JP2023112744A - 超電導部材、超電導コイル及び超電導機器 - Google Patents

超電導部材、超電導コイル及び超電導機器 Download PDF

Info

Publication number
JP2023112744A
JP2023112744A JP2022014634A JP2022014634A JP2023112744A JP 2023112744 A JP2023112744 A JP 2023112744A JP 2022014634 A JP2022014634 A JP 2022014634A JP 2022014634 A JP2022014634 A JP 2022014634A JP 2023112744 A JP2023112744 A JP 2023112744A
Authority
JP
Japan
Prior art keywords
superconducting
resin layer
resin
particles
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022014634A
Other languages
English (en)
Inventor
景子 藤井
Keiko Fujii
貴志 久保木
Takashi Kuboki
真理子 林
Mariko Hayashi
裕実子 関口
Yumiko Sekiguchi
朋子 江口
Tomoko Eguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2022014634A priority Critical patent/JP2023112744A/ja
Publication of JP2023112744A publication Critical patent/JP2023112744A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

【課題】クエンチの発生が抑制された超電導部材、超電導コイル及び超電導機器を提供すること。【解決手段】実施形態によれば、超電導線材と、複数の粒子とそれぞれの粒子を囲む第1の樹脂とを含む第1の樹脂層と、第2の樹脂を含み第1の樹脂層よりも引張弾性率が低い第2の樹脂層と、を備え、第2の樹脂層は第1の樹脂層の内部にあり、第1の樹脂層は超電導線材の周囲に位置し、超電導線材と第2の樹脂層の間には第1の樹脂層が存在する超電導部材が提供される。【選択図】 図1

