ501のギャップ502の幅503と、画素間遮光壁210の上部における幅504および下部における幅505との関係を表す図である。本実施形態においては、これら幅の関係は面積の関係としても特徴づけられる。ただし、図5(c)における幅503、504、505の大小関係はこれらに限定されるものではない。
次に、瞳分割位相差方式の焦点検出方法について説明する。図6は、本実施形態の撮像素子と瞳分割との対応関係を示した概略図である。
図6において、線604は被写体の位置(面)を示し、位置605にある撮像光学系を通して被写体像を撮像素子表面位置606に形成する。また、位置609は撮像素子をなす撮像画素のインナーレンズの裏側位置を表す。撮像素子の画素毎に、x方向に2分割された副光電変換部602と副光電変換部603は、それぞれ、瞳部分領域607と瞳部分領域608を通過する光束を受光する。
画素毎に、副光電変換部602および副光電変換部603の信号を選び出すことで、結像光学系の瞳部分領域607と瞳部分領域608の中の特定の瞳部分領域に対応した視差画像を得ることができる。具体的には、画素毎に、副光電変換部602に対応する信号を選び出すことで、結像光学系の瞳部分領域607に対応した有効画素数の解像度の視差画像を得ることができる。また、副光電変換部603に対応する信号を選び出すことで、結像光学系の瞳部分領域608に対応した有効画素数の解像度の視差画像を得ることができる。
また、画素毎に、副光電変換部602と副光電変換部603の信号を全て加算することで、有効画素数の解像度の撮像画像を生成することができる。なお、本実施形態では、図6に示すように撮像素子の中央から遠い撮像画素ほどそのトップマイクロレンズの位置が撮像画素の中央側へ偏芯している。これは、撮像素子の中央から遠い部分では結像光学系からの主光線の方向がより傾くため、この傾きに対応するためである。
次に、視差画像の像ずれ量とデフォーカス量との関係について説明する。図7は、視差画像間の像ずれ量とデフォーカス量との関係の概略を説明するための図である。撮像素子表面位置606に本実施形態の撮像素子(不図示)が配置され、図6と同様に、結像光学系の射出瞳が、瞳部分領域607と瞳部分領域608とに2分割されるものとする。
デフォーカス量dは、被写体の結像位置から撮像素子表面位置(撮像面)606までの距離を表し、その大きさを|d|とする。ここで、デフォーカス量dに関し、被写体の結像位置が撮像面より被写体側にある前ピン状態を負符号(d<0)とし、被写体の結像位置が撮像面より被写体の反対側にある後ピン状態を正符号(d>0)として定義する。被写体の結像位置が撮像面にある合焦状態はd=0である。図7で、被写体701は合焦状態(d=0)の例を示しており、被写体702は前ピン状態(d<0)の例を示している。また、前ピン状態(d<0)と後ピン状態(d>0)とを合わせて、デフォーカス状態(|d|>0)とする。
前ピン状態(d<0)では、被写体702からの光束のうち、瞳部分領域607(608)を通過した光束は、一度、集光した後、光束の重心位置G1(G2)を中心として幅P1(P2)に広がり、撮像面606でぼやけた像となる。ぼやけた像は、副光電変換部602と副光電変換部603により受光され、視差画像が生成される。よって、副光電変換部602と副光電変換部603の信号から生成される視差画像には、重心位置G1(G2)に、被写体702が幅P1(P2)にぼやけた被写体像として記録される。被写体像のボケ幅P1(P2)は、デフォーカス量dの大きさ|d|が増加するのに伴い、概ね、比例して増加していく。同様に、視差画像間の被写体像の像ずれ量p(=G1-G2)の大きさ|p|も、デフォーカス量dの大きさ|d|が増加するのに伴い、概ね、比例して増加していく。後ピン状態(d>0)でも、視差画像間の被写体像の像ずれ方向が前ピン状態と反対となるが、同様である。合焦状態(d=0)では、視差画像間の被写体像の重心位置が一致(p=0)し、像ずれは生じない。
したがって、副光電変換部602と副光電変換部603の信号を用いて得られる二つ(複数)の視差画像において、視差画像のデフォーカス量の大きさが増加するのに伴い、複数の視差画像間の像ずれ量の大きさが増加する。本実施形態の撮像素子の光電変換部からの信号を用いて視差画像間の像ずれ量を相関演算により算出することで、瞳分割位相差検出方式の焦点検出信号を用いた焦点検出を行うことができる。
また、図2に示した例では、光電変換部202とトップマイクロレンズ209との間に信号伝送用の配線層を有さない裏面照射型の撮像画素であった。表面照射型の撮像画素においては、配線層で散乱、吸収されるような迷光が配線層において排除されづらい。このため、裏面照射型の撮像画素に本実施形態を適用することが好ましく、迷光の抑制効果を向上させることができる。このような構成にすることで、瞳分割による位相差方式の焦点検出精度がより高い撮像素子を実現することが可能となる。
次に、前述した撮像素子を適用した撮像装置の具体的な構成例について説明する。図8は、本実施形態に係る撮像装置であるデジタルカメラの機能構成例を示すブロック図であり、撮像素子106を有するものである。なお、本実施形態では、撮像装置の一例としてデジタルカメラについて説明するが、前述の撮像素子を有する撮像装置として、携帯電話、監視カメラ、移動体カメラ、医療用カメラ等であってもよい。本実施形態の撮像装置では、撮像素子106の光電変換部からの信号を瞳分割位相差方式の焦点調節に用いると同時に、撮像信号としても用いる。
本実施形態のデジタルカメラはレンズ交換式一眼レフカメラであり、レンズユニット800とカメラ本体820とを有する。レンズユニット800は図中央の点線で示されるマウントMを介して、カメラ本体820に装着される。
