JP2023111663A - 積層ポリエステルフィルム - Google Patents

積層ポリエステルフィルム Download PDF

Info

Publication number
JP2023111663A
JP2023111663A JP2022013618A JP2022013618A JP2023111663A JP 2023111663 A JP2023111663 A JP 2023111663A JP 2022013618 A JP2022013618 A JP 2022013618A JP 2022013618 A JP2022013618 A JP 2022013618A JP 2023111663 A JP2023111663 A JP 2023111663A
Authority
JP
Japan
Prior art keywords
resin
polyester film
resins
laminated polyester
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022013618A
Other languages
English (en)
Inventor
良亮 舟津
Ryosuke Funatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2022013618A priority Critical patent/JP2023111663A/ja
Priority to KR1020247025149A priority patent/KR20240144160A/ko
Priority to PCT/JP2023/002945 priority patent/WO2023145952A1/ja
Priority to TW112103285A priority patent/TW202344390A/zh
Publication of JP2023111663A publication Critical patent/JP2023111663A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

【課題】薄膜であっても、微細な凹凸構造を形成できる積層ポリエステルフィルムを提供することにある。【解決手段】ポリエステルフィルムと、前記ポリエステルフィルムの少なくとも片面に、樹脂組成物により形成された樹脂層とを備える積層ポリエステルフィルムであって、前記樹脂層が凹凸構造を有し、前記樹脂組成物が2種以上の樹脂を含み、前記2種以上の樹脂のうち少なくとも2種の樹脂が、HSP距離が5.0以上である、積層ポリエステルフィルムである。【選択図】なし