Description

本発明の実施形態は、超電導部材、超電導コイル及び超電導機器に関する。
例えば、核磁気共鳴装置(NMR:Nuclear magnetic resonance)や磁気共鳴画像診断装置(MRI:Magnetic resonance imaging)では、強い磁場を発生させるために超電導コイルが用いられる。超電導コイルは、巻枠に超電導線材を巻き回すことにより形成されている。超電導線材は樹脂で囲まれている。
超電導コイルの冷却時には、超電導線材を構成する金属と樹脂の熱収縮差により樹脂に歪エネルギーが蓄積される。また、超電導コイルの通電時には、電磁力による超電導線材の動きを抑制するように樹脂に歪エネルギーが蓄積される。蓄積した歪エネルギーは、例えば、樹脂にクラックが発生したり、発熱が生じることにより解放される。また、前述した樹脂のクラックが生じる際に、例えば、樹脂同士が擦れることで摩擦熱が二次的に発生する。このような発熱により超電導線材が超電導転移温度以上に昇温し、超電導コイルの一部の超電導状態が消失し常電導状態に転移するクエンチが生じる。
クエンチが生じると、例えば、超電導コイルを流れる電流が変動し、超電導コイルにより発生される磁場が不安定になる。また、例えば、クエンチが生じた部分で発生したジュール熱により、瞬時に多量の発熱が生じる熱暴走に至るおそれがある。熱暴走に至ると、超電導コイルが焼損するおそれがある。
特許第4607540号公報
本発明の実施形態は、クエンチの発生を抑制できる超電導部材、超電導コイル及び超電導機器を提供することを目的とする。
実施形態によれば、超電導線材と、複数の粒子とそれぞれの粒子を囲む第1の樹脂とを含む第1の樹脂層と、第2の樹脂を含み第1の樹脂層よりも引張弾性率が低い第2の樹脂層と、を備え、第2の樹脂層は第1の樹脂層の内部にあり、第1の樹脂層は超電導線材の周囲に位置し、超電導線材と第2の樹脂層の間には第1の樹脂層が存在する超電導部材が提供される。また、前述した超電導部材を用いることで、クエンチの発生が抑制された超電導コイル及び超電導機器が提供される。
第1の実施形態の超電導部材及び第1の樹脂層の一部の拡大模式断面図。 第2の実施形態の超電導部材及び第1の樹脂層の一部の拡大模式断面図。 第2の実施形態の超電導部材の他の例及び第1の樹脂層の一部の拡大模式断面図。 第2の実施形態の超電導部材における超電導線材と第2の樹脂層との間の拡大模式断面図。 第2の実施形態の超電導部材の更に他の一部及び第1の樹脂層の一部の拡大模式断面図。 第3の実施形態の超電導コイル及び超電導線材の模式断面図。 第3の実施形態の超電導コイルの模式斜視図。 第4の実施形態の超電導機器のブロック図。
以下、実施形態について図面を参照しながら説明する。なお、以下の説明において、同一又は類似した機能を発揮する構成要素には全ての図面を通じて同一の参照符号を付し、重複する説明は省略する。なお、各図は実施形態の説明とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる点があるが、これらは以下の説明と公知の技術を参酌して適宜設計変更することができる。
[第1の実施形態]
第1の実施形態によれば、超電導線材と、複数の粒子とそれぞれの粒子を囲む第1の樹脂とを含む第1の樹脂層と、第2の樹脂を含み第1の樹脂層よりも引張弾性率が低い第2の樹脂層と、を備え、第2の樹脂層は第1の樹脂層の内部にあり、第1の樹脂層は超電導線材の周囲に位置し、超電導線材と第2の樹脂層の間には第1の樹脂層が存在する超電導部材が提供される。
図1は、第1の実施形態の超電導部材及び第1の樹脂層の一部の拡大模式断面図である。また、図1は、超電導コイルの模式断面図である。図1において、超電導部材200は、超電導線材20、超電導線材20に接する第1の樹脂層21及び第1の樹脂層21の内部の超電導線材20から離れた位置に設けられる第2の樹脂層22を備える。
超電導線材20は、巻き回されて超電導コイルに用いられる場合、超電導コイルの軸から外側に向かう方向である第1の方向に所定距離隔てた第1の領域20a及び第2の領域20bを有し、第2の領域20bは第1の領域20aに対向する。超電導線材20には、例えば臨界温度Tcの低い低温超電導物質を用いる。
第1の樹脂層21は、複数の粒子21aと、粒子21aを囲む第1の樹脂21bとを含み、超電導線材20と接する。
第2の樹脂層22は第2の樹脂を含む。第2の樹脂層22は、巻き回されて超電導コイルに用いられる場合、第1の領域20aと第2の領域20bとの間に存在する。
図1において、第2の樹脂層22の第1の方向における厚さの二等分線pは、第1の方向において第2の樹脂層22により近い第1の領域20aの表面と、同様に考えたときの第2の領域20bの表面との距離d1を2:8に分ける線から8:2に分ける線の範囲内にある。前述の線pは、距離d1を5:5に等分する線上にあることが好ましい。また、第2の樹脂層22が第1の領域20a又は第2の領域20bに対して平行でない場合、あるいは、断面図で見たときに第2の樹脂層22が図1のような略四角形でない場合、第1の方向に見たときの第1の領域20a又は第2の領域20bに対して最短距離をとる第2の樹脂層22上の点を考える。この点が、距離d1を2:8に分ける線から8:2に分ける線の範囲内にあることがよい。