レンズユニット800は、光学系(第1レンズ群801、絞り802、第2レンズ群803、フォーカスレンズ群(以下、単に「フォーカスレンズ」という)804)、及び駆動/制御系を有する。このようにレンズユニット800は、フォーカスレンズ804を含み、被写体の光学像を形成する撮影レンズに相当する。
第1レンズ群801はレンズユニット800の先端に配置され、光軸方向OAに移動可能に保持される。絞り802は、撮影時の光量を調節する機能のほか、静止画撮影時には露出時間を制御するメカニカルシャッタとしても機能する。ただし、本実施形態の撮像素子にグローバルシャッター機構が設けられているため、必ずしも絞りを用いたメカニカルシャッタを使用する必要はない。
絞り802及び第2レンズ群803は一体で光軸方向OAに移動可能であり、第1レンズ群801と連動して移動することによりズーム機能を実現する。フォーカスレンズ804も光軸方向OAに移動可能であり、位置に応じてレンズユニット800が合焦する被写体距離(合焦距離)が変化する。フォーカスレンズ804の光軸方向OAにおける位置を制御することにより、レンズユニット800の合焦距離を調節する焦点調節を行う。
駆動/制御系は、ズームアクチュエータ811、絞りアクチュエータ812、フォーカスアクチュエータ813、ズーム駆動回路814、絞り絞り駆動回路815、およびフォーカス駆動回路816を有する。さらに、レンズMPU(MPU:マイクロプロセッサ)817、およびレンズメモリ818を有する。
ズーム駆動回路814は、ズームアクチュエータ811を用いて第1レンズ群801や第3レンズ群803を光軸方向OAに駆動し、レンズユニット800の光学系の画角を制御する。絞り駆動回路815は、絞りアクチュエータ812を用いて絞り802を駆動し、絞り802の開口径や開閉動作を制御する。フォーカス駆動回路816はフォーカスアクチュエータ813を用いてフォーカスレンズ804を光軸方向OAに駆動し、レンズユニット800の光学系の合焦距離を変化させる。また、フォーカス駆動回路816は、フォーカスアクチュエータ813を用いてフォーカスレンズ804の現在位置を検出する。
レンズMPU817は、レンズユニット800に係る全ての演算、制御を行い、ズーム駆動回路814、絞り駆動回路815、フォーカス駆動回路816を制御する。また、レンズMPU817は、マウントMを通じてカメラMPU825と接続され、コマンドやデータを通信する。例えばレンズMPU817はフォーカスレンズ804の位置を検出し、カメラMPU825からの要求に対してレンズ位置情報を通知する。このレンズ位置情報は、フォーカスレンズ804の光軸方向OAにおける位置、光学系が移動していない状態の射出瞳の光軸方向OAにおける位置および直径、射出瞳の光束を制限するレンズ枠の光軸方向OAにおける位置および直径などの情報を含む。またレンズMPU817は、カメラMPU825からの要求に応じて、ズーム駆動回路814、絞り駆動回路815、フォーカス駆動回路816を制御する。レンズメモリ818は自動焦点検出に必要な光学情報が予め記憶されている。カメラMPU825は例えば内蔵する不揮発性メモリやレンズメモリ818に記憶されているプログラムを実行することで、レンズユニット800の動作を制御する。
カメラ本体820は、光学系(光学ローパスフィルタ821および撮像素子106)と、駆動/制御系とを有する。レンズユニット800の第1レンズ群801、絞り802、第2レンズ群803、フォーカスレンズ804と、カメラ本体820の光学ローパスフィルタ821は撮像光学系を構成する。
光学ローパスフィルタ821は、撮影画像の偽色やモアレを軽減する。撮像素子106は、本実施形態で説明した撮像素子であり、マイクロレンズ、上部透明電極、瞳分割のための下部透明電極、有機光電変換膜、光導波路、Si光電変換部、および周辺回路で基本的に構成される。また、前述したように、撮像素子106は横方向(水平方向)に6000画素、縦方向(垂直方向)に4000画素が配置されている。本実施形態の撮像素子106は、光電変換部において瞳分割機能を有し、光電変換部からの信号に基づく画像データを用いた位相差AF(オートフォーカス)が可能である。画像処理回路824は、撮像素子106の光電変換部202から得られる画像データから位相差AF用のデータおよび動画像を生成する。さらに、画像処理回路824は、光電変換部202から得られる画像データから静止画像、表示、記録画像データを生成する。
駆動/制御系は、撮像素子駆動回路823、画像処理回路824、カメラMPU825、表示部826、操作スイッチ群827、メモリ828、および撮像面位相差検出部829を有する。なお、本実施形態の撮像装置においてはカメラMPU825に接続する不図示の通信部を備えるようにしてもよい。通信部はUSBやLAN等々の有線通信に限られるものではなく、無線LAN等の無線通信も含む。本実施形態の撮像装置は当該通信部経由で外部の外部装置から制御信号を取得可能であり、取得した制御信号に基づいて画像データ等を配信することも可能である。
撮像素子駆動回路823は、撮像素子106の動作を制御するとともに、取得した動画像および静止画像信号をA/D変換してカメラMPU825に送信する。画像処理回路824は、撮像素子106が取得した各画像データに対し、例えばγ変換、ホワイトバランス調整処理、色補間処理、圧縮符号化処理など、デジタルカメラで行われる一般的な画像処理を行う。また、画像処理回路824は位相差AF用の信号(焦点検出用データ)も生成する。
カメラMPU825は、カメラ本体820に係る全ての演算、制御を行い、撮像素子駆動回路823、画像処理回路824、表示部826、操作スイッチ群827、メモリ828、撮像面位相差検出部829を制御する。カメラMPU825はマウントMを介してレンズMPU817と接続され、レンズMPU817とコマンドやデータを通信する。カメラMPU825はレンズMPU817に対し、レンズ位置の取得要求や、所定の駆動量での絞り、フォーカスレンズ、ズーム駆動要求や、レンズユニット800に固有の光学情報の取得要求などを要求する。カメラMPU825には、カメラ動作を制御するプログラムを格納したROM825a、変数を記憶するRAM825b、および諸パラメータを記憶するEEPROM825cが内蔵されている。