Description

本発明は、積層ポリエステルフィルムに関する。
ポリエチレンテレフタレートフィルムやポリエチレンナフタレートフィルムに代表されるポリエステルフィルムは、機械的特性、寸法安定性、平坦性、耐熱性、耐薬品性、光学特性等に優れた特性を有し、コストパフォーマンスに優れるため、各種用途に使用されている。
また、ポリエステルフィルムは、フィルム表面の平滑性を利用して、積層セラミックコンデンサのグリーンシートを成形するための離型フィルムや、層間絶縁樹脂離型用基材、ドライフィルムレジスト用基材など、各種用途に好適に用いられている。
上記用途をはじめとする、優れた表面平滑性を有するシート成形用ポリエステルフィルムは、ロール状に巻き取った場合、シワがなく、ロール外観が良好であることが必要とされる。
しかしながら、表面平滑性を高くすると、滑り性が低下するとともに、ロール状に巻くときやロールから繰り出すときの空気抜けが悪くなるため、巻きずれやブロッキングが発生してハンドリング性が低下する。
とりわけ、近年、生産性向上に伴い、ポリエステルフィルムの薄膜長尺化がさらに進行する傾向にあり、より高度なレベルでのロール外観品質が要求される。
そこで、ハンドリング性を確保するために、平滑面でない側(背面側)は、粒子の練り込みによって平滑面側に比べて粗く設計されることがある(例えば特許文献1)。また、特許文献2には、上記背面側として、海島構造により凹部が形成され、算術平均粗さ(Ra)が10~80nmである表面を有する背面樹脂層が開示されている。
ところで、特許文献3及び4には、相分離による凹凸層を有する積層フィルムが開示されている。
特開2015-33811号公報 特開2013-60555号公報 特開2013-10323号公報 特開2021-24177号公報
しかしながら、特許文献1に開示されるような従来の粒子練り込み型フィルムの製法では、凹凸形成の制御が難しく、微細な凹凸構造の形成は困難であった。
また、特許文献2~4に開示のフィルムでは、微細な凹凸構造とは言い難かったり、凹凸を有する層が厚かったりするといった問題があった。
より詳細には、微細な凹凸構造でなかった場合には、ロール状に巻き取る際にシワが入りやすくなり、ロール外観が損なわれる場合があった。
また、凹凸を有する層が厚い場合には、硬化収縮によるカール発生等によって平面性が損なわれる場合があり、ポリエステルフィルムの薄膜長尺化には不適な場合があった。
そこで、本発明は、上記実情に鑑みなされたものであって、その解決課題は、薄膜であっても、微細な凹凸構造を形成できる積層ポリエステルフィルムを提供することである。
本発明者は、鋭意検討の結果、次の構成を有することで、上記課題を解決できることを見出した。
本発明は、以下の態様を有する。
[1]ポリエステルフィルムと、前記ポリエステルフィルムの少なくとも片面に、樹脂組成物により形成された樹脂層とを備える積層ポリエステルフィルムであって、前記樹脂層が凹凸構造を有し、前記樹脂組成物が2種以上の樹脂を含み、前記2種以上の樹脂のうち少なくとも2種の樹脂が、一方を第1の樹脂、他方を第2の樹脂とすると、下記式(1)の関係を満足する、積層ポリエステルフィルム。
HSP距離={4×(δd-δd+(δp-δp+(δh-δh0.5≧5.0・・・(1)
(ただし、δd、δp及びδhは、Hansen溶解度パラメーター[δd,δp,δh]において、それぞれ、前記第1の樹脂のδd、δp及びδhを表し、δd、δp及びδhは、それぞれ、前記第2の樹脂のδd、δp及びδhを表す。なお、δp≦δpとする。)
[2]前記2種以上の樹脂の合計含有量が、不揮発成分として50質量%以上である、上記[1]に記載の積層ポリエステルフィルム。
[3]前記2種の樹脂における前記第1の樹脂の極性項δpが、9.0MPa0.5以下である、上記[1]又は[2]に記載の積層ポリエステルフィルム。
[4]前記2種の樹脂における前記第1の樹脂が、離型剤である、上記[1]~[3]のいずれか1つに記載の積層ポリエステルフィルム。
[5]前記2種以上の樹脂が、前記第1の樹脂に対してHSP距離が6.0以上の樹脂を含み、かつ、HSP距離が5.5以下の樹脂を含まない、上記[3]又は[4]に記載の積層ポリエステルフィルム。
[6]前記2種以上の樹脂が、架橋剤を含む、上記[1]~[5]のいずれか1つ記載の積層ポリエステルフィルム。
[7]前記樹脂組成物が、架橋触媒を含む、上記[6]に記載の積層ポリエステルフィルム。
[8]前記樹脂組成物が、微粒子を含む、上記[1]~[7]のいずれか1つに記載の積層ポリエステルフィルム。
[9]走査型プローブ顕微鏡で測定したときの前記樹脂層表面の算術平均粗さ(Ra)が、5nm以上である、上記[1]~[8]のいずれか1つに記載の積層ポリエステルフィルム。
[10]走査型プローブ顕微鏡で測定したときの前記樹脂層表面の十点平均粗さ(Rzjis)が、28nm以上である、上記[1]~[9]のいずれか1つに記載の積層ポリエステルフィルム。
[11]走査型プローブ顕微鏡で測定したときの前記樹脂層表面の切断レベル50%における粗さ曲線の負荷長さ率(Rmr(50))が70%以下である、上記[1]~[10]のいずれか1つに記載の積層ポリエステルフィルム。
本発明によれば、薄膜であっても、微細な凹凸構造を形成できる積層ポリエステルフィルムが提供される。
また、本発明の積層ポリエステルフィルムは、樹脂層表面に微細な凹凸構造を形成できるため、例えばシート成形用として用いれば、極めて高平滑なフィルムをロール状に巻き取る際にも、良好な巻取り性を発揮し、シワが発生しにくくなるという利点がある。
さらに、本発明の積層ポリエステルフィルムは、樹脂層を薄膜にできることから、ポリエステルフィルムの薄膜長尺化にも対応可能であり、加工時における製品ロールの切替頻度低減による生産性向上に寄与することができる。
実施例1の樹脂層を走査型プローブ顕微鏡で観察した画像である。
次に、本発明の実施形態の一例について説明する。ただし、本発明は、次に説明する実施形態に限定されるものではない。
本明細書において、「(メタ)アクリル」という表現を用いる場合、「(メタ)アクリル」は「アクリル」及び「メタクリル」の一方又は両方を意味するものとする。また、同様に「(メタ)アクリル酸」は「アクリル酸」及び「メタクリル酸」の一方又は両方、「(メタ)アクリレート」は「アクリレート」及び「メタクリレート」の一方又は両方、「(メタ)アクリロイル」は「アクリロイル」及び「メタクリロイル」の一方又は両方を意味するものとする。その他についても、上記と同様である。
<<<積層ポリエステルフィルム>>>
本発明の積層ポリエステルフィルム(以下、「本積層ポリエステルフィルム」とも称する)は、ポリエステルフィルム(以下、「本ポリエステルフィルム」とも称する)と、ポリエステルフィルムの少なくとも片面に、樹脂組成物により形成された樹脂層(以下、「本樹脂層」とも称する)とを備える。
本積層ポリエステルフィルムの積層構成としては、ポリエステルフィルムの片面側に樹脂層を形成し、他方の面側はポリエステルフィルムの表面をそのままにした構成であってもよいし、該他方の面側に他の層を形成してなる構成であってもよい。
また、ポリエステルフィルムの両面側に樹脂層を形成してなる構成であってもよい。
さらにまた、樹脂層をポリエステルフィルムの上に直接形成してもよいが、ポリエステルフィルムと樹脂層との間に他の層を設けてもよい。
<<ポリエステルフィルム>>
本ポリエステルフィルムは、本積層ポリエステルフィルムの基材としての役割を果たすものである。本ポリエステルフィルムは、単層構造であっても多層構造であってもよい。本ポリエステルフィルムが多層構造の場合、本ポリエステルフィルムは2層構造、3層構造などでもよいし、本発明の要旨を逸脱しない限り、4層又はそれ以上の多層であってもよく、層数は特に限定されない。
なお、本ポリエステルフィルムが2層以上の多層構造である場合、2種3層、3種3層が特に好ましい。本ポリエステルフィルムは、多層構造である場合、中間層の両面に表層が設けられた構造を有することも好ましい。
また、本ポリエステルフィルムは、無延伸フィルム(シート)であっても延伸フィルムであってもよい。中でも、一軸方向又は二軸方向に延伸された延伸フィルムであることが好ましい。その中でも、力学特性のバランスや平面性に優れる点で、二軸延伸フィルムであることがより好ましい。
<ポリエステル>
本ポリエステルフィルムの原料であるポリエステルは、主鎖に連続してエステル結合を有する高分子化合物をいい、ホモポリエステルであっても共重合ポリエステルであってもよい。具体的には、ジカルボン酸成分とジオール成分とを重縮合反応させることによって得られるポリエステルを挙げることができる。また、ジカルボン酸成分を100モル%としたとき、芳香族ジカルボン酸又は脂肪族ジカルボン酸を50モル%よりも多く含有するポリエステルを使用することが好ましい。
前記ジカルボン酸成分としては、例えばテレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸及び4,4’-ジフェニルスルホンジカルボン酸等の芳香族ジカルボン酸や、例えばアジピン酸、スベリン酸、セバシン酸、ダイマー酸、ドデカンジオン酸、シクロヘキサンジカルボン酸及びこれらのエステル誘導体等の脂肪族ジカルボン酸を挙げることができる。
前記ジオール成分としては、例えばエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ネオペンチルグリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-ヘキサンジメタノール、ジエチレングリコール、トリエチレングリコール、ポリアルキレングリコール、2,2-ビス(4-ヒドロキシエトキシフェニル)プロパン、イソソルベート及びスピログリコール等を挙げることができる。
上記ポリエステルがホモポリエステルである場合、芳香族ジカルボン酸と脂肪族ジオールとを重縮合させて得られるものが好ましい。芳香族ジカルボン酸としては、好ましくはテレフタル酸、2,6-ナフタレンジカルボン酸などが挙げられ、脂肪族ジオールとしては、好ましくはエチレングリコール、ジエチレングリコール及び1,4-シクロヘキサンジメタノール等が挙げられる。代表的なホモポリエステルとしては、ポリエチレンテレフタレート(PET)、ポリエチレン-2,6-ナフタレンジカルボキシレート(PEN)等を例示することができ、ポリエチレンテレフタレートが好ましい。
一方、共重合ポリエステルは、例えばジカルボン酸成分と脂肪族ジオールの重縮合ポリマーであることが好ましい。ジカルボン酸成分としては、好ましくはイソフタル酸、フタル酸、テレフタル酸、2,6-ナフタレンジカルボン酸、アジピン酸、セバシン酸及びオキシカルボン酸(例えば、p-オキシ安息香酸等)等の1種又は2種以上が挙げられる。また、脂肪族ジオールとしては、好ましくはエチレングリコール、ジエチレングリコール、プロピレングリコール、ブタンジオール、1,4-シクロヘキサンジメタノール及びネオペンチルグリコール等の1種又は2種以上が挙げられる。共重合ポリエステルは、ジカルボン酸成分としてテレフタル酸を含み、脂肪族ジオールとしてエチレングリコールを含むことがより好ましい。
上記ポリエステルが共重合ポリエステルの場合は、30モル%以下の第三成分を含有した共重合体であることが好ましい。第三成分とは、ポリエステルを構成するジカルボン酸成分の主成分(すなわち、最も含有量が多い成分)となる化合物と、ジオール成分の主成分となる化合物以外の成分であり、例えば共重合ポリエチレンテレフタレートではテレフタル酸及びエチレングリコール以外の成分である。
また、共重合ポリエステルは、ジカルボン酸成分及び脂肪族ジオール以外の二官能性化合物由来の構成単位を含んでもよい。ジカルボン酸成分及び脂肪族ジオール以外の二官能性化合物由来の構成単位は、ポリエステルを構成する全構成単位の総モルに対して、好ましくは20モル%以下、より好ましくは10モル%以下である。二官能性化合物としては、各種のヒドロキシカルボン酸、芳香族ジオール等が挙げられる。
本ポリエステルフィルムを構成する全ジカルボン酸成分中のテレフタル酸の含有量は、50モル%以上が好ましく、より好ましくは70モル%以上、さらに好ましくは90モル%以上である。
また、本ポリエステルフィルムを構成する全ジオール成分中のエチレングリコールの含有量は、50モル%以上が好ましく、より好ましくは70モル%以上、さらに好ましくは90モル%以上である。
なお、テレフタル酸及びエチレングリコールの含有量の上限値は、100モル%である。
また、上記ポリエステルは、再生ポリエステルであってもよく、バイオマス由来のポリエステルであってもよい。
<重縮合触媒>
上記ポリエステルを重縮合する際の重縮合触媒としては、特に制限はなく、従来公知の化合物を使用することができ、例えばチタン化合物、ゲルマニウム化合物、アンチモン化合物、マンガン化合物、アルミニウム化合物、マグネシウム化合物及びカルシウム化合物等が挙げられる。
これらの中では、チタン化合物及びアンチモン化合物の少なくともいずれかが好ましく、とりわけ、チタン化合物を用いて得られるポリエステルを使用することが好ましい。
したがって、本ポリエステルフィルムは、チタン化合物及びアンチモン化合物の少なくともいずれかを含むことが好ましく、チタン化合物を含むことがより好ましい。
前記チタン化合物を使用することで、結果的にアンチモン化合物の使用量を低減することができるため、アンチモン化合物がフィルム表面に析出することによる新たな突起形成リスクが小さくなり、高度な表面平滑性が維持できる。
したがって、特に好ましい形態としては、本ポリエステルフィルムが多層構造の場合に、少なくとも一方の表層を構成するポリエステルがチタン化合物を使用することが挙げられる。
前記表層中のチタン化合物に由来するチタン元素含有量は、質量基準で、3ppm以上40ppm以下であることが好ましく、より好ましく4ppm以上35ppm以下である。また、表層がアンチモン化合物及びチタン化合物の少なくともいずれかを含む場合、表層におけるアンチモン元素含有量は0ppm以上100ppm以下であることが好ましい。かかる範囲内であれば、製造効率を低下させることなく、触媒起因の異物を低減化することができる。
なお、生産性及びコストの観点から、表層以外の層を構成するポリエステルは、チタン化合物を使用しないことも好ましい。
以上より、本ポリエステルフィルムがチタン化合物を含むことにより、優れた平滑性を有するポリエステルフィルムとすることができる。そうした上で、本樹脂層を備えた積層ポリエステルフィルムとすれば、本積層ポリエステルフィルムをシート成形用等として好適に用いることができる。
<固有粘度>
本ポリエステルフィルムを構成するポリエステルの固有粘度(IV)は、0.50dL/g以上であることが好ましく、より好ましくは0.55dL/g以上、さらに好ましくは0.60dL/g以上である。かかる範囲であれば、混錬中のせん断応力が増大することによって粒子が高分散する等の利点がある。また、該ポリエステルの極限粘度(IV)は、例えば、1.00dL/g以下である。
なお、「本ポリエステルフィルムを構成するポリエステルの固有粘度(IV)」とは、固有粘度(IV)が異なる2種以上のポリエステルを使用する場合には、これら混合ポリエステルの固有粘度(IV)を意味するものとする。
本ポリエステルフィルムが多層構造の場合には、表層を構成するポリエステルの固有粘度(IV)が上記範囲であることが好ましい。
<粒子>
本ポリエステルフィルム中には、粒子を含有させることも可能である。ポリエステルフィルムは、粒子を含有することで、易滑性が付与され、かつ各工程での傷発生を防止して、取扱い性が良好となる。
本ポリエステルフィルム中に含有させる粒子の種類は、易滑性を付与可能な粒子であれば特に限定されるものではなく、具体例としては、例えばシリカ、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、リン酸カルシウム、リン酸マグネシウム、カオリン、酸化アルミニウム、酸化チタン等の無機粒子の他、架橋シリコーン樹脂粒子、架橋アクリル樹脂粒子、架橋スチレン-アクリル樹脂粒子、架橋ポリエステル粒子等の架橋高分子、シュウ酸カルシウム及びイオン交換樹脂等の有機粒子を挙げることができる。これらの中では、有機粒子、シリカ、酸化アルミニウムなどが好ましい。
さらに、ポリエステル製造工程中、触媒等の金属化合物の一部を沈殿、微分散させた析出粒子を用いることもできる。
使用する粒子の形状に関しても特に限定されるわけではなく、球状、塊状、棒状、扁平状等のいずれを用いてもよい。
また、その硬度、比重、色等についても特に制限はない。これら一連の粒子は、必要に応じて2種類以上を併用してもよい。
また、用いる粒子の平均粒径は、通常5μm以下、好ましくは0.01~3μmの範囲である。5μm以下であると、フィルムの表面粗度が粗くなりすぎず、後工程において樹脂層、及び樹脂層以外の各種の表面機能層を形成させる場合等に不具合が生じず好ましい。また、平均粒径がかかる範囲であれば、ヘーズが低く抑えられ、本積層ポリエステルフィルム全体として透明性を確保しやすい。
なお、粒子の平均粒径は、10個以上の粒子を走査型電子顕微鏡(SEM)観察して粒子の直径を測定し、その平均値として求めることができる。その際、非球状粒子の場合は、最長径と最短径の平均値を各粒子の直径として測定することができる。
本ポリエステルフィルムに粒子を含有させる場合、例えば、表層と中間層を設けて、表層に粒子を含有させることが好ましい。
粒子の含有量は、平均粒径にも依存するが、粒子を含有する層において、質量基準で、通常5000ppm以下程度である。粒子を含有しない場合、あるいは粒子の含有量が少ない場合、滑り性を十分に付与することができず、ポリエステルフィルムの透明性が高くなるが、滑り性が不十分となる場合がある。そのため、後述する本樹脂層を積層させることにより、滑り性を向上させる等の工夫が必要である。また、5000ppm以下であれば、ポリエステルフィルムの透明性が十分担保できる。また、樹脂を含有する層において、粒子の含有量は、特に制限されず、例えば50ppm以上、好ましくは100ppm以上である。
後述する本樹脂層は、ポリエステルフィルムの粒子を含有する層上に設けられてもよいし、粒子を実質的に含有しない層上に設けられてもよい。また、ポリエステルフィルムにおいて本樹脂層が設けられる面とは反対側の面(反対面)を、粒子を実質的に含有しない層としてもよいし、粒子を含有する層としてもよい。本発明では、樹脂層が設けられる面及び反対側の面の両方を、粒子を実質的に含有しない層としても、後述する凹凸構造を有する樹脂層によって巻取性などを良好にできる。また、樹脂層が設けられる面及び反対側の面の一方又は両方を、粒子を含有する層とすることで、巻取性がより一層良好としやすくなる。
本ポリエステルフィルムの少なくとも一方の表面に優れた平滑性を付与する場合には、平滑面側の表層には、粒子を含有してもよく、又は粒子を実質的に含有しなくてもよいが、極めて高平滑なフィルムとする場合には、実質的に粒子を含有しないことが好ましい。
なお、「実質的に含有しない」とは、意図して含有しないという意味であり、具体的には、粒子の含有量(粒子濃度)が質量基準で50ppm未満、より好ましくは40ppm以下、さらに好ましくは30ppm以下のことを指す。
この場合、平滑面側の表層上及び/又は平滑面の反対面側の表層上に本樹脂層を積層させることで、フィルムをロール状に巻き取る際のハンドリング性を向上させることができる。
本ポリエステルフィルム中に粒子を添加する方法としては、特に限定されるものではなく、従来公知の方法を採用しうる。例えば、多層のポリエステルフィルムであれば、各層を構成するポリエステルを製造する任意の段階において添加することができるが、エステル化又はエステル交換反応終了後、添加するのが好ましい。
<その他>
オリゴマー成分の析出量を抑えるために、オリゴマー成分の含有量が少ないポリエステルを原料としてフィルムを製造してもよい。オリゴマー成分の含有量が少ないポリエステルの製造方法としては、種々公知の方法を用いることができ、例えばポリエステル製造後に固相重合する方法等が挙げられる。
また、本ポリエステルフィルムを3層以上の構成とし、本ポリエステルフィルムの表層を、オリゴマー成分の含有量が少ないポリエステル原料を用いた層とすることで、オリゴマー成分の析出量を抑えてもよい。
また、ポリエステルは、エステル化又はエステル交換反応をした後に、さらに反応温度を高くして減圧下で溶融重縮合して得てもよい。
なお、本ポリエステルフィルム中には、上述の粒子以外に必要に応じて従来公知の紫外線吸収剤、酸化防止剤、帯電防止剤、熱安定剤、潤滑剤、染料、顔料等を添加することができる。
ポリエステルフィルムの厚みは、フィルムとして製膜可能な範囲であれば特に限定されるものではないが、機械的強度、ハンドリング性及び生産性などの観点から、好ましくは1μm以上、より好ましくは10μm以上、さらに好ましくは19μm以上、特に好ましくは25μm以上であり、そして、好ましくは200μm以下、より好ましくは125μm以下、さらに好ましくは80μm以下、特に好ましくは50μm以下である。
<ポリエステルフィルムの製造方法>
次に、本ポリエステルフィルムの製造例について具体的に説明するが、以下の製造例に何ら限定されるものではない。例えば二軸延伸フィルムを製造する場合、先に述べたポリエステル原料の乾燥したペレットを、押出機などの溶融押出装置を用いてダイから溶融シートとして押し出し、回転冷却ドラムなどの冷却ロールで冷却固化して未延伸シートを得る方法が好ましい。この場合、シートの平面性を向上させるためシートと冷却ロールとの密着性を高めることが好ましく、静電印加密着法及び/又は液体塗布密着法が好ましく採用される。