第2の樹脂層22は第1の樹脂層21よりも引張弾性率が低い。また、好ましくは、23℃における第2の樹脂層22に対する第1の樹脂層21の引張弾性率の比は2以上である。
第1の樹脂層21と第2の樹脂層22の引張弾性率は次の方法で比較することができる。
超電導コイルの断面を切断し、1~3cm程度の小さな検体を切り出す。この検体を、例えば顕微ラマン分光装置を用い、第1の樹脂層21、および第2の樹脂層22に該当する領域について化学分析を行い、それぞれの樹脂成分を同定する。顕微ラマン分光では、数十μmの領域にしぼってレーザーを照射することができるので、第1の樹脂層21と第2の樹脂22層を分離して、化学分析が実施できる。なお、第1の樹脂層21とする領域は、超電導線材20から第2の樹脂層22までの距離を4等分したうち、超電導線材20に最も近い領域とする。第1の樹脂層21と第2の樹脂層22が第3領域を備える場合も同様に超電導線材20から第2の樹脂層22までの距離を4等分したうち、超電導線材20に最も近い領域を選定する。この際、フィラーが密な領域が形成された領域は検体に選ばないようにする。
同定された樹脂について、2014年制定のJIS K 7161-2準拠で測定された23℃における引張弾性率の数値を引用する。また、第2の樹脂層22に対する第1の樹脂層21の引張弾性率の比は、前述した第1の樹脂層21の引張弾性率を、第2の樹脂層22の引張弾性率で除した値により規定することができる。
なお引張弾性率とは、引張ひずみを横軸として、引張応力を縦軸としてプロットした場合に、小さい引張ひずみ領域において応力―ひずみ曲線が直線的になる部分の傾きに該当する。
超電導部材を有する超電導コイルや超電導機器では、超電導部材の超電導線材の一部の超電導状態が消失し常電導状態に転移するクエンチが生じる場合がある。特に、第1の実施形態のように、超電導線材20に、臨界温度Tcの低い低温超電導物質を用いた超電導部材200の場合、トレーニングクエンチと称される現象が生ずることがある。
トレーニングクエンチとは、通電電流値が超電導線材20の通電許容値より低い値でクエンチを起こす不安定現象である。この不安定現象を抑制し、超電導部材200に安定に定格電流を流せるようにすることが要求される。安定に定格電流を流せるようにすることで、超電導部材200の動作が安定する。
トレーニングクエンチが発生する要因としては、超電導部材200の冷却時の部材間の熱膨張係数の違いより生じる応力、又は、電磁力による部材の変形により生じる応力が考えられる。応力に関しては、超電導部材200を備えた超電導コイルを励磁するとき、フープ力によって超電導線材20にはコイル外周に向かって膨らもうとする方向に力が働き、第1の樹脂層21は、その力の働きをさまたげるように歪むことから生じる。この応力により蓄積された歪エネルギーを解放するため、樹脂にクラックが生じたり、発熱が生じる。このとき超電導線材20と第1の樹脂層21との間、又は第1の樹脂層21同士が擦れることで、その界面で摩擦熱が二次的に生じて歪エネルギーが放出される。この摩擦熱を含む発熱で超電導線材20が臨界温度Tcを超えたときに、トレーニングクエンチが発生すると考えられる。
第1の実施形態の超電導部材200は、巻き回されて超電導コイルに用いられる場合、対向する超電導線材20の間に、第1の樹脂層21よりも引張弾性率が低い第2の樹脂層22を有する。また、第1の樹脂層21は超電導線材20の周囲に位置し、第2の樹脂層22は第1の樹脂層21の内部の超電導線材20から離れた第1の樹脂層21の内部に設けられる。これによって、クラックが生じても第1の樹脂層21よりも第2の樹脂層22の方の引張弾性率が低いため、超電導線材20から離れた第2の樹脂層22でクラックが入るように制御することができる。従って、超電導線材20付近でのエネルギーの解放を小さくし、クエンチの発生を抑制することができる。
対向する超電導線材20どうしの間には、第1の樹脂層21が設けられ、第1の樹脂層21は、粒子21a及び第1の樹脂21bを含む。第1の樹脂層21が含む粒子21aは、フィラーである。粒子21aは、無機物であり得る。粒子21aは絶縁材料を含む。また、粒子21aは、シリカ、アルミナ、タルク、マイカからなる群より選ばれる少なくとも一つの無機物を含む。粒子21aに含まれる結晶は、前述した群より選ばれる一つの無機物の単体結晶でもよいし、前述した群より選ばれる二つ以上の化合物の結晶でもよい。この場合、シリカ、アルミナ、タルク、マイカ以外の無機物を含んでいてもよい。粒子21aに含まれる前述した結晶は、例えば、粉末X線回折法によって同定することが可能である。また、粒子21aは非晶質を含むことができる。粒子21aに含まれる非晶質は、例えば、エネルギー分散型X線分析装置(EDS:Energy Dispersive x-ray Spectroscopy)によって同定することが可能である。
粒子21aの粒径は、例えば、1μm以上100μm以下である。また、粒子21aの粒径は、好ましくは、1μm以上10μm以下である。この範囲内であると、粒子21aと第1の樹脂21bとの剥離する面積が小さいため、発生するクラックを小さくすることができる。このクラックを小さくできることで粒子21aと第1の樹脂との界面での剥離に由来する比較的大きなエネルギー解放を抑制することができる。粒子21aの粒径は、それぞれ等しくてもよいし、上述した粒径の範囲内であれば、異なっていてもよい。粒子21aの粒径は、例えば、走査型電子顕微鏡(SEM:Scanning Electron Microscope)で取得した画像(SEM画像)から求めることができる。