表示部826はLCD(Liquid Crystal Display)などから構成され、カメラの撮影モードに関する情報、撮影前のプレビュー画像、撮影後の確認用画像、焦点検出時の合焦状態の画像などを表示する。操作スイッチ群827は、電源スイッチ、レリーズ(撮影トリガ)スイッチ、ズーム操作スイッチ、撮影モード選択スイッチ等で構成される。メモリ828は、着脱可能なフラッシュメモリであり、撮影済みの画像データを記録する。
撮像面位相差検出部829は、画像処理回路824により得られる光電変換部202からの焦点検出用データを用いて位相差検出方式で焦点検出処理を行う。具体的には、画像処理回路824が、撮影光学系の一対の瞳領域を通過する光束で形成される光電変換部202からの一対の像データを焦点検出用データとして生成し、撮像面位相差検出部829はこの一対の像データのずれ量に基づいて焦点ずれ量を検出する。このように、本実施形態の撮像面位相差検出部829は、専用のAFセンサを用いず、撮像素子106の出力に基づく位相差AF(撮像面位相差AF)を行う。
以上のように、前述した構造の撮像画素を有する撮像素子をデジタルカメラ等の撮像装置に適用することによって、焦点検出精度の高い撮像装置を提供することができる。
(第2の実施形態)
以下、本発明の第2の実施形態について、図面を参照しながら説明する。以下、第1の実施形態と異なる点についてのみ説明する。撮像素子の基本的な構成は図1と同様であるが、撮像画素の構成は第1の実施形態と異なるため、以下に説明する。
図9は、図1(a)中の撮像画素102におけるzx面に平行な断面を表す模式図である。n型のシリコン基板901には、その表面側からイオン注入により形成された光電変換部902が設けられている。光電変換部902は中央分離領域911により副光電変換部902a、902bに電気的に分離され、それぞれに対応する画素領域が副画素となっている。
また、シリコン基板901には、その表面側に酸化シリコン(SiOx)からなる絶縁部904、複数の配線905からなる配線層、および絶縁部904を貫くように窒化シリコン(SiNx)からなる光導波路903が形成されている。ここで、淵部の領域910は、光導波路903における、シリコン基板901側とは反対側(つまり、マイクロレンズ909側)の淵部の領域を表している。光導波路903上方には、パシベーション膜906を介してカラーフィルター907が形成されており、さらにその上方にマイクロレンズ909が配置されている。
撮像画素102の外部から入射される光は、マイクロレンズ909により集光されながら光導波路903へ導入される。そして、光導波路903内部において、側面における全反射(一部部分反射の場合もあり)により閉じ込められた状態で光が伝搬し、光電変換部902まで到達する。この時、光導波路903に光が閉じ込められているため、絶縁部904への光の漏れや、配線905での散乱、吸収などによる光の損失を回避することができる。
通常、撮像素子においては、その撮像面中央から同心円状に遠ざかるほど各画素上のマイクロレンズは、中央へシフトされている。例えば、画面中央からx方向へおよそ+10ミリメートルの像面上位置におけるマイクロレンズは、x方向に特定の量シフトされている。図10には、撮像面中央から遠い位置にある、マイクロレンズ1001がシフトされた撮像画素の例を示している。
しかしながら、このように中央位置から離れた像面位置における画素では、図10中の矢印1002で示されるような光線は光導波路903の淵部の領域910に衝突してしまい、光導波路903へ光が直接入射されない。光導波路へ直接入射される光は、マイクロレンズによる集光分布を基本的に保ちながら、光電変換部に導入される。これに対し、淵部の領域910に衝突してしまう光は、それ自身が損失に寄与してしまうだけでなく、むしろ光導波路の側面外側から光導波路内部に入射されることになり、光導波路内部の電磁場の分布を乱す原因となってしまう。光電変換部が分割された瞳分割による位相差方式の焦点検出においては、この電磁場分布の乱れが、焦点検出精度の低下に影響してしまう。
そこで本実施形態においては、図11で示すように、図10の撮像画素102の光導波路903における淵部の領域910よりもマイクロレンズ909側に、厚さ30nm程度のタングステン(W)からなる遮光部1101を設けている。なお、遮光部1101の材料は、入射される光を吸収、散乱、または反射することによって遮る特性を有する材料であれば、タングステンに限定されない。これにより、図10中の矢印1002で示す方向から入射された光が遮光部1101で反射、吸収され、有効に散乱されることによって、光導波路903内部の電磁場分布の攪乱を回避、抑制することが可能となる。つまり、瞳分割による位相差方式の焦点検出精度の低下を抑制することができる。光導波路903の淵部の領域910と遮光部1101との距離1102は、画素において扱う光の波長帯域の中心波長またはピーク波長よりも小さいことが好ましい。このことにより、淵部の領域910と遮光部1101との間を抜けて隣接画素へ漏れ出る光を抑制することができる。
図12(a)および図12(b)は、中央位置から離れた像面上位置での光導波路を有する画素の断面を示す図であり、濃淡はポインティングベクトルの大きさの分布を表わしている。この分布は、マイクロレンズ上方からz-x面内でz軸と3度の角度をもって像面中央に傾いた方向から波長550nmの平面波を入射させたときの定常状態を示すものである。図12(a)および図12(b)ともに、ポインティングベクトルの強度を表す白黒の濃淡のスケールは同等である。図12(a)の撮像画素の光電変換部は、電気的に副光電変換部1204a、1204bに分割されている。同様に、図12(b)の撮像画素の光電変換部は、電気的に副光電変換部1205a、1205bに分割されている。