次に得られた未延伸シートは二軸方向に延伸される。その場合、まず、前記の未延伸シートを一方向にロール又はテンター方式の延伸機により延伸する。延伸温度は、通常70~120℃、好ましくは80~110℃であり、延伸倍率は通常2.5~7.0倍、好ましくは3.0~6.0倍である。
次いで、一段目の延伸方向と直交する方向に延伸するが、その場合、延伸温度は通常70~170℃であり、延伸倍率は通常3.0~7.0倍、好ましくは3.5~6.0倍である。
そして、引き続き、通常180~270℃の温度で、緊張下又は30%以内の弛緩下で熱処理を行い、二軸延伸フィルムを得る。この熱処理は、熱固定工程とも呼ばれる。熱処理は、温度の異なる2段以上の工程で行ってもよい。
また、熱処理の後に冷却ゾーンにて冷却を行ってもよい。冷却温度は、フィルムを構成するポリエステルのガラス転移温度(Tg)より高い温度であることが好ましく、より具体的には、100~160℃の範囲であることが好ましい。この冷却は、温度の異なる2段以上の工程で行ってもよい。
上記の延伸においては、一方向の延伸を2段階以上で行う方法を採用することもできる。その場合、最終的に二方向の延伸倍率がそれぞれ上記範囲となるように行うのが好ましい。
また、本ポリエステルフィルムの製造に同時二軸延伸法を採用することもできる。同時二軸延伸法は、前記の未延伸シートを通常70~120℃、好ましくは80~110℃で温度コントロールされた状態で機械方向(縦方向)及び幅方向(横方向)に同時に延伸し配向させる方法であり、延伸倍率としては、面積倍率で好ましくは4~50倍、より好ましくは7~35倍、さらに好ましくは10~25倍である。
そして、引き続き、通常170~250℃の温度で、緊張下又は30%以内の弛緩下で熱処理を行い、延伸配向フィルムを得る。上述の延伸方式を採用する同時二軸延伸装置に関しては、スクリュー方式、パンタグラフ方式及びリニアー駆動方式等、従来公知の延伸方式を採用することができる。
<<樹脂層>>
本積層ポリエステルフィルムは、ポリエステルフィルムの少なくとも片面側に、樹脂組成物から形成されてなる樹脂層を備えるものである。樹脂層は、硬化樹脂層であってもよい。
本樹脂層は、上述のとおり、樹脂組成物(以下、「本組成物」とも称する)から形成され、凹凸構造を有する。
<凹凸構造>
本樹脂層が有する凹凸構造は、相分離によって形成された微細な形状である。相分離による凹凸は、相溶性の異なる樹脂からなる組成が、塗布、延伸、乾燥、硬化、熱処理等の過程で相分離を起こし、それにより表面に凹凸構造を成すものである。より具体的には、相分離によって凹部もしくは凸部が形成されることにより表面に凹凸構造を成すものである。
なお、その構造は種々の表面分析手法、例えば原子間力顕微鏡(走査型プローブ顕微鏡)などの手段によって確認することが可能である。
<Hansen溶解度パラメーター>
Hansen溶解度パラメーター(HSP)とは、ある物質が他のある物質にどのくらい溶けるのかという溶解性を表す指標である。HSPは、ヒルデブランド(Hildebrand)によって導入された溶解度パラメーターを、分散項δd、極性項δp、水素結合項δhの3成分に分割し、三次元空間に表したものである。
分散項δdは分散力による効果、極性項δpは双極子間力による効果、水素結合項δhは水素結合力による効果を示し、それぞれ以下のように表記される。
なお、それぞれの単位はMPa0.5である。
δd: 分子間の分散力に由来するエネルギー
δp: 分子間の極性力に由来するエネルギー
δh: 分子間の水素結合力に由来するエネルギー
HSPの定義と計算は、下記の文献に記載されている。
Charles M. Hansen著、Hansen Solubility Parameters: A Users Handbook(CRCプレス、2007年)。
それぞれ、分散項はLondоn分散力、極性項はダイポール・モーメント、水素結合項は水、アルコールなどによる作用をそれぞれ反映している。
そして、HSPによるベクトルが似ているもの同士は溶解性が高いと判断でき、ベクトルの類似度はHSPの距離(HSP距離)で判断し得る。
本発明において、樹脂のHSP[δd,δp,δh]は、HSP既知の各種溶媒への溶解性を評価し、樹脂が溶解する溶媒種を良溶媒、樹脂が不溶もしくは膨潤する溶媒種を貧溶媒として、相互作用球とその中心であるHSPを算出することができる。
算出には、例えば、市販のハンセン溶解度パラメーター計算ソフトHSPiP(Hansen Solubility Parameters in Practice)が使用でき、良溶媒と貧溶媒の閾値は算出された相互作用球のFitting値が最も1に近くなるように決定すればよい。正確な測定のためには、測定に使用する溶媒がそれぞれ多様なHSP[δD,δP,δH]を有しているとよく、具体的な溶媒の種類は、表1の通りである。表1に従い、18種以上の溶媒にて、溶解性テストを実施し、溶媒種の良溶媒、貧溶媒判定を行う。なお、表中「≧1」は1種以上の溶媒について測定することを意味しており、「≧2」は2種以上の溶媒について測定することを意味する。
また、樹脂のHSP[δd,δp,δh]は、樹脂の化学構造が明確であれば、HSPiPのY-MB(Yamamoto Molecular Break)機能によって計算が可能であるし、化学構造が明確でなければ従来公知の手法により実測によって求めることもできる。
また、形成された樹脂層を適した溶媒に溶解し、各成分を分離した後に上記と同様の手法を用いることで、樹脂層中の樹脂のHSPを求めることもできる。
<樹脂組成物>
本組成物は2種以上の樹脂を含む。本組成物に含まれる2種以上の樹脂のうち少なくとも2種の樹脂は、一方を第1の樹脂、他方を第2の樹脂とすると、下記式(1)の関係を満足するものである。
HSP距離={4×(δd-δd+(δp-δp+(δh-δh0.5≧5.0・・・(1)
ただし、δd、δp及びδhは、Hansen溶解度パラメーター[δd,δp,δh]において、それぞれ、第1の樹脂のδd、δp及びδhを表し、δd、δp及びδhは、それぞれ、第2の樹脂のδd、δp及びδhを表す。
なお、前記第1の樹脂、及び、前記第2の樹脂については、前記2種の樹脂のうち極性項δpの値が小さい方を第1の樹脂、極性項δpの値が大きい方を第2の樹脂とする。すなわち、δp≦δpとする。ただし、前記2種の樹脂の極性項δpの値が同じである場合には、水素結合項δhの値が小さい方を第1の樹脂とし、水素結合項δhの値もさらに同じである場合には分散項δdの値が小さい方を第1の樹脂とする。
上記式(1)によって定義されるHSP距離は、5.0以上であり、好ましくは6.0以上、より好ましくは7.0以上、さらに好ましくは8.0以上である。当該HSP距離がかかる範囲であれば、相溶性の異なる樹脂からなる組成が相分離を起こしやすくなり、樹脂層が薄膜であっても所望の微細な凹凸構造を有することができる。
上記式(1)によって定義されるHSP距離は、特に限定されないが、好ましくは25.0以下であり、より好ましくは23.0以下、さらに好ましくは21.0以下である。
本組成物に含まれる2種以上の樹脂は特に制限されず、本組成物に含まれる全樹脂を対象に2種の樹脂を選択する場合の考えられる組み合わせのうち少なくとも1つの組み合わせによる2種の樹脂が、上記式(1)の関係を満足すればよい。
例えば本組成物に含まれる全樹脂が、樹脂A、樹脂B、樹脂Cの3種である場合、全樹脂を対象に2種の樹脂を選択する場合の考えられる組み合わせは、樹脂Aと樹脂B、樹脂Bと樹脂C、樹脂Cと樹脂Aの3通りである。したがって、上記の意味するところは、当該3通りのうち1通り以上が上記式(1)の関係を満足すればよいということである。
言い換えるのであれば、上記3通りのうち2種の樹脂間のHSP距離が最遠となる組み合わせ(2種の樹脂の最遠距離)が上記式(1)の関係を満足すればよいということである。
上述のとおり、本発明は、上記式(1)の関係を満たす組み合わせが1つでもあれば、関係式を満たす相溶性の異なる2種の樹脂に由来する組成が相分離を起こし、凹凸構造が形成される。すなわち、上記式(1)の関係式を満たさない樹脂の組み合わせがある場合であっても、所望する凹凸構造を得ることができる。
ここで、本発明において「樹脂」とは、被膜形成に関与する主たる成分をさす。より具体的には、「樹脂」としては後述の成分などが挙げられる。
本組成物に含まれる2種以上の樹脂の合計含有量は、不揮発成分として50質量%以上であることが好ましい。より好ましくは60質量%以上、さらに好ましくは65質量%以上である。当該合計含有量がかかる範囲であれば、相分離による効果が十分に発揮され、所望する微細な凹凸構造を得やすくなる。なお、2種以上の樹脂の合計含有量は、上限値について特に限定されず、100質量%以下であればよい。
なお、前記2種以上の樹脂は、特に制限されないが、後述する「第1の樹脂」や「第2の樹脂」として例示される樹脂を、好ましいものとして挙げることができる。
(((第1の樹脂)))
相分離による微細な凹凸構造を形成させる観点から、前記2種の樹脂における第1の樹脂の極性項δpは、9.0MPa0.5以下であることが好ましく、より好ましくは8.0MPa0.5以下、さらに好ましくは7.0MPa0.5以下である。当該極性項δpの値がかかる範囲であれば、前記第1の樹脂の極性を低くすることができ、上記式(1)の関係を満たしやすくなり、結果として所望の凹凸構造を形成しやすくなる。当該極性項δpの値は、特に限定されないが、好ましくは1.0MPa0.5以上、より好ましくは2.0MPa0.5以上である。
また、前記2種の樹脂における第1の樹脂の水素結合項δhは15.0MPa0.5以下であることが好ましく、より好ましくは12.0MPa0.5以下、さらに好ましくは9.0MPa0.5以下であり、分散項δdは特に制限されないが、6.0MPa0.5以上であることが好ましく、より好ましくは8.0MPa0.5以上、さらに好ましくは10.0MPa0.5以上である。当該水素結合項δh及び/又は当該分散項δdの値がかかる範囲であれば、上記式(1)の関係を満足しやすくなる。
なお、本組成物において、上記式(1)の関係を満たす第1の樹脂が2種以上ある場合には、少なくとも1種の第1の樹脂が上記した極性項δpの値を有すればよいが、全ての第1の樹脂が上記した極性項δpの値を有してもよい。水素結合項δh及び分散項δdついても同様である。
本組成物において上記式(1)の関係を満たす第1の樹脂の含有量は、本組成物中の全不揮発成分に占める割合として、好ましくは5~90質量%、より好ましくは15~85質量%、さらに好ましくは35~80質量%の範囲である。当該含有量を5質量%以上とすることで、相分離による凹凸構造を十分に形成させることができる。また、当該含有量を90質量%以下とすることで、他の樹脂の含有量を確保することができ、相分離による凹凸形成性能を適度に調整することができる。なお、本発明において、上記式(1)の関係を満たす第1の樹脂が2種以上ある場合には、上記含有量とはその合計含有量を意味する。
極性項δpや水素結合項δhが低く、効果的に凹凸構造を形成できるという観点から、前記第1の樹脂として、後述する離型剤を使用することが好ましい。ただし、第1の樹脂としては、離型剤以外も使用でき、例えば、後述する架橋剤を第1の樹脂として使用できる。架橋剤は、例えば、後述するバインダーを、前記2種の樹脂における第2の樹脂とし使用する場合に、そのバインダーに対する第1の樹脂として使用するとよい。
(((第2の樹脂)))
相分離による微細な凹凸構造の形成にも寄与でき、さらに本組成物を塗布液とした時の塗布性を向上させる観点から、前記2種の樹脂における第2の樹脂の水素結合項δhは、8.0MPa0.5以上であることが好ましく、より好ましくは10.0MPa0.5以上、さらに好ましくは12.0MPa0.5以上である。当該水素結合項δhの値がかかる範囲であれば、前記第2の樹脂の親水性を高くすることができ、塗布性を向上させることができる。加えて、上記(1)の関係を満たしやすくなり、結果として所望の凹凸構造を形成しやすくなる。
前記2種の樹脂における第2の樹脂の水素結合項δhは、25.0MPa0.5以下であることが好ましく、23.0MPa0.5以下がより好ましく、20.3MPa0.5以下がさらに好ましい。当該水素結合項δhの値を一定値以下とすることで、親水性が高くなりすぎず、それにより塗膜が吸水して軟化し、凹凸強度が低下することを防止して、滑り性を改善しやすくなる。
また、前記2種の樹脂における第2の樹脂の極性項δpは7.0MPa0.5以上であることが好ましく、より好ましくは8.0MPa0.5以上、さらに好ましくは9.0MPa0.5以上であり、分散項δdは特に制限されないが、6.0MPa0.5以上であることが好ましく、より好ましくは8.0MPa0.5以上、さらに好ましくは10.0MPa0.5以上である。当該水素結合項δh及び/又は当該分散項δdの値がかかる範囲であれば、上記式(1)の関係を満足しやすくなる。
なお、本組成物において、上記式(1)の関係を満たす第2の樹脂が2種以上ある場合には、少なくとも1種の第2の樹脂が上記した水素結合項δhの値を有すればよいが、全ての第2の樹脂が上記した水素結合項δhの値を有してもよい。極性項δp及び分散項δdについても同様である。
本組成物中の上記式(1)の関係を満たす第2の樹脂の含有量は、本組成物中の全不揮発成分に占める割合として、好ましくは10~90質量%、より好ましくは15~85質量%、さらに好ましくは20~65質量%の範囲である。当該含有量を10質量%以上とすることで、相分離による凹凸構造の形成、及び、本組成物を塗布液とした時の塗布性の向上を両立させることができる。また、当該含有量を90質量%以下とすることで、第1の樹脂の含有量を確保することができ、相分離による凹凸形成性能を適度に調整することができる。なお、本発明において、上記式(1)の関係を満たす第2の樹脂が2種以上ある場合には、上記含有量とはその合計含有量を意味する。
前記第2の樹脂は、特に制限されないが、被膜形成能を有するものが好ましい。より具体的には、前記第2の樹脂として後述するバインダー樹脂や架橋剤等が挙げられる。
(((第3成分の樹脂)))
本樹脂層には、少なくとも2種の樹脂を含むことを必須とするが、凹凸形状をさらに調整しやすくなり、さらにポリエステルフィルムとの密着性や塗膜強度をコントロールできる観点からは、3種以上の樹脂を含むことが好ましい。その場合は、前記2種の樹脂の最遠距離の他に、第3成分の樹脂との距離も考慮することが好ましい。
より好ましい形態として、前記2種の樹脂における第1の樹脂の極性項δpが9.0MPa0.5以下であることを満たした上で、上記2種以上の樹脂が、当該第1の樹脂に対して、HSP距離が6.0以上の樹脂を含み、かつ、HSP距離が5.5以下の樹脂を含まないことが挙げられる。この場合のHSP距離は、上記式(1)で定められた関係式によって算出される。
言い換えるのであれば、極性項δpが9.0MPa0.5以下である第1の樹脂(低δp樹脂)に対する他の樹脂の最近距離が5.5より大きく、低δp樹脂に対する他の樹脂の最遠距離が6.0以上であることが好ましい。
上記条件は、3種以上の樹脂を含む場合に満たすことが好ましいが、樹脂組成物が2種の樹脂のみを含有する場合に満たしてもよい。
上記条件を満たすことができれば、相分離によってより効果的に微細な凹凸構造を発現させることができる。かかる観点から、HSP距離が7.0以上の樹脂を含むことがより好ましく、さらに好ましくはHSP距離が8.0以上の樹脂を含む。また、HSP距離が6.0以下の樹脂を含まないことがより好ましく、さらに好ましくはHSP距離が7.0以下の樹脂を含まない。
((離型剤))
上記2種以上の樹脂は、第1の樹脂として離型剤を含有することが好ましい。前記離型剤としては、特に制限はなく、従来公知の離型剤を使用することができる。例えばワックス、長鎖アルキル基含有化合物、フッ素化合物、シリコーン化合物等を挙げることができる。中でも、ワックス、及び長鎖アルキル基含有化合物の少なくともいずれかであることが好ましく、ワックスであることがより好ましい。本組成物において、離型剤は、1種単独で使用してもよいし、2種以上を併用してもよい。
本樹脂層の凹凸構造は、上述のとおり、相溶性の異なる樹脂が相分離することによって形成されるものであるが、前記2種の樹脂における第1の樹脂が離型剤であれば、離型剤の有する撥水及び/又は撥油効果によって効果的に微細な凹凸構造を発現させることができる。撥水及び/又は撥油効果によって凹凸が形成されるメカニズムは定かではないが、撥水及び/又は撥油などによって他の樹脂をはじき、はじかれた樹脂によって凸部が形成されることによって、より効果的に微細な凹凸が形成されると推定している。
より好ましい形態として前記2種の樹脂における第1の樹脂が離型剤であり、さらに上記2種以上の樹脂が、該離型剤に対してHSP距離が6.0以上の樹脂を含み、かつ、HSP距離が5.5以下の樹脂を含まないことが挙げられる。この場合のHSP距離は、上記式(1)で定められた関係式によって算出される。
言い換えるのであれば、離型剤に対する他の樹脂の最近距離が5.5より大きく、離型剤に対する他の樹脂の最遠距離が6.0以上であることが好ましい。
上記条件を満たすことができれば、相分離によってより効果的に微細な凹凸構造を発現させることができる。かかる観点から、離型剤に対するHSP距離が7.0以上の樹脂を含むことがより好ましく、さらに好ましくはHSP距離が8.0以上の樹脂を含む。また、離型剤に対するHSP距離が6.0以下の樹脂を含まないことがより好ましく、さらに好ましくはHSP距離が7.0以下の樹脂を含まない。
(ワックス)
上記ワックスとしては、天然ワックス、合成ワックス及び変性ワックスなどを挙げることができる。
天然ワックスとは、植物系ワックス、動物系ワックス、鉱物系ワックス及び石油ワックスである。
植物系ワックスとしては、キャンデリラワックス、カルナウバワックス、ライスワックス、木ロウ及びホホバ油等が挙げられる。
動物系ワックスとしては、みつろう、ラノリン及び鯨ロウ等が挙げられる。
鉱物系ワックスとしては、モンタンワックス、オゾケライト及びセレシン等が挙げられる。
石油ワックスとしては、パラフィンワックス、マイクロクリスタリンワックス及びペトロラタム等が挙げられる。
合成ワックスとしては、合成炭化水素、変性ワックス、水素化ワックス、脂肪酸、酸アミド、アミン類、イミド類、エステルワックス及びケトン類を挙げることができる。
合成ワックスとしては、例えばフィッシャー・トロプシュワックス(別名サゾールワックス)、ポリエチレンワックスなどを挙げることができる。このほかに低分子量の高分子(具体的には数平均分子量500~20000の高分子)である以下のポリマー、すなわち、ポリプロピレン、エチレン・アクリル酸共重合体、ポリエチレングリコール、ポリプロピレングリコール及びポリエチレングリコールとポリプロピレングリコールのブロック又はグラフト結合体等を挙げることができる。
変性ワックスとしては、例えばモンタンワックス誘導体、パラフィンワックス誘導体及びマイクロクリスタリンワックス誘導体等を挙げることができる。ここでの誘導体とは、精製、酸化、エステル化、ケン化のいずれかの処理、又はそれらの組み合わせによって得られる化合物である。水素化ワックスとしては、硬化ひまし油、及び硬化ひまし油誘導体を挙げることができる。
中でも、相分離による凹凸形成性能が優れるという観点において、前記離型剤としては合成ワックスが好ましく、その中でもポリエチレンワックスがより好ましく、酸化ポリエチレンワックスがさらに好ましい。
なお、ワックスは、本組成物を水などの溶媒により希釈して塗布液とする場合には、界面活性剤などにより分散させてワックスエマルションにして、塗布液に配合してもよい。
合成ワックスの数平均分子量は、相分離による凹凸形成性能や取扱い性の観点から、通常500~30000、好ましくは1000~15000、より好ましくは2000~8000の範囲である。なお、数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定したポリスチレン換算の値である。
また、樹脂層を形成する際、架橋などのために加熱することを考慮すると、上記ワックスの中でも、融点又は軟化点は80℃以上が好ましく、より好ましくは110℃以上である。一方、熱処理を行った後に相分離性能をコントロールする観点で、200℃以下が好ましく、より好ましくは170℃以下、さらに好ましくは150℃以下である。特に、熱処理の過程が相分離のきっかけになる場合、定かではないが、上記ワックスが融解し、融解したワックスが他の樹脂をはじくことで、凸部が形成され得ると推定している。
なお、ワックスの融点は、示差走査熱量計(DSC)によって測定ができる。
(長鎖アルキル基含有化合物)
長鎖アルキル基含有化合物とは、炭素数が6以上、好ましくは8以上、さらに好ましくは12以上の直鎖又は分岐のアルキル基を有する化合物のことである。
アルキル基としては、例えばヘキシル基、オクチル基、デシル基、ラウリル基、オクタデシル基、ベヘニル基等の炭素数6~30程度のアルキル基が挙げられる。アルキル基を有する化合物とは、例えば、各種の長鎖アルキル基含有高分子化合物、長鎖アルキル基含有アミン化合物、長鎖アルキル基含有エーテル化合物、長鎖アルキル基含有四級アンモニウム塩等が挙げられる。耐熱性を考慮すると高分子化合物であることが好ましく、少ない含有量で効果的に適度な相分離による凹凸形成性能を得ることができるという観点から、長鎖アルキル基を側鎖に持つ高分子化合物であることがより好ましい。