粒子21aの形状は、例えば、板状、球状、俵状、回転楕円体状、円柱状、繊維状、不定形状であり、特に、限定されるものではない。図1は、粒子21aの形状が球状の場合を例示している。
第1の樹脂21bは、熱硬化性樹脂である。第1の樹脂層21bは、粒子21aを囲む。第1の樹脂21bは、バインダである。第1の樹脂21bは、粒子21aを相互に接着するとともに、超電導線材20が動かないように強固に固定化させることができる。
第1の樹脂21bは、例えば、エポキシ樹脂、フェノール樹脂、尿素樹脂、及び、メラミン樹脂から成る群から選ばれる少なくとも一つの樹脂である。
第1の樹脂21bに含まれる樹脂の判定は、例えば、フーリエ変換赤外分光光度計(FT-IR)により行うことが可能である。
第2の樹脂層22は、第1の樹脂層21よりも引張弾性率が低い。第2の樹脂は、熱硬化性樹脂又は、熱可塑性樹脂である。第2の樹脂は、例えば、不飽和ポリエステル樹脂、シリコーン樹脂、ウレタン樹脂、ポリエチレン、ポリアミド、フェノキシなどを用いることができる。
第1の方向に対して垂直方向に第2の樹脂層22を観察した場合の第2の樹脂層22の線幅L2は、超電導線材20の線幅L1の5割以上10割以下である。この範囲であることで、第2の樹脂層22付近でクラックが入るように制御することができ、超電導線材20付近でのエネルギーの解放を小さくしすることで、クエンチの発生を抑制することができる。第2の樹脂層22のL2がL1の5割未満であると、超電導線材20から離れた第2の樹脂層22でクラックが入るように制御することができず、超電導線材20でクラックが入り、クエンチが生じてしまう。また、L2がL1の10割より大きいと、第1の方向で観察した場合、隣接した超電導線材20に設けられた他の第2の樹脂層22との重なりが生じてしまう場合がある。この重なりが生じることによって、隣接した超電導線材20の第1の方向に見たときの位置がずれ、設計通りの磁場を発生させることができなくなる。また、第1の方向に対して垂直方向に第2の樹脂層22を観察した場合の第2の樹脂層22の線幅L2は、超電導線材20の線幅L1の8割以上10割以下であることが好ましい。
本実施形態に係る超電導部材は、超電導線材と、複数の粒子とそれぞれの粒子を囲む第1の樹脂とを含む第1の樹脂層と、第2の樹脂を含み第1の樹脂層よりも引張弾性率が低い第2の樹脂層と、を備え、第2の樹脂層は第1の樹脂層の内部にあり、第1の樹脂層は超電導線材の周囲に位置し、超電導線材と第2の樹脂層の間には第1の樹脂層が存在する。これによって、本実施形態に係る超電導部材が巻き回されて超電導コイルとして用いられた際、超電導線材から距離の離れた第2の樹脂層でクラックが起こり、クエンチの発生が抑制される。
[第2の実施形態]
第2の実施形態の超電導部材は、第2の樹脂層の周囲に第3領域を有する。第3領域は、第2の樹脂が第1の樹脂との相溶性を有することで生ずる。第2の実施形態は、第2の樹脂が第1の樹脂との相溶性を有する点で第1の実施形態と異なる。以下、第1の実施形態と重複する説明については記述を一部省略する。
図2は、第2の実施形態の超電導部材及び第1の樹脂層の一部の拡大模式断面図である。
第1の樹脂21bは、エポキシ基とアミノ基を有する。第1の樹脂21bは、例えば、エポキシ樹脂である。第1の樹脂21bは、エポキシ樹脂主剤とアミン硬化剤を混合し、エポキシ基とアミノ基を反応させることで3次元網目構造を形成し、高強度な樹脂硬化体となる。第3の実施形態のような、例えば、超電導部材200を備えた超電導コイルを考えた場合、超電導コイルは比較的サイズが大きいことから、高温に均一加熱することが難しいため、加温せずとも硬化可能な常温硬化型のアミンを硬化剤として用いることが適している。
一方第2の樹脂は、第1の樹脂21bと相溶性を有する樹脂であれば何でもよい。第2の樹脂は、例えば、フェノキシ樹脂である。第2の樹脂は、熱可塑性樹脂であり、柔軟性を持つが、内部にエポキシ基を含む。内部にエポキシ基を含むことで、第2の樹脂が第1の樹脂21bとの相溶性を有することができる。第2の樹脂は前述より柔軟性を有すること、更には、第2の樹脂層22は第1の樹脂層21の内部に設けられるために界面において第1の樹脂21bのエポキシ基と第2の樹脂のエポキシ基とが触れることで第2の樹脂層22は膨潤する。加えて、第2の樹脂層22が膨潤した後、第1の樹脂21bに含まれるアミン中のアミノ基とエポキシ基とが反応することで、第1の樹脂層21と第2の樹脂層22との界面で第3領域23が形成される。
第3領域23が形成されることで、元来、第3領域23の位置に存在していた粒子21aは移動する。しかしながら、この反応が進む間に、第1の樹脂21bの硬化反応も進むため、弾性率は徐々に高くなり、ある一定距離以上は粒子21aが拡散できない。従って、第1の方向に見たときに、第3領域23と共に第3領域23に接している第1の樹脂層21の中に存在する粒子21aの分布には疎密がある。
前述した粒子21aが移動するという理由により、第3領域23では他の領域に対して粒子21aが少ない、または存在していない。樹脂層は、粒子21aのようなフィラーを含まない場合、引張弾性率が低くなるため、粒子21aを含有した第1の樹脂層21より粒子21aを比較的含まない第3領域23の引張弾性率が低くなる。これによって、第3領域23でクラックが入るように制御でき、超電導線材20付近のエネルギーの解放を小さくできるため、クエンチの発生を抑制できる。第3領域23の有無は断面SEM像から確認でき、第3領域23があるかの判定は、例えば、ラマン分光測定で各層のスペクトルを比較することで相溶しているかの判定ができる。