図12(a)の光導波路の淵部の領域の近くには遮光部が設けられておらず、図12(b)の光導波路の淵部の領域近傍には、タングステンからなる厚さ30nmの遮光部1203が設けられている。図12(a)に示す例では、淵部の領域で入射された光が散乱され、さらに光導波路の側面から内部へ入る光により、光導波路の内部の電磁場分布が攪乱される。その結果、主に副光電変換部1204bに入射されるべき光の多くが、領域1201に示すように、反対側の副光電変換部1204aに入射していることがわかる。
これに対し、図12(b)に示す例では、光導波路の内部において電磁場分布の大きな攪乱は見られず、領域1202からわかるとおり、多くの光が本来入るべき副光電変換部1205bに入射していることがわかる。図12(b)のように遮光部を設けた構成とすることにより、瞳分割性能の低下を抑制し、焦点検出精度を向上させることが可能である。なお、瞳分割の位相差方式での焦点検出方法は、第1の実施形態で説明した内容と同様である。
以上のように本実施形態によれば、光導波路903の淵部の領域910よりもマイクロレンズ909側の位置に、遮光部1101を設けるようにしたので、焦点検出精度を向上させることができる。なお、本実施形態に係る撮像素子をデジタルカメラなどの撮像装置に適用すれば、焦点検出精度の高い撮像装置を提供することができる。撮像装置の詳細については第1の実施形態と同様である。
(第3の実施形態)
以下、本発明の第3の実施形態について、図面を参照しながら説明する。以下、第2の実施形態と異なる点についてのみ説明する。撮像素子の基本的な構成は図1と同様であるが、撮像画素の構成は第2の実施形態と異なるため、以下に説明する。
図13は、本実施形態において、図1(a)中の撮像画素102におけるzx面に平行な断面を表す模式図である。以下、図9との相違点についてのみ説明する。シリコン基板901には、その表面上側に酸化シリコン(SiOx)からなる絶縁部1301、複数の配線905からなる配線層、および絶縁部1301に埋め込まれるように窒化シリコン(SiNx)からなる光導波路1302が形成されている。本実施形態においては、光導波路1302において、シリコン基板901側とは反対側に淵部の領域は存在しない。そのため、光導波路1302の上方には、光導波路1302側部の絶縁部1301が連続して配置されていることになる。
このように本実施形態の画素構成では、絶縁部1301に光導波路1302が埋め込まれ、図9に示すような淵部の領域910が存在しない。そのため、淵部での散乱、反射などの悪影響を考慮する必要がなく、焦点検出精度の低下を回避することができる。
(第4の実施形態)
以下、本発明の第4の実施形態について、図面を参照しながら説明する。図15は、本実施形態における撮像素子の撮像画素および焦点検出画素の配列の概略を説明するための図である。図15において、2次元CMOSセンサー(撮像素子)の画素(撮像画素)配列を4列×4行の範囲で示し、さらに焦点検出画素の配列を8列×4行の範囲で示す。
図15の左上の位置に2列×2行の画素群1500を示す。画素群1500においては、R(赤)の分光感度を有する撮像画素1500Rが左上に、G(緑)の分光感度を有する撮像画素1500Gが右上と左下に、B(青)の分光感度を有する撮像画素1500Bが右下に配置されている。さらに各画素は、2列×1行に配列された第1焦点検出画素(副画素)1501と第2焦点検出画素(副画素)1502とにより構成されている。
なお、撮像素子の撮像面上には、画素群1500が多数配列されているが、説明を簡略化するために、図15では、4列×4行の撮像画素(8列×4行の焦点検出画素)が配列されている様子を示すものとする。これら多数の配列により、撮像画像および焦点検出信号の取得を可能としている。本実施形態では、画素の周期Pが1.0μm、画素数Nが横5575列×縦3725行=約2075万画素、焦点検出画素の列方向周期PAFが0.5μm、焦点検出画素数NAFが横11150列×縦3725行=約4153万画素の撮像素子として説明を行う。
図15に示した撮像素子の1つの撮像画素1500Gを、撮像素子の受光面側(+z側)から見た平面図を図16(a)に示し、図16(a)のa-a断面を-y側から見た断面図を図16(b)に示す。なお、図16に示す例では、G(緑)の分光感度を有する撮像画素1500Gを例としているが、R(赤)の分光感度を有する撮像画素1500R、およびB(青)の分光感度を有する撮像画素1500Bにおいても同様の構成であるものとする。
図16(b)に示すように、本実施形態に係る撮像画素は、シリコン基板表面付近において、副光電変換部1601a、1601bから構成される光電変換部1601を備える。また、本実施形態に係る撮像画素は、結像光学系から入射される光を集光して撮像画素に導入するためのトップマイクロレンズ1605を備える。トップマイクロレンズ1605と光電変換部1601との間には、酸化シリコン(SiOx)からなる絶縁部1600、複数の配線1613からなる配線層、および効率よく光を光電変換部1601に導くための光導波路1610が設けられている。画素の設計によっては、インナーレンズ1606を設けてもよい。この画素構造により、撮像画素に入射される光は、トップマイクロレンズ1605により集光され、カラーフィルター(不図示)で分光されて光導波路1610を伝搬する。