長鎖アルキル基を側鎖に持つ高分子化合物とは、反応性基を有する高分子と、当該反応性基と反応可能なアルキル基を有する化合物とを反応させて得ることができる。上記反応性基としては、例えば水酸基、アミノ基、カルボキシル基、酸無水物等が挙げられる。これらの反応性基を有する化合物としては、例えばポリビニルアルコール、ポリエチレンイミン、ポリエチレンアミン、反応性基含有ポリエステル樹脂、反応性基含有ポリ(メタ)アクリル樹脂等が挙げられる。これらの中でも取り扱いやすさを考慮するとポリビニルアルコールであることが好ましい。使用されるポリビニルアルコールの重合度は特に限定されるものではないが、通常100以上、好ましくは300~40000の範囲である。また、ポリビニルアルコールのケン化度は特に限定されるものではないが、通常70モル%以上、好ましくは70~99.9モル%の範囲、より好ましくは80~97モル%、さらに好ましくは86~95モル%であるものが用いられる。
上記の反応性基と反応可能なアルキル基を有する化合物とは、例えばヘキシルイソシアネート、オクチルイソシアネート、デシルイソシアネート、ラウリルイソシアネート、オクタデシルイソシアネート、ベヘニルイソシアネート等の長鎖アルキル基含有イソシアネート、ヘキサノイルクロライド、オクタノイルクロライド、デカノイルクロライド、ラウロイルクロライド、オクタデカノイルクロライド、ベヘノイルクロライド等の長鎖アルキル基含有酸クロライド、長鎖アルキル基含有アミン、長鎖アルキル基含有アルコール等が挙げられる。これらの中でも取り扱い易さを考慮すると長鎖アルキル基含有イソシアネートが好ましく、オクタデシルイソシアネートが特に好ましい。
また、長鎖アルキル基を側鎖に持つ高分子化合物は、長鎖アルキル(メタ)アクリレートの重合物や長鎖アルキル(メタ)アクリレートと他のビニル基含有モノマーとの共重合によって得ることもできる。長鎖アルキル(メタ)アクリレートとは、例えばヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレート、オクタデシル(メタ)アクリレート、ベヘニル(メタ)アクリレート等が挙げられる。
(フッ素化合物)
フッ素化合物としては、化合物中にフッ素原子を含有している化合物である。インラインコーティングによる塗布外観の点で有機系フッ素化合物が好適に用いられ、例えばパーフルオロアルキル基含有化合物、フッ素原子を含有するオレフィン化合物の重合体、フルオロベンゼン等の芳香族フッ素化合物等が挙げられる。少ない含有量で効果的に適度な相分離による凹凸形成性能を得ることができるという観点から、パーフルオロアルキル基を有する化合物であることが好ましい。さらに、フッ素化合物には、上述するような長鎖アルキル化合物を含有している化合物も使用することができる。
パーフルオロアルキル基を有する化合物とは、例えばパーフルオロアルキル(メタ)アクリレート、パーフルオロアルキルメチル(メタ)アクリレート、2-パーフルオロアルキルエチル(メタ)アクリレート、3-パーフルオロアルキルプロピル(メタ)アクリレート、3-パーフルオロアルキル-1-メチルプロピル(メタ)アクリレート、3-パーフルオロアルキル-2-プロペニル(メタ)アクリレート等のパーフルオロアルキル基含有(メタ)アクリレートやその重合物、パーフルオロアルキルメチルビニルエーテル、2-パーフルオロアルキルエチルビニルエーテル、3-パーフルオロプロピルビニルエーテル、3-パーフルオロアルキル-1-メチルプロピルビニルエーテル、3-パーフルオロアルキル-2-プロペニルビニルエーテル等のパーフルオロアルキル基含有ビニルエーテルやその重合物などが挙げられる。耐熱性を考慮すると重合物であることが好ましい。重合物は単一化合物のみでも複数化合物の重合物でもよい。また、少ない含有量で効果的に適度な相分離による凹凸形成性能を得ることができるという観点から、パーフルオロアルキル基は炭素原子数が3~11であることが好ましい。さらに、上述するような長鎖アルキル化合物を含有している化合物との重合物であってもよく、基材であるポリエステルフィルムとの密着性の観点から、塩化ビニルとの重合物も好ましく用いられる。
(シリコーン化合物)
シリコーン化合物とは、分子内にシリコーン構造を有する化合物のことであり、シリコーンエマルション、アクリルグラフトシリコーン、シリコーングラフトアクリル、アミノ変性シリコーン、パーフルオロアルキル変性シリコーン、アルキル変性シリコーン等が挙げられる。耐熱性を考慮すると硬化型シリコーン樹脂を含有することが好ましい。
硬化型シリコーン樹脂の種類としては、付加型、縮合型、紫外線硬化型、電子線硬化型等いずれの硬化反応タイプでも用いることができる。
((バインダー樹脂))
上記2種以上の樹脂は、前記第2の樹脂としてバインダー樹脂を含有することが好ましい。そして、上記2種以上の樹脂は、前記2種の樹脂における第1の樹脂として離型剤を含み、該第1の樹脂に対する第2の樹脂としてバインダー樹脂を含有することがより好ましい。
バインダー樹脂は、「高分子化合物安全性評価フロースキーム」(昭和60年11月、化学物質審議会主催)に準じて、ゲルパーミエーションクロマトグラフィー(GPC)測定による数平均分子量(Mn)が1000以上の高分子化合物で、かつ、造膜性を有するものと定義する。
そのようなバインダー樹脂としては、特に制限はなく、従来公知のバインダー樹脂を使用することができる。例えば(メタ)アクリル樹脂、ポリビニルアルコール、ポリエステル樹脂、イオン導電性の高分子化合物、ポリウレタン樹脂等を挙げることができる。中でも、親水性が高く、相分離による凹凸形成性能の維持と被膜形成の観点から、(メタ)アクリル樹脂及びポリビニルアルコールの少なくともいずれかを用いることが好ましい。本組成物において、バインダー樹脂は、1種単独で使用してもよいし、2種以上を併用してもよい。
((メタ)アクリル樹脂)
(メタ)アクリル樹脂とは、アクリル系、メタクリル系のモノマーを含む重合性モノマーからなる重合体である。これらは、単独重合体あるいは共重合体、さらにはアクリル系、メタクリル系のモノマー以外の重合性モノマーとの共重合体のいずれでもよい。
(メタ)アクリル系重合体は、(メタ)アクリル酸又は(メタ)アクリル酸アルキルエステル類由来の構成単位を有する重合体である。(メタ)アクリル系重合体は、(メタ)アクリル酸及び(メタ)アクリル酸アルキルエステルから選択される少なくとも1種の重合体でもよいし、これらから選択される少なくとも1種と、これら以外のモノマー類、例えば、スチレン又はスチレン誘導体、水酸基を含有するモノマーなどから選択される少なくとも1種との共重合体であってもよい。
また、それら重合体と他のポリマー(例えばポリエステル、ポリウレタン等)との共重合体も含まれる。例えばブロック共重合体、グラフト共重合体である。すなわち、(メタ)アクリル樹脂は、(メタ)アクリル変性ポリエステル樹脂や、(メタ)アクリル変性ポリウレタン樹脂であってもよい。
あるいは、ポリエステル溶液、又はポリエステル分散液中で重合性モノマーを重合して得られたポリマー(場合によってはポリマーの混合物)も含まれる。同様にポリウレタン溶液、ポリウレタン分散液中で重合性モノマーを重合して得られたポリマー(場合によってはポリマーの混合物)も含まれる。同様にして他のポリマー溶液、又は分散液中で重合性モノマーを重合して得られたポリマー(場合によってはポリマー混合物)も含まれ、これらも本明細書では、(メタ)アクリル変性ポリエステル樹脂や、(メタ)アクリル変性ポリウレタン樹脂とする。なお、(メタ)アクリル樹脂において使用される上記したポリエステル、ポリウレタンは、後述するバインダー樹脂に使用されるポリエステル、ポリウレタンとして例示されたものから適宜選択して使用できる。
また、(メタ)アクリル樹脂は、ポリエステルフィルムとの密着性をより向上させるために、ヒドロキシ基、アミノ基を含有することも可能である。
上記重合性モノマーとしては、特に限定はしないが、特に代表的な化合物としては、例えばアクリル酸、メタクリル酸、クロトン酸、イタコン酸、フマル酸、マレイン酸、シトラコン酸等の各種カルボキシル基含有モノマー類、及びそれらの塩;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、モノブチルヒドロキシフマレート、モノブチルヒドロキシイタコネート等の各種の水酸基含有モノマー類;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ラウリル(メタ)アクリレートのような各種のアルキル(メタ)アクリル酸エステル類;(メタ)アクリルアミド、ジアセトンアクリルアミド、又は(メタ)アクリロニトリル等の種々の窒素含有モノマー類;N-メチロール(メタ)アクリルアミドなどの水酸基含有の窒素含有モノマー類;スチレン、α-メチルスチレン、ジビニルベンゼン、ビニルトルエン等の各種スチレン誘導体;プロピオン酸ビニルのような各種のビニルエステル類;γ-メタクリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン等の種々の珪素含有重合性モノマー類;燐含有ビニル系モノマー類;塩化ビニル、塩化ビニリデン等の各種のハロゲン化ビニル類;ブタジエン等の各種共役ジエン類が挙げられる。
上記の(メタ)アクリル樹脂の中では、アクリル系、メタクリル系のモノマーを含む重合性モノマーを重合してなる重合体が好ましく、重合性モノマーがアルキル(メタ)アクリル酸エステル類を含むことがより好ましい。
また、(メタ)アクリル樹脂を含む本組成物は、後述するように溶媒で希釈して塗布液とするのが好ましく、かかる溶媒が水を主溶媒(50質量%以上)とするのが好ましい。すなわち、塗布液を水系とした場合に溶解又は分散しやすくする観点から、重合性モノマーは水酸基やカルボキシル基などの親水性基を有することが好ましい。また、水素結合項δhの値が高く、親水性を高めることで、第2の樹脂として上記式(1)を満たし、効果的に凹凸構造が得られるという観点からも、水酸基やカルボキシル基などの親水性基を有することが好ましい。
したがって、アクリル樹脂は、アルキル(メタ)アクリル酸エステル類と、水酸基を含有するモノマー、カルボキシル基含有モノマーなどの親水性基含有モノマーを含む重合性モノマーを重合してなる重合体も好ましい。
また、アクリル樹脂は、例えば界面活性剤の存在下に重合性モノマーを重合した乳化重合体でもよい。
(ポリビニルアルコール)
ポリビニルアルコールとは、ポリビニルアルコール部位を有する化合物であり、例えば、ポリビニルアルコールに対し、部分的にアセタール化やブチラール化等された変性化合物も含め、従来公知のポリビニルアルコールを使用することができる。ポリビニルアルコールの重合度は特に限定されるものではないが、通常100以上、好ましくは300~40000の範囲である。重合度を100以上とすると、樹脂層の耐水性を良好にしやすくなる。また、ポリビニルアルコールのケン化度は特に限定されるものではないが、通常70モル%以上、好ましくは70~99.9モル%の範囲、より好ましくは80~97モル%、さらに好ましくは86~95モル%であるポリ酢酸ビニルケン化物が実用上用いられる。
(ポリエステル樹脂)
ポリエステル樹脂としては、主な構成成分として例えば、下記のような多価カルボン酸及び多価ヒドロキシ化合物からなるものが挙げられる。
すなわち、多価カルボン酸としては、テレフタル酸、イソフタル酸、オルトフタル酸、フタル酸、4,4’-ジフェニルジカルボン酸、2,5-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,4-シクロヘキサンジカルボン酸、2-カリウムスルホテレフタル酸、5-ソジウムスルホイソフタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、グルタル酸、コハク酸、トリメリット酸、トリメシン酸、ピロメリット酸、無水トリメリット酸、無水フタル酸、p-ヒドロキシ安息香酸、トリメリット酸モノカリウム塩及びそれらのエステル形成性誘導体などを用いることができる。多価ヒドロキシ化合物としては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、2-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、p-キシリレングリコール、ビスフェノールA-エチレングリコール付加物、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリテトラメチレンオキサイドグリコール、ジメチロールプロピオン酸、グリセリン、トリメチロールプロパン、ジメチロールエチルスルホン酸ナトリウム、ジメチロールプロピオン酸カリウムなどを用いることができる。これらの化合物の中から、それぞれ適宜1つ以上を選択し、常法の重縮合反応によりポリエステル樹脂を合成すればよい。
また、上記多価カルボン酸の一部として、5-ソジウムスルホイソフタル酸などのスルホイソフタル酸類を共重合して、ポリエステル骨格にスルホン酸基を導入し、中和して親水化した物が好ましく用いられる。共重合する量は、多価カルボン酸全体に対し通常1~13モル%、好ましくは3~10モル%、さらに好ましくは5~9モル%である。スルホン酸基を適量導入することで、樹脂の親水性を高め、凹凸構造を形成しやすくすることができる。さらに水分散安定性を向上させることができる。
(イオン導電性の高分子化合物)
イオン導電性の高分子化合物とは、イオン導電性の官能基を含む高分子化合物であり、例えば、アンモニウム基含有化合物、ポリエーテル化合物、スルホン酸化合物、ベタイン化合物等の高分子化合物が挙げられる。これらの中でも極性が高く、効果的に凹凸を形成するという観点から、アンモニウム基含有化合物が特に好ましい。
アンモニウム基含有化合物とは、分子内にアンモニウム基を有する化合物を指し、アンモニウム基を有する高分子化合物であることが好ましい。例えば、アンモニウム基と不飽和性二重結合を有する単量体を成分として含む重合体を用いることができる。
かかる重合体の具体的な例としては、例えば下記式(2)で示される構成要素を繰返し単位として有する重合体を挙げることができる。これらの単独重合体や共重合体、さらに、その他の複数の成分を共重合していても構わない。
上記式(2)中、R、Rはそれぞれ独立して水素原子、アルキル基、フェニル基等であり、これらのアルキル基、フェニル基が以下に示す基で置換されていてもよい。置換可能な基は、例えば、ヒドロキシル基、アミド基、エステル基、アルコキシ基、フェノキシ基、ナフトキシ基、チオアルコキシ基、チオフェノキシ基、シクロアルキル基、トリアルキルアンモニウムアルキル基、シアノ基、ハロゲン等である。また、RおよびRは化学的に結合していてもよく、例えば、-(CH-(m=2~5の整数)、-CH(CH)CH(CH)-、-CH=CH-CH=CH-、-CH=CH-CH=N-、-CH=CH-N=C-、-CHOCH-、-(CHO(CH-などを挙げることができる。
上記式(2)中のXは、本発明の要旨を損なわない範囲で適宜選択することができる。例えば、ハロゲンイオン、スルホナート、ホスファート、ニトラート、アルキルスルホナート、カルボキシラート等を挙げることができる。
前記重合体、すなわちアンモニウム基と不飽和性二重結合を有する単量体を成分として含む重合体の中でも、造膜性を高め、安定した被膜が得られるという観点から、他のモノマーと共重合していてもよい。
他のモノマーとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル等のアクリル酸アルキル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル等のメタクリル酸アルキル、n-メチロールアクリルアミド等のアクリルアミドを挙げることができる。
また、より極性を高め、効果的に凹凸を形成するという観点からは、上記式(2)で示される構成要素を繰り返し単位とした単独重合体が好ましい。
また、アンモニウム基含有化合物の数平均分子量は、1000~500000であるのが好ましく、中でもより好ましくは2000~350000、さらに好ましくは5000~200000である。分子量を1000以上とすることで、塗膜の強度が弱くなることを防止でき、耐熱安定性を良好にしやすくなる。また、分子量を500000以下とすることで、塗布液の粘度が高くなることを防止して、取扱い性や塗布性を良好にしやすくなる。
(ポリウレタン樹脂)
ポリウレタン樹脂とは、ウレタン結合を分子内に有する高分子化合物で、水分散性又は水溶性のものが好ましい。本発明では、単独でも2種以上を併用してもよい。
水分散性又は水溶性を付与させるために、水酸基、カルボキシル基、スルホン酸基、スルホニル基、リン酸基、エーテル基等の親水性基をポリウレタン樹脂に導入することが一般的であり好ましい。前記親水性基のなかでも、樹脂層とポリエステルフィルムの密着性の点から、カルボキシル基又はスルホン酸基が特に好ましい。
ポリウレタン樹脂を作製する方法の一つに、水酸基含有化合物とイソシアネートとの反応によるものがある。原料として用いられる水酸基含有化合物としては、ポリオールが好適に用いられ、例えば、ポリエーテルポリオール類、ポリエステルポリオール類、ポリカーボネート系ポリオール類、ポリオレフィンポリオール類、アクリルポリオール類が挙げられる。これらの化合物は単独で用いても、複数種用いてもよい。
ポリエーテルポリオール類としては、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレンプロピレングリコール、ポリテトラメチレンエーテルグリコール、ポリヘキサメチレンエーテルグリコール等が挙げられる。
ポリエステルポリオール類としては、多価カルボン酸又はそれらの酸無水物と多価アルコールの反応から得られるものが挙げられる。多価カルボン酸としては、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸、フマル酸、マレイン酸、テレフタル酸、イソフタル酸等が挙げられる。多価アルコールとしては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、1,8-オクタンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2,5-ジメチル-2,5-ヘキサンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、2-ブチル-2-ヘキシル-1,3-プロパンジオール、シクロヘキサンジオール、ビスヒドロキシメチルシクロヘキサン、ジメタノールベンゼン、ビスヒドロキシエトキシベンゼン、アルキルジアルカノールアミン、ラクトンジオール等が挙げられる。
ポリカーボネート系ポリオール類としては、多価アルコール類とジメチルカーボネート、ジエチルカーボネート、ジフェニルカーボネート、エチレンカーボネート等とから、脱アルコール反応によって得られるポリカーボネートジオール、例えばポリ(1,6-ヘキシレン)カーボネート、ポリ(3-メチル-1,5-ペンチレン)カーボネート等が挙げられる。
上記した中でもポリエステルポリオール類が好ましい。
ポリウレタン樹脂を得るために使用されるポリイソシアネート化合物としては、トリレンジイソシアネート、キシリレンジイソシアネート、メチレンジフェニルジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート、トリジンジイソシアネート等の芳香族ジイソシアネート;α,α,α’,α’-テトラメチルキシリレンジイソシアネート等の芳香環を有する脂肪族ジイソシアネート;メチレンジイソシアネート、プロピレンジイソシアネート、リジンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート;シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソプロピリデンジシクロヘキシルジイソシアネート等の脂環式ジイソシアネート等が例示される。これらは単独で用いても、複数種併用してもよい。
ポリウレタン樹脂を合成する際に鎖延長剤を使用してもよく、鎖延長剤としては、イソシアネート基と反応する活性基を2個以上有するものであれば特に制限はなく、一般的には、水酸基又はアミノ基を2個有する鎖延長剤を主に用いることができる。
水酸基を2個有する鎖延長剤としては、例えばエチレングリコール、プロピレングリコール、ブタンジオール等の脂肪族グリコール;キシリレングリコール、ビスヒドロキシエトキシベンゼン等の芳香族グリコール;ネオペンチルグリコールヒドロキシピバレート等のエステルグリコールといったグリコール類を挙げることができる。
アミノ基を2個有する鎖延長剤としては、例えばトリレンジアミン、キシリレンジアミン、ジフェニルメタンジアミン等の芳香族ジアミン;エチレンジアミン、プロパンジアミン、ヘキサンジアミン、2,2-ジメチル-1,3-プロパンジアミン、2-メチル-1,5-ペンタンジアミン、トリメチルヘキサンジアミン、2-ブチル-2-エチル-1,5-ペンタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン等の脂肪族ジアミン;1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、ジシクロヘキシルメタンジアミン、1,4-ジアミノシクロヘキサン、1,3-ビスアミノメチルシクロヘキサン等の脂環式ジアミン等が挙げられる。