また、第3領域23の引張弾性率は、第2の樹脂層22の引張弾性率よりも低いことが好ましい。これにより更に第3領域23でクラックが入りやすくなるので、超電導線材20付近のエネルギーの解放を小さくできるため、クエンチの発生を抑制することができる。
第2の樹脂層22の表面から第1の方向及び第1の方向と直行する第3の方向に沿った第3領域23の厚みは、例えば、5~40μmである。前述した第3領域23の厚みがこの範囲内にあることによって、超電導線材20から離れた第3領域23でクラックが入るように制御することができる。従って、超電導線材20付近でのエネルギーの解放を小さくすることができるので、クエンチの発生を抑制することができる。また、前述した第3領域23の厚みは、好ましくは、10~30μmである。
図3は、第2の実施形態の超電導部材の他の例及び第1の樹脂層の一部の拡大模式断面図である。図4は、第2の実施形態の超電導部材における超電導線材と第2の樹脂層との間の拡大模式断面図である。
前述したように、第2の樹脂層22が膨潤し、第3領域23を形成することで粒子21aは移動するが、一方で第1の樹脂21bの硬化反応も進むため、第1の樹脂層21内部の第3領域23付近では粒子21aが密となる第4領域24が形成される。対して、超電導線材20側の粒子21aでは、超電導線材20と第2の樹脂層22が十分離れていること及び前述した第1の樹脂21bの硬化反応によって、前述した第3領域23の形成に伴う第2の樹脂層22付近の粒子21aの移動の伝搬が発生しにくく、第4領域24に比べて分散しない。第2の樹脂層22側に存在する粒子21aは密の状態となる。従って、第3領域23と共に第3領域23に接している第1の樹脂層21中に存在する粒子21aの分布に第1の方向に疎密が形成される。この粒子21aが密となる第4領域24にクラックが生じた際、粒子21aと第1の樹脂21bの界面接着が特段強く処理されていない場合に、粒子21a界面をクラックが伝搬しやすくなる。また粒子21a界面でクラックが発生すると、大きな歪みエネルギーが解放されるため、クエンチにつながる発熱量も増加する。よって、超電導線材20から離れた第2の樹脂層22近辺で歪みエネルギー解放が起こるように制御でき、超電導線材20付近のエネルギーの解放を小さくできるため、クエンチの発生が抑制される。
図5は、第2の実施形態の超電導部材の更に他の一部及び第1の樹脂層の一部の拡大模式断面図である。
第1の方向において、第1の樹脂層21の中に存在する粒子21aの存在分布に疎密があり、超電導線材20の近傍に存在する粒子21aの密度が第2の樹脂層22の近傍に存在する粒子21aの密度より低い。
前述した粒子21aの存在分布の疎密とは、例えば、超電導線材20の表面から第2の樹脂層22の表面までの間に存在する第1の樹脂層21の第1の方向への厚みをd2とすると、第2の樹脂層22の表面から(1/4)×d2離れた距離までの領域における粒子21aの密度Aが、超電導線材20の表面から(1/4)×d2離れた距離までの領域における粒子21aの密度Bよりも大きいということである。また、好ましくは、密度Aは密度Bの1.1倍以上(密度A≧1.1×密度B)である。
本実施形態に係る超電導部材は、超電導線材と、複数の粒子とそれぞれの粒子を囲む第1の樹脂とを含む第1の樹脂層と、第2の樹脂を含み第1の樹脂層よりも引張弾性率が低い第2の樹脂層と、を備え、第2の樹脂の周囲に存在し、前記第2の樹脂層の引張弾性率よりも低い第3領域を有する。これによって、本実施形態に係る超電導部材が巻き回されて超電導コイルとして用いられた際、超電導線材から距離の離れた第2の樹脂層でクラックが起こり、クエンチの発生が抑制される。
[第3の実施形態]
第3の実施形態によると、超電導コイルが提供される。この超電導コイルは第1の実施形態又は第2の実施形態に係る超電導部材を備えている。
図6は、第3の実施形態の超電導コイル及び超電導線材の模式断面図である。図6において、隣接する超電導線材20を拡大した模式断面図が図1である。
超電導コイル100は、巻枠10、内周絶縁層(図示しない)、上部絶縁層(図示しない)、下部絶縁層(図示しない)、及び巻線部12を備える。巻線部12は、超電導線材20、第1の樹脂層21及び第2の樹脂層22を有する。
第1の樹脂層21及び第2の樹脂層22は、超電導線材20を固定することができる。第1の樹脂層21及び第2の樹脂層22は、超電導線材20が、超電導機器の使用中の振動や、互いの摩擦により破壊されることを抑制することができる。また、第1の樹脂層21及び第2の樹脂層22は、超電導線材20の間を絶縁する機能を有する。
内周絶縁層、上部絶縁層、及び、下部絶縁層は、例えば、繊維強化プラスチックで形成される。内周絶縁層、上部絶縁層、下部絶縁層は、巻線部12を巻枠10や外部に対して絶縁する機能を有する。
ここで、第1の実施形態又は第2の実施形態に係る超伝導部材を用いた超電導コイルの作製方法について説明する。
<超電導コイルの作製>