また、図16(c)~図16(e)は、画素に入射する光がどのように画素内を伝搬するかを説明するための図である。図16(c)~図16(e)では、特定の角度で入射する平面波の伝搬の様子をFDTD法(Finite Difference Time Domain Method:時間領域差分法)により計算した結果を示している。ここで、トップマイクロレンズ1605の焦点位置1607も併せて示す。なお、焦点位置1607から位置1608aまでの範囲、および焦点位置1607から位置1608bまでの範囲は、それぞれ、トップマイクロレンズ1605の片側焦点深度の範囲を示している。
図16(d)に示すように、光が光軸(z方向に平行)に対して0°で入射した場合は、2つの副光電変換部1601a、1601bで受光される受光量がほぼ同じになる。これに対して、図16(c)に示すように、光が光軸に対して-15°で入射した場合は、副光電変換部1601bで受光される受光量がより多くなる。一方、図3(e)に示すように、光が光軸に対して15°で入射した場合は、副光電変換部1601aで受光される受光量がより多くなる。副光電変換部1601a、1601bでは、受光量に応じて電子とホールが対生成し、空乏層で分離された後、負電荷の電子はn型層(不図示)に蓄積される。一方、ホールは定電圧源(不図示)に接続されたp型層を通じて撮像素子の外部へ排出される。
図17は、図16に示した画素構造と瞳分割との対応関係の概略を説明するための図である。図17の下部には、図16(a)に示した画素構造のa-a断面を+y側から見た断面を示し、図17の上部に結像光学系の射出瞳面を示す。なお、図17では、射出瞳面の座標軸と対応を取るために、断面図のx軸とy軸を図16に対して反転させている。
図17において、第1瞳部分領域1701は、重心が-X方向に偏心している副光電変換部1601aの受光面と、トップマイクロレンズ1605によって概ね共役関係になっており、第1焦点検出画素1501が受光可能な瞳領域を表している。第1瞳部分領域1701は、瞳面上で+X側に重心が偏心している。
一方、第2瞳部分領域1702は、重心が+X方向に偏心している光電変換部1601bの受光面と、トップマイクロレンズ1605によって概ね共役関係になっており、第2焦点検出画素1502で受光可能な瞳領域を表している。第2瞳部分領域1702は、瞳面上で-X側に重心が偏心している。また、図17において、瞳領域1700は、2つの副光電変換部1601a、1601bを全て合わせた際の撮像画素1500G全体で受光可能な瞳領域である。なお、瞳分割による位相差方式での焦点検出方法は、第1の実施形態で説明した方法と同様である。
第1瞳部分領域1701と第2瞳部分領域1702との異なる瞳部分領域を通過した光束は、撮像画素の各画素に、それぞれ、異なる角度で入射し、2分割された第1焦点検出画素1501と第2焦点検出画素1502とで受光される。本実施形態の撮像画素は、第1焦点検出画素1501で結像光学系の第1瞳部分領域1701を通過する光束を受光し、第2焦点検出画素1502で第2瞳部分領域1702を通過する光束を受光する。つまり、本実施形態に係る撮像素子は、第1瞳部分領域1701から第2瞳部分領域1702全てを合わせた瞳領域1700を通過する光束を受光する撮像画素が複数配列されている。
なお、必要に応じて、撮像画素、第1焦点検出画素、および第2焦点検出画素をそれぞれ個別の画素構成とし、撮像画素配列の一部に、第1焦点検出画素と第2焦点検出画素とを部分的に配置する構成としても良い。本実施形態では、撮像素子の各撮像画素の第1焦点検出画素1501を第1焦点信号として生成し、撮像素子の各撮像画素の第2焦点検出画素1502を第2焦点信号として生成し、焦点検出を行う。また、撮像画素の各画素で、第1焦点検出画素1501、第2焦点検出画素1502を加算することで、有効画素数の解像度の撮像信号(撮像画像)を生成する。
次に、RGBの各画素における屈折率について説明する。図18は、撮像画素に配置されたトップマイクロレンズ1605とトップマイクロレンズ1605により集光された光のビームウェスト半径とを説明するための図である。図18において、光束1801はトップマイクロレンズ1605から導光された光束である。ここで、トップマイクロレンズ1605の絞り込み角をα、トップマイクロレンズ1605の焦点距離をf、トップマイクロレンズ1605の直径をD、トップマイクロレンズ1605と光電変換部1601との間の有効屈折率をn'、光の波長をλとする。この場合、波長λの光をトップマイクロレンズ1605で集光したときのビームウェスト半径(光の最小スポット半径)wは、Rayleighの分解能(回折限界時)の式を用いて以下の式(1)で定義される。
w=1.22×fλ/n'D ・・・(1)
実際の画素構造ではいくつものレイヤーが積層されているため、トップマイクロレンズと光電変換部との間の屈折率は固定値に定まっていない。ところが、本実施形態のように光導波路の割合が大きい撮像画素では、トップマイクロレンズと光電変換部との間の屈折率を有効屈折率n'として考えた場合、光導波路の屈折率nの影響が大きい。そのため、式(1)中の有効屈折率n'は、光導波路内の屈折率nに大きく依存する。よって、式(1)より原理的に、トップマイクロレンズ1605で集光される光の最小スポット半径wは波長λに比例し、屈折率nに反比例することが分かる。
本実施形態の撮像素子では、撮像画素のサイズが1.0μmで、これを瞳分割した際の副画素のサイズは単純に0.5μmである。図15で示すような画素群の撮像素子は、R(赤)、G(緑)、B(青)の波長帯域に対応する光を受光する画素により構成されているため、各色に対応した画素内を伝搬する光の波長は異なる。つまり、赤色、緑色、青色の順で波長が短くなっている。
光導波路内部の屈折率が同一である場合、式(1)より波長λが短いほど光の最小スポット半径wは小さくなり、波長λが長いほど光の最小スポット半径wが大きくなる。例えば、光導波路内部の屈折率nがSiO2の屈折率(およそ1.46)である場合、赤色の撮像画素では、分割された副光電変換部に光を導入することは困難である。2つの副光電変換部に対応するように光導波路が分割された構成としてもよいが、この場合でも分割された光導波路に光を導入することが困難であり、長い波長の光ほど受光されなくなる。