((架橋剤))
上記2種以上の樹脂は、架橋剤を含有することが好ましい。架橋剤を使用することで、樹脂層は、硬化樹脂層としやすくなる。また、架橋剤は、上記の通り、第2の樹脂として使用されることが好ましい。したがって、前記2種の樹脂における第1の樹脂として離型剤を使用し、その第1の樹脂に対する第2の樹脂として架橋剤を使用することが好ましい。ただし、架橋剤は上記の通り第1の樹脂として使用してもよい。
架橋剤としては、特に制限はなく、従来公知の架橋剤を使用することができる。例えばメラミン化合物、オキサゾリン化合物、エポキシ化合物、カルボジイミド化合物、イソシアネート化合物、シランカップリング化合物等を挙げることができる。中でも、相分離による凹凸形成性能の調整しやすさの観点から、架橋剤としては、メラミン化合物及びオキサゾリン化合物の少なくともいずれかを用いることが好ましい。本組成物において、架橋剤は、1種単独で使用してもよいし、2種以上を併用してもよい。
(メラミン化合物)
メラミン化合物とは、化合物中にメラミン骨格を有する化合物のことであり、例えばアルキロール化メラミン誘導体、アルキロール化メラミン誘導体にアルコールを反応させて部分的あるいは完全にエーテル化した化合物、及びこれらの混合物を用いることができる。
アルキロール化としては、メチロール化、エチロール化、イソプロピロール化、n-ブチロール化、イソブチロール化等が挙げられる。これらの中でも、反応性の観点から、メチロール化が好ましい。
エーテル化に用いるアルコールとしては、メタノール、エタノール、イソプロパノール、n-ブタノール及びイソブタノール等が好適に用いられ、これらの中では、メタノールがより好ましい。
また、メラミン化合物としては、単量体、あるいは2量体以上の多量体のいずれであってもよく、あるいはこれらの混合物を用いてもよい。さらに、メラミンの一部に尿素等を共縮合したものも使用できるし、メラミン化合物の反応性を上げるために、本組成物にはさらに触媒を使用することも可能である。
(オキサゾリン化合物)
オキサゾリン化合物とは、分子内にオキサゾリン基を有する化合物であり、特にオキサゾリン基を含有する重合体が好ましく、付加重合性オキサゾリン基含有モノマー単独もしくは他のモノマーとの重合によって作成できる。付加重合性オキサゾリン基含有モノマーは、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン及び2-イソプロペニル-5-エチル-2-オキサゾリン等を挙げることができ、これらの1種又は2種以上の混合物を使用することができる。これらの中でも2-イソプロペニル-2-オキサゾリンが工業的にも入手しやすく好適である。他のモノマーは、付加重合性オキサゾリン基含有モノマーと共重合可能なモノマーであれば制限はなく、例えばアルキル(メタ)アクリレート(アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、2-エチルヘキシル基及びシクロヘキシル基)等の(メタ)アクリル酸エステル類;アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸、クロトン酸、スチレンスルホン酸及びその塩(ナトリウム塩、カリウム塩、アンモニウム塩、第三級アミン塩等)等の不飽和カルボン酸類;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル類;(メタ)アクリルアミド、N-アルキル(メタ)アクリルアミド及びN,N-ジアルキル(メタ)アクリルアミド(アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基等)等の不飽和アミド類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;エチレン、プロピレン等のα-オレフィン類;塩化ビニル、塩化ビニリデン等の含ハロゲンα,β-不飽和モノマー類;スチレン、α-メチルスチレン等のα,β-不飽和芳香族モノマー等を挙げることができ、これらの1種又は2種以上のモノマーを使用することができる。
また、オキサゾリン化合物は、ポリエチレンオキサイド鎖などのポリアルキレンオキサイド鎖を有してもよく、例えばポリアルキレンオキサイド鎖を有する(メタ)アクリレートなどを他のモノマーとして使用してもよい。
樹脂層のポリエステルフィルムに対する密着性向上の観点から、オキサゾリン化合物のオキサゾリン基量は、好ましくは0.5~10mmol/g、より好ましくは1~9mmol/g、さらに好ましくは3~8mmol/gの範囲である。
(エポキシ化合物)
エポキシ化合物とは、分子内にエポキシ基を有する化合物であり、例えばエピクロロヒドリン、エチレングリコール、ポリエチレングリコール、グリセリン、ポリグリセリン及びビスフェノールA等の水酸基やアミノ基との縮合物や、ポリエポキシ化合物、ジエポキシ化合物、モノエポキシ化合物並びにグリシジルアミン化合物等がある。
ポリエポキシ化合物としては、例えばソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、トリグリシジルトリス(2-ヒドロキシエチル)イソシアネート、グリセロールポリグリシジルエーテル及びトリメチロールプロパンポリグリシジルエーテル等が挙げられる。
ジエポキシ化合物としては、例えばネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、レゾルシンジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル及びポリテトラメチレングリコールジグリシジルエーテル等が挙げられる。
モノエポキシ化合物としては、例えばアリルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル及びフェニルグリシジルエーテル、グリシジルアミン化合物としてはN,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノ)シクロヘキサン等が挙げられる。樹脂層のポリエステルフィルムに対する密着性向上の観点から、ポリエーテル系のエポキシ化合物が好ましい。
また、エポキシ基の量としては、2官能より、3官能以上の多官能であるポリエポキシ化合物が好ましい。
(カルボジイミド化合物)
カルボジイミド化合物とは、カルボジイミド構造を有する化合物のことであり、分子内にカルボジイミド構造を1つ以上有する化合物であるが、樹脂層とポリエステルフィルムのより良好な密着性等のために、分子内に2つ以上のカルボジイミド構造を有するポリカルボジイミド化合物がより好ましい。
カルボジイミド化合物は、従来公知の技術で合成することができ、一般的にはジイソシアネート化合物の縮合反応が用いられる。ジイソシアネート化合物としては、特に限定されるものではなく、芳香族系、脂肪族系いずれも使用することができ、具体的には、トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルジイソシアネート及びジシクロヘキシルメタン4,4’-ジイソシアネートなどが挙げられる。
カルボジイミド化合物に含有されるカルボジイミド基の含有量は、カルボジイミド当量(カルボジイミド基1molを与えるためのカルボジイミド化合物の重さ[g])で、通常100~1000、好ましくは250~800、より好ましくは300~700の範囲である。上記範囲で使用することで、樹脂層の耐久性が向上する。
さらに、本発明の主旨を損なわない範囲において、ポリカルボジイミド化合物の水溶性や水分散性を向上するために、界面活性剤を添加することや、ポリアルキレンオキシド、ジアルキルアミノアルコールの四級アンモニウム塩及びヒドロキシアルキルスルホン酸塩などの親水性モノマーを添加して用いてもよい。
(イソシアネート化合物)
イソシアネート化合物とは、イソシアネート、あるいはブロックイソシアネートに代表されるイソシアネート誘導体構造を有する化合物のことである。イソシアネートとしては、例えばトリレンジイソシアネート、キシリレンジイソシアネート、メチレンジフェニルジイソシアネート、フェニレンジイソシアネート及びナフタレンジイソシアネート等の芳香族イソシアネート;α,α,α’,α’-テトラメチルキシリレンジイソシアネート等の芳香環を有する脂肪族イソシアネート;メチレンジイソシアネート、プロピレンジイソシアネート、リジンジイソシアネート、トリメチルヘキサメチレンジイソシアネート及びヘキサメチレンジイソシアネート等の脂肪族イソシアネート;シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)及びイソプロピリデンジシクロヘキシルジイソシアネート等の脂環式イソシアネート等が例示される。
また、これらイソシアネートのビュレット化物、イソシアヌレート化物、ウレトジオン化物及びカルボジイミド変性体等の重合体や誘導体も挙げられる。これらは単独で用いても、複数種併用してもよい。上記イソシアネートの中でも、紫外線による黄変を避けるために、芳香族イソシアネートよりも脂肪族イソシアネート又は脂環式イソシアネートがより好ましい。
ブロックイソシアネートの状態で使用する場合、そのブロック剤としては、例えば重亜硫酸塩類;フェノール、クレゾール及びエチルフェノールなどのフェノール系化合物;プロピレングリコールモノメチルエーテル、エチレングリコール、ベンジルアルコール、メタノール及びエタノールなどのアルコール系化合物;イソブタノイル酢酸メチル、マロン酸ジメチル、マロン酸ジエチル、アセト酢酸メチル、アセト酢酸エチル及びアセチルアセトンなどの活性メチレン系化合物;ブチルメルカプタン、ドデシルメルカプタンなどのメルカプタン系化合物;ε‐カプロラクタム、δ‐バレロラクタムなどのラクタム系化合物;ジフェニルアニリン、アニリン及びエチレンイミンなどのアミン系化合物;アセトアニリド、酢酸アミドの酸アミド化合物;ホルムアルデヒドオキシム、アセトアルドオキシム、アセトンオキシム、メチルエチルケトンオキシム及びシクロヘキサノンオキシムなどのオキシム系化合物が挙げられ、これらは単独でも2種以上の併用であってもよい。
また、イソシアネート化合物は単体で用いてもよいし、各種ポリマーとの混合物や結合物として用いてもよい。イソシアネート化合物の分散性や架橋性を向上させるという意味において、ポリエステル樹脂やポリウレタン樹脂との混合物や結合物を使用することが好ましい。
(シランカップリング化合物)
シランカップリング化合物とは、1つの分子中に有機官能基とアルコキシ基などの加水分解基を有する有機ケイ素化合物である。例えば3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ基含有化合物;ビニルトリメトキシシラン、ビニルトリエトキシシランなどのビニル基含有化合物;p-スチリルトリメトキシシラン、p-スチリルトリエトキシシランなどのスチリル基含有化合物;3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシランなどの(メタ)アクリル基含有化合物;3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチルブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシランなどのアミノ基含有化合物;トリス(トリメトキシシリルプロピル)イソシアヌレート、トリス(トリエトキシシリルプロピル)イソシアヌレートなどのイソシアヌレート基含有化合物;3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジエトキシシランなどのメルカプト基含有化合物などが挙げられる。
(((特に好ましい形態)))
本組成物に含まれる2種以上の樹脂としては、(a)離型剤及びバインダー樹脂、(b)離型剤及び架橋剤、(c)離型剤、バインダー樹脂及び架橋剤の組み合わせが特に好ましく、とりわけ好ましくは(c)の組み合わせである。
(((架橋触媒)))
2種以上の樹脂として前記架橋剤を含む場合には、本組成物は、さらに架橋触媒を含んでいてもよい。
前記架橋触媒は、架橋剤の反応性を高めるために使用するものであって、種々公知の触媒を使用することができる。例えばアミン化合物、アミン化合物の塩類、p-トルエンスルホン酸などの芳香族スルホン酸化合物やリン酸化合物などの有機酸類及びそれらの塩、イミン化合物、アミジン化合物、グアニジン化合物、有機金属化合物、ステアリン酸亜鉛やミリスチン酸亜鉛やステアリン酸アルミニウムやステアリン酸カルシウムなどの金属塩類等が挙げられる。これらの中でもアミン化合物、アミン化合物の塩類やp-トルエンスルホン酸が好ましく、アミン化合物やアミン化合物の塩類がより好ましい。
本組成物が架橋触媒を含む場合、本組成物中の架橋触媒の含有量は、本組成物中の全不揮発成分に占める割合として、好ましくは0.01~5質量%、より好ましくは0.1~4質量%、さらに好ましくは1~3質量%の範囲である。当該含有量をかかる範囲とすることで、ポットライフの低下を抑制することができ、また、相分離による凹凸形成性能が十分となる。
(((微粒子)))
本組成物は、微粒子を含んでいてもよい。微粒子を併用することによって、凹凸構造を有する樹脂層において、凸部の表面硬度をさらに向上させることが可能となる。凸部の表面硬度を上げることによって、本積層ポリエステルフィルムをロール状にした際にも、樹脂層表面の凸部が変形しにくくなり、良好なロール外観を得ることができるようになる。
前記微粒子としては、例えばシリカ、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、リン酸カルシウム、リン酸マグネシウム、カオリン、酸化アルミニウム及び酸化チタン等の無機粒子の他、架橋シリコーン樹脂粒子、架橋アクリル樹脂粒子、架橋スチレン-アクリル樹脂粒子、架橋ポリエステル粒子等の架橋高分子、シュウ酸カルシウム及びイオン交換樹脂等の有機粒子を挙げることができる。これらの中では、シリカ、酸化アルミニウムが好ましい。
前記微粒子の平均粒径は、1~100nmであることが好ましく、より好ましくは2~60nm、さらに好ましくは3~30nmである。当該平均粒径がかかる範囲であれば、粒子の凝集による粗大突起の発生や、粒子の脱落による工程の汚染を抑制することができ、所望する微細な凹凸構造を得やすくなる。
なお、微粒子の平均粒径の測定方法は、比表面積測定装置によって測定される比表面積と粒子の密度より算出する方法や、透過型電子顕微鏡(TEM)もしくは走査型電子顕微鏡(SEM)観察して粒子の直径を算出する方法、動的光散乱法による測定から求める方法があり、微粒子の平均粒径により適した手法によって測定できる。
本組成物が微粒子を含む場合、本組成物中の微粒子の含有量は、本組成物中の全不揮発成分に占める割合として、好ましくは1~50質量%、より好ましくは5~45質量%、さらに好ましくは10~40質量%の範囲である。当該含有量をかかる範囲とすることで、凸部の表面硬度を向上させながら、所望する微細な凹凸構造を得ることができる。
(((その他成分)))
また、本発明の主旨を損なわない範囲において、上記成分以外にも、消泡剤、塗布性改良剤、界面活性剤、増粘剤、有機系潤滑剤、紫外線吸収剤、酸化防止剤、発泡剤、染料、顔料等の添加剤をさらに適宜配合してもよい。
(((溶媒)))
本組成物は、溶媒で希釈して塗布液としてもよい。すなわち、本組成物は、液状の塗布液として、例えば本ポリエステルフィルムに塗布し、必要に応じて乾燥、かつ、硬化させて樹脂層を形成させるとよい。
なお、本組成物を構成する各成分(2種以上の樹脂、任意に添加される架橋触媒及び微粒子、その他成分等)は、溶媒に溶解させてもよいし、溶媒中に分散させてもよい。
塗布液とした場合、塗布液中における本組成物の全不揮発成分の濃度は、0.1~50質量%であることが好ましい。0.1質量%以上であれば、効率的に所望の厚みの樹脂層を形成することができる。一方、50質量%以下であれば、塗工時の粘度を抑えることで樹脂層の外観を向上させることができ、また、塗布液中の安定性を高めることができる。
前記溶媒としては、特に制限はなく、水及び有機溶剤のいずれも使用することができる。環境保護の観点から、水を主溶媒(全溶媒の50質量%以上)として水性塗布液とすることが好ましい。水の含有量に関して、好ましくは60質量%以上、より好ましくは70質量%以上であるのがよい。水性塗布液には、少量の有機溶剤を含有していてもよい。有機溶剤の具体的な量は、質量基準で水の量以下とするとよく、例えば、溶媒中の50質量%以下、好ましくは40質量%以下、より好ましくは30質量%以下とするのがよい。
水と併用する有機溶剤としては、エタノール、イソプロパノール、エチレングリコール、グリセリン等のアルコール類;エチルセロソルブ、t-ブチルセロソルブ、プロピレングリコールモノメチルエーテル、テトラヒドロフラン等のエーテル類;アセトン、メチルエチルケトン等のケトン類;酢酸エチル等のエステル類;ジメチルエタノールアミン等のアミン類等を例示することができる。これらは単独、もしくは複数を組み合わせて用いることができる。水性塗布液に、必要に応じてこれらの有機溶剤を適宜選択し、含有させることで、塗布液の安定性、塗工性を良好にできる場合がある。
また、上記溶媒として有機溶剤のみを使用する場合、かかる有機溶剤としては、トルエン等の芳香族炭化水素類;ヘキサン、ヘプタン、イソオクタン等の脂肪族炭化水素類;酢酸エチル、酢酸ブチル等のエステル類;エチルメチルケトン、イソブチルメチルケトン等のケトン類;エタノール、2-プロパノール等のアルコール類;ジイソプロピルエーテル、ジブチルエーテル等のエーテル類などを挙げることができる。これらは、溶解性、塗工性や沸点等を考慮して単独で使用してもよいし、複数種を混合して使用してもよい。
樹脂層中には、本組成物を構成する各成分(2種以上の樹脂、任意に添加される架橋触媒及び微粒子、その他成分等)の未反応物、反応後の化合物、あるいはそれらの混合物が存在しているものと推測できる。
なお、樹脂層中の各成分の分析は、例えば、TOF-SIMS、ESCA、蛍光X線等によって行うことができる。
<樹脂層の形成方法>
次に、本積層ポリエステルフィルムを構成する樹脂層の形成方法について説明する。
本樹脂層は、本組成物をポリエステルフィルムに塗布し、必要に応じて、塗布した本組成物に対して乾燥、硬化、熱処理等などの処理を行って形成すればよく、少なくとも熱処理を行うことが好ましい。樹脂組成物を塗布する方法は、特に限定されず、例えばリバースグラビアコート、ダイレクトグラビアコート、ロールコート、ダイコート、バーコート、カーテンコート等、従来公知の塗工方式を用いることができる。
また、樹脂層の形成方法としては、インラインコーティング及びオフラインコーティングがある。塗布した樹脂組成物を熱処理する方法は、特に限定されるわけではなく、例えばオフラインコーティングにより樹脂層を設ける場合、通常、80~200℃で3~40秒間、好ましくは100~180℃で3~40秒間を目安として熱処理を行うのがよい。一方、インラインコーティングにより樹脂層を設ける場合、通常、70~280℃で3~200秒間を目安として熱処理を行うのがよい。
また、熱処理は、上記温度範囲内において温度の異なる2段以上の工程で行ってもよい。熱処理の少なくとも一部は、延伸時の加熱により行ってもよい。また、乾燥及び硬化は、上記熱処理における加熱により合わせて行うとよい。
本発明では、樹脂層は、ポリエステルフィルムの製膜工程中にフィルム表面を処理する、インラインコーティングにより形成されるのが好ましい。
インラインコーティングは、ポリエステルフィルム製造の工程内でコーティングを行う方法であり、具体的には、ポリエステルを溶融押し出ししてから延伸後、熱固定して巻き上げるまでの任意の段階でコーティングを行う方法である。通常は、溶融、急冷して得られる未延伸シート、延伸された一軸延伸フィルム、熱固定前の二軸延伸フィルム、熱固定後で巻き上げ前のフィルムのいずれかにコーティングする。
以下に限定するものではないが、例えば逐次二軸延伸においては、特に長手方向(縦方向)に延伸された一軸延伸フィルムにコーティングした後に横方向に延伸する方法が優れている。かかる方法によれば、製膜と樹脂層形成を同時に行うことができるため、製造コスト上のメリットがあり、また、コーティング後に延伸を行うために、樹脂層の厚みを延伸倍率により変化させることもでき、オフラインコーティングフィルムに比べ、薄膜コーティングをより容易に行うことができる。
また、延伸前にフィルム上に樹脂層を設けることにより、樹脂層をポリエステルフィルムと共に延伸することができ、それにより樹脂層をポリエステルフィルムに強固に密着させることができる。
さらに、二軸延伸ポリエステルフィルムの製造において、クリップ等によりフィルム端部を把持しつつ延伸することで、フィルムを縦及び横方向に拘束することができ、その後の熱処理(熱固定工程)において、しわ等が入らず平面性を維持したまま高温をかけることができる。