超電導コイルは、巻枠に超電導線材をソレノイド状に巻き回して製造する。超電導線材を一層分巻き、無機物の粒子を含有した第1の樹脂を超電導線材に塗り込んで含浸させた直後、この樹脂が固化する前に第2の樹脂を巻く。ここで、第2の樹脂層の幅は、超電導線材の線幅の8割以上10割以下である。さらに、この第2の樹脂層の上から、超電導線材に塗り込んだものと同じ、無機物の粒子を含有した第1の樹脂を塗り込む。第1の樹脂に硬化剤を混ぜることによって、または熱によって固化する前に、超電導線材を更に一層分巻き、同じ構造を繰り返して作製する。
巻き回し方を具体的に説明すると、超電導線材20は、第3の方向の軸を巻回中心とし、ソレノイド状に巻き回される。超電導線材20は、例えば、第3の方向に沿って所定の長さソレノイド状に巻き回された後、最後に巻き回された位置でもう1周分、第3の方向の軸を巻回中心として巻き回される。次いで、第3の方向と反並行の向きに沿って、同様にソレノイド状に巻き回される。
図6は、後述する図7における第1の方向と第3の方向がつくる平面で超電導コイル100切断した断面図であるため、異なる超電導線材20が複数存在しているように見える。
超電導線材20には、例えば、臨界温度Tcが8K以上40K以下の低温超電導物質を用いる。超電導線材20に用いる低温超電導物質は、例えば、ニオブ・チタン合金系、ニオブ・スズ化合物系、ニオブ・アルミニウム化合物系、2ホウ化マグネシウム系の超電導物質である。
超電導線材20は、複数のフィラメント20xがマトリックス20yの中に配置された構造を有する。フィラメント20xは、例えば、ニオブ・チタン合金を含み、マトリックス20yは銅を用いることができる。図2の例において、超電導線材20は角線であるが、丸線でもよく、形状は何でもよい。
図7は、第1の実施形態の超電導コイルの模式斜視図である。図7は、第1の実施形態及び第2の実施形態で示した超電導線材と樹脂層とを含み、超電導線材が巻枠に巻きまわされている様子を概略的に示してある。図7において、第1の方向と第3の方向がつくる平面で超電導コイル100を切断した際に得られる断面を表した図が図6である。
超電導線材は、例えば、線状である。超電導線材は、巻回中心Cを中心に、第2の方向に沿ってソレノイド状に巻枠10に巻き回される。
超電導コイル100は、例えば、核磁気共鳴装置(NMR)、核磁気共鳴画像診断装置(MRI)、重粒子線治療器、又は、超電導磁気浮上式鉄道車両などの超電導機器の磁場発生用のコイルとして用いられる。
第3の実施形態に係る超電導コイルは、第1の実施形態又は第2の実施形態に係る超電導部材を搭載している。第1の実施形態又は第2の実施形態に係る超電導部材ではクエンチの発生が抑制されているため、同様にクエンチの発生が抑制された超電導コイルを提供することが可能である
[第4の実施形態]
第4の実施形態の超電導機器は、第3の実施形態の超電導コイルを備えた超電導機器である。以下、第1の実施形態、第2の実施形態及び第3の実施形態と重複する内容については、一部記述を省略する。
図8は、第4の実施形態の超電導機器のブロック図である。第4の実施形態の超電導機器は、重粒子線治療器300である。重粒子線治療器300は、超電導機器の一例である。
重粒子線治療器300は、入射系50、シンクロトロン加速器52、ビーム輸送系54、照射系56、制御系58を備える。
入射系50は、例えば、治療に用いる炭素イオンを生成し、シンクロトロン加速器52に入射するための予備加速を行う機能を有する。入射系50は、例えば、イオン発生源と線形加速器を有する。
シンクロトロン加速器52は、入射系50から入射された炭素イオンビームを治療に適合したエネルギーまで加速する機能を有する。シンクロトロン加速器52に、第3の実施形態の超電導コイルが用いられる。
ビーム輸送系54は、シンクロトロン加速器52から入射された炭素イオンビームを照射系56まで輸送する機能を有する。ビーム輸送系54は、例えば、偏向電磁石を有する。
照射系56は、ビーム輸送系54から入射された炭素イオンビームを照射対象である患者に照射する機能を備える。照射系56は、例えば、炭素イオンビームを任意の方向から照射可能にする回転ガントリーを有する。回転ガントリーに、第3の実施形態の超電導コイルが用いられる。
制御系58は、入射系50、シンクロトロン加速器52、ビーム輸送系54、及び、照射系56の制御を行う。制御系58は、例えば、コンピュータである。
第4の実施形態の重粒子線治療器300は、シンクロトロン加速器52及び回転ガントリーに、第3の実施形態の超電導コイルが用いられる。したがって、クエンチの発生が抑制され高い信頼性が実現される。
第4の実施形態では、超電導機器の一例として、重粒子線治療器300の場合を説明したが、超電導機器は、核磁気共鳴装置(NMR)、磁気共鳴画像診断装置(MRI)、又は、超電導磁気浮上式鉄道車両であっても構わない。
第4の実施形態に係る超電導機器は、第3の実施形態に係る超電導コイルを搭載している。超電導コイルではクエンチの発生が抑制されているため、信頼性の高い超電導機器を提供することが可能である。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
10…巻枠、20…超電導線材、20a…第1領域、20b…第2領域、21…第1の樹脂層、21a…粒子、21b…第1の樹脂、22…第2の樹脂層、23…第3領域、24…第4領域、100…超電導コイル、200…超電導部材、300…重粒子線治療器。