この状況を解決するために、本実施形態の撮像素子における撮像画素では、Rの画素における光導波路内部の屈折率が最も高くなるように構成されている。R、G、Bの画素の光導波路内部の屈折率をそれぞれnR、nG、nBとした場合、nR>nG>nBの関係となるように構成されている。このことにより、波長が長い光でも狭い副光電変換部、または光導波路に光を導入することができる。
また、R画素の瞳分割性能が低下するのを回避する方法の1つとして、撮像素子全体の光導波路の屈折率nを十分に大きくする方法が考えられる。しかしながら、この方法では小画素化に伴い、画素間の分離性能は低下する一方であり、画素間でのクロストークが増大するといった課題が発生する。したがって、光導波路内部の屈折率をnR>nG>nBの関係を満たすように構成することで、光学的な画素間でのクロストークを低減することができる。
図19は、R画素,G画素,B画素の間でのクロストークが発生する方向を説明するための図である。図19(a)は、R画素,G画素,B画素の光導波路内の屈折率が全て同じ屈折率nである場合を示している。また、図19(b)は、R画素の屈折率をnR、G画素の屈折率をnG、R画素の屈折率をnRとした場合に、屈折率の大きさがnR>nG>nBの関係である場合を示している。
R,G,Bの波長の長さに応じて光導波路の屈折率の大きさを変更すると、さらに、画素間でのクロストークの発生源となる不必要な光束が光導波路に導光しづらくなる。図19(b)のR画素とG画素を用いて具体的に説明する。
光導波路の屈折率が同じ場合は、R画素に入射した光における光束の最小スポット半径は、G画素に入射した光における光束の最小スポット半径よりも大きい。そのため、R画素の屈折率nRおよびG画素の屈折率nGを適切に設定することで、R画素に入射した光束がG画素にクロストークしにくくすることができる。このように、G画素からR画素へのクロストークは軽減できないが、R画素からG画素へのクロストークは軽減することはできる。G画素とB画素との間でも同様であり、さらにB画素の屈折率nBを適切に設定することで、G画素からB画素へのクロストークを軽減することができる。
以上のように本実施形態によれば、波長の長いR画素の瞳分割性能の低下を回避しつつ、画素間でのクロストークを抑制することができる。なお、本実施形態においてはG画素を1種類の画素として説明したが、R画素と水平方向に隣接するG画素をGr画素、B画素と水平方向に隣接するG画素をGb画素として区別してもよい。隣接画素からの光学的な漏れを考慮すると、Gr画素とGb画素とで分光感度が異なる場合がある。そこでGr画素とGb画素とでさらに光導波路の屈折率が異なるようにしてもよい。
また、最低限、赤色の撮像画素の最小スポット半径を小さくすれば、狭い副光電変換部または光導波路に光を導入することができる。したがって、赤色の撮像画素の光導波路の屈折率のみを他色よりも大きくし、緑色及び青色の撮像画素の光導波路の屈折率は同じであってもよい。
次に、本実施形態に係る撮像素子を用いた撮像装置の例について、図14を参照しながら説明する。図14は、本実施形態に係る撮像装置であるデジタルカメラの機能構成例を示すブロック図であり、前述した撮像素子を有するものである。なお、本実施形態では、撮像装置の一例としてデジタルカメラについて説明するが、前述の撮像素子を有する撮像装置として、携帯電話、監視カメラ、移動体カメラ、医療用カメラ等であってもよい。本実施形態の撮像装置では、撮像素子の光電変換部からの信号を瞳分割位相差方式の焦点調節に用いると同時に、撮像信号としても用いる。
図14において、結像光学系の先端に配置された第1レンズ群1401は、光軸方向に進退可能に保持される。絞り兼用シャッタ1402は、その開口径を調節することで撮影時の光量調節を行い、さらに静止画撮影時には露光秒時調節用シャッタとしての機能も備える。そして、絞り兼用シャッタ1402及び第2レンズ群1403は一体となって光軸方向に進退し、第1レンズ群1401の進退動作との連動により、変倍作用(ズーム機能)をなす。
第3レンズ群1405は、光軸方向の進退により、焦点調節を行う。光学的ローパスフィルタ1406は、撮影画像の偽色やモアレを軽減するための光学素子である。撮像素子1407は2次元CMOSフォトセンサーと周辺回路からなり、結像光学系の結像面に配置される。なお、本実施形態では、前述したように色によって屈折率が異なる撮像画素を有する撮像素子が用いられる。
ズームアクチュエータ1411は、不図示のカム筒を回動することで、第1レンズ群1401~第3レンズ群1405を光軸方向に進退駆動し、変倍操作を行う。絞りシャッタアクチュエータ1412は、絞り兼用シャッタ1402の開口径を制御して撮影光量を調節すると共に、静止画撮影時の露光時間制御を行う。フォーカスアクチュエータ1414は、第3レンズ群1405を光軸方向に進退駆動して焦点調節を行う。
照明装置1415は、例えば撮影時の被写体照明用電子フラッシュであり、キセノン管を用いた閃光照明装置が好適だが、連続発光するLEDを備えた照明装置を用いても良い。AF補助光部1416は、所定の開口パターンを有したマスクの像を、投光レンズを介して被写界に投影し、暗い被写体あるいは低コントラスト被写体に対する焦点検出能力を向上させる。
制御部1421は、撮像装置本体の種々の制御を司るCPUを備え、さらに演算部、ROM、RAM、A/Dコンバータ、D/Aコンバータ、通信インターフェイス回路等を備える。制御部1421は、ROMに記憶された所定のプログラムに基づいて、撮像装置が有する各種回路を駆動し、AF、撮影、画像処、と記録処理等の一連の動作を実行する。