それゆえ、塗布後に施される熱処理が他の方法では達成されない高温とすることができるために、樹脂層の造膜性が向上し、樹脂層とポリエステルフィルムをより強固に密着させることができる。さらには、強固な樹脂層とすることができ、樹脂層上に形成され得る各種の機能層への耐移行性や耐湿熱性等の性能を向上させることができる。
また、オフラインコーティングあるいはインラインコーティングにかかわらず、必要に応じて熱処理と紫外線照射等の活性エネルギー線照射とを併用してもよい。本積層ポリエステルフィルムを構成するポリエステルフィルムにはあらかじめ、コロナ処理、プラズマ処理等の表面処理を施してもよい。
本樹脂層の不揮発成分の塗布量は、好ましくは0.005~0.95g/m、より好ましくは0.01~0.5g/m、さらに好ましくは0.02~0.2g/mである。当該塗布量がかかる範囲であれば、相分離により微細な凹凸構造を形成することができる。
なお、当該塗布量は、塗布液不揮発成分濃度、塗布液消費量から導かれる乾燥前塗布量、横延伸倍率等から計算で求めることができる。また、不揮発成分の塗布量とは、本積層ポリエステルフィルムにおける塗布量であり、例えば、乾燥及び延伸を行う場合には、乾燥延伸後の塗布量である。
<<<積層ポリエステルフィルムの物性>>>
本積層ポリエステルフィルムの樹脂層表面の算術平均粗さ(Ra)は、5nm以上であることが好ましく、より好ましくは7nm以上、さらに好ましくは9nm以上である。上限値は特に制限されないが、600nmであることが好ましく、より好ましくは400nm、さらに好ましくは200nmである。当該算術平均粗さ(Ra)が5nm以上であれば、本樹脂層が微細な凹凸構造を有しているといえ、本積層ポリエステルフィルムの取り扱い性が良好となる。また、当該算術平均粗さ(Ra)が600nm以下であれば、本樹脂層の凹凸構造が十分に微細な形状といえる。
算術平均粗さ(Ra)とは、線粗さパラメーター(JIS B 0601)の一つであり、平均面からの平均的な高低差の平均値を表す。
すなわち、基準長さLの部分を抜き取り、この抜き取り部分の平均線をx軸、縦倍率の方向をy軸として粗さ曲線をy=Z(x)で表したとき、以下の式(3)から求められる。
また、樹脂層表面の十点平均粗さ(Rzjis)は28nm以上であることが好ましく、より好ましくは35nm以上、さらに好ましくは45nm以上である。上限値は特に制限されないが、800nmであることが好ましく、より好ましくは600nm、さらに好ましくは500nmである。当該十点平均粗さ(Rzjis)が28nm以上であれば、本樹脂層が十分な凹凸構造を有しているといえる。また、当該十点平均粗さ(Rzjis)が800nm以下であれば、本樹脂層の凹凸構造が十分に微細な形状といえる。
十点平均粗さ(Rzjis)とは、線粗さパラメーター(JIS B 0601)の一つであり、基準長さLにおいて、輪郭曲線の最大の山高さ(Zp)から5番目までの平均と、最深の谷深さ(Zv)から5番目までの平均との和を表し、以下の式(4)から求められる。
上記算術平均粗さ(Ra)及び十点平均粗さ(Rzjis)は、本組成物中の組成や含有量などによって調整することができる。
前記樹脂層表面の切断レベル50%における粗さ曲線の負荷長さ率(Rmr(50))が70%以下であることが好ましく、より好ましくは60%以下、さらに好ましくは50%以下である。下限値は特に制限されず、1%程度であり、好ましくは3%、より好ましくは5%である。当該負荷長さ率(Rmr(50))が70%以下であれば、適度な微細凹凸構造が形成されており、巻き特性に優れたフィルムとなる。
負荷長さ率(Rmr(c))は、線粗さパラメーター(JIS B 0601)の一つであり、切断レベルc(高さ%又はμm)における輪郭曲線要素の負荷長さML(c)の評価長さLnに対する比率を表したものであり、以下の式(5)から求められる。
ここで、本発明者は、負荷長さ率(Rmr(50))が凹凸構造の凹凸分布を表す指標として有効であると考えた。例えば凹分布が大きいものは負荷長さ率(Rmr(50))の数値が小さくなり、凸分布が大きいものは負荷長さ率(Rmr(50))の数値が大きくなる。
上記負荷長さ率(Rmr(50))は、本組成物中の組成や含有量などによって調整することができる。
なお、樹脂層表面の算術平均粗さ(Ra)、十点平均粗さ(Rzjis)、負荷長さ率(Rmr(50))は、原子間力顕微鏡(走査型プローブ顕微鏡)を用いて実施例に記載の方法で測定する。原子間力顕微鏡(走査型プローブ顕微鏡)による測定であれば、表面のより微細な構造を捉えることが可能であり、樹脂層による効果を強く反映した数値を得ることが可能となる。
本積層ポリエステルフィルムの樹脂層表面と反対面との静摩擦係数は、1.0以下であることが好ましく、より好ましくは0.8以下、さらに好ましくは0.5以下である。
また、樹脂層表面と反対面との動摩擦係数は、0.9以下であることが好ましく、より好ましくは0.7以下、さらに好ましくは0.6以下である。
本積層ポリエステルフィルムをロール状に巻き取った際などには、樹脂層表面と反対面が接するため、樹脂層表面と反対面との摩擦係数が重要である。
したがって、当該静摩擦係数及び/又は当該動摩擦係数がかかる範囲であれば、本樹脂層の凹凸構造により、滑り性が良好となり、本積層ポリエステルフィルムのハンドリング性が良化する。
なお、上記静摩擦係数及び動摩擦係数は、実施例に記載の方法で測定できる。
<<<積層ポリエステルフィルムの用途>>>
本樹脂層は、特定の関係式を満たす樹脂組成物から構成することにより、薄膜であっても、相分離構造を形成させ、微細な凹凸構造を発現できる点に特徴がある。
かかる設計思想により、従来の粒子練り込み型のフィルム製法では達成困難な、微細な凹凸構造の精密制御が可能となった。また、溶解性を多次元のベクトルで表し、そのベクトルの類似性で溶解性を判断するHSPを考慮することで、薄膜であっても微細な凹凸構造を形成させることが可能となった。
本積層ポリエステルフィルムは、ハンドリング性を向上させる目的で各種用途に使用することができ、その用途は特に制限されない。
中でも、上述のとおり、微細な凹凸構造を有することから、シート成形用として用いれば、高平滑なフィルムをロール状に巻き取る際にも、良好な巻取り性を発揮し、シワが発生しにくくなるという利点があり、シート成形用ポリエステルフィルムとして好適に用いることができる。シート成形用ポリエステルフィルムとしては、例えば積層セラミックコンデンサ(Multi-Layer Ceramic Capacitor;MLCC)のグリーンシート成形用、層間絶縁樹脂用、ドライフィルムレジスト(DFR)用、多層回路基板用等の各種離型・工程用途が挙げられる。本積層ポリエステルフィルムは、離型・工程用途では、例えば支持体として使用される。
シート成形用ポリエステルフィルムは、例えば、該フィルムの少なくとも一方の面側に、各種材料を塗布、積層などしてグリーンシートなどの各種シートを成形する工程において使用されるとよい。本樹脂層が片面にのみ設けられる場合には、各種材料は、樹脂層が設けられた面とは反対側のフィルム面(反対面)に塗布、積層などされることが好ましいが、樹脂層が設けられたフィルム面側に塗布、積層などされてもよい。なお、シート成形用ポリエステルフィルムにおいては、樹脂層が設けられた面とは反対側のフィルム面には適宜離型層などが設けられてもよい。
<<<語句の説明>>>
本発明においては、「フィルム」と称する場合でも「シート」を含むものとし、「シート」と称する場合でも「フィルム」を含むものとする。
本発明において、「X~Y」(X,Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」あるいは「好ましくはYより小さい」の意も包含するものである。
また、「X以上」(Xは任意の数字)と記載した場合、特にことわらない限り「好ましくはXより大きい」の意を包含し、「Y以下」(Yは任意の数字)と記載した場合、特にことわらない限り「好ましくはYより小さい」の意も包含するものである。
以下、実施例により本発明をさらに詳細に説明する。
ただし、本発明は、その要旨を越えない限り、以下の実施例に限定されるものではない。
<評価方法>
(1)ポリエステルの固有粘度(IV)
ポリエステルに非相溶な成分を除去したポリエステル1gを精秤し、フェノール/テトラクロロエタン=50/50(質量比)の混合溶媒100mLを加えて溶解させ、粘度測定装置「VMS-022UPC・F10」(株式会社離合社製)を用いて、30℃で測定した。
(2)粒子の平均粒径
粒子の平均粒径は、10個以上の粒子を走査型電子顕微鏡(SEM)で観察して粒子の直径を測定し、その平均値を平均粒径(平均1次粒径)として求めた。その際、非球状粒子の場合は、最長径と最短径の平均値を各粒子の直径として測定した。
(3)樹脂層の凹凸構造
走査型プローブ顕微鏡(株式会社島津製作所社製 SPM-9700)を用いて、下記の条件で測定を行った。
探針:シリコンカンチレバー
走査モード:ダイナミックモード
走査範囲:25μm×25μm
スキャン速度:0.8Hz
画素数:512×512データポイント
得られたデータから25μm幅の断面形状を観察し、8割以上の位置において、段差が10nmを超える凸部もしくは凹部が複数ある場合は凹凸構造「有」、複数の凸部もしくは凹部を確認できない場合は凹凸構造「無」と判断した。
(4)各樹脂のHansen溶解度パラメーター(HSP)[δd,δp,δh]
20mL容量のガラス瓶に各樹脂の固形物を約0.05g入れ、そこに固形物比率が1質量%となるように溶媒を加え、20秒間撹拌後、23℃環境下に静置した。24時間後にガラス瓶を確認し、固形物が溶解した場合は使用した溶媒が良溶媒、固形物が不溶もしくは膨潤した場合は使用した溶媒が貧溶媒と判定し、Hansen溶解度パラメータ(HSP)の各パラメーター[δd,δp,δh]を算出した。値の算出には市販のハンセン溶解度パラメーター計算ソフトHSPiPを使用した。使用した溶媒種は上述の表1に従って選定し、合計21種の溶媒を用いて評価を行った。
(5)Hansen溶解度パラメーター(HSP)距離
上記(4)の方法で測定されたHSPの値を用いて、使用した2種以上の樹脂について2種の樹脂間それぞれのHSP距離を下記式から算出した。
HSP距離={4×(δd-δd+(δp-δp+(δh-δh0.5
ただし、上記式において、δd、δp及びδhは、Hansen溶解度パラメーター[δd,δp,δh]において、それぞれ、2種の樹脂のうちの一方の樹脂のδd、δp及びδhを表し、δd、δp及びδhは、それぞれ、2種の樹脂のうちの他方の樹脂のδd、δp及びδhを示す。
なお、前記2種の樹脂のうち極性項δpの値が小さい方を一方の樹脂、極性項δpの値が大きい方を他方の樹脂とした。すなわち、δp≦δpとした。
(6)樹脂層表面の算術平均粗さ(Ra)及び十点平均粗さ(Rzjis)
上記(3)の方法で測定した走査型プローブ顕微鏡のデータから、テンター延伸方向(すなわち、横方向)に平行に25μm幅の断面解析を行い、算術平均粗さ(Ra)と十点平均粗さ(Rzjis)を求めた。フィルムの製膜方向(すなわち、縦方向)に等間隔に10点の断面解析データを求め、これを平均して求めた。
(7)樹脂層表面の負荷長さ率(Rmr(50))
上記(6)と同様の方法で走査型プローブ顕微鏡の断面解析を行い、切断レベル50%の負荷長さ率(Rmr(50))を求めた。フィルムの製膜方向(すなわち、縦方向)に等間隔に10点の断面解析データを求め、これを平均して求めた。
(8)静摩擦係数及び動摩擦係数
積層ポリエステルフィルムの樹脂層表面と反対面側との静摩擦係数及び動摩擦係数は、以下の方法で求めた。
幅10mm、長さ100mmの平滑なガラス板上に、樹脂層が設けられた面とは反対の面が上面となるようにフィルムを貼り付けた。その上に幅18mm、長さ120mmに切り出したフィルムを上記樹脂層が設けられた面が下面となるように載せ、そのフィルムの上にさらに直径8mmの金属ピンに押し当て、金属ピンをガラス板の長手方向に、加重30g、40mm/分で滑らせて摩擦力を測定し、滑り出し直後の最大値を静摩擦係数として、4mmから6mm滑らせた間での摩擦係数の平均値を動摩擦係数として評価した。なお、測定は、室温23±1℃、湿度50±0.5%RHの雰囲気下で行った。また、測定回数(N)は10回とし、その平均値を採用した。
静摩擦係数(μs)=Fs/おもり過重
動摩擦係数(μd)=Fd/おもり荷重
(上記式中、FsとFdの単位はg重、おもり荷重の単位はg重である)
<使用した材料>
実施例及び比較例において使用したポリエステルは、以下のとおりである。
[ポリエステル(A)]
ジメチルテレフタレート100質量部及びエチレングリコール65質量部を、攪拌装置、昇温装置及び留出液分離塔を備えたエステル交換反応槽に仕込み、150℃に加熱してジメチルテレフタレートを溶融させた。
次いで、得られるポリエステルに対する酢酸マグネシウムの添加量が0.09質量%となるように、酢酸マグネシウム四水塩のエチレングリコール溶液を添加した。
その後、常圧下で3時間かけて225℃まで昇温させ、更に225℃で1時間15分攪拌保持すると共にメタノールを留去しながらエステル交換反応を行ない、実質的にエステル交換反応を終了してポリエステル低重合体(オリゴマー)を得た。
次いで、前記オリゴマーを留出管を備えた攪拌機付き重縮合反応槽へ移送した。
得られるポリエステル樹脂分に対する酢酸マグネシウムの添加量が0.09質量%となるように、酢酸マグネシウム四水塩のエチレングリコール溶液を、移送後のオリゴマーに添加した。
その後、得られるポリエステルに対するリン酸の添加量が0.017質量%となるように、熱安定剤としてリン酸のエチレングリコール溶液を添加した。
次いで、得られるポリエステルに対してチタン原子として4.5質量ppmとなるように、重縮合触媒としてテトラブチルチタネートのエチレングリコール溶液を、前記オリゴマーに添加した。
その後、101.3kPaから0.4kPaまで85分間で減圧し0.4kPaに保持するとともに、225℃から280℃まで2時間かけて昇温させ280℃で1.5時間保持して溶融重縮合反応を行い、極限粘度(IV)が0.63dL/gのポリエステルAを得た。
[ポリエステル(B)]
ポリエステル(A)の製造方法において、溶融重合前に平均粒径2μmのシリカ粒子を、ポリエステル(A)中に0.3質量%添加する以外はポリエステル(A)の製造方法と同様の方法を用いて、極限粘度(IV)が0.63dL/gのポリエステル(B)を得た。
下記表3に示す組成にて撹拌混合して得られる樹脂組成物を水で希釈して、塗布液1~24を調整した。使用した化合物は以下のとおりである。
[バインダー樹脂(IA)]
下記組成で重合したアクリル樹脂の水分散体
エチルアクリレート/n-ブチルアクリレート/メチルメタクリレート/N-メチロールアクリルアミド/アクリル酸=65/21/10/2/2(質量%)の乳化重合体(乳化剤:アニオン系界面活性剤)
[バインダー樹脂(IB)]
下記構成で重合したアクリル樹脂の水分散体
メチルメタクリレート、エチルメタクリレート、エチルアクリレート、アクリロニトリル、N-メチロールアクリルアミドを主成分として構成されるアクリル樹脂の乳化重合体(乳化剤:アニオン系界面活性剤)
[バインダー樹脂(IC)]
ケン化度88mol%、重合度500のポリビニルアルコール
[バインダー樹脂(ID)]
下記組成で共重合したポリエステル樹脂の水分散体
モノマー組成:(酸成分)テレフタル酸/イソフタル酸/5-ソジウムスルホイソフタル酸//(ジオール成分)エチレングリコール/ジエチレングリコール/テトラエチレングリコール=60/33/7//45/40/15(mol%)
[バインダー樹脂(IE)]
下記の式(6)の構成単位を重合した、数平均分子量30000のアンモニウム基含有高分子化合物
[バインダー樹脂(IF)]
下記組成で共重合したポリエステル樹脂の水分散体
モノマー組成:(酸成分)テレフタル酸/イソフタル酸/5-ソジウムスルホイソフタル酸//(ジオール成分)エチレングリコール/1,4-ブタンジオール/ジエチレングリコール=56/40/4//70/20/10(mol%)
[離型剤(IIA)]
攪拌機、温度計、温度コントローラーを備えた内容量1.5Lの乳化設備に融点105℃、酸価16mgKOH/g、密度0.93g/mL、数平均分子量5000の酸化ポリエチレンワックス300g、イオン交換水650gとデカグリセリンモノオレエート界面活性剤を50g、48%水酸化カリウム水溶液10gを加え窒素で置換後、密封し150℃で1時間高速攪拌した後130℃に冷却し、高圧ホモジナイザーを400気圧下で通過させ40℃に冷却したワックスエマルション。
[離型剤(IIB)]
4つ口フラスコにキシレン200質量部、オクタデシルイソシアネート600質量部を加え、攪拌下に加熱した。キシレンが還流し始めた時点から、平均重合度500、ケン化度88モル%のポリビニルアルコール100質量部を少量ずつ10分間隔で約2時間にわたって加えた。ポリビニルアルコールを加え終わってから、さらに2時間還流を行い、反応を終了した。反応混合物を約80℃まで冷却してから、メタノール中に加えたところ、反応生成物が白色沈殿として析出したので、この沈殿を濾別し、キシレン140質量部を加え、加熱して完全に溶解させた後、再びメタノールを加えて沈殿させるという操作を数回繰り返した後、沈殿をメタノールで洗浄し、乾燥粉砕して得た。
[架橋剤(IIIA)]
メラミン化合物:ヘキサメトキシメチロールメラミン
[架橋剤(IIIB)]
オキサゾリン化合物であるエポクロス(株式会社日本触媒製) オキサゾリン基量7.7mmol/g
[微粒子(IV)]
平均粒径0.005μmのシリカ粒子
[架橋触媒(V)]
架橋触媒:2-アミノ-2-メチルプロパノールハイドロクロライド
上記(4)の方法によって測定した各樹脂(IA)~(IIIB)のHSPを表2に示す。
(実施例1)
ポリエステル(A)、(B)をそれぞれ94質量%、6質量%の割合で混合した混合原料を最外層(表層)の原料とし、ポリエステル(A)のみを中間層の原料とした。最外層及び中間層の原料の各々を2台の押出機に供給し、各々285℃で溶融した後、40℃に設定した冷却ロール上に、2種3層(表層/中間層/表層=1/8/1の吐出量)の層構成で共押出し冷却固化させて未延伸シートを得た。
次いで、このフィルムを85℃の加熱ロール群を通過させながら長手方向に3.5倍延伸し、一軸延伸フィルムとした。この一軸延伸フィルムの片面に、下記表3に示す組成を有する塗布液1を塗布量(乾燥延伸後)が0.10g/m塗布し、次いでこのフィルムをテンター延伸機に導き、100℃で幅方向に4.3倍延伸し、さらに235℃で熱処理を施した後、幅方向に2%の弛緩処理を行い、厚さ50μmの積層ポリエステルフィルムを得た。評価結果を表4に示す。
(実施例2~24)
表3に示す塗布液を用いると共に、塗布量(乾燥延伸後)を表4に示す塗布量に変更した以外は、実施例1と同様にして、積層ポリエステルフィルムを得た。評価結果を表4に示す。
(実施例25)
最外層(表層)の原料をポリエステル(A)のみに変えた以外は実施例14と同様にして、積層ポリエステルフィルムを得た。評価結果を表4に示す。
(比較例1)
樹脂層を設けなかったこと以外は、実施例1と同様にして、ポリエステルフィルムを得た。評価結果を表4に示す。
(比較例2~3)
表3に示す塗布液を用いたこと以外は、実施例1と同様にして、積層ポリエステルフィルムを得た。評価結果を表4に示す。
(比較例4)
樹脂層を設けなかったこと以外は、実施例25と同様にして、ポリエステルフィルムを得た。評価結果を表4に示す。
(比較例5)
表3に示す塗布液を用いたこと以外は、実施例25と同様にして、積層ポリエステルフィルムを得た。評価結果を表4に示す。
なお、上記表4中のHSP距離において、例えばI/IIとは、IとIIのHSP距離を表す。より具体的には、実施例1のI/IIとは、バインダー樹脂(IA)と離型剤(IIA)のHSP距離のことである。
また、上記表4中のポリエステルフィルムAは実施例1、ポリエステルフィルムBは実施例25のポリエステルフィルムとする。
表4の結果が示す通り、本発明の積層ポリエステルフィルムは、HSP距離が5.0以上の2種の樹脂を含むことにより、図1に示す通り凹凸構造を形成しており、静摩擦係数が低く1.0以下、動摩擦係数が0.9以下となっており、滑り性が良く、巻き取り性といった生産性に優れたフィルムであることが分かる。
一方で樹脂層を持たない比較例1や、樹脂層に含まれる樹脂2種のHSP距離が近い比較例2及び3は凹凸構造を持たず、静摩擦係数、動摩擦係数ともに高いため滑り性に劣り、生産性に劣るフィルムであった。
また、実施例25と比較例4及び5を比較すると、粒子を含まない極めて平滑な積層ポリエステルフィルムの場合であっても、本発明の積層ポリエステルフィルムであれば、凹凸構造を持つ樹脂層により、滑り性に優れ、生産性の良いフィルムであることが分かる。
本発明の積層ポリエステルフィルムは、樹脂層表面に微細な凹凸構造を形成できるため、例えばシート成形用として用いれば、極めて高平滑なフィルムをロール状に巻き取る際にも、良好な巻取り性を発揮し、シワが発生しにくくなるという利点がある。
また、本発明の積層ポリエステルフィルムは、樹脂層を薄膜にできるから、ポリエステルフィルムの薄膜長尺化にも対応可能であり、加工時における製品ロールの切替頻度低減による生産性向上に寄与することができる。
したがって、本発明の積層ポリエステルフィルムは、優れた表面平滑性を有するシート成形用ポリエステルフィルム等として好適に用いることができ、その工業的利用価値は高い。