Claims (11)

  1. 超電導線材と、
    複数の粒子とそれぞれの前記粒子を囲む第1の樹脂とを含む第1の樹脂層と、
    第2の樹脂を含み前記第1の樹脂層よりも引張弾性率が低い第2の樹脂層と、を備え、
    前記第2の樹脂層は前記第1の樹脂層の内部にあり、前記第1の樹脂層は前記超電導線材の周囲に位置し、前記超電導線材と前記第2の樹脂層の間には前記第1の樹脂層が存在する超電導部材。
  2. 前記第1の樹脂は熱硬化性樹脂である、請求項1に記載の超電導部材。
  3. 前記第2の樹脂は熱可塑性樹脂である、請求項1又は請求項2に記載の超電導部材。
  4. 前記第2の樹脂層の周囲に存在し、前記第2の樹脂層の引張弾性率よりも低い第3領域を有する、請求項1から請求項3のいずれか1項に記載の超電導部材。
  5. 第1の方向において、前記第1の樹脂層の中に存在する前記粒子の分布に疎密があり、前記超電導線材の近傍に存在する前記粒子の密度が前記第2の樹脂層の近傍に存在する前記粒子の密度より低い、請求項1から請求項4のいずれか1項に記載の超電導部材。
  6. 前記疎密とは、前記超電導線材の表面から前記第2の樹脂層の表面までの間に存在する前記第1の樹脂層の第1の方向への厚みをd2とすると、前記第2の樹脂層の表面から(1/4)×d2離れた距離までの領域における前記粒子の密度Aが、前記超電導線材の表面から(1/4)×d2離れた距離までの領域における前記粒子の密度Bより高い、請求項5に記載の超電導部材。
  7. 前記密度Aは前記密度Bの1.1倍以上(密度A≧1.1×密度B)である、請求項6に記載の超電導部材。
  8. 前記粒子は絶縁材料を含む、請求項1から請求項7のいずれか1項に記載の超電導部材。
  9. 請求項1から請求項8のいずれか1項に記載の超電導部材を備える超電導コイル。
  10. 巻枠と、
    前記巻枠に巻き回される請求項1から請求項8のいずれか1項に記載の超電導部材と、を備える超電導コイル。
  11. 請求項9又は請求項10に記載の超電導コイルを備える超電導機器。
JP2022014634A 2022-02-02 2022-02-02 超電導部材、超電導コイル及び超電導機器 Pending JP2023112744A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022014634A JP2023112744A (ja) 2022-02-02 2022-02-02 超電導部材、超電導コイル及び超電導機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022014634A JP2023112744A (ja) 2022-02-02 2022-02-02 超電導部材、超電導コイル及び超電導機器