電子フラッシュ制御回路1422は、撮影動作に同期して照明装置1415を点灯制御する。補助光駆動回路1423は、焦点検出動作に同期してAF補助光部1416を点灯制御する。撮像画素駆動回路1424は、撮像素子1407の撮像動作を制御するとともに、取得した画像信号をA/D変換して制御部1421に送信する。画像処理回路1425は、撮像素子1407が取得した画像のγ変換、カラー補間、JPEG圧縮等の処理を行う。
フォーカス駆動回路1426は、焦点検出結果に基づいてフォーカスアクチュエータ1414を駆動制御し、第3レンズ群1405を光軸方向に進退駆動して焦点調節を行う。絞りシャッタ駆動回路1428は、絞りシャッタアクチュエータ1412を駆動制御して絞り兼用シャッタ1402の開口を制御する。ズーム駆動回路1429は、撮影者のズーム操作に応じてズームアクチュエータ1411を駆動する。
表示部1431はLCD等の表示装置で、カメラの撮影モードに関する情報、撮影前のプレビュー画像と撮影後の確認用画像、焦点検出時の合焦状態表示画像等を表示する。操作スイッチ群1432は、電源スイッチ、レリーズ(撮影トリガ)スイッチ、ズーム操作スイッチ、撮影モード選択スイッチ等で構成される。フラッシュメモリ1433は着脱可能なメモリであり、撮影済み画像を記録する。
以上説明したように本実施形態の撮像素子を用いて図14に示す撮像装置に適用することで、撮像画素が小さい場合でも効率よく光を光導波路および光電変換部へ導入することが可能となる。
202 光電変換部
209 トップマイクロレンズ
210 画素間遮光壁

Claims (9)

  1. 複数の撮像画素が2次元状に配列された撮像素子であって、
    前記複数の撮像画素はそれぞれ、
    電気的に分割された複数の光電変換部と、
    マイクロレンズと、
    前記光電変換部と前記マイクロレンズとの間に前記マイクロレンズから入射された光を導入する光導波路とを有し、
    前記光導波路の前記マイクロレンズ側に淵部の領域が形成されており、前記淵部の領域に入射する光を遮るための遮光部が、前記淵部の領域よりも前記マイクロレンズ側に備えられていることを特徴とする撮像素子。
  2. 前記遮光部が、入射される光を吸収、散乱、または反射することによって遮る特性を有することを特徴とする請求項1に記載の撮像素子。
  3. 前記遮光部と前記淵部の領域との距離が、当該撮像画素に入射される光の波長帯域の中
    心波長またはピーク波長よりも短いことを特徴とする請求項1又は2に記載の撮像素子。
  4. 複数の撮像画素が2次元状に配列された撮像素子であって、
    前記複数の撮像画素はそれぞれ、
    電気的に分割された複数の光電変換部と、
    マイクロレンズと、
    前記光電変換部と前記マイクロレンズとの間に絶縁部とを有し、
    前記絶縁部の前記光電変換部側の一部に、前記マイクロレンズから入射された光を導入する光導波路が埋め込まれていることを特徴とする撮像素子。
  5. 複数の撮像画素が2次元状に配列された撮像素子であって、
    前記撮像素子は、複数の第1の撮像画素と複数の第2の撮像画素とを有し、
    前記複数の第1の撮像画素及び前記複数の第2の撮像画素はそれぞれ、
    電気的に分割された複数の光電変換部と、
    マイクロレンズとを有し、
    前記第1の撮像画素はさらにそれぞれ、
    前記マイクロレンズから入射される光のうち、第1の波長領域を有する色の光を透過する第1のカラーフィルターと、
    前記第1のカラーフィルターと前記光電変換部との間に前記透過された光を導入する第1の光導波路とを有し、
    前記第2の撮像画素はさらにそれぞれ、
    前記マイクロレンズから入射される光のうち、前記第1の波長領域よりも小さい第2の波長領域を有する色の光を透過する第2のカラーフィルターと、
    前記第2のカラーフィルターと前記光電変換部との間に前記透過された光を導入する第2の光導波路とを有し、
    前記第1の光導波路の屈折率が前記第2の光導波路の屈折率よりも大きいことを特徴とする撮像素子。
  6. 複数の撮像画素が2次元状に配列された撮像素子であって、
    前記撮像素子は、複数のR画素と複数のG画素と複数のB画素とを有し、
    前記複数のR画素、前記複数のG画素、および前記複数のB画素はそれぞれ、
    電気的に分割された複数の光電変換部と、
    マイクロレンズと、
    前記マイクロレンズから入射される光のうち、対応する色の光を透過するカラーフィルターと、
    前記カラーフィルターと前記光電変換部との間に前記透過された光を導入する光導波路とを有し、
    前記R画素の光導波路の屈折率が、前記G画素および前記B画素の光導波路の屈折率よりも大きいことを特徴とする撮像素子。
  7. 前記R画素、前記G画素、前記B画素の順で前記光導波路の屈折率が大きいことを特徴とする請求項6に記載の撮像素子。
  8. 前記G画素はさらに、Gr画素とGb画素とからなり、前記Gr画素と前記Gb画素とで前記光導波路の屈折率が互いに異なることを特徴とする請求項6又は7に記載の撮像素子。
  9. 請求項1~8の何れか1項に記載の撮像素子を有することを特徴とする撮像装置。
JP2023130838A 2018-11-19 2023-08-10 撮像素子および撮像装置 Pending JP2023159224A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023130838A JP2023159224A (ja) 2018-11-19 2023-08-10 撮像素子および撮像装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018216464A JP7330687B2 (ja) 2018-11-19 2018-11-19 撮像素子および撮像装置