Claims (11)

  1. ポリエステルフィルムと、前記ポリエステルフィルムの少なくとも片面に、樹脂組成物により形成された樹脂層とを備える積層ポリエステルフィルムであって、
    前記樹脂層が凹凸構造を有し、
    前記樹脂組成物が2種以上の樹脂を含み、
    前記2種以上の樹脂のうち少なくとも2種の樹脂が、一方を第1の樹脂、他方を第2の樹脂とすると、下記式(1)の関係を満足する、積層ポリエステルフィルム。
    HSP距離={4×(δd-δd+(δp-δp+(δh-δh0.5≧5.0・・・(1)
    (ただし、δd、δp及びδhは、Hansen溶解度パラメーター[δd,δp,δh]において、それぞれ、前記第1の樹脂のδd、δp及びδhを表し、δd、δp及びδhは、それぞれ、前記第2の樹脂のδd、δp及びδhを表す。なお、δp≦δpとする。)
  2. 前記2種以上の樹脂の合計含有量が、不揮発成分として50質量%以上である、請求項1に記載の積層ポリエステルフィルム。
  3. 前記2種の樹脂における前記第1の樹脂の極性項δpが、9.0MPa0.5以下である、請求項1又は2に記載の積層ポリエステルフィルム。
  4. 前記2種の樹脂における前記第1の樹脂が、離型剤である、請求項1~3のいずれか1項に記載の積層ポリエステルフィルム。
  5. 前記2種以上の樹脂が、前記第1の樹脂に対してHSP距離が6.0以上の樹脂を含み、かつ、HSP距離が5.5以下の樹脂を含まない、請求項3又は4に記載の積層ポリエステルフィルム。
  6. 前記2種以上の樹脂が、架橋剤を含む、請求項1~5のいずれか1項に記載の積層ポリエステルフィルム。
  7. 前記樹脂組成物が、架橋触媒を含む、請求項6に記載の積層ポリエステルフィルム。
  8. 前記樹脂組成物が、微粒子を含む、請求項1~7のいずれか1項に記載の積層ポリエステルフィルム。
  9. 走査型プローブ顕微鏡で測定したときの前記樹脂層表面の算術平均粗さ(Ra)が、5nm以上である、請求項1~8のいずれか1項に記載の積層ポリエステルフィルム。
  10. 走査型プローブ顕微鏡で測定したときの前記樹脂層表面の十点平均粗さ(Rzjis)が、28nm以上である、請求項1~9のいずれか1項に記載の積層ポリエステルフィルム。
  11. 走査型プローブ顕微鏡で測定したときの前記樹脂層表面の切断レベル50%における粗さ曲線の負荷長さ率(Rmr(50))が70%以下である、請求項1~10のいずれか1項に記載の積層ポリエステルフィルム。
JP2022013618A 2022-01-31 2022-01-31 積層ポリエステルフィルム Pending JP2023111663A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022013618A JP2023111663A (ja) 2022-01-31 2022-01-31 積層ポリエステルフィルム
KR1020247025149A KR20240144160A (ko) 2022-01-31 2023-01-30 적층 폴리에스테르 필름
PCT/JP2023/002945 WO2023145952A1 (ja) 2022-01-31 2023-01-30 積層ポリエステルフィルム
TW112103285A TW202344390A (zh) 2022-01-31 2023-01-31 積層聚酯膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022013618A JP2023111663A (ja) 2022-01-31 2022-01-31 積層ポリエステルフィルム