Publications (1)

Publication Number Publication Date
JP2023112744A true JP2023112744A (ja) 2023-08-15

Family

ID=87565624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022014634A Pending JP2023112744A (ja) 2022-02-02 2022-02-02 超電導部材、超電導コイル及び超電導機器

Country Status (1)

Country Link
JP (1) JP2023112744A (ja)

Similar Documents

Publication Publication Date Title
US10381149B2 (en) Composite material, reactor, converter, and power conversion device
WO2013073496A1 (ja) 電磁コイル及びその製造方法、並びに絶縁テープ
KR101165837B1 (ko) 코일 부품 및 코일 부품의 제조방법
US7060326B2 (en) Aluminum conductor composite core reinforced cable and method of manufacture
KR20170047253A (ko) 초전도체를 포함하는 금속 어셈블리
CN101958173A (zh) 制造螺线管磁体的方法以及螺线管磁体结构
US8305174B2 (en) Superconducting coil cast in nanoparticle-containing sealing compound
JP2010238920A (ja) リアクトル
US11745624B2 (en) Messenger wires for electric trains, methods for making and methods for installation
Nakamoto et al. Design of superconducting combined function magnets for the 50 GeV proton beam line for the J-PARC neutrino experiment
JP7191743B2 (ja) 超電導コイル、及び、超電導機器
JP2023112744A (ja) 超電導部材、超電導コイル及び超電導機器
JP2010283379A (ja) リアクトル
JP2020047739A (ja) 超電導コイル、及び、超電導機器
JP7123828B2 (ja) 超電導コイル導体および超電導コイル導体の製造方法
Ohuchi et al. Design and construction of the SuperKEKB QC1 final focus superconducting magnets
JP2011049586A (ja) リアクトル
JP6024927B2 (ja) 軟磁性複合材料
US11791080B2 (en) Superconducting coil, superconducting device, and superconducting wire rod for superconducting coil
US20230298791A1 (en) Superconducting coil, superconducting device, and liquid epoxy resin composition
US20230005648A1 (en) Superconducting coil
Lipták et al. Radiation tests on selected electrical insulating materials for high-power and high-voltage application
JP3782707B2 (ja) 電磁コイル及びその製造方法
JP3782706B2 (ja) 電磁コイル及びその製造方法
Majernik et al. Multi-start foil wound solenoids for multipole suppression

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220520

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20221028

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240228