JP2023130838A JP2023159224A (ja) 2018-11-19 2023-08-10 撮像素子および撮像装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018216464A Division JP7330687B2 (ja) 2018-11-19 2018-11-19 撮像素子および撮像装置

Publications (1)

Publication Number Publication Date
JP2023159224A true JP2023159224A (ja) 2023-10-31

Family

ID=70908819

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018216464A Active JP7330687B2 (ja) 2018-11-19 2018-11-19 撮像素子および撮像装置
JP2023130838A Pending JP2023159224A (ja) 2018-11-19 2023-08-10 撮像素子および撮像装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018216464A Active JP7330687B2 (ja) 2018-11-19 2018-11-19 撮像素子および撮像装置

Country Status (1)

Country Link
JP (2) JP7330687B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4174949A4 (en) * 2020-06-25 2024-03-20 Sony Semiconductor Solutions Corporation IMAGING DEVICE AND ELECTRONIC DEVICE
JP2022106151A (ja) * 2021-01-06 2022-07-19 ソニーセミコンダクタソリューションズ株式会社 光検出装置
CN116963556B (zh) * 2023-09-19 2023-12-08 山西高科华杰光电科技有限公司 显示面板、显示组件以及显示面板制作方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6166640B2 (ja) 2013-10-22 2017-07-19 キヤノン株式会社 固体撮像装置、その製造方法及びカメラ
KR102499585B1 (ko) 2015-01-13 2023-02-14 소니 세미컨덕터 솔루션즈 가부시키가이샤 고체 촬상 소자 및 그 제조 방법, 및 전자 기기
JP2017054991A (ja) 2015-09-10 2017-03-16 キヤノン株式会社 撮像素子及びそれを用いた撮像装置

Also Published As

Publication number Publication date
JP7330687B2 (ja) 2023-08-22
JP2020088029A (ja) 2020-06-04

Similar Documents

Publication Publication Date Title
KR101444161B1 (ko) 촬상소자, 그것을 구비한 촬상장치 및 카메라 시스템
US8711270B2 (en) Focus detection device and imaging apparatus having the same
JP2023159224A (ja) 撮像素子および撮像装置
JP2011176715A (ja) 裏面照射型撮像素子および撮像装置
USRE48548E1 (en) Image sensor and imaging device
US9412777B2 (en) Image sensor and image capturing apparatus for satisfactory pupil division by a focus detection pixel in which a light guide is formed
CN108513047B (zh) 图像传感器和摄像设备
JP2013157442A (ja) 撮像素子および焦点検出装置
WO2012066846A1 (ja) 固体撮像素子及び撮像装置
WO2018061978A1 (ja) 撮像素子および焦点調節装置
JP2023067935A (ja) 撮像素子
JP2019041178A (ja) 撮像素子およびこの撮像素子を用いた撮像装置
JP6895724B2 (ja) 撮像素子及び撮像装置
JP5800573B2 (ja) 撮像装置、カメラシステムおよび焦点検出方法
JPWO2018181590A1 (ja) 撮像素子および撮像装置
JP2017188633A (ja) 撮像素子及び撮像装置
WO2018061729A1 (ja) 撮像素子および焦点調節装置
WO2018061941A1 (ja) 撮像素子および撮像装置
JP5836629B2 (ja) 撮像素子、それを具備する撮像装置及びカメラシステム
JP2017005509A (ja) 固体撮像素子、撮像装置、および測距装置
WO2018061728A1 (ja) 撮像素子および焦点調節装置
JP7286452B2 (ja) 撮像素子および撮像装置
JP7383876B2 (ja) 撮像素子、及び、撮像装置
JP2018056520A (ja) 撮像素子および焦点調節装置
JP6748529B2 (ja) 撮像素子及び撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240509