Publications (1)

Publication Number Publication Date
JP2023111663A true JP2023111663A (ja) 2023-08-10

Family

ID=87551719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022013618A Pending JP2023111663A (ja) 2022-01-31 2022-01-31 積層ポリエステルフィルム

Country Status (1)

Country Link
JP (1) JP2023111663A (ja)

Similar Documents

Publication Publication Date Title
JP6365506B2 (ja) 積層ポリエステルフィルム
JP2023111664A (ja) 積層ポリエステルフィルム
JP6326816B2 (ja) 二軸延伸積層ポリエステルフィルム
JP2023111662A (ja) ポリエステルフィルムロール
JP6029624B2 (ja) 積層ポリエステルフィルム
TWI573688B (zh) Laminated polyester film
JP5911465B2 (ja) 積層ポリエステルフィルム
JP5889244B2 (ja) 積層ポリエステルフィルム
JP2016210066A (ja) 積層ポリエステルフィルム
JP6319331B2 (ja) 積層ポリエステルフィルム
JP5809213B2 (ja) 積層ポリエステルフィルム
JP2023111663A (ja) 積層ポリエステルフィルム
JP6120936B1 (ja) 粘着ポリエステルフィルム積層体
WO2023145952A1 (ja) 積層ポリエステルフィルム
JP5956483B2 (ja) 積層ポリエステルフィルム
JP2024044103A (ja) 積層ポリエステルフィルム
JP2024044104A (ja) 積層ポリエステルフィルム
JP2024105972A (ja) 離型フィルム
JP6583146B2 (ja) 積層ポリエステルフィルムおよびその製造方法
JP2023111665A (ja) 積層ポリエステルフィルム
WO2023145938A1 (ja) 積層ポリエステルフィルム
WO2023120548A1 (ja) ポリエステルフィルム及び積層ポリエステルフィルム
JP2024085182A (ja) 積層ポリエステルフィルム
JP2024105973A (ja) 離型フィルム
JP6439746B2 (ja) 積層ポリエステルフィルム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240920